

Title	On Riemannian manifolds admitting certain strictly convex functions
Author(s)	Kasue, Atsushi
Citation	Osaka Journal of Mathematics. 1981, 18(3), p. 577-582
Version Type	VoR
URL	https://doi.org/10.18910/5111
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kasue, A.
Osaka J. Math.
18 (1981), 577-582

ON RIEMANNIAN MANIFOLDS ADMITTING CERTAIN STRICTLY CONVEX FUNCTIONS

ATSUSHI KASUE

(Received March 18, 1980)

1. Introduction. Let M be an m -dimensional connected complete Riemannian manifold with metric g . For a smooth function f on M , the *Hessian* D^2f of f is defined by $D^2f(X, Y) = X(Yf) - D_X Y \cdot f$ ($X, Y \in TM$). By a theorem of H.W. Wissner ([5; Satz. II. 1.3]), if there is a smooth function f on M such that $D^2f = g$ on M , then M is isometric to Euclidean space. In this note, we shall prove that if the Hessian of a smooth function f on M is close enough to g , then M is quasi-isometric to Euclidean space in the following sense: There exists a diffeomorphism $F: M \rightarrow R^m$ and some positive constant μ such that for each tangent vector X on M , $\mu^{-1}||X||_M \leq ||F_*X||_{R^m} \leq ||X||_M$. Our result contains the above theorem by Wissner as a special case ($\mu=1$), and generalises Yagi's theorem ([7]). Our theorem is stated as follows.

Theorem. *Let M be an m -dimensional connected complete Riemannian manifold with metric g . Suppose there exists a smooth function f on M which satisfies the following conditions:*

$$(i) \quad (1 - H_1(f(x)))g(X, X) \leq \frac{1}{2}D^2f(X, X) \leq (1 + H_2(f(x)))g(X, X),$$

where $X \in T_x M$ ($x \in M$) and each H_i ($i = 1, 2$) is a nonnegative continuous function on R ,

$$(ii) \quad 1 - H_1(t) > 0 \text{ for } t \in R \text{ and } \lim_{t \rightarrow \infty} H_1(t) = 0 \quad (i = 1, 2),$$

$$(iii) \quad \begin{cases} \int_0^\infty H_i(s)/s \, ds < +\infty, \\ \int_0^\infty \left(\int_0^s H_i(u) du / s^2 \right) ds < +\infty \quad (i = 1, 2). \end{cases}$$

Then M is quasi-isometric to Euclidean space.

2. Proof of theorem and corollaries. Let M be an m -dimensional connected complete Riemannian manifold with metric g .

Lemma 1. *Let M and g be as above. Let f be a smooth function on M such*

that the eigenvalues of D^2f are bounded from below by some positive constant 2ν outside a compact subset \mathcal{C} . Then f is an exhaustion function, that is, $\{x \in M : f(x) \leq t\}$ is compact for each $t \in \mathbb{R}$. In particular, f takes the minimum on M .

Proof. Suppose $f \geq \lambda = \inf \{f(x) : x \in M\}$ ($-\infty \leq \lambda < \infty$). Then there is a divergent sequence $\{p_n\}_{n \in \mathbb{N}}$ in M with $\lim_{n \rightarrow \infty} f(p_n) = \lambda$. Fix any point $o \in M$.

Let $\gamma_n : [0, 1_n] \rightarrow M$ be a minimizing geodesic joining o to p_n for each $n \in \mathbb{N}$, where $1_n = \text{dis}(o, p_n)$. Then by the assumption of Lemma 1, we can choose sufficiently large N and T so that $\gamma_n(t) \in M - \mathcal{C}$ and $f(\gamma_n)''(t) = D^2f(\dot{\gamma}_n, \dot{\gamma}_n)(t) \geq \nu$ for any $n \geq N$ and $t \in [T, 1_n]$. This implies $f(\gamma_n)(t) \geq f(\gamma_n)(T) + f(\gamma_n)'(T)(t - T) + \frac{\nu}{2}(t - T)^2$ for $t \in [T, 1_n]$. Taking $t = 1_n$, we have $f(p_n) \geq f(\gamma_n)(T) + f(\gamma_n)'(T)(1_n - T) + \frac{\nu}{2}(1_n - T)^2$. Since the distance between o and $\gamma_n(T)$ equals T for each $n \geq N$, $\{f(\gamma_n)'(T)\}_{n \in \mathbb{N}}$ is bounded. In the preceding inequality, the left side tends to λ and the right side goes to infinity as $n \rightarrow \infty$. This is a contradiction. Therefore f takes the minimum at some points. By the same way, we see that f is an exhaustion function on M . This completes the proof of Lemma 1.

Proof of Theorem. By (ii) in Theorem and Lemma 1, we can see that f is a strictly convex exhaustion function on M . Let λ be the minimum of f on M and $o \in M$ be the only one point such that $f(o) = \lambda$. Set $\tilde{f}(x) = f(x) - \lambda$, $k(x) = \tilde{f}(x)^{1/2}$, and $h_i(t) = H_i(t^2 + \lambda)$ ($i = 1, 2$). Then the conditions (i)~(iii) in Theorem can be rewritten as follows:

$$(i)' \quad (1 - h_1(k(x)))g(X, X) \leq \frac{1}{2}D^2\tilde{f}(X, X) \leq (1 + h_2(k(x)))g(X, X),$$

where $X \in T_x M$ ($x \in M$) and each $h_i(t)$ ($i = 1, 2$) is a nonnegative continuous function on $[0, \infty)$,

$$(ii)' \quad 1 - h_1(t) > 0 \text{ for } t \in 0 \text{ and } \lim_{t \rightarrow \infty} h_1(t) = 0 \quad (i = 1, 2)$$

$$(iii)' \quad \begin{cases} \int_0^\infty h_i(s)/s \, ds < +\infty, \\ \int_0^\infty \left(\int_0^s u \cdot h_i(u) \, du / s^3 \right) ds < +\infty \quad (i = 1, 2). \end{cases}$$

Since $o \in M$ is a nondegenerate critical point of \tilde{f} , there exists a coordinate system $x : U \rightarrow \mathbb{R}^m$, where U is a neighborhood of o , with $x(o) = (0, \dots, 0)$ and $\tilde{f}(p) = \sum_{i=1}^m x_i(p)^2$ for all $p \in U$ where $x(p) = (x_1(p), \dots, x_m(p))$ (cf. [3; p. 6]). Let δ be a positive number such that $\{(x_1, \dots, x_m) \in \mathbb{R}^m : \sum_{i=1}^m x_i^2 < \delta\} \subset x(U)$. We construct a metric \tilde{g} on M with $\tilde{g}\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right) = \delta_{ij}$ on $U_{\delta/2} = \{p \in U : \sum_{i=1}^m x_i(p)^2 < \frac{\delta}{2}\}$ and

$\tilde{g}=g$ on $M-U$; such a metric can be constructed by the standard partition-of-unity extention process. By the construction of \tilde{g} , it suffices to prove that M with the metric \tilde{g} is quasi-isometric to Euclidean space. Let $a>0$ be such that $k^{-1}(a)=\{x\in M: k(x)=a\}\subset U_\delta$. For each $p\in k^{-1}(a)$, let $\lambda_p(t)$ be the maximal integral curve of $\text{grad } k/\|\text{grad } k\|^2$ with $\lambda_p(a)=p$. Then we have $\frac{d}{dt}k(\lambda_p(t))=1$ and hence $k(\lambda_p(t))=t$ ($t>0$). Define $F_1: k^{-1}(a)\times(0, \infty)\rightarrow M-\{o\}$ by $F_1(p, t)=\lambda_p(t)$, and $F_2: k^{-1}(a)\times(0, \infty)\rightarrow R^m-\{(0, \dots, 0)\}$ by $F_2(p, t)=\frac{t}{a}(x_1(p), \dots, x_m(p))$. It follows that F_1 and F_2 are diffeomorphisms and $F_2\circ F_1^{-1}$ can be extended to the diffeomorphism $F: M\rightarrow R^m$ (cf. [3; p. 221]). We shall now show that F is a required quasi-isometry. Let $\lambda: [0, \varepsilon]\rightarrow k^{-1}(a)$ be any smooth regular curve. Define a smooth map $G: [0, \varepsilon]\times[0, \infty)\rightarrow M-\{o\}$ by $G(t, s)=F_1(\lambda(t), s)$, and vector fields X and Y along G by $X=F^*\left(\frac{\partial}{\partial s}\right)=\text{grad } k/\|\text{grad } k\|^2$ and $Y=F_*\left(\frac{\partial}{\partial t}\right)$. Fix any $b>0$ such that $k^{-1}(b)\subset M-U_\delta$. Then we have for $s\geq b$,

$$(1) \quad \begin{aligned} \frac{\partial}{\partial s}\|Y\|(t, s) &= (D_X Y, Y)/\|Y\|(t, s) \\ &= (D_Y X, Y)/\|Y\|(t, s) \\ &= (D_Y \text{grad } k, Y)/\|Y\| \|\text{grad } k\|^2(t, s) \\ &= D^2 k(Y, Y)/\|Y\| \|\text{grad } k\|^2(t, s) \end{aligned}$$

By the assumption (i)', we have on $\{x\in M: k(x)\geq b\}$

$$(2) \quad \{(1-h_1(k))\cdot g-dk\cdot dk\}/k\leq D^2 k\leq \{(1+h_2(k))\cdot g-dk\cdot dk\}/k.$$

Therefore we get

$$(2) \quad \{(1-h_1(k))/k\cdot\|Y\|^2\}(t, s)\leq D^2 k(Y, Y)(t, s)\leq \{(1+h_2(k))/k\cdot\|Y\|^2\}(t, s)$$

for $s\geq b$. Now we need the following

Lemma 2. *On $\{x\in M: k(x)\geq b\}$, we have the following estimate:*

$$(3) \quad \begin{aligned} 1-2\int_b^k u\cdot h_1(u) du/k^2+(B-4b^2)/4k^2 &\leq \\ \|\text{grad } k\|^2 &\leq 1+2\int_b^k u\cdot h_2(u) du/k^2+(C-4b^2)/4k^2, \end{aligned}$$

where $B=\min\{\|\text{grad } \tilde{f}\|^2(x): x\in k^{-1}(b)\}$ and $C=\max\{\|\text{grad } \tilde{f}\|^2(x): x\in k^{-1}(b)\}$.

We leave a proof of this lemma later. By (1), (2) and (3), we have

$$(4) \quad (1-\chi_1(s))/s\cdot\|Y\|\leq(t, s)\leq\frac{\partial}{\partial s}\|Y\|(t, s)\leq(1+\chi_2(s))/s\cdot\|Y\|(t, s),$$

$$\text{where } \chi_1(s) = (8 \int_0^s u \cdot h_2(u) du + 4s^2 h_1(s) + C - 4b^2) / (8 \int_0^s u \cdot h_2(u) du + 4s^2 + C - 4b^2)$$

$$\text{and } \chi_2(s) = (8 \int_0^s u \cdot h_1(u) du + 4s^2 h_2(s) - B + 4b^2) / (-8 \int_0^s u \cdot h_1(u) du + 4s^2 + B - 4b^2).$$

It follows that

$$(5) \quad \frac{s}{b} \exp \left(\int_b^s -\chi_1(u)/u du \right) \leq \|Y\|(t, s) / \|Y\|(t, b) \leq \frac{s}{b} \exp \left(\int_b^s \chi_2(u)/u du \right).$$

By the assumption (iii)', there exists some positive constant ξ such that

$$(6) \quad \exp \left(\int_b^s \chi_2(u)/u du \right) \leq \xi \quad \text{and} \quad \xi^{-1} \leq \exp \left(\int_b^s -\chi_1(u)/u du \right).$$

By (5) and (6), we get

$$(7) \quad \xi^{-1} \|Y\|(t, 0)/b \leq \|Y\|(t, s)/s \leq \xi \|Y\|(t, 0)/b.$$

The assumption (iii)' implies that for some positive constant ζ

$$(8) \quad \zeta^{-1} \leq \|\text{grad } k\| \leq \zeta.$$

Inequalities (7) and (8) show that $F: M \rightarrow \mathbb{R}^m$ is quasi-isometric. This completes the proof of Theorem.

Proof of Lemma 2. For each $p \in k^{-1}(b)$, let $\gamma_p(t)$ be the maximal integral curve of $\text{grad } \tilde{f} / \|\text{grad } \tilde{f}\|^2$ with $\gamma_p(0) = p$. Then $\frac{d}{dt} \tilde{f}(\gamma_p(t)) = 1$ and hence $\tilde{f}(\gamma_p(t)) = t + b^2$ ($t \geq 0$). From the assumption (i)', we obtain the inequality:

$$(1 - h_1(k)) \|\text{grad } \tilde{f}\|^2 \leq \frac{1}{2} D^2 \tilde{f}(\text{grad } \tilde{f}, \text{grad } \tilde{f}) \leq (1 + h_2(k)) \|\text{grad } \tilde{f}\|^2$$

on $\{x \in M : k(x) \geq b\}$. Noting $D^2 \tilde{f}(\text{grad } \tilde{f}, \text{grad } \tilde{f}) = \frac{1}{2} \text{grad } \tilde{f}(\|\text{grad } \tilde{f}\|^2)$ we see

$$4(1 - h_1(\sqrt{t + b^2})) \leq \frac{d}{dt} \|\text{grad } \tilde{f}\|^2(\gamma_p(t)) \leq 4(1 + h_2(\sqrt{t + b^2}))$$

for $t \geq 0$. Therefore we get the inequalities:

$$\begin{aligned} 8 \int_b^{\sqrt{t+b^2}} u(1 - h_1(u)) du + \|\text{grad } \tilde{f}\|^2(p) &\leq \|\text{grad } \tilde{f}\|^2(\gamma_p(t)) \\ &\leq 8 \int_b^{\sqrt{t+b^2}} u(1 + h_2(u)) du + \|\text{grad } \tilde{f}\|^2(p) \end{aligned}$$

for $t \geq 0$. Since $k(\gamma_p(t)) = \sqrt{t + b^2}$ and $\text{grad } f = 2k \cdot \text{grad } k$ we get the required

estimate. This completes the proof of Lemma 2.

By Moser's theorem ([4]), we have the following

Corollary 1. *Let M be as in Theorem. Then on M there are no positive harmonic functions other than constants. If M is in addition a Kaehler manifold, then it has no nonconstant bounded holomorphic functions.*

We shall derive the theorem of Wissner ([5; Satz. II. 1.3]) as follows.

Corollary 2. *If M is a connected complete Riemannian manifold and f is a smooth function on M whose Hessian is equal to the metric tensor on M , then M is isometric to Euclidean space.*

Proof. By Lemma 1 and the strictly convexity of f , f attains its minimum λ at the one and only one point $o \in M$. Replacing f for $\frac{1}{2}(f-\lambda)$, we may assume that f is a smooth function such that $D^2f = \frac{1}{2}g$ on M and $f(x) \geq f(o) = 0$ for any $x \in M - \{o\}$. Let $\gamma: [0, \infty) \rightarrow M$ be any arc-length parametrized geodesic issuing from o . Then $D^2f(\dot{\gamma}, \dot{\gamma}) = f(\gamma(t))'' = \frac{1}{2}$ for $t \geq 0$ and hence $f(\gamma(t)) = t^2$.

That is, $f(x)$ equals $\text{dis}(x, o)^2$ near $o \in M$. Therefore the same arguments as in the proof of Theorem can be applied without any change of metric and we see that the exponential mapping at $o \in M$ is an isometry. This completes the proof of Corollary 2.

EXAMPLE. Let M be C^m with the Kaehler metric g defined by $g_{ij} = \frac{\partial^2}{\partial z_i \partial z_j} (|z|^2 + \log(1 + |z|^2))$, where (z_1, \dots, z_m) is the canonical holomorphic coordinates on C^m and $|z|^2 = |z_1|^2 + \dots + |z_m|^2$. Then M is a Kaehler manifold with a pole $o = (0, \dots, 0)$, that is, the exponential mapping at o induces a global diffeomorphism between $T_o M$ and M . Let $r(x)$ be the distance between o and $x \in M$. By computing the (radial) curvatures, we can see r^2 satisfies all the conditions required in Theorem (cf. [1; Theorem C]).

Corollary 3 ([7]). *Let M be a Riemannian manifold with a pole $o \in M$ and $r(x)$ be the distance between o and $x \in M$. Suppose there exists a continuous function $h: [0, \infty) \rightarrow [0, \infty)$ satisfying the following conditions:*

$$(i) \quad (1 - h(r(x)))g(X, X) \leq \frac{1}{2}D^2r^2(X, X) \leq (1 + h(r(x)))g(X, X)$$

where $X \in T_x M (x \in M)$, and

$$(ii) \quad \int_1^\infty h(t)/t \, dt < +\infty .$$

Then the exponential mapping at $o \in M$ is quasi-isometric.

Proof. Noting $\|\text{grad } r\|=1$ on $M - \{o\}$, we see the result easily from the proof of Theorem.

References

- [1] R.E. Greene and H. Wu: Function theory on manifolds which posses a pole, Mathematics Lecture Notes No. 699, Springer-Verlag, 1979.
- [2] R.E. Greene and H. Wu: *C^∞ convex function and manifolds of positive curvature*, Acta Math. **137** (1976), 209–245.
- [3] J. Milnor: Morse theory, Ann. of Math. Studies, No. 51, Princeton University Press, Princeton, 1963.
- [4] J. Moser: *On Harnack's theorem for elliptic differential equations*, Comm. Pure Appl. Math. **14** (1961), 577–591.
- [5] H.W. Wissner: *Geodätische Konvexität in Riemannsche Mannigfaltigkeiten*, Doctoral Dissertation, Berlin, 1979.
- [6] H. Wu: *On a problem concerning the intrinsic characterization of C^n* , (to appear).
- [7] K. Yagi: *On the Hessian of the square of the distance on a manifold with a pole*, Proc. Japan Acad. Ser. A **56** (1980), 332–337.

Department of Mathematics
 University of Tokyo
 Hongo, Tokyo 113
 Japan