
Title コードクローン解析に基づくリファクタリング支援

Author(s) 肥後, 芳樹; 神谷, 年洋; 楠本, 真二 他

Citation 第４回 クリティカルソフトウェアワークショップ
（WOCS2005） 予稿集. 2005, p. 13-14

Version Type AM

URL https://hdl.handle.net/11094/51120

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

コードクローン解析に基づくリファクタリング支援

肥後 芳樹† 神谷 年洋†† 楠本 真二† 井上 克郎†

あらまし 近年，コードクローンがソフトウェア保守を困難にしている一要因といわれている．コードクロー
ンとはソースコード中に存在する同一，または類似したコード片のことである．例えば，あるコード片にバグが
含まれていた場合，そのコード片のコードクローン全てについて修正の是非を考慮する必要がある．このような
理由によりソフトウェアからコードクローンを取り除くことはソフトウェアの保守性や複雑度などの面からみて
有効である．本稿では，大規模ソフトウェアに対しても適用可能なコードクローンの集約支援手法の提案を行う．

キーワード リファクタリング，コードクローン，ソフトウェア保守

1. ま え が き

本稿では，実用的な時間でソースコード中から集約

に適したコードクローンを検出し，さらに，検出した

コードクローンの特徴をメトリクスを用いて定量化

する手法を提案する．そして，提案手法に基づき，リ

ファクタリング支援環境 Aries の試作を行なう．

2. 準 備

2. 1 コードクローンの定義

あるトークン列中に存在する 2 つの部分トークン

列 α，β が等価であるとき，αと β は互いにクローン

であるという．またペア（α，β）をクローンペアと呼

ぶ．α，β それぞれを真に包含する如何なるトークン

列も等価でないとき，α，βを極大クローンと呼ぶ．ま

た，クローンの同値類をクローンセットと呼ぶ．ソー

スコード中でのクローンを特にコードクローンという．

2. 2 CCFinder

CCFinder [2]はプログラムのソースコード中に存在

する極大クローンを検出し，その位置をクローンペア

のリストとして出力する．検出されるコードクローン

の最小トークン数はユーザが前もって設定できる．

3. 提 案 手 法

本稿では CCFinderの検出したコードクローンに対

して集約支援を行う手法を提案する．まず第一ステッ

プとして，CCFinderの検出したコードクローンから，

集約に適した部分の抽出を行う．次に第二ステップと

して，抽出したコードクローンをメトリクスを用いて

定量的に特徴づけを行い，適用可能なリファクタリン

グパターンの決定支援を行う．

†大阪大学大学院情報科学研究科，大阪府
Graduate School of Information Science and Technology, Os-

aka University, Toyonaka, 560-8531 Japan
††科学技術振興機構 さきがけ，埼玉県

PRESTO, Japan Science and Technology Agency, 4-1-8,

Honmachi, Kawaguchi, Saitama, 332-8531 Japan

3. 1 集約に適したコードクローンの抽出

CCFinderはその性質上，集約に適していないコー

ドクローンも多く検出する．そのようなコードクロー

ンを取り除くため，プログラミング言語における構造

的なまとまりを持った部分のみを，集約に適したコー

ドクローンとして抽出する．図 1はその例を示してい

る．図 1 では，A と B の 2 つのコード片が示されて

いる．A と B それぞれの灰色の部分は，その部分が

A と B の間の最大長のコードクローンであることを

示している．本手法ではこのような場合，灰色で示さ

れたコードクローンから構造的なまとまりを持った部

分，つまり for文の部分のみを抽出する．

�� ��� ���	��
��
���� � � ��
��������
� ������������! #" $&%('�)�$+*(,�)�$�-�-�.
/
0�1�2 3 4 5�6�7�8�0 %9" : 0 #;�, 0=<�2 : 0�> .@? 1�3 3 ��,�" : 2 A�7 ����" <�2 : 0 .�.�)
0�1�2 3 %B" <�2 : 0�> . 0@1�2 3 4 5�6�7�8�0)
0�1�2 3 4 5 $+%C$D)
0�1�2 3 4 5�6�7�8�0 %�EGF <�<)

H
� ��� ���BIKJGL�L��

�

�� ��� ���B��
������
���! #" 2 %M'�) 2 *9NO'�) 2 -�-�.
/
0�1�2 3 4 5�6�7�8�0 %B" : 0 #;�, 0=<�2 : 0�> .�? 1�3 3 ��,�" : 2 A�7 ����" <�2 : 0 . .�)
0�1�2 3 %B" <�2 : 0�> . 0@1�2 3 4 5�6�7�8�0)
0�1�2 3 4 5�2 % 2)
0�1�2 3 4 5�6�7�8�0 %�EKF <�<)

H
�	�M� �

�
PRQ+S�T(U�VXW�Y�Z[T�\!]&^

PRQ+S!T(U@V_W�Y�Z[TO\!]=`

a b�c d eKfhg�i�eGjke�i�e�lOlOmnpo
q�r s t u�vOwXx

o fkd y o c zO{ o�| r y
o�} m ~ qOs s b�{Od y r ��w b�a d

|
r y
o m m�io

q�r s fhd
|
r y
o�} m o qOr s t u�vOwXx

o io
q�r s t u eGfke�io
q�r s t u�vOwXx

o f��!� |�| i�
�����D�������������������&�

�� ��� ���	��
��
���� � � ��
��������
� ������������! #" $&%('�)�$+*(,�)�$�-�-�.
/
0�1�2 3 4 5�6�7�8�0 %9" : 0 #;�, 0=<�2 : 0�> .@? 1�3 3 ��,�" : 2 A�7 ����" <�2 : 0 .�.�)
0�1�2 3 %B" <�2 : 0�> . 0@1�2 3 4 5�6�7�8�0)
0�1�2 3 4 5 $+%C$D)
0�1�2 3 4 5�6�7�8�0 %�EGF <�<)

H
� ��� ���BIKJGL�L��

�

�� ��� ���B��
������
���! #" 2 %M'�) 2 *9NO'�) 2 -�-�.
/
0�1�2 3 4 5�6�7�8�0 %B" : 0 #;�, 0=<�2 : 0�> .�? 1�3 3 ��,�" : 2 A�7 ����" <�2 : 0 . .�)
0�1�2 3 %B" <�2 : 0�> . 0@1�2 3 4 5�6�7�8�0)
0�1�2 3 4 5�2 % 2)
0�1�2 3 4 5�6�7�8�0 %�EKF <�<)

H
�	�M� �

�
PRQ+S�T(U�VXW�Y�Z[T�\!]&^

PRQ+S!T(U@V_W�Y�Z[TO\!]=`

a b�c d eKfhg�i�eGjke�i�e�lOlOmnpo
q�r s t u�vOwXx

o fkd y o c zO{ o�| r y
o�} m ~ qOs s b�{Od y r ��w b�a d

|
r y
o m m�io

q�r s fhd
|
r y
o�} m o qOr s t u�vOwXx

o io
q�r s t u eGfke�io
q�r s t u�vOwXx

o f��!� |�| i�
�����D�������������������&�

図 1 コードクローン集約の例

3. 2 メトリクスを用いた特徴づけ

次に，3. 1節で抽出したコードクローンがどのよう

に集約が可能であるかメトリクスを用いて判定する．

これまでに様々なリファクタリングパターン [1]が提案

されている．本手法では既存のパターンを用いたコー

ドクローンの集約支援を行う．これらのパターンを用

いた支援を “Extract Method”と “Pull Up Method”

を例にとって考える．

“Extract Method”は，本来は長過ぎるメソッドや，

複雑な処理の一部分に対して適用することによって，

第 4 回クリティカル・ソフトウェア・ワークショップ 2005 年 1 月

第 4 回クリティカル・ソフトウェア・ワークショップ 2005 年 1 月

コードの可読性，保守性を向上させることができる．

しかし，コードクローンに対して適用することによ

り，重複したコード片を集約することも可能である．

コード片を新たなメソッドとして再定義することにな

るため，抽出部分は周囲との結合度が低いことが望ま

しい．抽出部分とその周囲の結合度を計測するため

に NRV(S)(the Number of Referred Variables) と

NSV(S)(the Number of Substituted Variables) の

２つのメトリクスを定義した．ここでは，クローン

セット S は n 個のコード片 f1, f2, · · · , fn を含ん

でおり，コード片 fi では si 個の外部定義の変数を参

照しており，ti 個の外部定義の変数に対して代入を行

なっているとする．この時NRV (S)とNSV (S)はそ

れぞれ次の式で表される．

NRV (S) =
1

n

n∑
i=1

si, NSV (S) =
1

n

n∑
i=1

ti,

次に，“Pull Up Method” を例にとって考える．

“Pull Up Method” とは，ある親子クラス関係が存

在した場合に，子クラスに存在するメソッドを親クラ

スに引き上げることである．共通の親クラスを持つ複

数の子クラスに定義された重複したメソッドを引き上

げることによって集約を行なうことが可能である．つ

まり重複したメソッドを含むクラスは共通の親クラス

を継承している必要がある．そのため，クローンセッ

トのクラス階層内における位置関係を計測する．こ

れについては，メトリクスDCH(S)(the Dispersion

on Class Hierarchy) を定義する．すでに示したよう

に，クローンセット S はコード片 f1, f2, · · · , fn を

含んでいるとする．また Ci はコード片 fi を含んでい

るクラスを表す．もしクラス C1, C2, · · · , Cn が共通

の親クラスを持つ場合は，その共通の親クラスの中で，

最もクラス階層的に下位に位置するクラスを Cp で表

すとする．また D(Ck, Ch) はクラス Ck と Ch のク

ラス階層における距離を表すとする．この時，

DCH(S) = max {D(C1, Cp), · · · , D(Cn, Cp)}

と表される．例えば，クローンセット S 中の全ての

コード片が１つのクラス内に存在する場合はDCH(S)

の値は 0，あるクラスとその直接の子クラス内に存在す

る場合は DCH(S)の値は 1となる．例外的に，コー

ドクローンが存在するクラスが共通の親クラスを持た

ない場合は DCH(S) の値は∞とする．
3. 3 リファクタリング支援環境: Aries

提案手法を，リファクタリング支援環境Ariesとし

て実装した．現在のところ対象は Java言語としてい

る．Java 言語を対象としているため抽出する構造的

なまとまりは以下の 12種類である．

宣言 : class { }, interface { }
メソッド : メソッド本体, コンストラクタ,

スタティックイニシャライザ

文 : if, for, while, do, switch,

try, synchronized

3. 4 メトリクスを用いた絞り込み

Ariesを用いてのクローンの絞り込みの例を示す．

(1) “Pull Up Method”

例えば，以下のような条件が考えられる．

(PC1) 対象となる単位はメソッド本体，

(PC2) DCH(S)の値が 1以上．

“Pull Up Method” はメソッドが対象であるので，

条件 (PC1)が必要である．また，重複したメソッドを

含むクラスが共通の親クラスを継承している必要があ

ることから条件 (PC2)が必要である．

(2)“Extract Method”

“Extract Method”を行なう際の条件としては例えば，

以下のものが上げられる．

(EC1) 対象となる単位は文単位，

(EC2) DCH(S)の値が 0，

(EC3) NSV (S)の値が 1以下，

“Extract Method”とはメソッド内のコード片に対

して適用されるので，(EC1)が必要である．また，全

てのコードクローンが同一のクラス内に存在する場合

は容易に集約が可能であるので，条件 (EC2) を考慮

している．コードクローンの内部において，外部定義

変数に対して代入を行なっている場合は，その変数を

引数として与え，返り値として返し，メソッドの呼び

出し元に反映させなければならない．このような変数

が複数あった場合は新たなデータクラスを定義し，そ

のオブジェクトを介して値を受け渡す必要がある．も

しこのような変数が１つの場合は単に return 文を用

いて返すだけで良く，容易に集約を行なうことができ

るので，条件 (EC3)を考慮している．

4. ま と め

本稿では，コードクローンを対象とした集約支援手

法を提案した．また，提案手法をリファクタリング支

援環境 Ariesとして実装した．しかし，現在の解析は

リファクタリングの可能性について述べているが，積

極的にすべきかの判断はしていない．今後は，ソフト

ウェアの品質の面からリファクタリングの是非を判断

するように拡張を行なう予定である．

文 献
[1] M. Fowler, Refactoring: improving the design of

existing code, Addison Wesley, 1999.
[2] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder:

A multi-linguistic token-based code clone detection
system for large scale source code IEEE Transac-
tions on Software Engineering, vol.28, no.7, pp.654-
670, Jul. 2002.

