
Title On a Use Case Points Measurement Tool for
Effective Project Management

Author(s) Kusumoto, Shinji; Tsuda, Michio; Inoue, Katsuro

Citation

Version Type VoR

URL https://hdl.handle.net/11094/51124

rights Copyright (C) 2007 by Information Processing
Society of Japan.

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

On a Use Case Points Measurement Tool for Effective Project Management

Shinji Kusumoto
*�Michio Tsuda

*+
, Katsuro Inoue

*

*Graduate School of Information Science and Technology, Osaka University

+Hitachi Systems & Services, Ltd.

{kusumoto, m-tsuda, inoue}@ist.osaka-u.ac.jp

Abstract
Use case point (UCP) method has been proposed to

estimate software development effort in early phase of

software project and used in a lot of software

organizations. This paper briefly describes an

automatic use case measurement tool, called U-EST.

1. Introduction
One of the important topics of software development is

estimation. To attain comprehensive estimation for

both software companies and customers is essential for

success of the project. So far, several effort models

have been proposed and most of them include software

“size” as an important parameter.

To estimate the effort in earlier phase, use case

point method has been proposed[2]. Use case point

(UCP) is measured from a use case model that defines

the functional scope of the software system to be

developed. Since it is measured in the earlier phase, it

is necessary to evaluate the correctness and

appropriateness after the software is delivered. Thus,

UCP of the released software seems to be good

information for software companies and customers.

However, it is time-consuming and difficult to measure

UCP from the source code. So, developing a support

tool to measure UCP is worthwhile.

This paper briefly describes the UCP measurement

tool and shows the case study of applying it to several

use case models.

2. Use Case Point Method
Use case point (UCP) is calculated mainly from

system level use case diagram and flow of events in

use case model. System-level use case diagram

includes one or more use case diagrams showing all

the use cases and actors in the system. Flow of events

includes a section for the basic path and each

alternative path in each use case. Intuitively, UCP is

measured by counting the number of actors and

transactions included in the flow of events with some

weight. A transaction is an event that occurs between

an actor and the target system, the event being

performed entirely or not at all.

The main activities of counting UCP include the

following two steps:

Step1 (Counting actors weight): The actors in the

use case model are categorized as simple, average or

complex as shown in Table 1. Then, the number of

each actor type is calculated and then each number is

multiplied by a weighting factor. Finally, actors weight

is calculated by adding these values together.

Step2 (Counting use cases weight): Each use case is

categorized as simple, average or complex as shown in

Table2. The basis of this decision is the number of

transaction in a use case, including alternative paths.

Then, the number of use case type that the target

software includes calculated and then each number is

multiplied by a weighting factor shown in Table 2.

Finally, use case weight is calculated by adding these

values together.

Table 1. Actor Weighting Factors
Type Description Factor

Simple Program interface 1

Average Interactive or protocol-driven interfa 2

Complex GUI 3

Table2: Use-case Weighting Factors
Type Description Factor

Simple 3 or fewer transactions 5

Average 4 to 7 transactions 10

Complex More than 7 transactions 15

3. Use Case Point Measurement Tool
3.1 Overview

 In order to develop an automatic use case point

measurement tool, it is necessary to develop a way of

determining the weight for each actor and use case. To

attain it, on the assumptions that the method is

applicable in a specific software organization, we

propose several rules to classify the weight for actor

and use case.

3.2 Rules for weighting actors

 In order to judge the type of actors, we used the

following three steps: (1) We judge whether the actor

is a person or an external system based on the name of

it using the list of keywords which can be included in

the name of software system. (2) Based on the

keyword included in the flow of events related to the

actor, we determine the type of the actor.

3.3 Rules for weighting use cases

 The type of use case is determined by the number

of transaction. So, we focus on the flow of events in

47

the use case model. Intuitively speaking, the simplest

way to count the transaction is to count the number of

event. But, since there are no standard to write the flow

of events, the developer can write the description

freely using natural language. It is quite possible that

several transactions are described in one event. On the

other hand, several guidelines to write events in use

case model have been proposed [1]. There are ten

guidelines to write a successful scenario (flow of

events). Among them, we focus on the following two

guidelines. (G1) Use simple grammar: The sentence

structure should be absurdly simple. That is, it is easily

understand what is the subject, verb, direct object and

prepositional phrase. (G2) Include a reasonable set of

actions: Jacobson has described a step in a use case as

representing a transaction. He suggests the following

four pieces of a compound interactions should be

described. (1)The primary actor sends request and data

to the system, (2)The system validates the request and

the data, (3)The system alters its internal state and (4)

The system responds to the actor with the result.

 So, based on the above guidelines, we propose the

way to analyze the events using the morphological

analysis and syntactic analysis. Through these analyses,

we can get the information of morpheme from the

statement and dependency relation between words in

the statement. We conduct the morphological analysis

for all events (statements) and get the information of

the subject word and predicate word from each event

(statement). Then, we regard each set of the subject

and predicate word as a candidate of a transaction.

Then, among the candidates, we identify the one that

related to actor's operation and system response as a

transaction. For each use case, we conduct the above

processing and then get the number of transactions.

Based on the number of transaction, we judge the type

of each use case.

3.4 Implementation

 Based on the proposed method, we have

implemented a prototype tool called U-EST(Use case

based Estimation Supporting Tool). The input is a

XMI file. The U-EST is implemented in Java and

Xerces2 Java Parser is used to analyze the model le.

Since the U-EST is mainly used in Japanese engineers,

it has to deal with the Japanese description. In order to

conduct morphological analysis and syntactic analysis

for event written in Japanese in the use case, we adopt

a tool called CaboCha[3]. CaboCha is the most famous

and precise syntactic analyzer for Japanese.

4. Case study
 In order to evaluate the usefulness of the U-EST,

we applied it to actual use case models developed in a

software company. We collected use case models from

five software projects where middle-size Web

application programs were developed. As they are for

Japanese use, the name of actors, use case and the

descriptions of flow of events are written in Japanese.

All use case models were developed on a UML-design

tool called Describe. In the evaluation, we focused on

the results of the automatic type classification of actors

and use cases. So, we compared the measurement

results calculated by our tool and ones calculated by a

specialist of use case point counting.

 With respect to the results of actor classification, the

values measured by the tool are similar to the ones by

the specialist. However, typed for actors that are

external systems are quite different. On the other hand,

the classification results of use case are shown in Table

3. The values measured by the tool are similar to the

ones by the specialist.

Table3. Classification of use cases

Simple Average Complex Simple Average Complex

A 13 2 0 13 2 0

B 10 4 0 10 4 0

C 14 6 0 12 8 0

D 27 1 0 27 1 0

E 2 8 3 2 8 3

Specialist U-EST
Project

5. Conclusions
 This paper proposed an automatic use case point

tool, the U-EST. The U-EST calculates use case point

from use case models written in XMI files. We have

also applied the U-EST to five use case models

developed in the actual software projects. As the

results, the UCP calculated by the U-EST are

considerably adequate.

Acknowledgment
This work is being conducted as a part of Stage Project,

the Development of Next Generation IT Infrastructure,

supported by Ministry of Education, Culture, Sports,

Science and Technology and Japan Society for the

Promotion of Science, Grant-in-Aid for Scientific

Research (C) (17500022).

References
[1] A. Cockburn: Writing Effective Use Cases,

Addison-Wesley (2000).

[2] G. Schneider and J. P. Winters: “Applying Use

Cases, Second Edition'', Addison Wesley (2001).

[3] CaboCha : Yet Another Japanese Dependency

Structure Analyzer, http://cl.aistnara.ac.jp/ taku-

ku/software/cabocha/

48

