|

) <

The University of Osaka
Institutional Knowledge Archive

Tale On a Use Case Points Measurement Tool for
Effective Project Management

Author(s) |Kusumoto, Shinji; Tsuda, Michio; Inoue, Katsuro

Citation

Version Type|VoR

URL https://hdl.handle.net/11094/51124

Copyright (C) 2007 by Information Processing

rights Society of Japan.

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

On a Use Case Points Measurement Tool for Effective Project Management
Shinji Kusumoto , Michio Tsuda ", Katsuro Inoue’
*Graduate School of Information Science and Technology, Osaka University
+Hitachi Systems & Services, Ltd.
{kusumoto, m-tsuda, inoue}@ist.osaka-u.ac.jp

Abstract
Use case point (UCP) method has been proposed to
estimate software development effort in early phase of
software project and used in a lot of software
organizations. This paper briefly describes an
automatic use case measurement tool, called U-EST.

1. Introduction

One of the important topics of software development is
estimation. To attain comprehensive estimation for
both software companies and customers is essential for
success of the project. So far, several effort models
have been proposed and most of them include software
“size” as an important parameter.

To estimate the effort in earlier phase, use case
point method has been proposed. Use case point
(UCP) is measured from a use case model that defines
the functional scope of the software system to be
developed. Since it is measured in the earlier phase, it
is necessary to evaluate the correctness and
appropriateness after the software is delivered. Thus,
UCP of the released software seems to be good
information for software companies and customers.
However, it is time-consuming and difficult to measure
UCP from the source code. So, developing a support
tool to measure UCP is worthwhile.

This paper briefly describes the UCP measurement
tool and shows the case study of applying it to several
use case models.

2. Use Case Point Method

Use case point (UCP) is calculated mainly from
system level use case diagram and flow of events in
use case model. System-level use case diagram
includes one or more use case diagrams showing all
the use cases and actors in the system. Flow of events
includes a section for the basic path and each
alternative path in each use case. Intuitively, UCP is
measured by counting the number of actors and
transactions included in the flow of events with some
weight. A transaction is an event that occurs between
an actor and the target system, the event being
performed entirely or not at all.

The main activities of counting UCP include the
following two steps:

47

Stepl (Counting actors weight): The actors in the
use case model are categorized as simple, average or
complex as shown in Table 1. Then, the number of
each actor type is calculated and then each number is
multiplied by a weighting factor. Finally, actors weight
is calculated by adding these values together.

Step2 (Counting use cases weight): Each use case is
categorized as simple, average or complex as shown in
Table2. The basis of this decision is the number of
transaction in a use case, including alternative paths.
Then, the number of use case type that the target
software includes calculated and then each number is
multiplied by a weighting factor shown in Table 2.
Finally, use case weight is calculated by adding these
values together.

Table 1. Actor Weighting Factors

Type Description Factor
Simple |Program interface 1
Average |Interactive or protocol-driven interf{ 2
Complex |GUI 3
Table2: Use-case Weighting Factors
Type Description Factor
Simple |3 or fewer transactions 5
Average |4 to 7 transactions 10
Complex |More than 7 transactions] 15

3. Use Case Point Measurement Tool
3.1 Overview

In order to develop an automatic use case point
measurement tool, it is necessary to develop a way of
determining the weight for each actor and use case. To
attain it, on the assumptions that the method is
applicable in a specific software organization, we
propose several rules to classify the weight for actor
and use case.
3.2 Rules for weighting actors

In order to judge the type of actors, we used the
following three steps: (1) We judge whether the actor
is a person or an external system based on the name of
it using the list of keywords which can be included in
the name of software system. (2) Based on the
keyword included in the flow of events related to the
actor, we determine the type of the actor.
3.3 Rules for weighting use cases

The type of use case is determined by the number
of transaction. So, we focus on the flow of events in

the use case model. Intuitively speaking, the simplest
way to count the transaction is to count the number of
event. But, since there are no standard to write the flow
of events, the developer can write the description
freely using natural language. It is quite possible that
several transactions are described in one event. On the
other hand, several guidelines to write events in use
case model have been proposed [1]. There are ten
guidelines to write a successful scenario (flow of
events). Among them, we focus on the following two
guidelines. (G1) Use simple grammar: The sentence
structure should be absurdly simple. That is, it is easily
understand what is the subject, verb, direct object and
prepositional phrase. (G2) Include a reasonable set of
actions: Jacobson has described a step in a use case as
representing a transaction. He suggests the following
four pieces of a compound interactions should be
described. (1)The primary actor sends request and data
to the system, (2)The system validates the request and
the data, (3)The system alters its internal state and (4)
The system responds to the actor with the result.

So, based on the above guidelines, we propose the
way to analyze the events using the morphological
analysis and syntactic analysis. Through these analyses,
we can get the information of morpheme from the
statement and dependency relation between words in
the statement. We conduct the morphological analysis
for all events (statements) and get the information of
the subject word and predicate word from each event
(statement). Then, we regard each set of the subject
and predicate word as a candidate of a transaction.
Then, among the candidates, we identify the one that
related to actor's operation and system response as a
transaction. For each use case, we conduct the above
processing and then get the number of transactions.
Based on the number of transaction, we judge the type
of each use case.

3.4 Implementation

Based on the proposed method, we have
implemented a prototype tool called U-EST(Use case
based Estimation Supporting Tool). The input is a
XMI file. The U-EST is implemented in Java and
Xerces2 Java Parser is used to analyze the model le.
Since the U-EST is mainly used in Japanese engineers,
it has to deal with the Japanese description. In order to
conduct morphological analysis and syntactic analysis
for event written in Japanese in the use case, we adopt
a tool called CaboCha[3]. CaboCha is the most famous
and precise syntactic analyzer for Japanese.

4. Case study

In order to evaluate the usefulness of the U-EST,

we applied it to actual use case models developed in a

48

software company. We collected use case models from
five software projects where middle-size Web
application programs were developed. As they are for
Japanese use, the name of actors, use case and the
descriptions of flow of events are written in Japanese.
All use case models were developed on a UML-design
tool called Describe. In the evaluation, we focused on
the results of the automatic type classification of actors
and use cases. So, we compared the measurement
results calculated by our tool and ones calculated by a
specialist of use case point counting.

With respect to the results of actor classification, the
values measured by the tool are similar to the ones by
the specialist. However, typed for actors that are
external systems are quite different. On the other hand,
the classification results of use case are shown in Table
3. The values measured by the tool are similar to the
ones by the specialist.

Table3. Classification of use cases

. Specialist U-EST
Project - -

Simple [Average [Complex | Simple | Average | Complex
A 13 2 0 13 2
B 10 4 0 10 4 0
C 14 6 0 12 8 0
D 27 1 0 27 1 0
E 2 8 3 2 8 3

5. Conclusions

This paper proposed an automatic use case point
tool, the U-EST. The U-EST calculates use case point
from use case models written in XMI files. We have
also applied the U-EST to five use case models
developed in the actual software projects. As the
results, the UCP calculated by the U-EST are
considerably adequate.

Acknowledgment

This work is being conducted as a part of Stage Project,
the Development of Next Generation IT Infrastructure,
supported by Ministry of Education, Culture, Sports,
Science and Technology and Japan Society for the
Promotion of Science, Grant-in-Aid for Scientific
Research (C) (17500022).

References

[1T A. Cockburn: Writing Effective Use Cases,
Addison-Wesley (2000).

[2] G. Schneider and J. P. Winters: “Applying Use
Cases, Second Edition", Addison Wesley (2001).

[3] CaboCha : Yet Another Japanese Dependency
Structure Analyzer, http://cl.aistnara.ac.jp/ taku-
ku/software/cabocha/

