

Title	Proper boundary points of the spectrum
Author(s)	Schechter, Martin
Citation	Osaka Journal of Mathematics. 1975, 12(1), p. 41-44
Version Type	VoR
URL	https://doi.org/10.18910/5114
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Schechter, M.
 Osaka J. Math.
12 (1975), 41-44

PROPER BOUNDARY POINTS OF THE SPECTRUM

MARTIN SCHECHTER

(Received December 20, 1973)

1. Introduction. Let A be a bounded operator on an infinite dimensional Hilbert space H . A point λ on the boundary $\partial\sigma(A)$ of the spectrum $\sigma(A)$ of A will be called *proper* if there is a bounded sequence $\{\lambda_k\}$ of points in the resolvent set $\rho(A)$ of A such that

$$(1) \quad \|(\lambda_k - \lambda)(\lambda_k - A)^{-1}\| \rightarrow 1.$$

Examples of proper boundary points of the spectrum are easily given.

1. If $|\lambda| = \|A\|$, then λ is a proper boundary point.
2. If λ in $\sigma(A)$ is a boundary point of the numerical range of A , then it is a proper boundary point.
3. If λ in $\sigma(A)$ is a boundary point of a spectral set X for A and there is a sequence $\{\lambda_k\}$ in the complement of X such that

$$(2) \quad |\lambda_k - \lambda| / d(\lambda_k, X) \rightarrow 1,$$

then λ is a proper boundary point (here $d(z, X)$ denotes the distance from z to X).

4. If A is seminormal, λ is a boundary point of $\sigma(A)$ and there is a sequence of points in $\rho(A)$ satisfying (2) with $X = \sigma(A)$, then λ is a proper boundary point.

We shall verify these statements later. We shall also prove the following theorem and give several applications.

Theorem 1. *If λ is a proper boundary point of $\sigma(A)$, then for each bounded sequence $\{x_n\}$ in H we have*

$$(3) \quad (A - \lambda)x_n \rightarrow 0 \quad \text{iff} \quad (A^* - \bar{\lambda})x_n \rightarrow 0.$$

The theorem generalizes results of Putnam [1], Saito [2], Sz-Nagy, Foias [3], Schreiber [4] and others. The proof will be given in the next section. Now we shall give some consequences and applications. The essential spectrum of A is defined as

$$\sigma_e(A) = \bigcap_{K \text{ compact}} \sigma(A+K).$$

Theorem 2. *If λ is a proper boundary point of $\sigma(A)$ and it is also in the essential spectrum of A , then there is an orthonormal sequence $\{\varphi_n\}$ in H such that*

$$(4) \quad (A - \lambda)\varphi_n \rightarrow 0 \quad \text{and} \quad (A^* - \bar{\lambda})\varphi_n \rightarrow 0.$$

Proof. If λ is in the essential spectrum of A , then either $A - \lambda$ is not a Fredholm operator or its index is not 0 ([5, p. 180]). The latter case cannot occur, since λ is a boundary point of the spectrum. Hence there is an orthonormal sequence satisfying at least one of the statements in (4). By Theorem 1, it must satisfy both.

Corollary 3. *If λ is a proper boundary point of the spectrum of A and it is not isolated, then there is an orthonormal sequence satisfying (4).*

Proof. By [6, Theorem 2.12] or by [7, Theorem 1], a nonisolated boundary point of the spectrum must be in the essential spectrum. Apply Theorem 2.

We now give some applications suggested by the work of Putman [7].

Corollary 4. *Let A be a bounded operator in H having at least one proper boundary point of $\sigma(A)$ in the essential spectrum. Then the operator*

$$(5) \quad C = A^*A - AA^*$$

has 0 in its essential spectrum.

Proof. Let λ be one such point. By Theorem 2 there is an orthonormal sequence such that (4) holds. Since

$$C = (A^* - \bar{\lambda})(A - \lambda) - (A - \lambda)(A^* - \bar{\lambda}),$$

we see that $C\varphi_n \rightarrow 0$. Thus 0 is in the essential spectrum of C .

Corollary 5. *If A has at least one non-isolated proper boundary point of its spectrum, then 0 is in the essential spectrum of the operator C given by (5).*

Proof. Use Corollary 3.

Corollary 6. *If every boundary point of the spectrum of A is proper, then C has 0 in its essential spectrum.*

Proof. If not all of the boundary points of $\sigma(A)$ are isolated, the result follows from Corollary 5. If they are, then the spectrum of A consists of only a finite number of points. At least one of these points must be in the essential spectrum of A (if H is infinite dimensional). Now apply Corollary 4.

Corollary 7. *Suppose every boundary point of the spectrum of A is proper, and put $A = L + iM$, where L and M are self adjoint. Then $\sigma(L)$ [resp. $\sigma(M)$] contains the projection of $\sigma(A)$ on the x [resp. y] axis.*

Proof. Suppose λ is a boundary point of $\sigma(A)$. Then there is a sequence of unit vectors satisfying one of the statements in (3). By Theorem 1 it satisfies both. Since $L = \frac{1}{2}(A + A^*)$, we see that $(L - Re \lambda)x_n \rightarrow 0$. Thus $Re \lambda$ is in the spectrum of L . If λ is an interior point, then there is a boundary point λ_1 such that $Re(\lambda - \lambda_1) = 0$. We use the point λ_1 in place of λ . A similar proof works for M .

2. The proofs. Let us first verify that the points described in section 1 are proper. Consider the first statement. By rotating we may assume $\lambda = \|A\|$. For $t > \lambda$, we have $\|(t - A)u\| \geq (t - \lambda)\|u\|$. Hence $\|(t - A)^{-1}\| \leq 1/(t - \lambda)$.

Similar reasoning gives the second case. Since the numerical range $W(A)$ of A is convex, it is contained on one side of line L going through λ . Let z be any point on the other side of L such that $z - \lambda$ is orthogonal to it. Thus $|z - \lambda|$ is the distance $d(z, W(A))$ from z to $W(A)$. We know in general that

$$\|(z - A)^{-1}\| \leq 1/d(z, W(A))$$

holds for any z not in the closure of $W(A)$. This shows that

$$\|(z - A)^{-1}\| \leq 1/|z - \lambda|$$

holds for z on the other side of L . This proves the assertion for the second case.

If X , is a spectral set for A , then

$$(7) \quad \|(z - A)^{-1}\| \leq 1/d(z, X)$$

holds for all z not in X . If there is a sequence in the complement of X such that (2) holds, then we see that (1) holds for the same sequence.

If A is seminormal, then (7) holds for $X = \sigma(A)$. Apply the same reasoning.

Proof of Theorem 1. Assume $\lambda = 0$, and set $W_k = \lambda_k(\lambda_k - A)^{-1}$. Then (1) says

$$(8) \quad \|W_k\| \rightarrow 1.$$

Now

$$I - W_k = (\lambda_k - A)(\lambda_k - A)^{-1} - \lambda_k(\lambda_k - A)^{-1} = -A(\lambda_k - A)^{-1}.$$

Thus

$$\begin{aligned} \|(I - W_k)x\|^2 &= \|x\|^2 - 2Re(x, W_k x) + \|W_k x\|^2 \\ &= 2Re(x, [I - W_k]x) + \|W_k x\|^2 - \|x\|^2 \\ &= -2Re(A^*x, (\lambda_k - A)^{-1}x) + \|W_k x\|^2 - \|x\|^2 \\ &\leq \|2A^*x\| \|(\lambda_k - A)^{-1}\| \|x\| + (\|W_k\|^2 - 1) \|x\|^2. \end{aligned}$$

Now assume that $\|x_n\| \leq K$ and that $|\lambda_k| \leq M$. Let $\varepsilon > 0$ be given. Take k so large that

$$\|W_k\|^2 - 1 < \varepsilon/2R^2K^2,$$

where $R = M + \|A\|$. Then fix k . If $A^*x_n \rightarrow 0$, we can find an N so large that

$$\|A^*x_n\| < \varepsilon/4KR^2\|(\lambda_k - A)^{-1}\|, \quad n > N.$$

These last inequalities imply

$$\|(I - W_k)x_n\|^2 < \varepsilon/R^2, \quad n > N.$$

Now

$$\|Ax_n\|^2 = \|(\lambda_k - A)(I - W_k)x_n\|^2 \leq \varepsilon, \quad n > N.$$

This shows that $Ax_n \rightarrow 0$. A symmetrical argument shows the converse, that $Ax_n \rightarrow 0$ implies $A^*x_n \rightarrow 0$. This completes the proof.

YESHIVA UNIVERSITY

Bibliography

- [1] C.R. Putnam: *Eigenvalues and boundary spectra*, Illinois J. Math. **12** (1968), 278–283.
- [2] T. Saito: *A theorem on boundary spectra*, Acta Math. Szeged **33** (1972), 101–104.
- [3] B. Sz.-Nagy and C. Foiaș: *Une relation parmi les vecteurs propres d'un opérateur de l'espace de Hilbert et de l'opérateur adjoint*, ibid. **20** (1959), 91–96.
- [4] M. Schreiber: *On the spectrum of a contraction*, Proc. Amer. Math. Soc. **12** (1961), 709–713.
- [5] M. Schechter: *Principles of Functional Analysis*, Academic Press, New York, 1971.
- [6] M. Schechter: *Operators obeying Weyl's theorem*, Scripta Math. **29** (1973), 67–75.
- [7] C.R. Putnam: *The spectra of operators having resolvents of first order growth*, Trans. Amer. Math. Soc. **133** (1968), 505–510.
- [8] A.E. Taylor: *Introduction to Functional Analysis*, Wiley, New York, 1958.