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Evaporation-cost dependence in heavy-ion fragmentation
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Inclusive multineutron and multiproton removal cross sections from ''2Sn and '*Sn at relativistic energies
have been measured. The data show two distinct regimes of the reaction process that depend on the nucleon
evaporation cost of the final nucleus. This behavior is universal by regarding the mass or asymmetry of the initial
system or target composition. A state-of-the-art cascade and deexcitation model reproduces the observed trend
but systematically fails in reproducing cross sections for the removal of the more bound nucleon species.
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The fragmentation of a many-body bound system from the
fast collision with an extra particle is a generic problem in areas
as different as atomic physics through electron-induced ion-
ization [1], nuclear physics through the nuclear fragmentation
in spallation targets [2], or astrophysics through the ejection of
rocks from gravitational rings after asteroid collisions [3]. This
complex process depends a priori on the two-body interaction
cross section, the geometry of the system, and the binding of its
individual constituents. This multiparticle removal probability
is challenging to predict to a high precision since it also
depends on processes, such as the re-interaction of scattered
components and the release of dissipation energy by statistical
emission of particles, e.g., the ionization of atoms by energetic
electrons is impacted by the Auger effect. Models for nuclear
fragmentation have been numerous [4]. At kinetic energies
larger than 100 MeV /nucleon, it is possible to accurately
reproduce experimental fragmentation cross sections by mod-
eling the reaction in two steps: intranuclear cascade (INC)
followed by statistical deexcitation of the remnant nucleus [2].
Fragmentation results from the interplay of both processes [5].
In the case of one-nucleon removal, the proton-neutron
asymmetry has recently demonstrated important limits of our
treatment of direct reactions [6,7], and the role of evaporation
in weakly bound nuclei has been questioned for deeply bound
nucleon removal [8]. In this Rapid Communication, we present
new fragmentation data from stable and unstable Sn isotopes
at incident energies of ~165 MeV /nucleon. We characterize
these data by the difference in emission cost between the
removed species and the other one, AC = Cremoved — Cothers
where C,, = §,, is the neutron-evaporation cost, C, = S, + V.
is the proton-evaporation cost, S, is the neutron (proton)
separation energy, and V, is the Coulomb barrier. We show
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that the ejection of identical nucleons presents two universal
regimes that depend on the sign of AC.

Fast '%4Sn and ''?Sn beams at 155 and 173 MeV /nucleon,
respectively, have been produced at the RIBF facility, operated
conjointly by the RIKEN Nishina Center and the CNS of the
University of Tokyo, by fragmentation of a '>*Xe primary
beam of 0.5 e LA onto a 0.555 g/cm? *Be production target.
The secondary cocktail beams were composed of '**Sn (112Sn)
at 25% (77%) purity. The achieved intensity of '“Sn was
350 pps. Secondary targets were located at the F8 focal
point of the BigRIPS spectrometer [9,10]. Cross sections
were measured from 2-mm-thick '>C and CH, targets. The
target thicknesses were determined with a 2% precision by
both weighting and magnetic-rigidity deviation of the beam
in the zero-degree spectrometer (ZDS) after energy loss in
the secondary target. The direct beam and reaction products
were transmitted to the F11 focal plane through the large
acceptance of the ZDS, namely, 4% in momentum and 5
msr in angle. Hydrogen-induced cross sections have been
deduced from the CH, target measurements after subtraction of
the measured carbon contribution. Beam particles (secondary
products) were identified with BigRIPS (ZDS) by means of
the Bpo — AE — TOF method with the use of beam-tracking
detectors, plastic detectors, and ionization chambers for beam
position, time-of-flight (TOF), and energy-loss measurements,
respectively. After the secondary target, several charge states
(84%, 15%, and 1% for Q = +50, 449, 448, respectively)
were observed for the outgoing ions. Ions with no charge-state
change between the secondary target and the ZDS focal plane
were selected in the analysis. Several factors were considered
to correct the number of detected products and to extract the
production cross sections: (i) the ZDS momentum acceptance,
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FIG. 1. (Color online) Mass identification of fully stripped tin
isotopes from the fragmentation of incoming (a) '*Sn and (b) ''?Sn.

(i) contamination of charge states of lower-mass isotopes,
(iii) detection efficiency of tracking detectors and ionization
chambers (94%), (iv) the charge-state conservation between
the secondary target and the focal plane of the ZDS [70(2)%],
(v) the absorption of beamlike particles with tracking-detector
material upstream and downstream of the secondary target
(6%), and (vi) spurious contribution to the measured cross
section from interaction with beam scintillators (17%). A mass
resolution of o ~ 1073 for the residues transmitted through the
ZDS was achieved, which allows a clean separation of reaction
products (see Fig. 1) for isotopes from the neutron removal
from '94Sn and ''?Sn. Different Bp magnetic rigidity settings
of the ZDS were used. The resulting measured cross sections
are shown in Table 1. The uncertainties quoted in Table I are
taken as the quadratic sum of all sources of uncertainties.
The removal cross sections as a function of the number
of removed nucleons and normalized to the one-nucleon
removal cross section are shown in Fig. 2. Our data highlight
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FIG. 2. (Color online) Inclusive multineutron (proton) removal
cross sections normalized to the one-neutron (proton) removal cross
section. Data for '™Sn (triangles) and ''’Sn isotopes (squares)
from this Rapid Communication are shown in red. Data for '*>Sn
(circles) [11] at 950 MeV /nucleon, '3*Xe (open diamonds and filled
black triangles) [12] at 1 GeV/nucleon, 3Ni (filled stars) [13] at
650 MeV /nucleon, “°Ca (blue open crosses) [14] and #2Se (dots)
[15] at 140 MeV /nucleon, 2®Pb (open stars) [16], and ''2Sn (blue
crosses) [17] at 1 GeV/nucleon are shown. Filled (open) symbols
represent the removal of the expensive (cheap) nucleon species.
Selected INCL-ABLA calculations are plotted (lines).

two behaviors: neutron removal from the neutron-deficient
104Sn presents a steep slope as a function of the number
of removed neutrons, whereas, the few-neutron removal
from the stable ''?Sn exhibits a much flatter slope with a
steeper slope beyond five removed neutrons. Comparison with
the literature demonstrates that our data sets are actually
prototypes of two general classes. Proton removal from the
very neutron-rich '*2Sn [11] and '3Xe [12] at 1 GeV /nucleon
or the neutron removal from the neutron-deficient 33Ni [13]

TABLE 1. Incoming nuclei, reaction channels, and nucleon removal cross sections for both >C and H targets at midtarget energies of 132
(154) and 142 (161) MeV /nucleon for '*Sn ('!2Sn), respectively. Theoretical predictions from INCL-ABLA calculated at 150 MeV /nucleon are

also given.

Projectile Channel Sy Sy Ve AC o expt. (mb) o theory (mb)

Target: (MeV) 2c H 2c H

1128n —1n 8.2 7.0 4.8 -3.6 151(7) 137(7) 180 132
—2n 11.1 6.7 4.8 -0.3 98(4) 107(7) 92 109
—3n 8.6 5.9 4.8 -2.1 59(3) 70(4) 38 64
—4n 11.4 5.8 4.8 +0.8 26(1) 28(2) 22 49
—5n 8.9 53 4.8 —-1.2 5.1(9) 4.3(7) 6 17
—6n 11.8 54 4.8 +1.5 0.4(2) 0.5(2) 3 8
—1p 10.0 5.7 4.6 +04 51(5) 34(3) 105 41
—2p 9.6 8.8 4.6 +3.7 5(1) 4(1) 14 2

104Sn —1n 10.0 4.3 4.8 +0.9 55(2) 51(4) 125 111
—2n 13.4 4.1 4.8 +4.4 2.1(1) 2.6(3) 19 16
—3n 11.2 3.5 4.8 +29 0.11(3) 0.12(4) 6 1.6
—4n 17.3 3.0 4.8 +94 0.006(*%) 2 0.08
—1p 11.9 3.1 4.7 —-4.0 121(5) 70(7) 157 67
—2p 11.5 54 4.6 —-1.5 90(6) 58(7) 63 38
-3p 11.2 39 4.5 —-2.8 56(5) 33(7) 24 16
—4p 11.0 6.8 4.4 +0.2 37(6) 10 6
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FIG. 3. (Color online) Ratio of the (k + 1)-nucleon and the
k-nucleon removal cross sections in decimal logarithmic scale as a
function of the evaporation-cost asymmetry AC. The same notation as
in Fig. 2 is used for markers. Liege Intranuclear Cascade (INCL) model
calculations for the removal of the expensive nucleon species (green
markers) and calculations of the analytical model (line) are shown.

at 650 MeV /nucleon superimpose to the '%Sn data obtained
from neutron removal, whereas, neutron removal from '32Sn
behaves like neutron removal from ''2Sn. Surprisingly enough,
other nucleon removal cross sections from Ca, Se, and Pb
[14-16] atincident energies that range from 140 MeV /nucleon
to 1 GeV /nucleon show exactly the same tendency as shown
in Figs. 2 and 3. The transition between these two regimes is
illustrated by the neutron removal data from ''>Sn taken from
this Rapid Communication and at GSI [17]. The GSI data set
ranges from three-neutron removal to twelve-neutron removal,
which leads to the production of the drip-line isotope '%°Sn.
In Fig. 2, the GSI data are normalized to the three-neutron
removal cross section from the present ''>Sn data since the
one- and two-neutron removal cross sections have not been
measured. The data do not present a unique slope as all other
distributions but a transition from a flat to a steep behavior.
The relevant isotopes are associated with values of AC in
the range between —15 and +15 MeV; the associated cross
sections, indeed, exhibit a change in slope in the vicinity of
AC = 0 (see Fig. 3).

These two behaviors can be interpreted as consequences
of the different roles played by evaporation in the two
AC regimes. We assume that evaporation always selects
the “cheaper” species (i.e., protons if C, < C,, neutrons
otherwise). In the following, AC is calculated from tabulated
nucleon separation energies [18] and the Bass prescription
[19,20] for the Coulomb barrier. Under this assumption,
removal of the “expensive” nuclear species (e.g., protons from
1328n and neutrons from '%*Sn) can never occur by evaporation;
therefore, it must take place during the cascade stage, and
little excitation energy must be available at the beginning of
evaporation, otherwise, the competing nuclear species will be
evaporated. In this regime (AC > 0), evaporation acts like a
cutoff in excitation energy: Only cascade events with small
energy deposits in the residual nucleus will contribute to the
n-nucleon removal cross section. An analogous mechanism
contributes to the removal of the cheap nuclear species (e.g.,
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neutrons from !'*2Sn and protons from !%Sn); however, it
is also possible in this regime (AC < 0) that part of the
nucleons are removed during the evaporation phase, provided
that the correct amount of excitation energy is available
at the beginning of deexcitation. The dependence on the
evaporation-cost asymmetry AC is illustrated in Fig. 3 where
the derivative of the nucleon removal cross sections with
respect to the number of removed nucleons is plotted as a
function of AC for all data sets shown in Fig. 2. The two
regimes depend on the sign of AC. The observed generality of
the AC regimes should be connected with the universality of
the evaporation corridor [21], i.e., the locus of nuclides which
evaporate protons and neutrons with equal probability.

We propose here a simplified scheme, in the same spirit as
the cold fragmentation model [22], to capture the essence of
the two regimes depicted in Figs. 2 and 3. We assume that:
(i) the ejection of one nucleon by the INC results in an
exponential excitation-energy distribution f;(E) = e £/T/T,
where T is the mean value of the distribution; (ii) the excitation
energy associated with the removal of k nucleons during the
INC is the sum of independent excitation energies deposited by
each nucleon removal, which yields the distribution f;(E) =
(E/TY"J(k —1)! x e E/T/T; and finally, (iii) the cross
section 0N for ejecting k nucleons during the INC follows
an exponential law such that 6§ /o;"C = a. According to
the above arguments, removal of k-expensive nucleons, e.g.,
neutrons from '%Sn, is only possible if they are all removed
during the cascade. The cross section for this process is o}’ =

aNC [ f.(E)dE. On the other hand, the removal of k-cheap
nucleons, e.g., protons from 104Gy originates in the j < k
cascade and k — j evaporations, which follows the sum over all

possibilities o = ?j oN¢ f(;k__i’)g)c” f;(E)dE. Formulas
for neutron-rich residues are obtained by exchanging the n
and p labels. By considering (C,) = 10 MeV, the numerical
solution of the model for neutron removal from '32Sn with
(T =20MeV, a =0.5) is shown in Fig. 3. The model
parameters were fixed by comparison with the predictions of
the intra-nuclear-cascade code described below. This simple
model already shows a much steeper slope for the removal of
the expensive species than for the cheap one.

To go beyond this intuitive description of the reaction
process, we compare our data to predictions from state-of-
the-art calculations based on a Monte Carlo description of the
cascade and evaporation processes. We use the INCL model,
first developed at Liege by Cugnon and further developed
at CEA-Saclay [23,24]. The latest version of the code can
simulate reactions on light nuclei up to A = 18 [25]. At the
end of the cascade, the remnant nucleus is left with some
excitation energy, subsequently released via evaporation of
nucleons and light-charged particles. In the present study,
evaporation is simulated by the ABLAO7 code [26]. INCL-
ABLA yields the correct slope of the multinucleon removal
curves for the cheap species but systematically underestimates
the magnitude of the slope for the expensive species (see
Figs. 2 and 3). In the case of neutron removal from '%Sn,
we have verified that the slope is essentially insensitive to:
(i) £20% isoscalar variations in the radius and diffusiveness
parameters of the INCL Woods-Saxon densities, (ii) isovector
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FIG. 4. (Color online) INC calculations of the fraction of the
removal cross section oy for events whose intrinsic excitation energy
E* of the cascade remnant is below the evaporation cost C of the
cheapest species.

variations of 0.2 fm for the same parameters (which simulate
the presence of either a neutron or proton skin), and (iii)
50% variations in the level-density parameter in evaporation.
The slope is sensitive to the proton Coulomb barrier as
predicted by the analytical model above and confirmed by
the INC-evaporation calculations; however, the disagreement
with the experimental slope cannot be cured by modifying the
proton Coulomb barrier alone. Indeed, an increase of 1 MeV of
the barrier for Sn isotopes increases log,o(oy’,;/0}') by about
10%; however, it simultaneously induces a similar variation
in the opposite direction in log (o}’ 1/ o), thereby degrading
the agreement with the data. Moreover, the cross-sectional
slopes are sensitive to the proton barrier only if protons are the
cheap species.

The underestimate of the magnitude of the slope can be
traced back to a particular class of events: Fig. 4 shows which
fraction of the cross section for the removal of k nucleons is
due to a remnant whose intrinsic excitation energy is lower
than its evaporation threshold (the smaller of the proton and
neutron costs). These remnants cannot evaporate any particle
and deexcite by y emission. The mispredicted cross sections
(AC > 0)are dominated by such events, which corroborate the
basic assumptions of our simple analytical model (see above).
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Therefore, one might suspect that the INC overestimates the
frequency of such low-excitation events. The observed strong
disagreement between theory and experiment generalizes to
multinucleon stripping the problematics of deeply bound
(expensive) nucleon removal from unstable nuclei, abundantly
discussed in the literature [6-8,27].

To summarize, we measured inclusive multinucleon
removal cross sections from '’Sn and !%Sn at
~150-MeV /nucleon midtarget energy. The removal of iden-
tical nucleons from a nucleus shows two distinct regimes,
strongly correlated with the evaporation-cost asymmetry AC
of the produced nucleus with a minor dependence on the
projectile or target nature. The correlation appears to be
universal according to existing data sets and driven by
the excitation energy deposited by the cascade collisions in the
remnant nucleus. A state-of-the-art cascade and deexcitation
model reproduces well the removal cross sections for the cheap
species but systematically overestimates the removal of the ex-
pensive one. The present study generalizes, for several-nucleon
removal, the insufficient treatment of target-projectile excita-
tions in intermediate-energy peripheral collisions of state-of-
the-art reaction models. A deeper understanding of nuclear
dissipation should drastically improve microscopic predictions
of both the one-nucleon knockout reactions from exotic nuclei
and the production of very exotic nuclei from fragmentation.
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