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0. Introduction

It is known that a simply connected compact kdhlerian homogeneous space
admits the standard analytic cell decomposition, in which each cell is called a
generalized Schubert cell and determines a generalized Schubert cycle (Borel-
Kostant; cf. [4]). The set of these cycles forms a homology basis of the space and
corresponds bijectively to a canonically-defined subset of the Weyl group of the
transformation group of the space. The purpose of this paper is to express the
Poincaré duality of the space by means of elements of the Weyl group.

In more detail, let X be a simply connected compact kihlerian homogeneous
space. According to Wang, we call X a kdhlerian C-space and we may identify
X with the coset space G/U where G is a complex semi-simple Lie group and U
is a parabolic subgroup of G. Take a Borel subgroup B in U and let M be the
commutator subgroup of B, so that M is a maximal unipotent subgroup of G.
Let W be the Weyl group of G, W, be the Weyl group of the reductive part of U,
and consider W, as a subgroup of W. Then the M-orbit decomposition of X
gives an analytic cell decomposition, which is parametrized by the right coset
space W \W. Namely we have

X= U Vs (disjoint sum)
(OHEW\W
where (5s) denotes the class to which the element s& I¥ belongs, and V,, is an
M:-orbit (a generalized Schubert cell) marked with (s). On the other hand, there
exists an involutive element « of the Weyl group W, which is uniquely deter-
mined in a canonical way from the fixed Borel subgroup B in U (cf. §1). Then
we see dim, V,,+dim, V,,, =dim, X.

Theorem I. The notation being as above, the correspondence of the gener-
alized Schubert cycles V., W~ V., gives the Poincaré duality of a kihlerian
C-space X. Precisely speaking, we have the intersection numbers; Vo Vieo=1
and Vi,V =0 for any cycles Vi+Vi such that dim, V,+dim, V=
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dim, X. Here V., denotes the cycle carried by the analytic subvariety of the
closure of the cell V.

The above result was conjectured by Takeuchi [5], who gave a proof in the
case that the kahlerian C-space X is a hermitian symmetric space. Further we
refer to Ehresmann’s thesis [1], where the fact was found out for classical hermi-
tian symmetric spaces; i.e. complex Grassmann manifolds, complex quadrics and
other two types. Hence Theorem I generalizes the results of Ehresmann-
Takeuchi’s. Our proof is based on the idea “dual” cells for Schubert cells
introduced by Takeuchi [5]. However our method does not depend on the
Borel-Weil imbedding nor the theory of reflection groups as used in [5]. We
shall also prove an analogue to the Theorem I for some kind of real algebraic
homogeneous spaces called Tits’ real R-spaces (Theorem IT), and this result also
generalizes Ehresmann [2] and Takeuchi [5].

The author would like to thank Professor T. Nagano, Professor M. Ise and
Mr. T. Ochiai for their encouragements and heipful suggestions during the
preparation of this paper.

1. Preliminaries

Let X be a kahlerian C-space. Put X=G/U as a homogenous space where
G is a connected complex semi-simple Lie group and U is a parabolic subgroup in
G. Henceforth, when a Roman capital letter denotes a Lie group, the corre-
sponding German small letter shall denote the corresponding Lie algebra. Let
B be a Borel subgroup in U. We can choose a Cartan subalgebra § of g
contained in b. Let A be the root system of g with respect to b, and let

g = b+ EAgm

be the root space decomposition of g, g, being the eigenspace belonging to a root
a€A. There exists then a lexicographical order in A such that

b= [)+MEEA 9

where A, (resp. A_) denotes the set of all positive (resp. negative) roots. As for
Db, there exists a subset Al in A, such that

u=">b+ 31 gs.
ﬁEA+
Now put

4, = E)‘I' 21 gw‘l_ 21 {4 P
LSy @eal,

Then g, is a reductive Lie subalgebra of u. Let W (resp. W,) be the Weyl group
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of g (resp. g,). Then W, may be regarded as a subgroup of W. We know that
there exists the unipue involutive element x& W such that xkA,=A_. Put
D,=sA_NA, for s€c W. When we put —[]={—a|acs[]} and s(J={a|a
€[]} for a subset [JCA and s€ W, we clearly have ®,=sA NA,, A,=
D, U D,, (disjoint sum) and ®,-1=—s5"'®D,. For an element s& W, the index of
s is defined by n(s)=|®,|,| - | denoting the cardinal number of the set. Note
that n(s™")=n(s) for s€ W. Next put ¥=A,—A} and define the subset W' of
W as W'={scW|®,c¥}. Then the map W, X W'S(s, t) \\> steW is
bijective, that is, the subset I¥* is a representative system of the right coset space
WA\W (Kostant [3]). If s& W,, s preserves ¥ and A} U —AY and s(A})=A} if
and only if s is the unit element. It follows that n(s)<n(t) for s€ W* and for
any t€ Ws, where n(s)=n(t) holds only if s=:1.

Next put m=w§ 8, and let M be the Lie subgroup of G corresponding to

m. Then m is a maximal nilpotent subalgebra of g. Let Ng(H) be the nor-
malizer in G of the fixed Cartan subgroup H, and identify the Weyl group W
with the factor group Ng(H)/H. Then the double coset MsU depends only
on the class of s& Ng(H) modulo H since HC U N Ng(H). According to Kostant
[4, §6], we have then the generalized Bruhat decomposition G= U Ms U, and

SEW
Ms*U=MtU if and only if s&€ W,;t. Therefore we have a disjoint union

G= U Ms'U. For the homogeneous space X=G/U, this amounts to X=

sewl

U Ms™'-0 (disjoint union), where o is the origin {U} of X. Put V,=Ms -0,

sewl

the M-orbit of a point s™'-0€ X for s&€ W, so that X= U V,. Furthermore

sewl
let my, m; be the nilpotent Lie subalgebras defined by mi= >} g,, m;y=
aEd,

> g and M, M; be the corresponding Lie subgroups in G respectively.

pE O
Then, if s&€ W*, we can express

(1.1) Vi=M*%-1570=s"'"M;-0,
and moreover the map
mi-12X W— (exp X)s o€V,

is biholomorphic. Therefore the complex submanifold ¥V is a complex n(s)-cell
for s&€ W*, which is called a generalized Schubert cell.

Thus a kahlerian C-space X admits an analytic cell decomposition, and
{V} e w' is moreover a CW-complex [5]. Notice further that the submanifold
V, is locally closed in X both in the sense of Zariski and Hausdorff, and the
closure ¥, is a union of V, and some Schubert cells whose dimensions are pro-
perly lower than that of V. The same letter ¥, denoting also the cycle which
the Schubert variety V7, carries, the set {V},c: forms a basis of the integral
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homology group of X (V,e H,,(X, Z)).
Our aim is to determine the intersection matrix with respect to this basis.

2. Reduction of Theorem I to Theorem I’; dual cells

Recall that we put V,=Ms .0 for s W. Then V=V, if and only if
sE Wyt, and by the results in §1 we have dim, V,<n(s) for s€ W, the equality
holding if and only if s& W*. Under this notation, we have

dim, V,+dim, Vy,, = n for seW

where n=dim, X and # is the element introduced in §1 (Takeuchi [5]). We
see as in the case of V, that if s&€ W*
(2.1) Ve = exp ( DY gg)rsteo.

BeEXs (T -y

Theorem I in the introduction can now be stated as:

Theorem L. Let {V },o* be the set of the generalized Schubert cycles on a
kdhlerian C-space. Then we have V-V, =1 and V-V ,=0 for any t€ W* such
that n(t)=n—n(s) and V,+ V..

This theorem can be paraphrased by means of “dual” cells *V as follows
(cf. Takeuchi [5]). Putm~ =a§ g_» whose Lie subgroup is denoted by M~;

put rt,‘:l3 12 g_s whose Lie subgroup is denoted by N;; and finally put
ESTWNAL

*Vs=M s '-0 (the M~ -orbit of s*-0€ X). Then from (2.1) and the definition
of k€ W, we see that if s&€ W,

(2.2) *Ve=N;s e 0=1«V,.

Therefore we have dim, V,+dim, *V,= | ¥ |=n, dim, *V,=n—n(s) and s7'-0
eV ,N*V, for s W*'. Moreover we know that if ¥V, C*V —*V for s, te W',
then n(t)>n(s) by the same reason as for V/,. On the other hand, a dual Schubert
cycle *V is homologous to the Schubert cycle V.. In fact, this follows from
(2.2) since # is homotopic to the identity because of the connectedness of G.
Hence Theorem I is reduced to

Theorem I'. For Schubert varieties V, and *V,, we have
i) V,N*V,= {s7'.0} for s€ W* and they mutually intersect transversally,
iy V.N*¥V,=¢ for s, teW?
such that n(sy=n(t) and s=t.

RemARK. Theorem I’, i) was proved by Takeuchi [5] through the Borel-
Weil imbedding. Here we shall prove i) in another way, together with ii).
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3. Proof of Theorem I’

Lemma 1 (Kostant [4], Lemma 6.2). Let n be a milpotent Lie algebra.
Assume n=n,+n, is a linear direct sum where n, and n, are Lie subalgebras. Let
N be a simply connected Lie group corresponding to n, and N;, i==1,2, the subgroups
corresponding to n;, i=1, 2.  Then the map

@ : N, xN,=(n, n,) w=> nn,eN

is a bijection.

In case of complex Lie algebras the above map clearly becomes biholomor-
phic.

Now let n”= 3>1g_, and N~ the corresponding Lie subgroup. Put Jl,=

ey

s* N7 «0. Then Jl; is a complex n-cell which is biholomorphic both to N~ and
ton.

Lemma 2. Let sSW" and let M*%-1, N be the nilpotent Lie groups de-
fined in §§ 1, 2. For the complex cell Jl, defined above, we have

Ty = M%-1-Nys 0
and the map
Mi-1xX Ny€(m, n) Ww> mns -0 T,

ts biholomorphic.

Proof. Write Jl,=s"'N"-0=(s"'N7s)s7'+0. The Lie algebra correspond-
ing to the nilpotnet group s™N s has the form

Ads7' )= X} ag.,-

acs- Iy
On the other hand, recall the Lie algebras of M }-1 and N; are expressed as

mi-i= >} g
peTBs-1

n, = _12 g-vy
ves~l¥na,

Now we see
_¢s_1 - '—'(S—IA_ nA+) == s_lA.{. nA- == s—l\P nA_.
since s&€ W*. Therefore we have a linear direct sum
Ads7'(n7) = mi-14ng

Lemma 2 follows then from Lemma 1. q.e.d.
Recall (1.1), (2.2) for a Schubert cell ¥ and its dual *V,: we have

V= Ms"+0= Mt-1s""0,

*Ve=M"s"'<0o=N;s'0,



276 R. HotTA

if s&€ W*'. Therefore from Lemma 2 we see:

ReMARK. A cell 71, is imbedded in X as a direct product V,x *V, with
its origin V., N *V,={s""-0} if s&€ W".

Lemma 3. Let s, tcW'. Assume n(s)<n(t) for the indices of s, t. If
V.N*V,=%¢ for the Schubert cells, then we have s=1.

Proof. Let peV,N*V, and consider the M%-1-orbit of p. Then
Mi-1-pCV, since Mi-1CcM and peV,. Here we see Vi=M:p=M7-1-p,
and let H,={m& M; m-p=p} be the isotropy subgroup of M at p. From the
argument in § 1, we have then a linear direct sum

m =mi-1-+-h,.
On other hand, we have also a linear direct sum
m=m%-1+9 b

In fact, since p*V,, the group M7}-: acts effectively on the space M}-1-p be-
cause of the definition of *17, and Lemma 2. Therefore we have M%}-1N H,={1},
which shows the above formula since dim, m %-1=n(t)>n(s)=dim, m}-1 by the
assumption. Using Lemma 1, we have V,=M%-:+p from the above two linear
direct sums. Therefore s~'.0€J],. NowJl,==t"'*V, where e W" is the unit
element. Thus s7'-0=J], implies ¢s™ -0 *V,. Therefore ts™'€ W, because
of the M~ -orbit decomposition. Hence s=t since s, t& W* and s€ W, t, which
proves the lemma.

Proof of Theorem I’

For i) we shall show V,N*V,={s"'-0} if s€ W'. We get V,N*V,={s""-0}
by Remark to Lemma 2. Let VycV,—V,, ¥V, c*V,—*V,. Then n(s)<
n(s)<<n(s”’). Hence VyN*V ,=¢, *V s N V,=¢ from Lemma 3. The trans-
versal intersection property being clear, these prove Theorem I’, i). For ii) we
shall show *V ,N*V,=¢ for s, t W* such that s=¢ and n(s)==n(t). Assume
7.N*V,+¢. Then there exist s’, ¢’ W" such that VycV,, ¥Iyc*V, and
VoN*Vy+¢. Notice n(s’)<n(s)=n(t)<n(t') from the inclusion relations. It
follows from Lemma 3 that s’=1¢’, which gives n(s")=n(s) and n(t) = n(t’).
Since the boundary of a Schubert cell consists of strictly lower-dimensional
Schubert cells we have s'=s, t'=t¢ and hence s=¢#, which proves Theorem I, ii).

Thus we have completed the proof of Theorem I’, hence Theorem I.

4. The case of Tits’ real R-spaces

In this section, we point out that an analogue to Theorem I holds for some
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kind of real algebraic homogeneous spaces (T'its’ real R-spaces in the terminology
of [5]) which are real point sets of kiahlerian C-spaces. Henceforth we use the
notations in Takeuchi [5], Chapt. I, §4-86, and so they are slightly different from
the ones which appeared previously. For the details of Tits’ real R-spaces, we
refer also to the above paper.

Let G be a reductive irreducible real algebraic linear group, whose com-
plexification G is a reductive connected complex algebraic linear group. An
algebraic subgroup U of G is called parabolic when its complexification U is
parabolic in G. For such U, the real algebraic homogeneous space X=G/U
is called a Tits’ real R-space. Now, suppose a Tits’ real R-space X=G/|U be
given. Then its complexification, the kahlerian C-space X=G/U can be G-
equivariantly imbedded in a complex projective space P¥(C) so that the injection
X— PY¥(C) is defined over the field of real numbers R. Here, the Tits’ real
R-space X is the set of R-rational points in X; this means that with respect to the
real projective space PY(R) naturally inbedded in PV(C), we may regard X=X
NPN(R). A Tits’ real R-space X admits a cell decomposition compatible with
the kihlerian C-space X. In more detail, ¥ being the Weyl group of G, there
exists a subset W*' of W similar to the complex case, which gives rise to a cell
decomposition

X= U Ms'to= U Vs,
sew! sewl
where M is the real form (R-rational point set) of a suitable maximal unipotent
algebraic subgroup M of G. Here V, is homeomorphic to R*® and there
exists a (complex) Schubert cell ¥, (M-orbit) of the complexification X such
that V, is the set of R-rational points of V,. Moreover the above cell decom-
position gives a minimal cell decomposition modulo 2 of X. Let k€W be
the unique involutive element which transforms all the (real) positive roots to
the negative roots. Then we can define the correspondence of the real Schubert
cycles V, wa— V7  where dimg V,+-dimg V, =dimz X and V| is the closure of
Vsin X. We can now state a generalization of Takeuchi’s theorem [5, Chapt,

I, Th. 18]:

Theorem IL.  For (real) Schubert cycles {V},ey* of a Tits' real R-space X,
the correspondence V, w— V, gives the Poincaré duality modulo 2 of X.

RemMARK. Th. 18 in [5] is for real symmetric R-spaces (of Nagano type),
which also generalizes Ehresmann [2).

Proof. We can define a dual cell *V for V, similar to the complex case.
Moreover we recall that there exists a (complex) Schubert cell V,, and a dual
cell *V_ in X such that a real Schubert cell V, (resp. *V) is the set of R-rational
points of V, (resp. *V,). We call V, (resp. * V) a complexification of ¥ (resp.



278 R. HoTTA

*V,).
Let V,n*V,+¢ and n(s)=n(t). Let V,, *V, be the complexifications of
V,, *V,, and assume o, 7€ W* (the canonically defined subset of the Weyl group

of G, denoted previously by W*). Then n(s)=mn(t) and ﬁ,ﬂ*ﬁ#(ﬁ, where
V., *IZ are the closures in X. Therefore c=7 from Theorem I’, which gives
V.=V, ie s=tifs, tcW" It follows from Theorem I’ that ¥, N *V ={s""-0}

and they intersect transversally since V,N*V C 17,0 *I:/',. Thus Theorem II
is proved.

Osaka UNIVERSITY
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