
Title Localization of G-CW complexes at a system of
primes

Author(s) Sumi, Toshio

Citation Osaka Journal of Mathematics. 1988, 25(4), p.
865-875

Version Type VoR

URL https://doi.org/10.18910/5134

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Sumi, T.
Osaka J. Math.
25 (1988), 865-875

LOCALIZATION OF G-CW COMPLEXES AT A
SYSTEM OF PRIMES

TOSHIO SUMI

(Received July 20, 1987)
(Revised February 15, 1988)

1. Introduction

Let G be a compact Lie group. In [6] May, McClure and Triantafillou
have studied the equivariant localization at P, a set of primes, of G-nilpotent
based G-spaces. They treated the concept of a G-tower to construct the equi-
variant localization. Thereafter Yosimura [11,12] generalized it and its exist-
ence theorem for G-nilpotent based G-CW complexes using their methods.
However since the inverse limit of G-CW complexes is generally not of the
G-homotopy type of G-CW complexes, they used the G-CW approximation
theorem (cf. [5], [9]). The purpose of this paper is to construct explicitly the
equivariant localization after the manner of Mimura, Nishida and Toda [7],
Along this line, we generalize the notion of P-sequences to the equivariant one.
Namely, our (φ, resequences are associated with an order preserving map φ
from Γ(G), the set of conjugacy classes of closed subgroups of G, into the set
of sets of primes and a finite subset Γ of Γ(G). Thus our localization is a
functor from the homotopy category CWc of G-1-connected based G-CW
complexes of G-finite type with finitely many orbit types into the homotopy
category of based G-CW complexes with respect to the system of primes φ.

This paper is organized as follows. In §2 we construct (φ, resequences.
In §§3-4 we show the uniqueness of (φ, resequences. Finally in §5 we
establish our localization at φ using (φ, Γ)-sequences.
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2. Homotopy (φ, resequences

We denote by Γ(G) the set consisting of conjugacy classes (H) of the
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closed subgroups H of G and by γ(G) a collection of closed subgroups of G
containing precisely one subgroup from every conjugacy class in Γ(G). For a
G-space X, let T(X) be the set of all the orbit types of X which are the conjugacy
classes of the isotropy groups of points in X and 7(X) the image of T(X) under
the canonical map Γ(G)->γ(G). A based G-CW complex is a G-CW complex
with a base vertex which is left fixed by each element of G. A G-space X is said
to be G-1-connected if each XH={x^X\h x— x for h^H} is 1-connected for
any closed subgroup H of G. CWc denotes the category of G-l -connected
based G-C W complexes X such that X has finitely many orbit types and H*(XH)
is finitely generated for any closed subgroup H of G. Let Π be the power set
of all primes. We have partial orderings on Γ(G), (H) ̂  (K) if H is subconjugate
to K, and on Π, PdQ if P is a subset of Q. φ: Γ(G)->Π is said to be order
preserving if (H)^(K) implies φ(H)<Σ.Φ(K). Throughout this paper, for any
finite subset of Γ(G), we denote it by {(#ι), — , (#„)} so that (#,•)>(#,•) implies

Let P be a set of primes. A space X is said to be P-equivalent to Y if
there exists a map f : X—*Y such that / induces isomorphisms of homology
groups with the coefficient Z/pZ, for any pEΐP and with the rational coefficient.

DEFINITION 2.1. Let φ be a map from Γ(G) into Π. A G-map /: X-*Y
is a φ-equίvalence, if fff : X H-> Y H

y restricting / to XH

y is a φ(ίί)-equivalence
for any H^G. Then X and Y are called φ-equivalent.

DEFINITION 2.2. Let φ be a map from Γ(G) into Π and Γ a subset of
Γ(G) containing T(X). {Xhft} is a homotopy (φ, resequence of X, if

(1) Γ(*,)CΓ,
(2) ffi Xj-j-^Xi is a φ-equivalence with XQ=X,
(3) for any n, iy (ίί)eΓ and prime q with (q, φ(H))=l, there exists

N(>i) such that

is a zero map.

We denote by S^C^c the subcategory consisting of finite dimensional
G-CW complexes in

Lemma 2.3. Let φ be an order preserving map from Γ(G) into Π. If
X is a G-\-connected based G-CW complex, then for any (ίf)eΓ(G), j*^2,
and q prime to φ(H), there exists a G-l-connected based G-CW complex Y=
Y(Xy H,j, q) and a based G-map f: X-* Y such that

(1) Γ(Y)=T(X)Ό{(H)}>

(2) / is a φ-equivalence,
(3)
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Further if X is in 33)CW1

G, then Y is in 33)0^1.

Proof. Let {/3, } : S'-*XH be the generators of πj(XH)®ZlqZ. We define
two based G-maps as follows:

-*Z a(gH/\z) =

where Z=(G/H)+Λ(VSj) and q: VSj-*VSs is a map of degree q. Put
Y=Z\/Xί which is the pushout of G-CW complexes constructed as in [7].

z

z-iz

Since j J>2, Y is a G-l -connected based G-CW complex with
{(#)}. Note that YK=ZK V Xκ for any ̂ ^G and/* is a homotopy equi-

**
valence unless (K)^(H). The conditions follow from the elementary properties
of the pushout diagram.

Theorem 2.4. Let φ be an order preserving map from Γ(G) into Π and Γ a
finite subset of Γ(G) containing Γ(X). If X is a G-l-connected based G-CW com-

plex with finitely many orbit types, then there exists a homotopy (φ, T)-sequence

{Xhfa of X such that ifXis in <SS)CCW1

G) then each X, is in 33)0°^^

Proof. Put M=(N-{l})x(N-il})\J{(Qy 0)}. We define an order on
M by (a,i)<(b,j) if a+i<b+jy or a-\-i=b-\-j and a<b. Assume that there

exists a sequence of φ -equivalences X=X(Qt$-:>X(2tti-*X(2,$-*X(3t2)~* ---- ^(at,*)
such that for any (/', r') and (/, r) in M with (/', r ')<(/, r)k(m, Λ)',

(1) -^c/^) is G-l-connected and its orbit type is the same as Γ except for

^Qo,o) >
(2) forany(ff )€=Γ,

= 0 , if (r,

Let Γ= {(ί/i), •••, (ffs)} and (j, q) be the next to (my k) in M. We put YQ=X(mtk)
and for 0<O^r,

γ= (¥(¥,.,, H{,j,q) if (?,φ(fl ,))=l,

I F^j otherwise.

Then we take X(jtq) = Ys, which satisfies the conditions (1) and (2). The
proof is completed.
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3. The transmission of P-equivalences

Let P be a set of primes and denote by CP the class of finite abelian groups
without P-torsion. A homomorphism / of abelian groups is called a mod
Cp isomorphism if the kernel and the cokernel of / belong to CP. We set
®(K,L,A,B\M)={g^G\g-\aKa~l\JbIA-l)g<Σ.Mhr some aSΞA and b<=ΞB}
for closed subgroups K, L, M of G and closed subspaces A, B of G. This set
is empty unless (K)^(M) or (L)^(M). In this section we abuse / with any
restriction of a map / and assume that any subspace of G which we treat is
closed.

Lemma 3.1. Let X be a G-space, K, L closed subgroups of G. Let A be a
subspace of G and γ a subset of γ(G) containing y(X). Then A XKΓ\XL =
U tfey ®(J?> L,A, {e}',H) XH, where e is the unit element of G. In particular
A XK= (Jff^&(K, {e}, A, {e} H) X*.

Proof. We denote by X<H> the subspace of X consisting of points
whose isotropy groups are H. Then A XK = A (U*eγ G X<H> Π Xκ) =
UH*,A-{geG\g-lKgcH}-X<*> = \Jirete(K, {4, A, {e} y H ) X<»>. Since
Θ(K, {e} , A, {e} #) ** Π G X<N> c Θ(K, {e} , A, {e} N) X<N>, we have
A XK= U^eyΘ(^, {4, Λ {e} H) X*. Similarly A X*nXL=

Proposition 3.2. Let X be a G-space, Ky L closed subgroups of G. Let A,
B be subspaces of G and γ a subset of γ(G) containing γ(X). Then A XKΠ

Theorem 3.3. Let f : X-> Y be a G-map between G-CW complexes with
finitely many orbit types. Suppose that f*: H*(XH)->H*(YH) is a mod£P iso-
morphism for any H in ry(X)\Jγ(Y). Then any closed subspaces Aly * ,^4r of
G and any closed subgroups Klf •••, Kr of G (for any r),

U A,.X*')^H*( U A, YK')
i = 1 »=1

is a mod CP isomorphism.

Proposition 3.2 means that Theorem 3.3 implies that Ί£f*:H*(X*)-+H*(Ya)
is a mod CP isomorphism for any H in <y(X) U γ(Y), then /^ : H*(X*)-+H*(Y*)
is a modCp isomorphism for any K^S G. We need some lemmas to show the
above theorem.

We set X>κ={x(ΞX\Gx>K} and X><*>= G X>κ={x£ΞX \(GX)>(K)}
for any J£^G. Note that A X>K= \JH^^θ(K9 H,A,G\ H) XH.

Lemma 3.4. Let X be a G-CW complex and A a closed subspace of G.
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Then for any K^G, (A XK, A XKΠX>(I°} is an NDR-pair.

Proof. Since X is compactly generated and G XK is closed in X, G XK

is compactly generated. Since A is closed in G, A XK is closed in G XK

and A XK is compactly generated (See [8J). We denote by (G*XK)n the union
of A XK\JX>W and G-cells of G-dimension^ra in G X<K> and put (A Xκ)n

= (G Xκ)nnA Xκ. Then (^A NK/KxD^lLA NKIKxS"-1) and

((A XK)Λ, (A X^^UXyV) are relatively homeomorphic, where NK is the
normalizer of K in G, and D" and S"'1 be copies of the w-disk and (n— 1)-
sphere respectively. Since the former is an ΛΓZλR-pair, so is the latter.

The next proposition is due to Proposition 2 in [6].

Proposition 3.5. Let f: Y-*Z be a G-map between G-spaces and P a set of
primes. If H*(fL) is a modCP isomorphism for any L^G, then also H*(f/M):
H*(Y/M)-*H*(ZIM) is a mod CP isomorphism for any M^G.

Now we start to prove Theorem 3.3. By Proposition 3.2, we can assume that
r=n and Lj = Hh where f γ ( X ) ( J γ ( Y ) = {H1, ••-,#„}. We show the assertion
by induction on the maximal number of the suffixes of H{ assuming that the
assertion is true for any j19 •••^jt with j\< ' <jt<s, we shall show that the
assertion is true for any jl9 , jq with jι< <jq<s+l. First we shall show that

/*: H*(A X S)-*H*(A Y s) is a modCP isomorphism for any closed subspace
A of G. Put A=A NHS and H=HS for short. By Proposition 3.2 and our
assumption, /*: H*(X>H]->#*(Y>") and /*: H*(A X>*)-+H*(A Y>H) are
mod Cp isomorphisms. We consider AxXff as an TVΪf-space via the TVίf-action
n (a, x) = (a n~l,n x). Then by Proposition 3.5 (1 X /)*: H*(A X Xa)-*>

Nff MH

H*(A X Yff) is a mod£P isomorphism. Similarly (1 X /)*: H*(A X X>H)~*
NH NH Ntt

H*(Ax Y>ff) is a mod^p isomorphism. Since A X<H> is homeomorphic to
NH

A X X<H>, H*(A XH,A'X>a) is isomorphic to HJA X X*, AY. X>H) and
NH NH NH

/HC: H*(A XH,A X>H)-+H*(A YH,A Y>H) is a mod CP isomorphism. Thus
so is /*: H*(A XH)-*H*(A YH). Let jl9 •• ,yg be any integers with jΊo
<jq<s+l (for any q). By comparing two Mayer-Vietoris exact sequences for

X and F, we obtain that f*:H*((J AfXtti*)-+H*(\} Aj Y*Ί) is a modCP

isomorphism. This completes the proof.

Corollary 3.6. Let f: X-* Y be a G-map between G-CW complexes with
finitely many orbit types. Suppose that for any H in r γ ( X ) \ J r γ ( Y ) ) there exists a
set of primes P(H) such that fπ is a P(H)-equivalence. If φ is the map from Γ(G)
into Π defined by φ(K)= naoerc^urcio-PC^Oj then f is a φ-equivalence.
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In the same manner as the proof of Theorem 3.3, we have

Proposition 3.7. Let X be a G-CW complex with finitely many orbit types.

If H*(XH) is finitely generated for any H^fγ(X)) then H*(XK) is finitely
generated for any K^G.

4. Uniqueness of the (φ, resequences

Lemma 4.1. Let (Y,X} be a G-CW pair with T(Y-X) = {(H)} , Z a
G-space and f: X-+Z a G-map. f can be extended over Y as a G-map if and
only iffff: XH-*ZH can be extended over YH as a WH-map.

This proof is quite obvious and omitted here.

DEFINITION 4.2. Let {Xi9fά and {Yh h{} be homotopy (φ, resequences
of X and Y respectively, and k: X-*Y a based G-map. A morphism {&,-} from
{X^fi} into {Y, , λ,-} covering k is defined as follows: For any /, there exist
σ(ϊ)(*£σ(i— 1)) and G-maps k{ : Xt— > Yσ^ such that kQ=ky and ki+1ofi+l and

Λσ(/+ι., )°*f is G-homotopic, where Aσtt+ιfo=Aσ(H*)0 °AσC >+j

DEFINITION 4.3. Let {&,-} and {k'i} be two morphisms between homo-
topy (φ, resequences: {Xhf{}-^{Yh /?,-}. {&,-} and {&/} are said to be G-
homotopic, if there exists a morphism {/?,•}: {Xif\I+

ίfi/\\}-^{Yhh^ covering
the G-homotopy k — kf such that

(1) H.: XtΛl+ +Yrio,
(2) r(i) ̂  max (r(i- 1), σ(t), σ'(t)},
(3) fli( , 0)=ft, and H,( , l)=k< in

(4) Hl+1o(/,Λl)^Λ,<l+1.oofli reL
G

Lemma 4.4. Let A be a finite abelian group with the order q. Iff: B-*C
be a homomorphism which induces a zero homomorphism f®l:B®ZlqZ-*C®
ZlqZy then Ext (I,/): Ext (A9 B)->Ext (A, C) is a zero homomorphism.

Proof. Since A is finite, Ext (A, B) is isomorphic to A®B and so
Ext (I,/) is zero.

For K<ίG we denote by W0K the identity component of WK=NK/K.

Theorem 4.5. Let T be a subset ofT(G) containing Γ(X) U Γ( Y) and φ an
order preserving map from Γ(G) into Π. Let {X{} and {Y,} be (φ,T)-sequences
of X and Y in C^G respectively. For any based G-map k: X ^>Y, if X is finite
dimensional, then there exists a morphism {&,-} : {X{} -> { Y,} between (φ, T)-sequences
covering k. Further it is unique up to G-homotopy.

Proof. Put Γ^ ί̂ί-Hi), •••, (H,)}. We assume that there exists a based
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G-map AlV, : U G^xfkUXi.r^Y^.β extending k^ and k^. Put L=Hj+l

and Z^XiίiUX?1 for short. Then the obstruction to extend kfj over Xf*

UesinfiΓ**1^?, Z ^y^f.y))) ([!]), where r* is an CWgroup ([2]) satisfy-

ing π*(A)(WLIK) = π*(Aκ}. There exists a functorial universal coefficients

spectral sequence ([6]) which converges to the above group and satisfies

£2* * = Eχt(Vz (H*(Xf, Z), ̂ (y^y,)) ,

where H* is an 0rL-group satisfying H*(A) (WLIK)=H*(AK/W0K). Consider

the exact sequence of the triad (Xf Z, JV/f i ) .

•••-* #*(*? , XΛ) - #*(*? , z) - ff^z, Xtίi) -> ...

For (^)^(L), since £Γ*(J?f, X^)^C^ and φ(K)^φ(L), H*(Xf, -XΆje

^ΦCD By Corollary 3.6 we obtain that the below group of the above diagram is

in Cφ(L). Hence for any ̂  WL, H*((X}-y Z)κ)<=Cφω and by Proposition 3.5

H*(Xϊ,Z)(WLIK)<ΞCφω. Then there exists σ(ι,j+l) (^σ (/,;)) such that

π*(Yσ(

Lijϊ)®ZlqZ-*π*(Yσ(ij+v)®ZlqZ is a zero homomorphism for the order

^ of J2*( ί̂, Z) (WL/eL). By Lemma 4.4

(ff^Xί, Z), ^(y^ly))) - Ext<vz (fl*^ , Z),

is a zero homomorphism (Note that H^((X^ZY)=Q if K^peL). Hence the

obstruction is vanished and fc. fy can be extended over Xf U-X"/£ι as a WL-map,
/ + 1 ff

and Λ f t y can be extended over U G -XΓ, * U Xi-i Then we may take <r(i)=σ(ί, r)
and ki=kitr.

For two morphisms {&,-}, {A/} covering fe, H0: X0/\I+-*Y0 is given by

^o(̂ > t)=k(x) and ίίt : -X,- x 0 U X, X 1-* Yrω is defined by ,̂ and k\ . By making
use of the above method, we have a homotopy combining {&/} and {k'{} This
completes the proof.

DEFINITION 4.6. {X",-,/,-} is G-homotopy equivalent to {F,-, A,-}, if there exist

morphisms Λ, : {J5ff , /*}->{ y,-, λf } and ^/: {y, , hi}-^{Xiίfi} such that mor-

phisms {&ί(t )
0&, } and {^o-'co0^} cover l^ and \γ respectively.

By Theorem 4.5 we immediately have

Corollary 4.7. Let T be a subset of Γ(G) containing T(X) and φ an order

preserving map from Γ(G) into Π. Then a homotopy (φ, T)-sequence {X^ of X in

c is unique up to G-homotopy type.
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5. Localization of G-CW complexes

Let X and Y be in S^DC^c, T a finite subset of Γ(G) containing
T(X)\JT(Y) and φ an order preserving map from Γ(G) into Π. The localiza-
tion of X at (φ, Γ), denoted by X(φtΓ), is defined to be the based G-CW complex
constructed by the "telescope construction" of the homotopy (φ, resequence

{*„/,} of JT, that is,

X<M = V(*ιΛ/+)/(*,, !)-(/,«(*,), 0).
i

By Theorem 4.5 a G-map f:X->Y induces a G-map /(φ,Γ)
: ^"(Φfr) ~* ^(Φ,D>

which is unique up to G-homotopy. By Corollary 4.7, X(Φ,D is determined
uniquely up to G-homotopy type. Now let X be in C^G. (Xn)aφtΓ) is
uniquely determined up to G-homotopy type, where X" is the G-n-skeleton of
X. Also there is a natural G-map (Jf Λ)(φtΓ)->(J¥'n"fl)(φfΓ) induced from the inclu-
sion X*-*X*+1. Then we put -3Γ(φ§Γ) = lim (^Ln)(φfΓ), which is determined

uniquely up to G-homotopy type. If/: X->Y be a G-cellular map, then it in-

duces (/Λ)(Φ,Γ)> which is unique up to G-homotopy. Thus we obtain a G-map

/<Φ.r>: -X"(Φ.r)-* ^(Φ,r)> extending/.
Here we see a relation between our localizations. If φ(K)dη(K) for any

), then we write

Proposition 5.1. Let X be in C<WG, Γ, T and Δ finite subsets of Γ(G)
containing T(X), and φ, η and μ order preserving maps from Γ(G) into Π.

(1) If, φdη then there exists a ^-equivalence/cΦ,η,r): ^(τ?,r)~>^(Φ,r)
(2) 7/TcT, then there exists a ^-equivalence y(φ,r.r): ^(Φfr)~>-X'(Φfr)
(3) If-η(H) is the set of all primes for any (H)^T, then X^^—X andj^^,τ">

coincides with the canonical inclusion.

(5) For ΓcTcΔ, j<φ.r.Δ>°J\Φ.r,r>y.7cΦ.r.A)

Proof. (3) is clear from our construction. Otherwise, we may consider
the obstruction theory appeared in the proof of Theorem 4.5.

Choose a bijection x: JV->Γ(G) such that x(\)=(G). We define finite sub-
sets Γn of Γ(G) by Γ!=Γ(X) and ΓΛ=Γ1I-1U {*(«)}• We put Xφ=liπιX(φfΓn)

and/φ=lim/(φfΓΛ) for a G-map/: X-*Y. Then we have

Theorem 5.2. Let φ, -η and μ be order preserving maps from Γ(G) into Π

with φCί Cμ.
(1) For X in C^G, there exists a localization X$, which is determined

uniquely up to G-homotopy type, and a ^-equivalence jx: X-*XΦ.
(2) There exists a φ-equivalencejφtΎ): X^X^ which coincides with jx if η(K)
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is the set of all primes for any (K)^Γ(G), and satisfies that jφ,ι,°jι,.μ—j+.μ

(3) For a based G-map f: X-+Y in CWc, there exists a based G-map
fφ' Xφ-*Yφ, unqiue up to G-homotopy, such that the following diagram
is G-homotopy commutative.

Next we shall study some elementary properties of our localizations. Let
H+(X) and Zφ be (?G-groups defined by H*(X)(GIH) = H*(Xff;Z) and
Zφ(G/H)=Zφ(ff), the integer localized at φ(H). The proof of the next propo-
sition is analogous to that of Theorem 2.5 [7].

Proposition 5.3. Let X be in CWc and φ an order preserving map from
Γ(G) into Π.

(1) H*(Xφ)^Q*(X)®Zφ. Moreover (jx)* is equivalent to 1®*: H
ίl*(X)®Z_φ, vΰhere i is the natural inclusion.

(2) π*(Xφ)^π*(X)®Zφ. Moreover (jx}* is equivalent to \®ι\ ̂

By the equivariant version of Whitehead Theorem ([5]) obviously we ob-
tain the following proposition.

Proposition 5.4. Let X be in CWc and Y a based G-CW complex. Let φ
be an order preserving map from Γ(G) into Π. If there exists a based G-map
f: Y-^X which induces an isomorphism π*(Yκ)-*π*(Xκ)®Zφ(K) for any (K)&
Γ(G), then Xφ is the same G-homotopy type as Y.

Theorem 5.5. Let φ be an order preserving map from Γ(G) into Π.
The localization at φ has the following properties:

(1) The correspondence X-*Xφ is a functor from the homotopy category

C°W1G to the homotopy category of GΛ connected based G-CW com-
plexes.

(2) A based G-map f: X-* Y in C°W1G is a ^-equivalence if and only if
fφ is a G-homotopy equivalence.

A G-space Z is called φ-local if π*(Z) is a Zψ-module. By the obstruc-
tion theory, we easily see the following.

Theorem 5.6. Let Z be any φ-local G-space. If f: X^> Y is a ^-equi-
valence between G-CW complexes X and Y, then f*:[Y,Z]G-*[X,Z]G is a
bijection.
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Corollary 5.7. For φC.-η9j^*\[X^X^\G ^[XΎI9X^\G is a bίjection. In

particular jx*: [Xφί XΦ]G-+[X, XΦ]G is a bίjection.

Corollary 5.8. If X is in CWG) then an arbitrary G-map f: Xη-* Y, induces

/ψ: Xφ-*Yφ such that the following diagram commutes up to G-homotopy:

We may consider both (X+\ and (A,)φ as Xφ^. For X, Y in CWo we

consider the (GxG)-CW7 complex Xx Y as a G-space via the diagonal G-

action. By [3] this G-space has a G-homotopy type of G-CW complexes and

might admit infinitely many orbit types. But we may consider the localization

of it at φ as Xφ X Yφ. When P is a set of primes (a constant system), the (G X G)-

localization (Xx Y)P is (GXG)-homotoρy equivalent to XPX YP.
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