
Title メソッドの自動生成を用いたOCLのJMLへの変換

Author(s) 尾鷲, 方志; 岡野, 浩三; 楠本, 真二

Citation コンピュータ ソフトウェア. 2010, 27(2), p. 106-
111

Version Type VoR

URL https://hdl.handle.net/11094/51344

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は日本ソフトウェア科学会に帰属します．本
著作物は著作権者である日本ソフトウェア科学会の許
可のもとに掲載するものです．ご利用に当たっては
「著作権法」に従うことをお願いいたします．

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

106

特集●ソフトウェア工学

メソッドの自動生成を用いたOCLのJMLへの変換

尾鷲 方志　岡野 浩三　楠本 真二

本論文では OCL (Object Constraint Language) からの JML (Java Modelling Language) への変換手法を提案
する．UML/OCL記述から JML アノテーションつきの Java のスケルトンコードを自動生成する方法については，
研究が少ない．従来の研究では OCL記述から JML記述を得る方法が提案されているが，データの集まりを表現す
るコレクションに関するいくつかの重要な機能，とりわけ，繰り返し操作である iterate について対応していない．
提案手法では，iterate の操作を生成される Java スケルトンに直接対応するメソッドを記述するという方法により，
この問題に対応した．また，OCL 記述からの JML 記述変換方法を具体的に示した．

The paper presents a translation method from OCL (Object Constraint Language) into JML (Java Mod-

elling Language). Several approaches have proposed automatic generation methods of Java skeleton files

from UML class diagrams. Less papers are found for automatic generation of JML from OCL. They deal

with not all of the standard OCL library. Especially, some features of collections including iterate feature

are not implemented. We resolve the problem by translating the iterate feature into Java methods. This

paper also provides a concrete translation algorithm. The paper also provides a translation example from

OCL into JML.

1 はじめに

OCLは UML記述に対しさらに詳細に性質記述を

行うために設計された言語で，OMGによって標準化

されている．また，UML記述レベルで設計無矛盾性

検出を行う研究は世界的に多くされてきている [3] [8]．

より実装に近い面での制約記述言語として，Javaプ

ログラムに対して JML (Java Modeling Language)

[9]が提案されている．JML，OCLともに DbC (De-

sign by Contract)の概念に基づきクラスやメソッド

の仕様を与えることができる．

UMLクラス記述から Javaスケルトンコードを自

動生成する方法についてはすでに既存研究で多くの

A Translation Method from OCL into JML by Trans-

lating the Iterate Feature into Java Methods.

Masayuki Owashi, Kozo Okano, Shinji Kusumoto, 大
阪大学 大学院情報科学研究科, Graduate School

of Information Science and Technology, Osaka

University.

コンピュータソフトウェア,Vol.27,No.2 (2010),pp.106–111.

[研究論文 (レター)] 2009 年 12 月 15 日受付.

方法が提案されており [4] [6]，自動変換ツールも EMF

フレームワークを用いた Eclipseプラグインなどの形

で公開されている [2]．

開発プロセスの観点から，OCLで記述された要求

仕様を機械的に JML に変換することは，コードの

検証作業の効率化，精緻化に繋がる．Hamie は文献

[5]において構文変換技法に基づいた OCLから JML

への変換法を提案しており，Rodion と Alessandra

らが文献 [14] において OCLから JMLへの変換法と

ツールの実装を示している．また，Avila らが文献

[1]にて型の扱いなどについて改善を示しているもの

の，いずれの方法も Collection の対応が不十分であ

り，iterate の対応が一部の演算に対応しているのみ

である．しかし，iterate は単純な探索問題や，デー

タベースのモデル化等で広く使われるため，対応すべ

き問題だと考えられる．

そこで本論文ではこれらの論文で示されている変

換法より OCL記述のクラスに対して JML記述への

変換方法を具体的に提示し [13]，その変換例を用いて

設計開発方法の適用可能性について考察する．

Vol. 27 No. 2 May 2010 107

以降，2章で背景について述べ，3章で変換方法に

ついて述べ，4章でまとめる．

2 準備

本章では研究の背景となる諸技術と関連研究につ

いて簡単に触れる．

2. 1 OCL

OCL [11]は OMG標準の 1つで，制約式を述語を

用いて記述する．OCLは UMLモデル内のモデル要

素に対して正確に制約を与えるために導入された．

OCL は条件式を宣言的な型付き言語で記述する

ことにより，UML ダイアグラムに関する仕様をよ

り厳密，かつ，詳細に表現する．また，Design by

Contract [10]の概念に基づき，クラスやオブジェクト

のメソッドに対する事前条件，事後条件，不変条件等

を記述することができる．

2. 2 JML

JML [9] は Java プログラムにおいて Design by

Contract [10]の概念に基づき，メソッドやオブジェク

トの制約を事前条件，事後条件，不変条件の形で記述

することができる．記述においては Javaの文法を踏

襲し，初心者でも記述しやすい特徴を持つ．また，記

述は Javaコメント中に記述できるため，プログラム

の実装，コンパイルや実行に影響がない．

JML式は基本的には Javaにおける bool型を持つ

任意の式で与えられる．また，JML記述をもつ Java

プログラムに対して，JML 記述に対する Java プロ

グラムの実装の正しさを ESC/Java2を用いて静的検

査 (モデル検査)をメソッド単位で行うことができる．

ESC/Java2 は完全性，健全性を保証しているわけで

はないが，軽量モデル検査の概念に基づき，バグ出し

を行うのには実用的に有用とされる．

2. 3 関連研究

UML から JML への変換については，Engels ら

の文献 [4] や Harrisonらの文献 [6]等において言及さ

れているが，変換する上で，UML 上での仕様の厳

密な定義を行う OCL に関する言及が不十分である．

表 1 既存手法との比較

Feature 提案手法 Rodionと Alessandra Hamie

基本演算
√ √ √

Collection
√ √

-

Iterate (forall etc)
√ √ √

Iterate (collect)
√ √

-

Iterate (iterate)
√

- -

Structures (Set etc)
√ √ √

Structures (tuple)
√ √

-

OCL Spec.
√

but partially
√ √

Message - - -√
:supported, -: not supported

Rodion と Alessandra らは文献 [14] において OCL

から JML への変換法とツールの実装を示している．

Hamie は文献 [5] において構文変換技法に基づいた

OCL から JML への変換法を提案している．Avila

らは文献 [1] において，文献 [5] においてマッピング

された OCLと JMLのコレクションの型の差異を吸

収し，より完全な変換を行うライブラリを提案し，

変換後の可読性について言及している．しかしなが

ら，いずれの方法も Collection ループ演算の中で最

も基本的な演算である iterate 式への対応が不十分

である．また，iterate 式の引数として与えられる

OCL式について，JMLや Javaにおいてそのような

式の評価機構 (クロージャ)が用意されておらず直接

対応することができないという問題点もある．例え

ば，students->select(score > 70)に対し，対応する

Javaメソッド select(exp) を用意した場合，OCL式

で与えられる引数 score > 70が expとして与えられ

ることになり，そのまま評価することができない．

また文献 [5]における構文変換技法は概論のみで，精

緻な変換方法は触れられていない．このような OCL

の JMLへの変換の対応状況を表 1にまとめた．

本稿では個々のループ演算に対応する Javaメソッ

ドを用意することでこの問題を解決し，変換に際し型

情報を用いた，より厳密な変換プロセスを提案する．

本研究は OCLを設計対象ソフトウェアの仕様記述

に用いることを仮定している．

3 OCLから JMLへの変換手法

この章では文献 [5] の構文変換を元に JML への変

換方法を与える．

108 コンピュータソフトウェア

3. 1 構文変換の仮定と基本方針

OCLの基本式だけに限っても，標準ライブラリに

は多くの基本型と演算子を用意している．すべてを実

際の記述に用いるわけではなくそれら全ての変換を

行うのは現実的でないため，構文変換にあたり，以下

の仮定を置きクラス制限を行う．

1. OCL Basic の型と OCL Essential の一部の型

を対象とする．

2. 対象 (部分)式に型，または型の候補情報が定義で

き変換時に利用できるものとする．型としてBool,

Integer, Real, String, Collection, Set, Bag, Or-

deredSet, Sequenceを仮定し，Java(JML)のク

ラスやインタフェースに対応する．

3. いくつかの OCL構文からは型的に不整合な表

現式が導出され得るがそのような型不整合な式は

Javaや JMLで直接扱えないため対象にしない．

4. 使用範囲の狭いMessage型および，message演

算は変換の対象外とする．

5. OclVoidは Undefined定数のみをもち，未定義

値を意味する．Java(JML)では nullに相当する

のでここでは触れないが，3.3節にて議論する．

議論の正確さのため，本論文では構文変換を与える

にあたり，いくつかのOCL演算子のうち，他のOCL

演算子の組み合わせで表現できるものは OCLの定義

書 [11]に従い対応した．

この方法の利点としては多くの演算子の変換の妥

当性を OCLの定義書に委ねることができることが挙

げられる．一方，欠点としては変換された JML 式の

読解性低下が挙げられる．この問題の解決としては変

換ライブラリ実装時に両方の変換に対応できるよう

にすることが考えられる．

この立場で構文変換を行うと Collection に関する

OCL 標準ライブラリの多くの演算子 (feature call)

が iterate 演算子とその他の演算の組み合わせに集

約できる．また，OCLの Collection と Javaの標準

Collection Frameworkは多くの類似点を持っている．

3. 2 構文変換

ここでは主要な構文に対して，文献 [5] の構文変換

を拡張した構文変換法を与える．文献 [5] にならい，

表 2 µ 変換 Collection loop features

µ(c1−>exists(a1 | a2)) = µ(c1−>iterate(

a1; res : Boolean = false | res or a2))

µ(c1−>forAll(a1 | a2)) = µ(c1−>iterate(

a1; res : Boolean = true | res and a2))

µ(c1−>isUnique(a1 | a2)) = µ(c1−>collect(a1 |
Tuple {iter=Tuple{a1}, value=a2}) −>

forAll(x, y | (x.iter <> y.iter)

implies x.value <> y.value)

µ(c1−>any(a1 | a2)) = µ(c1−>select(a1 | a2)−>asSequence()−>first())

µ(c1−>one(a1 | a2)) = µ(c1−>select(a1 | a2)−>size()=1)

µ(c1−>collect(a1 | a2)) = µ(c1−>collectNested(a1 | a2)−>flatten())

OCL式から JML 式への変換関数の表記を µ，特に

コレクションのリテラルに対する変換を µe で与える．

文献 [5]では µを基本データと演算，および，コレ

クションの一部の演算についてのみ，与えている．本

研究では対応クラスのほぼすべてについて µ の定義

を新たに与えていくが，ここでは本論文において新た

に定義された，コレクションループ演算，Iterate 演

算について述べる．

以下では型 Integer, Collection を持つ部分式をそ

れぞれ im, cm,で表す (m = 1, 2, 3, . . .)．また，任意

の型を持つ部分式を am で表す．

3. 2. 1 コレクション演算 ループ演算

コレクションのループ演算を表 2 に与える．

その他のサブクラスにおいても同様の変換を定義

すると，変換が未定義である featureは iterate であ

ることがわかる．なお，collectNested() は各サブク

ラスで個別に変換定義される．

3. 2. 2 iterateの変換

iterate の変換は次の理由により，構文変換による

naiveな変換では対応できない．

• iterate の引数はほぼ任意の OCL 式であり，単

純な構文変換では変換先の言語 L において，L

の任意式の評価機構 (クロージャ)が必要となる．

• JML や Javaはクロージャを直接的にはサポー

トしていない．

幸い，本研究では OCL式のインタプリタを実装す

るわけではなく，言語変換を行うので，次のステップ

を踏むことにより，間接的にこの問題に対応できる．

• iterate featureの引数の OCL式を iteration 込

みで評価するメソッドmを変換時に作成する．

• µ変換ではそのメソッドの結果を参照する．

Vol. 27 No. 2 May 2010 109

一般に，iterate featureの引数は任意の OCL式で

あるために，クロージャを持たない JMLにおいて変

換時に作成されるメソッド mの引数として OCL 式

あるいはそれに相当する Java式 (JML 式)を持つこ

とはできない．そこでメソッドmは無引数とし，評

価式はそのままメソッド m の body 内で展開する．

変数などのスコープを乱さないため，メソッド mは

JML 式がアノテートされる Java ソースプログラム

内に privateメソッドとして実装される．このメソッ

ドはプログラム本来の実装には無関係なものとなる．

iterate featureは Java 1.5 よりサポートされてい

る for-each 文に変換することにする．ここでの変換

はやや複雑であり，変換対象 JML式の内部の変換と

メソッドmの変換の 2つからなる．

一般に，これまでの µ変換は OCL構文木の根から

葉に向かって再帰降下的に行なわれてきた．ここで，

もともとの対象となった OCL構文木のうち，

• 対象となる iterate featureをもつ部分木 (s)を

含む部分木で，かつ，

• ナビゲーションを非終端記号として持つノード
を根とする部分木 (t)であり，かつ，

• tから sまでのナビゲーションがすべて −> で

ある部分木のうち極大なもの

を改めて変換の対象とする．この部分木の表す OCL

部分式を tとする．

部分式 tにいたるまでに変換された JMLの式文脈

を Context[]で表す．

Context[µ(a1 −>iterate(e; init | body))] に対し，初

期化式 initで T1型の変数 resが初期化され，iterate

文による評価結果が resに入る場合, 次の JML式を

生成する．

• メソッドとして
private T1 mPrivateUseForJML01() {

µ(init);

for (T2 e: µ(a1)){
res = µ(body)}

return res;

}
• 変換構文内で

Context[mPrivateUseForJML01()]

変換例を以下に与える．

例 1 c − >count(‘ocl’) > 0 を考える．このとき

Context[] は [] > 0となる．

µ(c −>count(‘ocl’) > 0) ⇒
µ((c −>iterate(e; acc : Integer = 0 | if e =

‘ocl’ then acc + 1 else acc endif))> 0)

メソッドとして

private int mPrivateUseForJML01() {
µ(acc : Integer = 0);

for (String e : c){
acc = µ(if e = ‘ocl’ then acc + 1 else acc

endif)

}
return acc;

}
→

private int mPrivateUseForJML01() {
int acc = 0;

for (String e : c){
acc=(e.equals(“ocl”)? acc + 1: acc) };

return acc;

}
µ変換の本体内

mPrivateUseForJML01()> 0

Java 1.4に対しては上述の for文の代わりに，Iterator

を用いる．変換テンプレートを以下にあげる．

private T1 mPrivateUseForJML01() {
µ(init);

Iterator i=µ(a1).getIterator();

while(i.hasNext()){
res = µ(body);

i.next();

}
return res;

}

110 コンピュータソフトウェア

3. 3 変換の評価

変換できるクラスの違いは明確なため，質の比較の

ために本手法の一部である OCL式レベルでの置き換

えを適用することにより既存手法での変換が可能な

例題をもとに変換の質について考察する．

変換する例題は，在庫管理問題 [12] における倉庫を

モデル化したものであり，倉庫は商品が収納されてい

るコンテナを複数持ち，各コンテナはそれぞれ固有の

IDを持つ．また，すべてのコンテナに含まれる全品

目を管理する全品目リストを別に持つとする．

コンテナの集合を containerSet，全品目リストを

allItemList，商品を itemと表すと，倉庫に関する上

記の制約は以下のようにOCL式で表すことができる．
Context Storage

inv: containerSet->isUnique(containerID)

inv: allItemList->collect(item) = containerSet

->collect(container)->collect(item)

上記の一つ目の不変式を表す OCL式を提案手法で

以下の様に µ変換を適用し，

/*@ invariant µ(containerSet->collect(containerID

)->forAll(x,y| x<>y implies x.value <> y.value))

@*/

iterate式で置き換えていくと，

/*@ invariant µ(containerSet

->iterate(containerID;res:Bag(containerID)

=Bag{}|res->includeing(containerID))

->forAll(x,y| x<>y implies x.value <>

y.value)) @*/

となり，iterate に対応するメソッドを生成し最終

的な JML記述は以下のようになる．

/*@ invariant (\forall ContainerID x, y;

iterateMethod01().has(x) &&

iterateMethod01().has(y);

!x.equals(y) ==> !x.value.equals(y.value));

@*/

既存研究において，文献 [5] では，直接 isUnique

の変換に関する言及がなく，また，本研究のように

OCLでの置き換えを適用し，collectと forallの組み

合わせで表記しなおした場合に関しても，collect の

変換については JMLに\collect 命令を追加すること

を提案するにとどまっているために対応できない．ま

た，文献 [14] にて，collect への変換には対応してい

て，それを用いた表記は以下のように表される．

/*@ invariant (\forall ContainerID x, y;

JMLTools.collect(

containerSet, ”containerID”).has(x)

&& JMLTools.collect(

containerSet, ”containerID”).has(y);

!x.equals(y) ==> !x.value.equals(y.value));

@*/

可読性の観点では，文献 [14] の手法の変換は本手

法の変換結果に比べ優れているが，collectの引数が，

containerID->toLower() のように動的な式評価を要

する場合，速度面で遅いとされるリフレクションAPI

を用いて文字列として与えられた引数を評価するよ

りは，構文木をそのまま用いることができる本手法の

方が速度面において優位であると推測できる．この点

は実装してから今後評価したい．

また，メソッドの生成により処理と関係ないコード

が追加されることによる処理時間への影響について

は，コンパイル時にコメント化するなどのオプション

を用意することにより必要なコードとの切り分けが

可能になるため回避できる．

全体的な変換の正しさに関して考察する．基本方針

で述べたように，OCL式レベルでの等価変換は仕様定

義書で述べられている意味定義に従い，Collectionの

演算の内，size(), isEmpty(), notEmpty(), union(),

intersection(), including(), SetとOrderedSetの ex-

cluding() , as演算，OrderedSet固有演算の全てにつ

いては直接 Javaのクラスファイル (CF)のメソッド

に対応付けている．この正しさについては OCL仕様

定義書には OCL で事前，事後条件を提示しており，

これと Javaの CFに JMLで記述された [7] 事前，事

後条件とを対応させること，また，変換したものを検

証器に通した際の警告等を利用することで検証器が

保証する程度の正しさの確認が可能である．

コレクション演算については，一部 OCLの定義を

使わず Javaの CFおよび，JMLの式を使っている．

このうち JML式を使っているのは sum, includesの

みで，この変換は直接対応付けているため妥当であ

Vol. 27 No. 2 May 2010 111

る．Javaの CFを使っているのは前述のとおりで，上

述の方法で確かめる必要がある．

残りの loop featureは OCLの仕様定義にしたがっ

ているため iterateの変換の正しさのみを確かめれば

よい．この変換の基本は Iteration の Java による実

装で，メソッド生成部に関する制約を適切に記述し，

検証器を通すことで構文変換の正しさを確認できる．

3.1で触れた OclVoidについて，nullとは違う点と

して，True or Undefinedのような一部の論理演算に

おいては OclVoidは式そのものを未定義としては扱

わず，正当な評価 (上記の場合は True)を返すという

ものがある．正確に OclVoidを扱うためにはツール

側で対応するオブジェクトを用意し，差異を適切に吸

収する必要がある．

また，コレクションの各サブクラス特有の順序関係

等の性質を保持するためには文献 [1]のように対応す

るクラスをライブラリの形で定義する必要がある．

4 まとめと今後の課題

本研究では OCL の JML への変換方法を提案し，

OCL記述からの JML 記述変換方法を従来提案され

ていたクラスより広いクラスに対し具体的に示した．

可読性の点においては，一般形に直さずに直接変換

できるような形については個別に用意することで対

応し，文献 [1] で指摘された問題点については，文献

[1]と同様の手法を用いて解決したいと考えている．

これらの問題を解決し，本研究において設計した

ツールを実装し，3.1章で定義した仮定の下で実用的

な仕様記述に対し無理なく変換できるか，などについ

て評価した上で，OCL入力支援手法や，ESC/Java2

などによるソフトウェアモデル検査の併用など，本手

法の効果的な適用について考察したい．

謝辞 本研究は一部，文部科学省「次世代 IT基盤構

築のための研究開発」(研究開発領域名：ソフトウェ

ア構築状況の可視化技術の開発普及) の委託に基づい

て行われた．また，一部日本学術振興会科学研究費補

助金基盤研究 (C) (課題番号: 20500033, 21500036)

の助成を受けている．

参 考 文 献

[1] Avila, C., Flores, Jr. G. and Cheon, Y.: A

library-based approach to translating OCL con-

straints to JML Assersions for Runtime Checking, in

International Conference on Softw. Eng. Research

and Practice, 2008, pp. 403–408.

[2] Eclipse Foundation: Eclipse Modeling Frame-

work, http://www.eclipse.org/modeling/emf/.

[3] Elaasar, M. and Briand, L. C.: An overview

of UML consistency management, Technical report,

Carleton University, 2008.

[4] Engels, G., Hücking, R., Sauer, S. and Wag-

ner, A.: UML collaboration diagrams and their

transformation to Java, in UML1999 -Beyond the

Standard, Second International Conference, 1999,

pp. 473–488.

[5] Hamie, A.: Translating the Object Constraint

Language into the Java Modelling Language, in

Proc. of the 2004 ACM symposium on Applied com-

puting, 2004, pp. 1531–1535.

[6] Harrison, W., Barton, C. and Raghavachari, M.:

Mapping UML designs to Java, in Proc. of the 15th

ACM SIGPLAN conference on Object-oriented pro-

gramming, systems, languages, and applications,

2000, pp. 178–187.

[7] JML Specs: Samples of JML specifications,

http://www.eecs.ucf.edu/∼leavens/JML/examples.

shtml.

[8] Lange, C., Chaudron, M. R. V., Muskens, J.,

Somers, L. J. and Dortmans, H. M.: An empiri-

cal investigation in quantifying inconsistency and

incompleteness of UML designs, in Proc. of Work-

shop on Consistency Problems in UML-based Soft-

ware Development II, 2003, pp. 26–34.

[9] Leavens, G., Baker, A. and Ruby, C.: JML: A

Notation for Detailed Design, Behavioral Specifi-

cations of Businesses and Systems, Vol. 12 (1999),

pp. 175–188.

[10] Meyer, B.: Eiffel: the language, Prentice-Hall,

Inc., Upper Saddle River, NJ, 1992.

[11] Object Management Group: OCL 2.0 Speci-

fication, http://www.omg.org/cgi-bin/apps/doc?

formal/06-05-01.pdf.

[12] 尾鷲方志, 岡野浩三, 楠本真二: 在庫管理プログラ
ムの設計に対する JML 記述と ESC/Java2 を用いた
検証の事例報告, 電子情報通信学会論文誌, Vol. J91D,

No. 11(2008), pp. 2719–2720.

[13] 尾鷲方志, 岡野浩三, 楠本真二: メソッドの自動生
成を用いた OCL の JML への変換ツールの設計, ソ
フトウェア工学の基礎 XVI, 日本ソフトウェア科学会
(FOSE 2009), 近代科学社, 2009, pp. 191–198.

[14] Rodion, M. and Alessandra, R.: Implementing

an OCL to JML translation tool, 電子情報通信学会
技術研究報告, Vol. 106, No. 426 (2006), pp. 13–17.

