<table>
<thead>
<tr>
<th>Title</th>
<th>Projective modules over simple regular rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kado, Jiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 16(2) P.405-P.412</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1979</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/5144</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/5144</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Recently K.R. Goodearl and D. Handelman [6] have studied simple regular rings from the point of view of dimension-like functions. They have shown that there exists a unique dimension function on the lattice of principal right ideals of a simple, regular and directly finite ring satisfying the comparability axiom. In this note we study some structures of projective modules over such a ring by making use of the dimension function.

In the section 1 we show that if there exists a dimension function on the lattice of principal right ideals of a regular ring, then this can be extended to a function on the set of all projective modules.

In the section 2 we investigate some structures of projective modules over a simple, regular and directly finite ring satisfying the comparability axiom and show that a directly finite projective module is isomorphic to a direct sum of a finitely generated free module and a projective right ideal, and a directly infinite projective module is a free module.

In the final section directly finite, regular and right self-injective rings are investigated. We show that this ring is a finite direct product of simple rings if and only if any non-singular directly finite injective right module is a finitely generated module.

Throughout this paper a ring R is an associative ring with identity and modules are unitary right R-modules.

1. Dimension functions

For any (Von Neumann) regular ring R, let $L(R)$ be the lattice of principal right ideals and $P(R)$ ($FP(R)$) the set of all projective (finitely generated projective) R-modules. We denote by $M \subseteq N$ the fact that M is isomorphic to a submodule of N for two modules M, N. In particular if R is regular, then $A \subseteq P$ for A in $FP(R)$ and P in $P(R)$ if and only if A is isomorphic to a direct summand of P [8, Lemma 4].

Definition [6, p. 807]. A dimension function D on $L(R)$ is a function from $L(R)$ into non-negative real numbers satisfying the following conditions;
(1) \(D(J) = 0 \) if and only if \(J = 0 \)
(2) \(D(R) = 1 \)
(3) if \(J \leq K \), then \(D(J) \leq D(K) \)
(4) if \(J \oplus K \in L(R) \), then \(D(J \oplus K) = D(J) + D(K) \).

I. Halperin [7] proved that if a dimension function \(D \) exists on \(L(R) \), then \(D \) can be uniquely extended to a function on \(FP(R) \). We shall show that this function \(D \) can be moreover extended to a function on \(P(R) \) by making use of the following lemma.

Lemma 1.1 [10]. For any projective module \(P \) over a regular ring, \(P \) is isomorphic to a direct sum of principal right ideals and any two direct sum decompositions of \(P \) have an isomorphic refinement.

Let \(P \) be in \(P(R) \). From now on, by \(P = \bigoplus_{J \in \mathcal{M}} J \) we denote the fact that there exists a set \(\mathcal{M} \) of independent non-zero submodules isomorphic to some principal right ideal and \(P \) is a direct sum of the members of \(\mathcal{M} \). We put \(D^*(P) = \sup \{ \sum_{J \in \mathcal{M}} D(J) ; \text{any finite subset } \mathcal{M}' \text{ of } \mathcal{M} \} \) for any \(P \) in \(P(R) \) and any decomposition \(P = \bigoplus_{J \in \mathcal{M}} J \). If the above supremum is not convergent, we put \(D^*(P) = \infty \). Now we shall prove that \(D^*(P) \) does not depend on the decomposition of \(P \). Let \(P = \bigoplus_{K \in \mathcal{M}} K \) be another decomposition. It is sufficient to prove that two numbers \(a, b \) defined by \(\mathcal{M} \) and \(\mathcal{M}' \) coincide when \(\mathcal{M}' \) is a refinement of \(\mathcal{M} \). For any \(J \) in \(\mathcal{M} \), there exists a finite subset \(\mathcal{M}' \) of \(\mathcal{M} \) such that \(J = \bigoplus_{K \in \mathcal{M}'} K \). Hence we have \(a \leq b \). Conversely for any finite subset \(\mathcal{M}' \) of \(\mathcal{M} \) and any \(K \) in \(\mathcal{M}' \), there exists some \(J \) in \(\mathcal{M} \) such that \(K \) is a direct summand of \(J \). Therefore there exists a finite subset \(\mathcal{M}' \) of \(\mathcal{M} \) such that \(\sum_{K \in \mathcal{M}'} D(K) \leq \sum_{J \in \mathcal{M}'} D(J) \) and so we have \(b \leq a \).

Now \(D^* \) is a function from \(P(R) \) into non-negative real numbers or \(\infty \), and from the definition and by Lemma 1.1, we can easily prove the following properties;
(1) if \(P \leq Q \) in \(P(R) \), then \(D^*(P) \leq D^*(Q) \)
(2) if \(P \oplus Q \in P(R) \), then \(D^*(P \oplus Q) = D^*(P) + D^*(Q) \).

2. Projective modules

First we recall some definitions and some results in [6].

Definition. A ring \(R \) is directly finite if \(xy = 1 \) implies \(yx = 1 \) for \(x, y \) in \(R \). A module \(M \) is directly finite if \(\text{End}_R(M) \) is directly finite. A ring \(R \) (a module \(M \)) is directly infinite if it is not directly finite. It is easily seen that a module \(M \) is directly finite if and only if \(M \) is not isomorphic to a proper direct summand of itself. A regular ring \(R \) satisfies the comparability axiom if we have either \(J \leq K \) or \(K \leq J \) for all \(J, K \) in \(L(R) \). For a cardinal number \(\alpha \) and
a module M, αM denotes a direct sum of α copies of M.

NOTE. Throughout this section R is a simple, regular and directly finite ring satisfying the comparability axiom. In this case, any finitely generated projective R-module is directly finite by [6, Corollary 3.10].

Example [6, pp. 815, 831 and 832]. Let F be a field and R_n the full matrix ring of degree 2^n over F. Let $f_n: R_n \to R_{n+1}$ be a diagonal homomorphism, i.e., $x \mapsto (x^n)$, and let R be a direct limit of $\{R_n, f_n\}$. This ring R is a simple, regular and directly finite ring which satisfies the comparability axiom and which is not artinian. Further R is neither left nor right self-injective.

Lemma 2.1 [6, Theorem 3.13 and Proposition 3.14]. Let J be in $L(R)$. We put $D(J) = \sup \{mn^{-1}; m \geq 0, n > 0, mR \leq J\}$. Then D is a unique dimension function on $L(R)$. Further, for all J, K in $L(R)$, we have $J \leq K$ if and only if $D(J) \leq D(K)$.

From now on, let D^* be the extension of the dimension function D as in the section 1. We consider projective modules over R from the point of view of D^*.

Lemma 2.2 Let A, B in $FP(R)$. $A \leq B$ if and only if $D^*(A) \leq D^*(B)$. In particular, $A \cong B$ if and only if $D^*(A) = D^*(B)$.

Proof. We have $A \leq B$ or $B \leq A$ by [6, Lemma 3.7]. Then the proof of the first property is easy. If $D^*(A) = D^*(B)$, then $A \leq B$ and $B \leq A$. Hence A is isomorphic to a direct summand of itself. Then $A \cong B$, because A is directly finite.

The next is a key lemma for Theorem 2.4.

Lemma 2.3. For P in $P(R)$ and A in $FP(R)$, $P \leq A$ if and only if $D^*(P) \leq D^*(A)$.

Proof. By the definition, “only if” part is trivial. We assume $D^*(P) \leq D^*(A)$ and $P = \oplus_{J \in \mathcal{M}} J$. First we know \mathcal{M} is a countable set, because for each positive integer n, the set $\mathcal{M}_n = \{J \in \mathcal{M}; D(J) > n^{-1}\}$ is a finite set and $\mathcal{M} = \bigcup_n \mathcal{M}_n$. Now put $\mathcal{M} = \{J_n; n = 1, 2, \cdots\}$ and $P_n = \oplus J_n$, then we have $P = \bigcup_n P_n$. For each n, we can choose a monomorphism $f_n: P_n \to A$ by Lemma 2.2, because $D^*(P_n) \leq D^*(A)$. If we construct monomorphism $g_n: P_n \to A$ for each n such that g_{n+1} is an extension of g_n, then we have $P \leq A$. Put $g_1 = f_1$ and assume we have g_k for all $k \leq n$. We have decompositions $A = g_n(P_n) \oplus Q_n = f_{n+1}(P_n) \oplus f_{n+1}(J_{n+1}) \oplus Q_{n+1}$ for some submodules Q_n, Q_{n+1} because homomorphism g_n, f_{n+1} split. Then we have $Q_n \cong f_{n+1}(J_{n+1}) \oplus Q_{n+1}$ by [6, Theorem 3.9] and so we choose a monomorphism $h: f_{n+1}(J_{n+1}) \to Q_n$. Consequently $g_{n+1} = g_n \oplus hf_{n+1}: P_{n+1} \to A$ is an extension of g_n.

We shall determine the structures of protective modules over a simple, regular and directly finite ring satisfying the comparability axiom.

Theorem 2.4. Let R be a simple, regular and directly finite ring satisfying the comparability axiom. For a projective R-module P, the following conditions are equivalent.

1. P is directly finite.
2. $D^*(P) < \infty$
3. P has a decomposition $P = nR \oplus J$ for some integer $n \geq 0$ and some right ideal J.
4. $P \subseteq tR$ for some integer $t > 0$.

Proof. (1)\Rightarrow(2). We assume $D^*(P) = \infty$. Put $P = \bigoplus_{J \in \mathcal{J}} J$, then there exists a sequence of finite subsets \mathcal{M}_i of \mathcal{J} such that $\mathcal{M}_i \cap \mathcal{M}_j = \emptyset$ if $i \neq j$ and $D^*(\bigoplus_{J \in \mathcal{M}_i} J) \geq 1$ for each i. Put $P_i = \bigoplus_{J \in \mathcal{M}_i} J$, then we have $R \subseteq P_i$ by Lemma 2.2 and so we have $P_i \cong R_i \oplus Q_i$, where $R_i \approx R$. $F = \bigoplus_{i=1}^\infty R_i$ is a direct summand of P and $2F \approx F$. This contradicts that every direct summand of P is also directly finite.

(2)\Rightarrow(3). We choose non-negative integer n such that $n < D^*(P) \leq n + 1$. If $n = 0$, then we have $P \subseteq R$ by Lemma 2.3. If n is positive, the first inequality implies that $nR \subseteq P$ from the definition of D^* and by Lemma 2.2. Then we have $P = P_1 \oplus P_2$, where $P_1 \cong nR$. $D^*(P_2) = D^*(P) - D^*(P_1) \leq 1$ implies $P_2 \subseteq R$ by Lemma 2.3.

(3)\Rightarrow(4). It is trivial.

(4)\Rightarrow(1). If P is directly infinite, then there exists a set $\{P_i\}^\infty_1$ of independent non-zero cyclic submodules of P such that $P_i \approx P_j$ for all i, j. Then $D^*(\bigoplus_{i=1}^\infty P_i) = \infty$. This contradicts $D^*(P) \leq t$.

Remark. A right ideal of R is projective if and only if it is countably generated. Further any right ideal has a projective submodule as an essential one [4, Lemmas 12 and 13].

The next three results follow to the advice of K. Oshiro.

Lemma 2.5. Let P and Q be countably generated but not finitely generated projective R-modules. If $D^*(P) = D^*(Q)$, then $P \cong Q$.

Proof. Since P and Q are not finitely generated, we put $P = \bigoplus_{n}^\infty P_n$ and $Q = \bigoplus_{m}^\infty Q_m$, where each P_n and Q_m are isomorphic to some non-zero members of $L(R)$. We prove that there exist two increasing sequences $1 = n(1) < n(2) < \cdots, 1 = m(1) < m(2) < \cdots$, of positive integers and two sets $\{A_i\}^\infty_1, \{B_i\}^\infty_1$ of independent non-zero submodules of P satisfying, for each i

1. $\bigoplus_{1}^{n(i) + 1} P_i = B_i \oplus A_{i+1}$
2. $\bigoplus_{1}^{m(i) + 1} Q_i = A_i \oplus B_i$
where $A_1 = P_1$ and $m(0) = 0$.

First we choose integers $1 \leq m(1)$, $1 < n(2)$ such that $D^*(P_1) < D^*(\oplus_{i=1}^{m(1)} Q_i) \leq D^*(\oplus_{i=1}^{m(2)} P_j)$. Then, by Lemma 2.2, we have $P_1 \oplus X \simeq \oplus_{i=1}^{m(1)} Q_i$ and $\oplus_{i=1}^{m(1)} Q_i \oplus Y \simeq \oplus_{i=1}^{m(2)} P_j$, for some modules X, Y. Then we have $X \oplus Y \simeq \oplus_{i=1}^{m(2)} P$ by [6, Theorem 3.9]. Put $n(1) = 1$, $A_1 = P_1$ and $B_1 \oplus A_2 = \oplus_{i=1}^{m(2)} P_j$, where $B_1 \simeq X$ and $A_2 \simeq Y$. Next we assume that there exist two increasing sequences, $m(1) < \cdots < m(k+1)$, $m(1) < \cdots < m(k)$ and two sets $\{A_i\}_{i=1}^{k+1}$, $\{B_i\}_{i=1}^{k}$ of independent non-zero submodules of P satisfying the properties (1) and (2). Since $\oplus_{i=1}^{m(1)} Q_i$ and $D^*(P) = D^*(Q)$, then $D^*(A_{k+1} \oplus (\oplus_{i=1}^{m(k+1)} P_i)) = D^*(\oplus_{i=1}^{m(k+1)} Q_i)$. We can take positive integers $m(k+1)$, $n(k+2)$ such that $m(k) < m(k+1)$, $n(k) < n(k+2)$ and $D^*(A_{k+1}) < D^*(\oplus_{i=1}^{m(k+1)} Q_i) \simeq D^*(A_{k+1} \oplus (\oplus_{i=1}^{m(k+1)} P_i))$. Then, again by Lemma 2.2, we obtain $A_{k+1} \oplus X' \simeq \oplus_{i=1}^{m(k+1)} Q_i$ and $\oplus_{i=1}^{m(k+1)} Q_i \oplus Y' \simeq A_{k+1} \oplus (\oplus_{i=1}^{m(k+1)} P_i)$, for some modules X', Y'. Since $A_{k+1} \oplus X' \oplus Y' \simeq A_{k+1} \oplus (\oplus_{i=1}^{m(k+1)} P_i)$, then we have a decomposition $\oplus_{i=1}^{m(k+1)} P_i = B_{k+1} \oplus A_{k+2}$, where $B_{k+1} \simeq X'$ and $A_{k+2} \simeq Y'$, by [6, Theorem 3.9]. By the above procedure, we can construct independent non-zero submodules $A_1, B_1, A_2, B_2, \cdots$ which satisfy the properties (1) and (2). Since each P_n is contained in $B_i \oplus A_{i+1}$ for some i, then $P = \oplus_{i=1}^{m(1)} (A_i \oplus B_i)$. On the other hand we have $Q = \oplus_{i=1}^{m(1)} (A_i \oplus B_i)$. Therefore we conclude that $P \simeq Q$.

Remark. The result obtained by applying Lemma 2.5 for P, Q in $P^*(R)$ means that the Grothendieck group generated by the isomorphism classes of directly finite projective R-modules is isomorphic to some subgroup of the additive group of R. (Cf. [2, Corollaries. 10.14 and 10.16]).

Theorem 2.6. Let R be a simple, regular and directly finite ring satisfying the comparability axiom. Any directly infinite projective R-modules is a free R-module.

Proof. By Theorem 2.4 and Lemma 2.5, we already see that every directly infinite, countably generated projective R-module is isomorphic to $\mathfrak{R}_d R$. Thus we shall show that every directly infinite projective R-module can be expressed as a direct sum of directly infinite, countably generated submodules. Let $P = \oplus_{a \in J} P_a$ be a directly infinite projective R-module, where each P_a is isomorphic to some non-zero J in $L(R)$. Let \mathfrak{B} be the set of all countably infinite subsets of I. We consider the family consisting of all subsets \mathfrak{F} of \mathfrak{B} satisfying the following properties;

1. each members of \mathfrak{F} is pairwise disjoint
2. $D^*(\oplus_{a \in K} P_a) = \infty$ for each K in \mathfrak{F}.

Since this family is a inductively ordered set using the inclusion relation, there exists a maximal member \mathfrak{F} by Zorn’s Lemma. Put $I^* = \cup_{K \in \mathfrak{F}} K$. If $I^* = I$, then our proof is complete. Next we consider the case that $I^* \neq I$. First we shall show that $D^*(\oplus_{a \in I^*} P_a) < \infty$, where I^{**} is the complement of I^*. Other-
wise we can take a countably infinite subset I' of I^{**} such that $D^*(\bigoplus_{a \in I} P_a) = \infty$. Then the set $\bar{\mathcal{F}} \cup \{I'\}$ is strictly greater than $\bar{\mathcal{F}}$. This is a contradiction. By the proof of Lemma 2.3, we see that I^{**} is a countable set. Choose one member K' of \mathcal{F}, and put $\bar{\mathcal{F}} = \mathcal{F} - \{K'\}$, and $K'' = K' \cup I^{**}$. Then K'' is a countably infinite set and $D^*(\bigoplus_{a \in K''} P_a) = \infty$. The decomposition $P = (\bigoplus_{a \in K'} (\bigoplus_{a \in K} P_a)) \oplus (\bigoplus_{a \in K''} P_a)$ is a desired one.

Definition [5, p. 174]. Let A be a module. If $A=0$, define $\mu(A)=0$. If $A \neq 0$, define $\mu(A)$ to be the smallest infinite cardinal number α such that $\alpha A \leq A$.

Proposition 2.7. Let P and S be projective modules which are not finitely generated. If $P \leq S$ and $S \leq P$, then $P \approx S$.

Proof. Since $D^*(P) = D^*(S)$ by the definition of D^*, then they are both directly finite or both directly infinite by Theorem 2.4. If P and S are directly finite, then they are countably generated by the proof of Lemma 2.3. Thus we have $P \approx S$ by Lemma 2.5. If P and S are directly infinite, then $P \approx \alpha R$ and $S \approx \beta R$ for some infinite cardinal numbers α, β by Theorem 2.6. We can assume $\alpha \leq \beta$. Let Q be the maximal ring of quotients of R and we use the notation $E(A)$ to stand for an injective hull of a module A. Since $P \leq S$ and $S \leq P$, then $E(P) \approx E(S)$ by [1, Corollary]. On the other hand, $E(P) \approx E(\alpha Q)$ and $E(S) \approx E(\beta Q)$ and also Q is a prime ring because it satisfies the comparability. Therefore, by [5, Theorem 6.32], $\max \{\alpha', \mu(Q)\} = \mu(E(P)) = \mu(E(S)) = \max \{\beta', \mu(Q)\}$, where α' and β' are the successors of α and β. Thus, if $\alpha < \beta$, then it must hold that $(\kappa, \leq \alpha' < \beta' \leq \mu(Q))$. Since $\kappa, < \mu(Q)$, $\kappa, Q \leq Q$. Therefore let $\{A_{\tau}\}_{\tau \in I}$ be an independent set of principal right ideals of Q such that $A_{\tau} Q$ for each τ in I and the cardinality of I is κ. Then $\{A_{\tau} \cap R\}_{\tau \in I}$ is a independent set of non-zero right ideals of R. This contradicts the fact that there is no uncountable direct sum of non-zero right ideals of R. Consequently we must have $\alpha = \beta$ and hence $P \approx S$.

3. **Directly finite, regular and right self-injective ring**

Lemma 3.1 [3, Lemma 5' and 6, Proposition 1.4]. A prime, directly finite, regular and right self-injective ring is a simple ring satisfying the comparability axiom.

Proposition 3.2. Let R be a directly finite, regular and right self-injective ring. Then R is a finite direct product of simple rings if and only if any non-singular directly finite injective R-module is finitely generated.

Proof. First we shall prove that "only if" part. There exists a set $\{e_i\}_{i}$ of orthogonal central idempotents such that $\sum_{i} e_i = 1$ and each $e_i R$ is a simple
ring. Let M be a non-singular directly finite injective R-module. There exists a projective R-module P such that P is an essential submodule of M, because any non-singular finitely generated R-module is a projective and injective module (cf. [9, Theorem 2.7]). M is directly finite, and so P is also directly finite. Put $P_i = Pe_i$ for each i, then each P_i is also a directly finite projective module as an e_iR-module. Therefore there exists a positive integer t such that $P_i \leq t(e_iR)$ for all i by Lemma 3.1 and Theorem 2.4. Thus $P \leq tR$, because $P = \oplus^n_i P_i$. This monomorphism can be extended to be monomorphism from M into tR. Then M is isomorphic to a direct summand of tR. Conversely we assume that R can be decomposed into no finite direct product of prime rings. Then R itself is not prime. Hence there exist non-zero two-sided ideals A, B such that $AB = 0$. Let A', B' be the injective hull of A, B in R, then they are also two-sided ideals and generated by central idempotents by [3, Lemma 1]. Since R is semi-prime, $A \cap B = 0$. Then $A' \cap B' = 0$. Hence there exist orthogonal central idempotents $\{e_i\}_{i=1}^\infty$ such that $\sum_i^\infty e_i = 1$. By the assumption, at least one of e_iR, say e_jR, is not prime. Use the same argument for the ring e_jR, then there exists another set $\{e_i\}_{i=1}^\infty$ of orthogonal central idempotents of R such that $\sum_i^\infty e_i = 1$. Repeating these procedures, we obtain a countably infinite set $\{e_i\}_{i=1}^\infty$ of orthogonal non-zero central idempotents. If $\bigoplus_{i=1}^\infty e_i R$ is not essential in R_R, we choose some central idempotent f which generates the injective hull of $\bigoplus_{i=1}^\infty e_i R$ and we consider $\{e_i, 1-f\}_{i=1}^\infty$. Therefore we may assume that $\bigoplus_{i=1}^\infty e_i R$ is essential in R_R. Since R_R is injective and $\bigoplus_{i=1}^\infty e_i R$ is a two-sided ideal, $R \cong \text{End}_R(\bigoplus_{i=1}^\infty e_i R)$. $\text{End}_R(\bigoplus_{i=1}^\infty e_i R) \cong \prod_n \text{End}_R(e_n R) \cong \prod_n e_n R$, because $\text{Hom}_R(e_n R, e_m R) = 0$ for $n \neq m$ and each e_n is a central idempotent. Consequently $R \cong \prod_n e_n R$ by the mapping: $r \mapsto (e_n r)$. We put $M_n = n(e_n R)$ for each n and we consider the R-module $M = \prod_n M_n$. This is obviously a non-singular injective R-module. We also know that it is directly finite, because $\text{End}_R(M) \cong \prod_n \text{End}_R(M_n)$ and $\text{End}_R(M)$ is directly finite for all n. By the assumption, there exists a positive integer t such that $M \leq tR$. Now we choose an integer m which is larger than t. That $M_m \leq tR \cong \prod_n t(e_n R)$ implies that $M_m \leq t(e_m R)$, because $\text{Hom}_R(M_m, t(e_n R)) = 0$ for all $n \neq m$. This contradicts that M_m is directly finite. Hence R is a finite direct product of prime rings. Prime directly finite regular right self-injective rings are simple by Lemma 3.1, and so we have proved.

Osaka City University

References

