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1. Introduction

Let us consider then x m first order system, with one space variable,
(1.1) Lu = Du+ A(t, x)Dyu = f(¢, x), (r,x) e RxR,

where

ap(t, x) -+ aw(t, x)
A(t, x) = :

aml(t’ )C) e amm(tv x)

If A(z,x) is Hermitian, it is well known that the Cauchy problemrfd is C*°
well posed. On the other hand & ¢, ) is triangular, say upp&ngular, that is
a;j(t,x) = 0 fori < j anda; ¢, x) are real valued, then it is clear that the Cauchy
problem is C*° well posed. In [1], D’Ancona and Spagnolo introduced an rigge

ing class of systems, they callggbeudosymmetric hyperbol&ystems, which includes
both symmetric and triangular systems. Recall that the imai(z, x) is called pseu-
dosymmetric if the following conditions are fulfilled forlathoices of the indices ,

Jrjte v €{l . m):

aij-aji > 0,
Ajijy * jaja~ " Ajji = Gjujy, " Ajjo * Ajaja-

It is quite natural to ask if the Cauchy problem for pseudaswatnic systems is well
posed in some function spaces. As far@S well posedness is concerned, few results
are known, mainly for the case of analytic coefficieatss, x(  )e($&l, [4]).

In this note we are interested in the caseGsf coefficients, and, more precisely,
to the 2x 2 systems of the form

d(x) a(x) ) |

(12)  Du+AEDu=f¢x)  with Ak) :( b(x) —d(x)
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wherea { ),b & ) are real valued functions ¢hand

0 0
DI - 55 Dx - a_x-
Such a system is pseudosymmetric if and only if
(1.3) akh)=0.

When A () is real analytic, it was proved in [5] that the Cauchighpem for (1.2) is
C* well posed if and only ifA £ ) is hyperbolic, that is

d(x)? + a(x)b(x) > 0.

To go further, let us assume thdtx ( ) = 0, and that the coefiiefx), b (x) are of
classC?. If u="(v, w) verifies the systemLu =0, then satisfies the scalar éguat

1.4) D?v — D.[a(x)b(x) Dyv] + a’(x)b(x)Dyv = 0O

wherea’(x) denotes the derivative af x( ). To get an apriori estimate:fpa natural
guestion arises: can we estimate the functidgx)b(x) by constant times/a(x)b(x),
if (1.3) is verified? Actually this is the case, and we give tpmofs in §2 and §3.
This result implies the solvability of the Cauchy problenr fd.4) (Theorem 4.1
in §4).

Note the simplest version of Glaeser inequality (cf. Lemn i §3) says that

/(@) < V2M /),

wheneverf £ )> 0 and f”(x) < M on R. Thus, takingf =ab , we can estimate the
suma’b +ab’, but not the single summands.

In §5 we consider the Cauchy problem for any system of type ({123} with in-
definitely differentiable coefficients and data, and we \gern apriori estimate which
leads to theC>° well posedness (Theorem 5.1 §5). We also add to (1.2) a zero or-
der term, and we find a sufficient Levi type condition on thisrte

2. An extension of the Glaeser inequality

In this section we prove

Theorem 2.1. Let f, g € C?R). Assume thatf()(x), ¢¥)(x), j =0, 1, 2,are
bounded orR, and
f(x)g(x) =0, Vx € R.

Then we have

(2.1) fE' @), /(g < M/ f(x)g(x),  Vx€R
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for some constany/  depending sop{|fY(x)| + g (x)], x €R, j=0,1 2.
Proof. Let us set
A= fetllgI(fg)”(x)l-

If A =0, then we havefg = C (a constant) orR. If C # 0 the assertion (2.1) is
trivial. On the other hand, iffg = 0, at each pointt wher¢ x( # 0 (resp.g £ )#0)
we haveg £ ) = 0 (respf x( ) = 0), hence algt(x) = 0 (resp. f’(x) = 0) since
f'g+ fg’ =0. This shows thatf x(g/(x) = f'(x)g(x) = 0. Then (2.1) holds.

Thus, we may assuma # 0. We set

/A
-1_
0 "= 5

We first assume thaf g have compact support, gay (W= ( )= Qxfop r.
We start with

Lemma 2.2. Let |x| < r be such thatf(x)g(x) # 0. Then in the interval
(= 0V F@00). x +0v/F (1)) )
we havef(£)g(&) > 0.

Proof. SinceQ =HE: €] <r, f(&)g(£) #0} is an open set, we can express
Q:UIV, I, :(am bu)’
v=1

where I,, are open intervals which are disjoint each other. Taking iatcount that
fg >0 in a neighborhood of, andb,, we have

(f&)a) = (fg)by) =0, (f8)(av) = (f8) (b)) = 0.
Therefore, assuming that€ I,,, we can write
(r) = [ ar [ 7oy’ e)ds.
and hence we get

(Fo)y| < 2@
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From this it follows that

x —ay 2 04/ f(x)g(x).

The same argument shows that

by —x =6/ f(x)g(x).

Thus we conclude that

(¥ = 0V/F (8@ x + 0/ ()8 @) ) € L.

This proves the assertion, singe&)4(¢) does not change sign if,. ]
Proof of Theorem 2.1. Let € R. If f(x)g(x) =0, (2.1) holds as we observed

above. Thus, we assume thatx 4 ) &D.
From Lemma 2.2, we may assume that we have either

f (x +s\/f(x)g(x)) >0 for |s| <4,
or

f(x+s\/f(x)g(x))go for |s| <.

We treat the first case. By the Taylor expansiorsat =0, we have
0 < f(x£6v/F(@s0))

= £+ 5 )V TORE + 307" (x4 0% VTR ) £()8)

< F0) = 5F (VTR0 + 502Mz f ().
where 0< 6% < 1 and M, = sug, | f”'|. This proves
(2.2) %0V TR0 < 677 () + 3002 (D).
Multiplying (2.2) by 1/g(x)/ f(x) we get

£ ()] < 61/ FERE) + 5002 5uplg] v/ TCEC)

The same argument, exchangigge ( ) aad ( ), proves

70/ < 87 /TCIRE) + 502 5uplg] - /TR
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and hence the result.

If f, g are not compactly supported, for a fixad € R we apply the above result
to the functionsy f and xg, where x(x) is a cut-off function> 0 such thaty = 1 on
{]x —xo0| <1}, x =0 on{|x—xo| > 2}. Thus, (2.1) holds in the intervak{—1, xo+1]
with a constantM independent af, hence it holds in the whol®. Ol

3. A refinement of the inequality

In this section we prove Theorem 2.1 under less regular gstsoms ong § ). For
a subsetS C R and a functiony(x) on R, we define

Ap, §) = S?plw(X)l-

Theorem 3.1. Let f € C%(R) and g € CY(R) be such that
f(x)g(x) >0, Vx € R.
Therefore for every boundeds C R and everyr > 0, we have
(3.1) £/ (0)g(x)] < M(S.r)/f(x)g(x).  Vxe€S,
with
1/2

(382) M(S.7) =C[(r AL SO+AWS, S+ A" $))-(r A8, SI*A('. )]
where S, = {x: dist(x, S)<r} and C denotes some universal constant.

Remark. If the functions fU(x), j = 0, 1, 2, andg®(x), i = 0, 1, are bounded
on the wholeR, then (3.1)—(3.2) imply

[f'(x)g()| < M/ f(x)g(x),  Vx €R,
with
! " ! 1/2
M=C[(A£R+A( R)+FA(R) - (Al R + AL R)|
Theorem 3.1 will be proved as a consequence of the following

Lemma 3.2. i) Given an open interval = (a,b), let f € CX(I), g € C(I),
with

fla)=f(b) =gla)=g®) =0
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Assume that

(3.3) f&)>0 onl,

and, for some positive constant;, Ny,

(3.4) /() <M1, fM(x) <Mz, [g'(X)|<Ni,  Vxel

Therefore, we have

(35) [’ (Neg)| <2v/(8M1+ (b —a)MIN1 -/ f(D)|glx)],  Vx el
i) The same conclusion holds true if we replace the assumg8®) by
f(x)g(x) >0,  Vxel
and (3.4) by
FW <M @) < Mp g0 <N Vxel
Proof of Lemma 3.2. We first derive part (ii) from (i). Considbe set

Q= {x € I:there is a nbd. ok wher¢  does not change }ign

In other words,x € 7'\ if and only if there are two sequences of poirts, }, {x]'},
converging tox , for which

(3.6) f&)>0 f@x)<0, i=1 2 3...
Clearly, 2 is an open set. Moreover, by (3.6), we see that ( )erOafl x € I\ Q.
But f(x)g(x) > 0, hence onl \ © we have alsg X ) = 0. Consequently, writing

Q=] I = (a, bi),
k=1

we see thatf X ) does not change sign on each integval , and

flax) = f(br) = glax) = gbx) = 0.

Considering— f(x) instead of f ¢ ) we may assume thgt > 0 on the intervall; ;
hence we can apply part (i) on this interval.

In order to prove the part (i) of Lemma 3.2, we need three &nyillemmas. The
first lemma is a version of the Glaeser inequality, where tegmlarity of the func-
tion is required: it is assumed only to be@ function with absolutely continuous
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first derivative. The second and the third lemmas provideesoomparisons of a given
function with the reference functionc — a)(b — x), on the interval{a < x < b}.

Lemma 3.3. For everyy € WiX(R) satisfying
P(x) >0, P'(x) < M, a.e. onR,
we have
(3.7) W' (x)| < vV2M \/o(x),  Vx €R.

Proof. We can write

x+h
B0+ ) — (x) — i (x) = / (/(€) — ¥/ (x))

- / - / ) dnde = / ; /5 ") dnde.

Thus, regardless on the sign bf , we have

0< (e +1) < 000 +h/() + 0,
and hence (3.7) follows immediately. O
Lemma 3.4. Let! =(a,b), and letp(x) € Cl(I)ﬂCO(I_) be a function such that
p(a) = p(b) =0, ' (xX)| < K <00, Vxel.

Then we have

2K
a(x—a)(b—x), Vx € 1.

(38) -

Proof. It is sufficient to remark that:

* 1 2 b
el = | [ oa <ke-a. It i xe ot

b 1 2 _ b
el = | [ voalsko-n o< 2ot ve|*Fto].0

Lemma 3.5. Let/ =(a,b) and f € C2(I_) be such thatf(a) = f(b) = 0. Assume

(3.9) f&)=>0, |f (%) < Ma, f'x) <My, Vxel,
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for some positive constant®; . Therefopaitting d = b — a, we have

V()
Vi =a)b—x)’

Proof. Letx;(x) be the characteristic function df a][b ]. Then, the function

(3.10) |f'(x0)| < 2vd %Mz +4M, Vx €.

(3.11) Px) = (x —a)(b — x)f(x)x1(x)

is of classC?! on the whole real line, with first derivative

(3.12) U'(x) = [(x = a)(b — x) f'(x) + (@ +b — 2x) f ()] xs (x).

Note that)’(x) is Lipschitz continuous orR, and its distributional derivative is the
L*° function

() = [ = a)(b = x) 7 (x) + 20 +b — 20) f(x) = 2 ()] xa ()

Observing that 0< (x — a)(b — x) < d?/4 and|a +b — 2x| < d, for x € I, we get,
by (3.9),

2

(3.13) ¢'(x) < dzM2+ 24My — 2F () (x) < d(%Mz + 2M1) a.e. onR.

Now, we apply Lemma 3.3 to the function (3.11): by (3.7) we get

[ (x)| < CoVd \/(x), Vx € R,

with

(3.14) Co = \/%M2+4M1.

Recalling (3.12), this yields

(x = )b = x)|f'(¥)| < CoVd V/(x —a)(b—x) /[ (x) +|a+b— 2x| f(x)
< CovVd /(x —a)(b — x) v/ f(x) +df (x),

and hence

/ fx) df (x)
(3.15) /') < Vd G —a)b—x) (Co+ m).

To conclude the proof of Lemma 3.4, let us apply (3.8) wjtfx) = f(x), K =
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M;. Thus, recalling (3.14), we find

[ df(x) CTYR
(316) Co+ m < Co++/2M1 < 2Cy,

so that the desired estimate (3.10) follows from (3.15)L4B. U

Conclusion of the proof of Lemma 3.2. We apply Lemma 3.4 to fimection
g(x). By (3.8) with o = g and K =Nj, together with (3.10), we get

2
POV < 2V Ga v a2 — 0o —)

IN

2\/(dMz+8M1)N1-+/ f(x),

that is, (3.5). This completes the proof of Lemma 3.2. U

Conclusion of the proof of Theorem 3.1. If x( ) anglx ( ) are as ineGh
rem 3.1, the estimates (3.1)—(3.2) can be derived from LerBrain the following
way:

Givenxp € R, let I = (xp — r, xo +r). Take a cut-off functiony(x), equal to 1
in a neigborhood ofxy and vanishing at the endpoints éf , so thatOx(x) < 1,
and |xU)(x)| < Cr~/ for j =1, 2. We apply Lemma 3.2, part (i), to the functions
?(x) =x(x) f(x) and g(x) = x(x)g(x). Assume that

|f(xX)] < Mo, |f'(x)] <M1, f"(x) <Mz |g(x)] < No, |g'(x)|<Ni, Vxel,

therefore}(x) and g(x) fulfil (3.4) with constants
M]_:C(%*’Ml), MZIC(KZO'F%*’M()), /F\VIJ_IC(&‘FN]_).
r r r r
Hence (3.5) gives

Mo

1/2
et < 2vT0 | (M0 w2m e rata) - (224w | /TGl

which implies (3.1)—(3.2), by the arbitrariness xf. O

4. An application to the Cauchy problem

In this section we return to the equation (1.4) which moédaus to extend the
Glaeser inequality. Let us consider the Cauchy problem

(4.1) D?v — D, [a(x)b(x) D.v] + a’ (x)b(x)D,v = 0,
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(4.2) v(0, x) =vo(x), D,v(0, x) =v1(x),

where, for simplicity, we assume thatx ( § x ( ) ag™ functions with bounded
derivatives of all orders oR and

a(x)b(x) >0 onR.

We define the energy function

EQ = [ (0 +ab)lo+ o) dx.

where the integral is extended R
Integrating by parts, we get

E'(t)=—- Re/ a’ (x)b(x)vev, dx + Re/ vy, dx
and hence, using Theorem 3.1, we find the apriori estimate
E'(r) < CL1E(2).
Thus we get
vz + v @)llz2 < CE (lollme + [Jvallzz),  0<r<7.

To get an estimate of th&*  norm of the solution we differeatigt.1) with respect
to x to obtain an equation fow B,v

D?w — Dy[a(x)b(x) Dyw] + [a'(x)b(x) — (ab) (x)] Dyw
+[(@b) (x) = (ab)"(x)] w = 0.

By iterating the same procedure we find the estimates
@l + o @l < Ce() ([lvoll e + lJallme),  0<t<7

for all &k which proves theC* well-posedness.

Theorem 4.1. Under the assumptions as abowbe Cauchy Problent4.1)}+(4.2)
is C> well posed.

5. Further results of well-posedness
Here we consider the more general class of systems

(5.1) { Lu =[D;+ A(x)Dy + B(x)lu= f(t.x), 0<t<r,

u(0,x) =0,
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where

(AW al) (80 a)
(-2 A(x)‘(b(x) —d(x))’ B(x)_(ﬁ(x) 5z(x))'

For the sake of simplicity, we assume that the coefficientshebe matrices ar€ >

functions, with bounded derivatives of all orders Bn The coefficients ofA X ) are
real, those ofB X ) may be complex. We assume, as always,

(5.3) akp@)=0.
As for the lower order ternB x( ) we assume that, for some peasitonstantC |,
(5.4) la(x)B(x)| < Cv/a(x)b(x), [b(x)a(x)] < C/a(x)b(x).

Theorem 5.1. Under the assumption$5.3)(5.4), the Cauchy problem(5.1)}-
(5.2) is well posed inC*.

Proof. In order to find an apriori estimate for (5.1), we cdesiM o L with an
operatorM such as

(5.5) M =D, — A(x)D; + B(x),

where E(x) will be chosen in a suitable way. The matrik x ( ) enjoys a vegonod
property: its square is Hermitian; more precisely, we have

(5.6) A?(x) = h(x)I, with  A(x) = d?(x) +a(x)b(x) > 0.
After some computations, we see that
Mo L = (D? — A%(x)D?) + K (x)D, + T1(x) D; + To(x)
with T, = B+ B, To = BB — AB,, and
(5.7) K(x)=BA — AA, — AB.
Thus, each smooth solutianz, ¢ ) to (5.1) solves also the secoder system
(5.8) [D? — h(x)DZ? + K (x)Dx + T1(x)D; + To(x)| u = g = M.

The natural energy for such a system is given by

1
E(t,u)= E/(|u,|2+h(x)|Dxu|2+|u|2) dx,
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hence, if we multiply each term of (5.8) b®,u, we need an estimate like:

(5.9) /|(K(x)Dxu, D,u)|dx < C/\/h(x) |D.ul||Dyu|dx < CE(t,u)

i.e.

(5.10) K @)[| < C\/h(x).

In view of (5.10), let us choose the matrﬁk(x) in (5.5) of the form
B(x) = - _[ex) O

(5.11) B(x) = —A.(x) + X(x), with X = ( 0 ¢(x)> ,

so that, by (5.7),
K(x)=—(AA, + AA)+ (XA — AB).

Now, the matrixAA, +A,A = @?), = h/(x)I has a norm which can be estimated
by Cv/h(x), by the (classical) Glaeser inequality. Thus, we mustoskothe functions
©(x), ¥(x) in (5.11) in such a way that

(5.12) (XA — AB)(x)|| < C+/h(x).
We compute:

= ((dle—o)—alalp =0z) —da
xa—an= (G e )

Hence, the choice
o(x) = d2(x), P(x) = 61(x),

produces

XA — AB =d(x)T (x) - (a(X)oﬁ(X) b(x)oa(x)) ’

for some (bounded) matrif x( ). By (5.3) and (5.6), we know th#t)| < /h(x),
while, by (5.4),a & PB(x) and b  )x(x) are estimated by/a(x)b(x). In conclusion we
get (5.12), hence also (5.10) and (5.9).

We are now in the position to prove an energy estimate for thatisns to (5.8),

E/(I,M)SC(E(I,Lt)"‘”g(l‘)”%z), OSIST’
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whence, by (5.1),

@)z + | Deae®) 2 < € /0 lg(s)22 ds.

Note that the termdi(x)D,u and To(x)u do not give any trouble.

To get an estimate of thé/* norm of the solution, we differentiate each term

of (5.8) with respect tor , thus obtaining an equation in th&nawn v =D,u :

DZv — h(x)D?v + (K (x) — 1'(x)I) D,v + Ta(x) Dyv + To(x)v
= D,g — T{(x)D,u + To(x)u.

By iterating this procedure, and going back to (5.1), we find &priori estimates

Ju@) |z + | Drue() [ < C/O llg()l| e ds < C'/O [f () s s,

for all integersk , which ensure the well-posednes<i. [l

(1]
(2]

(3]
(4]

(5]
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