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Abstract
In this note we prove a product property for the pluricomplexenergy, and then

give some applications.

1. Introduction

Throughout this note assume that� � Cn, n � 1, is hyperconvex set. Recall that
an open set� � Cn is called hyperconvex if it is bounded, connected, and if there
exists a bounded plurisubharmonic function' W �! (�1, 0) such that the closure of
the setfz 2 � W '(z) < cg is compact in�, for every c 2 (�1, 0). The family of
all bounded plurisubharmonic functions' defined on� such that limz!� '(z) D 0, for
every� 2 ��, and

∫�(ddc')n <C1, is denoted byE0(�). The familyE0 is the analog
of potentials for subharmonic functions in the classical potential theory. Here (ddc � )n

is the complex Monge–Ampère operator. The aim of this note is to prove the following
theorem.

Main Theorem. Assume that�1 � Cn1, n1 � 1, and �2 � Cn2, n2 � 1, are
two bounded hyperconvex domains, and let u1 2 E0(�1), u2 2 E0(�2). If u(z1, z2) D
max(u1(z1), u2(z2)), then

(1.1)
∫

�1��2

h(u)(ddcu)n1Cn2 D ∫�1��2

h(u)(ddcu1)n1 ^ (ddcu2)n2,

for all upper semicontinuous functions hW (�1, 0]! R.

It should be noted that the integrals in equality (1.1) can be, at the same time,�1.
A sufficient condition to make sure that they are finite is to additional assume thath is
bounded. Equality (1.1) is also valid for all decreasing functionshW (�1, 0)! [0,C1)
(Corollary 2.2).

In the rest of this note we give some applications of our main theorem. Now we
follow [6], and defineEp(�), p > 0, to be the class of plurisubharmonic functionsu
defined on� for which there exists a decreasing sequence [u j ], u j 2 E0, that converges

2000 Mathematics Subject Classification. Primary 32U15; Secondary 31C15.



638 P. ÅHAG, U. CEGRELL AND H.H. PHA. M

pointwise tou on �, as j tends toC1, and

sup
j�1

∫

�(�u j )
p(ddcu j )

n D sup
j�1

ep(u j ) < C1.

If u 2 Ep(�), then ep(u) < C1 ([6, 10]). It should be noted that it follows from [6]
that any function inEp is in E and hence by [7] the operator (ddc � )n is well defined
on Ep, p > 0. The classE is the largest set of non-positive plurisubharmonic func-
tions � for which the complex Monge–Ampère operator is well-defined ([7]). These
convex cones are useful outside the field of pluripotential theory (see e.g. [2, 12]). If
u1 2 Ep1(�1), u2 2 Ep2(�2), and u(z1, z2) D max(u1(z1), u2(z2)), then we prove that
u 2 Ep1Cp2(�1 ��2), and

ep1Cp2(u) � ep1(u1)ep2(u2)

(Corollary 3.1). By using the idea from Example 2.6 in [3] we construct an example
that shows that Corollary 3.1 is optimal in the following sense: Let p1, p2 > 0, then
there exist functionsu1 2 Ep1(�1), u2 2 Ep2(�2) such that

u(z1, z2) D max(u1(z1), u2(z2)) � ⋃

q�0=q¤p1Cp2

Eq(�1 ��2)

(Example 3.3). Furthermore, our main theorem yields, in Corollary 2.1, Wiklund’s prod-
uct property forF . This result was first obtained by Wiklund in [17].

Before proceeding, let us introduce some convenient notations. Let u 2 E , then
by Theorem 5.11 in [7] there exist functions�u 2 E0 and fu 2 L1

loc((ddc�u)n), fu � 0
such that (ddcu)n D fu(ddc�u)n C �u. The non-negative measure�u is such that there
exists a pluripolar setA � � such that�u(� n A) D 0. We shall use the notation that�u D fu(ddc�u)n and�u refereing to the decomposition discussed here. Ifu1 2 E(�1),
u2 2 E(�2), then we prove that max(u1, u2) 2 E(�1 � �2), and�max(u1,u2) D �u1 
 �u2

(Corollary 2.1 and Theorem 4.5).
For further information about pluripotential theory, and the complex Monge–Ampère

operator, we refer to the monographs by Klimek ([14]), and Kołodziej ([15]).

2. Proof of Main Theorem

Proof of Main Theorem. Set� D �1 ��2, n D n1C n2. Without loss of gener-
ality we can assume thatu1, u2 < 0.

CASE I: Assume thatu1 2 E0(�1) \ C1(�1), u2 2 E0(�2) \ C1(�2), and h 2
C1

0 ((�1, 0),R). To see thath(u) is the difference of two functions inE0(�) we show
that there are two convex and increasing functionsh1, h2 2 C((�1, 0),R) with h1(0)D
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h2(0)D 0 andh1Ch2 � Mx for a constantM > 0. Explicitly, choosea < 0 andb> 0
such that

a < inf
supph

(h(x)C Sex � b) � sup
x<0

(h(x)C Sex � b) � 0,

where S> 0 is so large thath(x)C Sex is convex and increasing. Now chooseM > 0
such thatMx < a on supph. Then set

h1(x) D max(h(x)C Sex � b, Mx) and h2(x) D max(Sex � b, Mx).

Assume for the moment thatu 2 E0(�1 � �2) (this is later proved in Case V). The
facts thatu D u1 on the support of (ddcu)n2 ^ ddch(u), and u D u2 on the support of
ddch(u) ^ (ddcu1)n1, yield together with integration by parts ([7]) that
∫

� h(u)(ddcu)n D ∫� u(ddcu)n�1 ^ ddch(u) D ∫� u1(ddcu)n�1 ^ ddch(u)

D ∫� h(u)(ddcu)n�1 ^ ddcu1 D � � � D ∫� h(u)(ddcu)n2 ^ (ddcu1)n1

D ∫� u(ddcu)n2�1 ^ ddch(u) ^ (ddcu1)n1

D ∫� u2(ddcu)n2�1 ^ ddch(u) ^ (ddcu1)n1

D ∫� h(u)(ddcu)n2�1 ^ (ddcu1)n1 ^ ddcu2

D � � �
D ∫� h(u)(ddcu1)n1 ^ (ddcu2)n2.

Thus,
∫

� h(u)(ddcu)n D ∫� h(u)(ddcu1)n1 ^ (ddcu2)n2.

CASE II: Assume thatu12E0(�1), u22E0(�2), andh2C1
0 ((�1, 0),R). From [8]

it follows that there exist two decreasing sequences [u j
1], u j

12E0(�1)\C1(�1), and [u j
2],

u j
2 2 E0(�2) \ C1(�2), that converge pointwise tou1 andu2, respectively, asj !C1.

Setu j Dmax(u j
1, u j

2). Case I yields that
∫

�(h1(u j ) � h2(u j ))(ddcu j )n D ∫� h(u j )(ddcu j )n

D ∫� h(u j )(ddcu j
1)n1 ^ (ddcu j

2)n2

D ∫�(h1(u j ) � h2(u j ))(ddcu j
1)n1 ^ (ddcu j

2)n2.
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If we let j ! C1, then Proposition 5.1 [7] shows that the left hand side tendsto
∫� h(u)(ddcu)n, and also using Fubini’s theorem we see that the right hand tends to
∫� h(u)(ddcu1)n1 ^ (ddcu2)n2.

CASE III: For this and the next case assume thath 2 C((�1, 0], R) and let

M D supfju1(z1)j C ju2(z2)j W z1 2 �1, z2 2 �2g.
Furthermore, we choose a sequence [h j ], h j 2 C1

0 ((�1, 0),R) such that

sup
j�1

supfjh j (t)j W t 2 [�M, 0]g < C1,

and which converges uniformly toh for all compact sets of [�M, 0) as j ! C1.
From Case II we now get that

(2.1)
∫

� h j (u)(ddcu)n D ∫� h j (u)(ddcu1)n1 ^ (ddcu2)n2.

This case is finished by lettingj !C1 and using Lebesgue’s dominated convergence
theorem together with (2.1).

CASE IV: In general case, we choose a decreasing sequence [h j ], h j W C((�1, 0],R),
that converges pointwise toh on [�M, 0] as j !C1. By Case III we have that

∫

� h j (u)(ddcu)n D ∫� h j (u)(ddcu1)n1 ^ (ddcu2)n2,

and this proof can be finished as Case III.
CASE V: It remains to show thatu D max(u1, u2) 2 E0(�). This follows im-

mediately from [17], but here we give a direct proof. Fixz0 2 �1, and w0 2 �2.
Let g1, and g2, be the pluricomplex Green functions defined on�1, and �2, with
poles inz0, andw0, respectively. It follows from [11] and Proposition 3.4 in [19] that
max(g1, g2, �1) 2 E0(�). Define

u j
1Dmax(u1, j max(g1, �1)), u j

2Dmax(u2, j max(g2, �1)), and u j Dmax(u j
1, u j

2).

Then max(u j
1, u j

2) � j max(g1, g2, �1) 2 E0(�) and we have proved in Case III that

∫

�1��2

(ddcu j )n1Cn2 D ∫�1

(ddcu j
1)n1

∫

�2

(ddcu j
2)n2 � ∫�1

(ddcu1)n1

∫

�2

(ddcu2)n2,

and since [u j ] decreases pointwise tou as j !C1, it follows that u 2 E0(�).

In Corollary 2.1, we show how our main theorem yields Wiklund’s product prop-
erty for F . The result in Corollary 2.1 was first obtained in [17].
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Corollary 2.1. Assume that�1 � Cn1, n1 � 1, and �2 � Cn2, n2 � 1, are
two bounded hyperconvex domains, and let u1 2 F (�1), u2 2 F (�2). If u(z1, z2) D
max(u1(z1), u2(z2)), then u2 F (�1 ��2), and

∫

�1��2

(ddcu)n1Cn2 D ∫�1

(ddcu1)n1

∫

�2

(ddcu2)n2.

Furthermore, if u1 2 E(�1), u2 2 E(�2) then u(z1, z2) D max(u1(z1), u2(z2)) 2
E(�1 ��2).

Proof. We set� D �1��2 and nD n1Cn2. From [8] it follows that there exist
two decreasing sequences [u j

1], u j
1 2 E0(�1)\C1(�1), and [u j

2], u j
2 2 E0(�2)\C1(�2),

that converge pointwise tou1 and u2, respectively, asj !C1. An application of the
main theorem gives the first two statements. The third statement now follows from the
second, since every function inE is locally equal to a function inF .

Corollary 2.2. Assume that�1 � Cn1, n1 � 1, and �2 � Cn2, n2 � 1, are
two bounded hyperconvex domains, and let u1 2 E0(�1), u2 2 E0(�2). If u(z1, z2) D
max(u1(z1), u2(z2)), then

∫

�1��2

h(u)(ddcu)n1Cn2 D ∫�1��2

h(u)(ddcu1)n1 ^ (ddcu2)n2,

for all decreasing functions hW (�1, 0)! [0, C1).

Proof. Let� D �1 ��2, n D n1C n2, and

M D supfju1(z1)j C ju2(z2)j W z1 2 �1, z2 2 �2g.
Let [h j ], h j W C((�1, 0], R), be a sequence that converges pointwise toh, as j !C1, and

sup
j�1

supfjh j (t)j W t 2 [�M, 0)g < C1.

By our main theorem we have that

∫

� h j (u)(ddcu)n D ∫� h j (u)(ddcu1)n1 ^ (ddcu2)n2.

Let j ! C1, then Lebesgue’s dominated convergence theorem completesthis proof.
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3. Some applications

Corollary 3.1. Assume that�1 � Cn1, n1 � 1, and �2 � Cn2, n2 � 1, are two
bounded hyperconvex domains, and let u1 2 Ep1(�1), u2 2 Ep2(�2). If u(z1, z2) D
max(u1(z1), u2(z2)), then u2 Ep1Cp2(�1 ��2), and

ep1Cp2(u) � ep1(u1)ep2(u2).

Proof. Set� D �1 ��2, n D n1C n2 and p D p1C p2. By Lemma 2.1 in [10]
we can find two decreases sequences [u j

1], u j
1 2 E0(�1), and [u j

2], u j
2 2 E0(�2), that

converge pointwise tou1 and u2, respectively, asj !C1. Furthermore, we have that
[(ddcu j

1)n1] and [(ddcu j
2)n2] are increasing sequences that converge weakly to (ddcu1)n1

and (ddcu2)n2, as j ! C1. Let [u j ] be the decreasing sequence that is defined by
u j D max(u j

1, u j
2) 2 E0(�). This construction yields that [u j ] converges pointwise to

u D max(u1, u2). Using the main theorem withh(t) D (�t)p, and Fubini’s theorem we
have that

ep(u) � lim
j!C1 ep(u j ) D lim

j!C1
∫

� h(u j )(ddcu j )n

D lim
j!C1

∫

� h(u j )(ddcu j
1)n1 ^ (ddcu j

2)n2

� lim
j!C1

∫

�(�u j
1)p1(�u j

2)p2(ddcu j
1)n1 ^ (ddcu j

2)n2 � lim
j!1 ep1(u

j
1)ep2(u

j
2)

D ep1(u1)ep2(u2).

We will need the following lemma in Example 3.3.

Lemma 3.2. Let 0� p � q. Then

Ep(�) \ Eq(�) � Et (�) for all p � t � q.

Proof. For 0� p� q choose 0� � � 1 such thatt D �pC (1��)q. By Hölder’s
inequality we have that for eachv 2 E0(�) it holds that

∫

�(�v)t (ddcv)n D ∫�(�v)�pC(1��)q(ddcv)n

� (∫�(�v)p(ddcv)n

)�(∫
�(�v)q(ddcv)n

)1��
.

Hence,

(3.1) et (v) � ep(v)�eq(v)1��.
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Now let u 2 Ep(�) \ Eq(�). Lemma 2.1 in [10] implies that there exists a decreasing
sequence [u j ], u j 2 E0, that converges pointwise tou as j !C1,

lim
j!C1 ep(u j ) D ep(u), and lim

j!C1 eq(u j ) D eq(u).

Inequality (3.1) yields that

sup
j

et (u j ) � sup
j

ep(u j )
�eq(u j )

1�� � ep(u)�eq(u)1��.

Thus, u 2 Et with et (u) � ep(u)�eq(u)1��.

EXAMPLE 3.3. Assume that�1 � Cn1, n1 � 1, and�2 � Cn2, n2 � 1, are two
bounded hyperconvex domains. In this example we show that there exist functionsu1 2
Ep1(�1), and u2 2 Ep2(�2) such that

u(z1, z2) D max(u1(z1), u2(z2)) � ⋃

q�0=q¤p1Cp2

Eq(�1 ��2).

PART I: In this part we prove that for givenq > 0 with q ¤ p1 C p2, there
exist functionsu1 2 Ep1(�1), u2 2 Ep2(�2) such thatu(z1, z2) D max(u1(z1), u2(z2)) �
Eq(�1 � �2). Let g1(z1) D g�1(z1, a1), and g2(z2) D g�2(z2, a2) be the pluricomplex
Green function defined on�k with pole atak 2 �k, k D 1, 2. Let alsop1, p2 > 0.

CASE I: Assume thatq > p1 C p2, and letq1 > p1, q2 > p2 be such thatq D
q1C q2. For each j 2 N set

v j
1 D max(j �q1=n1g1, � j ), v j

2 D max(j �q2=n2g2, � j ), and v j D max(v j
1, v j

2).

We have that

lim
j!C1 ep1(v j

1) D lim
j!C1(2�)n1 j p1�q1 D 0,

and

lim
j!C1 ep2(v j

2) D lim
j!C1(2�)n2 j p2�q2 D 0.

Therefore by Lemma 2.5 in [3] we can choose subsequences of [v j
1], [v j

2], to get that

(3.2) u1 D
(C1
∑

jD1

v j
1

)

2 Ep1(�1), and u2 D
(C1
∑

jD1

v j
2

)

2 Ep2(�2).
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Since there is no risk of ambiguity we also call these subsequences [v j
1], [v j

2]. Corol-
lary 2.1, and Lemma 4.1 imply thateq(v j ) D (2�)n1Cn2. Hence,

eq

(

k
∑

jD1

v j

)

� k
∑

jD1

eq(v j ) D (2�)n1Cn2k.

Thus,
∑C1

jD1 v j � Eq(�1 ��2). On the other hand, we have foru1, u2 defined in (3.2)

that uD u(z1, z2)Dmax(u1(z1), u2(z2)) �∑C1
jD1v j , which implies thatu � Eq(�1��2).

CASE II: Assume thatq < p1C p2, and letq1 < p1, q2 < p2 be such thatq D
q1C q2. For each j 2 N set

v j
1 D max

(

j q1=n1g1, �1

j

)

, v j
2 D max

(

j q2=n2g2, �1

j

)

, and v j D max(v j
1, v j

2).

Then it is proved in a similar manner as in Case I that

u D u(z1, z2) D max(u1(z1), u2(z2)) � Eq(�1 ��2).

PART II: By using Part I we shall complete this example. Setq j D pC (�1) j = j .

For eachj 2N Part I ensures the existence of functionsu j
1 2 Ep1(�1), u j

2 2 Ep2(�2), with

u j D max(u j
1, u j

2) � Eq j (�1 ��2).

Choose a positive sequencef" j g of real numbers such that

u1 D
(C1
∑

jD1

" j u
j
1

)

2 Ep1(�1),

and

u2 D
(C1
∑

jD1

" j u
j
2

)

2 Ep2(�2).

Set uD max(u1, u2). Then Corollary 3.1 yields thatu 2 Ep1Cp2(�1��2). Furthermore,
our construction implies that

u � " j max(u j
1, u j

2) D " j u
j ,

and

u j � Eq j (�).
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Hence,u � Eq j (�1��2) for all j 2 N. For the argument of contradiction, assume that
u � Eq(�1��2) for someq ¤ p. Without loss of generality assume thatq > p. From
Lemma 3.2 it now follows thatu 2 Et (�1 � �2) for all p � t � q. Fix j0 > 0 such
that p < q j0 < q. Then u 2 Eq j0

, and a contradiction is obtained, and this example is
completed.

In [13] (see also [4]), Guedj and Zeriahi introduced the following formalism: For
an increasing function� W (�1, 0]! (�1, 0], they say that a plurisubharmonic func-
tion u is in E� (�) if there exists a decreasing sequence [u j ], u j 2 E0, that converges
pointwise tou on �, as j tends toC1, and

sup
j�1

∫

� ��(u j )(ddcu j )
n < C1.

For example, if�(t)D �(�t)p, thenE� D Ep, and if � is bounded with�(0)¤ 0, then
E� D F . In general, we do not have thatE� is contained inE . Another consequence
of our main is Corollary 3.4.

Corollary 3.4. Assume that�1 � Cn1, n1 � 1, and �2 � Cn2, n2 � 1, are two
bounded hyperconvex domains. Let�1, �2 W (�1, 0] ! (�1, 0] be increasing func-
tions, u1 2 E�1(�1), and u2 2 E�2(�2). If u(z1, z2) D max(u1(z1), u2(z2)), then u2
E��1�2(�1 ��2).

Proof. Let� D �1 ��2, n D n1C n2, and let [u j
1], [u j

2] be sequences as in the

proof of Corollary 2.1. Setu j D max(u j
1, u j

2). From Corollary 2.2 withh D �1�2, and
Fubini’s theorem it follows that

lim
j!1

∫

� �1(u j )�2(u j )(ddcu j )n D lim
j!1

∫

� �1(u j )�2(u j )(ddcu j
1)n1 ^ (ddcu j

2)n2

� lim
j!1

∫

� �1(u j
1)�2(u j

2)(ddcu j
1)n1 ^ (ddcu j

2)n2

� lim
j!1

∫

�1

�1(u j
1)(ddcu j

1)n1

∫

�2

�2(u j
2)(ddcu j

2)n2 < C1.

Henceu 2 E��1�2(�1 ��2).

4. The connection between max(u1, u2) and (ddcu1)n1 ^ (ddcu2)n2

Proposition 4.1. Assume that� � Cn, n � 1, is a bounded hyperconvex domain,
and let u1, u2 2 E(�). If u D max(u1, u2) and (ddcu1)n1 ^ (ddcu2)n2 vanishes on pluri-
polar sets, then

(4.1) (ddcu)n1Cn2 � �fu1Du2g(ddcu1)n1 ^ (ddcu2)n2,
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where�fu1Du2g is the characteristic function for the setfu1 D u2g in �.

Proof. Without loss of generality we can assume thatu1, u2 < 0. Let [� j ], 0 <� j < 1, be an increasing sequence of real number that converges to1, as j ! C1.
By in [16] we have that

(ddc max(� j u1, u2))n1 ^ (ddc max(u1, � j u2))n2

� �f� j u1>u2g\fu1<� j u2g(ddc� j u1)n1 ^ (ddc� j u2)n2

� �n1Cn2
j �fu1Du2g(ddcu1)n1 ^ (ddcu2)n2.

Let j !C1, then (4.1) is obtained.

Corollary 4.2. Assume that� � Cn, n � 1, and let u1, u2 2 F (�) be such that

∫

fu1¤u2g(ddcu1)n1 ^ (ddcu2)n2 D 0,

and (ddcu1)n1 ^ (ddcu2)n2 vanishes on pluripolar sets. If uD max(u1, u2), then
(ddcu)n1Cn2 D (ddcu1)n1 ^ (ddcu2)n2.

Proof. Note that
∫

�(ddcu)n1Cn2 � ∫�(ddcu1)n1 ^ (ddcu2)n2.

Corollary 4.3. Assume that�1 � Cn1, n1 � 1, and �2 � Cn2, n2 � 1, are
two bounded hyperconvex domains, u1 2 F (�1), u2 2 F (�2), and u1, u2 2 E(�1 ��2) be such that(ddcu1)n1 ^ (ddcu2)n2 vanishes on pluripolar sets. Set u(z1, z2) D
max(u1(z1), u2(z2)). Then (ddcu)n1Cn2 D (ddcu1)n1 ^ (ddcu2)n2 if, and only if,

∫

fu1¤u2g(ddcu1)n1 ^ (ddcu2)n2 D 0.

Proof. If (ddcu)n1Cn2 D (ddcu1)n1 ^ (ddcu2)n2, then we have
∫fu1¤u2g(ddcu1)n1 ^

(ddcu2)n2 D 0. On the other hand, we have by Proposition 4.1 that

(ddcu)n � �fu1Du2g(ddcu1)n1 ^ (ddcu2)n2

and, by Corollary 2.1,
∫

(ddcu1)n1 ^ (ddcu2)n2 D ∫ (ddcu)n. Therefore, if

∫

fu1¤u2g(ddcu1)n1 ^ (ddcu2)n2 D 0,

then it follows that (ddcu)n1Cn2 D (ddcu1)n1 ^ (ddcu2)n2.
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REMARK . The case whenu1 andu2 are positive plurisubharmonic functions with
∫

fu1>0g(ddcu1)n1 D ∫fu2>0g(ddcu2)n2 D 0,

was proved in [5].

EXAMPLE 4.4. Letu1Dmax((1=2)lnjz1j, lnjz2j), andu2D 2u1, then (ddcu1)n D
(ddc max(u1, u2))n D (1=2)Æ0. But ddcu1 ^ ddcu2 D Æ0. This shows that the condition:
(ddcu1)n1 ^ (ddcu2)n2 vanishes on pluripolar sets, is necessary in Proposition 4.1.

Let u 2 E , then by Theorem 5.11 in [7] there exist functions�u 2 E0 and fu 2
L1

loc((ddc�u)n), fu � 0 such that (ddcu)n D fu(ddc�u)n C �u. The non-negative meas-
ure �u is such that there exists a pluripolar setA � � such that�u(� n A) D 0. We
shall use the notation that�u D fu(ddc�u)n and�u refereing to the decomposition dis-
cussed here.

Theorem 4.5. Assume that�1 � Cn1, n1 � 1, and �2 � Cn2, n2 � 1, are
two bounded hyperconvex domains, and let u1 2 E(�1), u2 2 E(�2). If u(z1, z2) D
max(u1(z1), u2(z2)), then

�u D �u1 
 �u2.

Proof. Setn D n1 C n2. Assume first that if�u j D 0, j D 1, 2. If we apply
Corollary 4.3 to max(u j , m), j D 1, 2 and letm tend to�1 we get that

(4.2) (ddcu)n D (ddc max(u1, u2)))n1Cn2 D (ddcu1)n1 
 (ddcu2)n2.

For the general case we can without loss of generality assumethat u1 2 F (�1),
u2 2 F (�2). From [7] and Theorem 1 in [18] (or [1]), it follows that we can find
functions such that forj D 1, 2 satisfies the following properties:
• ' j 2 F (� j ), v j 2 F (� j ),
• (ddc' j )n vanishes on pluripolar sets,
• (ddc' j )n D �u j , (ddcv j )n D �u j ,
• ' j � u j , v j � u j , and u j � ' j C v j .
We now have that

max(v1, v2)Cmax('1, v2)Cmax(v1, '2)Cmax('1, '2) � max(u1, u2) � max(v1, v2).

By [7] every function' 2 F with (ddc')n vanishing on all pluripolar sets can be mi-
norized by the sum of a bounded function and a function with arbitrarily small Monge–
Ampère mass. Using Corollary 2.1 we thus find that the following measures vanish on
pluripolar sets:

(ddc max('1, v2))n1Cn1, (ddc max(v1, '2))n1Cn2, (ddc max('1, '2))n1Cn2.
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Hence (4.2) and Lemma 4.11 in [1] concludes this proof since then

�u D �max(u1,u2) D �max(v1,v2) D �v1 
 �v2 D �u1 
 �u2.

EXAMPLE 4.6. If ' 2 PSH(�) \ L1loc(�), then

∫

K
(� )(ddc')n < C1 for all K b �,  2 PSH(�),  � 0.

The following example shows that there exists a function' 2 E0(D2), such that

∫

D2
(� lnjz1j)(ddc')2 D C1.

Set

'(z) D C1
∑

jD1

max

(

lnjz1j
j 6

, j 2 lnjz2j, � 1

j 2

)

,

then by Corollary 4.3 we have that

(

ddc max

(

lnjz1j
j 6

, j 2 lnjz2j, � 1

j 2

))2 D 1

j 4
d�flnjz1jD� j 4g 
 d�flnjz2jxD�1= j 4g.

Lemma 2.5 in [9] implies that' 2 E0(D2). Furthermore, it holds that

(ddc')2 � C1
∑

jD1

1

j 4
d�flnjz1jD� j 4g 
 d�flnjz2jD�1= j 4g,

and therefore
∫

D2
(� lnjz1j)(ddc')2

� C1
∑

jD1

1

j 4

∫

D2
(� lnjz1j) d�flnjz1jD� j 4g 
 d�flnjz2jD�1= j 4g D C1

∑

jD1

1

j 4
j 4 D C1.
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