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In the preceding paper [I. Fukuda, J. Chem. Phys. 139, 174107 (2013)], the zero-multipole (ZM)
summation method was proposed for efficiently evaluating the electrostatic Coulombic interactions
of a classical point charge system. The summation takes a simple pairwise form, but prevents the
electrically non-neutral multipole states that may artificially be generated by a simple cutoff trunca-
tion, which often causes large energetic noises and significant artifacts. The purpose of this paper is
to judge the ability of the ZM method by investigating the accuracy, parameter dependencies, and sta-
bility in applications to liquid systems. To conduct this, first, the energy-functional error was divided
into three terms and each term was analyzed by a theoretical error-bound estimation. This estimation
gave us a clear basis of the discussions on the numerical investigations. It also gave a new viewpoint
between the excess energy error and the damping effect by the damping parameter. Second, with the
aid of these analyses, the ZM method was evaluated based on molecular dynamics (MD) simulations
of two fundamental liquid systems, a molten sodium-chlorine ion system and a pure water molecule
system. In the ion system, the energy accuracy, compared with the Ewald summation, was better
for a larger value of multipole moment l currently induced until l � 3 on average. This accuracy
improvement with increasing l is due to the enhancement of the excess-energy accuracy. However,
this improvement is wholly effective in the total accuracy if the theoretical moment l is smaller than
or equal to a system intrinsic moment L. The simulation results thus indicate L ∼ 3 in this system,
and we observed less accuracy in l = 4. We demonstrated the origins of parameter dependencies
appearing in the crossing behavior and the oscillations of the energy error curves. With raising the
moment l we observed, smaller values of the damping parameter provided more accurate results and
smoother behaviors with respect to cutoff length were obtained. These features can be explained,
on the basis of the theoretical error analyses, such that the excess energy accuracy is improved with
increasing l and that the total accuracy improvement within l ≤ L is facilitated by a small damping
parameter. Although the accuracy was fundamentally similar to the ion system, the bulk water sys-
tem exhibited distinguishable quantitative behaviors. A smaller damping parameter was effective in
all the practical cutoff distance, and this fact can be interpreted by the reduction of the excess subset.
A lower moment was advantageous in the energy accuracy, where l = 1 was slightly superior to
l = 2 in this system. However, the method with l = 2 (viz., the zero-quadrupole sum) gave accurate
results for the radial distribution function. We confirmed the stability in the numerical integration
for MD simulations employing the ZM scheme. This result is supported by the sufficient smooth-
ness of the energy function. Along with the smoothness, the pairwise feature and the allowance of
the atom-based cutoff mode on the energy formula lead to the exact zero total-force, ensuring the
total-momentum conservations for typical MD equations of motion. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4875693]

I. INTRODUCTION

To understand the physical properties of a matter via an
atomic level, molecular dynamics (MD) simulation is a pow-
erful tool and has been widely used in computational studies.
Even for details inaccessible to experiments, it enables us to,
e.g., develop a new material in condensed matter or solve a
molecular mechanism in a bimolecular system. In these simu-
lations, the electrostatic interactions among charged particles
play essential roles in a number of systems, with maintain-

a)Electronic mail: ifukuda@protein.osaka-u.ac.jp

ing physical structures, generating chemical properties, and
performing biological functions.1–3 Thus, the accurate evalu-
ations of the electrostatic interactions are important.

As well as the accuracy in the evaluations, a low com-
putational cost is necessary for them. This is because almost
all the cost is paid for this evaluation in a molecular simula-
tion, including a classical MD study. In fact, such a cost is
essentially proportional to N2, the square of the number of the
particles in a target classical system, in contrast to the short
range interactions for which the cost is proportional to N.
This yields a bottleneck of the simulations as the system size
becomes large.

0021-9606/2014/140(19)/194307/19/$30.00 © 2014 AIP Publishing LLC140, 194307-1
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In this computational viewpoint, a cutoff-based (CB) ap-
proach is appealing, since it would give O(N) scheme for a
larger system, whereas it seems to be qualitatively different
from the lattice sum (LS) approach. The latter, such as the
Ewald method4, 5 or its variations, has been used as a stan-
dard in molecular simulations,6 under the assumption of the
periodic boundary condition (PBC). PBC allows us to mimic
a bulk state, avoiding the creation of an interface, which of-
ten causes significant artifacts in simulations. However, since
the evaluation under the PBC includes infinitely many interac-
tions in principle, the computational cost should not be small
in general. Of course, a computational inefficient feature of
the conventional LS method has been eliminated in consid-
erable extent, using, e.g., a mesh-based approach,7, 8 but this
does not necessarily mean the dead-end of developing other
methodological ideas and algorithms. In fact, it is useful to
develop a method appropriate for a non-periodic system and
construct a very simple algorithm applicable easily to any
computational architectures.

Again, CB approaches are appealing in such viewpoints
that they are irrelevant to the boundary conditions in general
and that these local interaction approaches enable us to easily
design parallel algorithms. The most critical issues of this ap-
proach are, however, to improve the accuracy and remove the
possible artifacts. In fact, artifacts have been found in a num-
ber of studies,1, 9 including ion systems,10 a water system,11

and a protein-water system.12 For this reason, and because
maintaining the accuracy is a severe issue, many researchers
may have avoided using these approaches. However, quite re-
cently, it has been understood that the artifacts of the CB ap-
proach can be sufficiently minimized if suitable devices are
applied. Such devices capture certain specific features in the
set of charged particles, e.g., a symmetry of the system, a
system-environment interaction, and electrostatic neutrality.
They lead to modifications of the pair potential function, from
the bare Coulombic form to the other forms.

Such a CB approach, often termed a non-Ewald
approach,13 includes a number of methods. In the reaction
field method,14, 15 the effect outside the cutoff sphere is in-
cluded via interactions between dipoles made in the sphere
and an electric field generated by polarized dielectric contin-
uum outside the sphere, which is assumed to be described
by a homogeneous dielectric constant. This additional in-
teraction can be represented by a very simple pairwise for-
mula. Despite this device, both its effectiveness and artifacts
have been pointed out during its long history.16–22 However,
the artifact can be diminished if we use additional devices
such as an atomic-based cutoff mode and a high dielectric
constant.13, 23 Furthermore, against the homogeneity assump-
tion, the effectiveness has recently been realized in inhomo-
geneous systems.24, 25

The pre-averaging CB method26 was introduced by
Yakub and Ronchi in order to remove the artificial cubic sym-
metry in the LS method. The energy formula was obtained
by averaging the quantities over spherical angular coordi-
nates in the Ewald summation expansion, and this pre-average
gave simple pairwise expression using the cutoff length that
is the radius of the volume-equivalent sphere of the cubic MD
cell.26, 27 This method has been very successfully applied to

crystal systems,26, 28 disordered systems,28–30 and inhomoge-
neous systems.31

Likewise, rather than the cubic periodicity in the LS
method, the isotropic periodic summation, proposed by Wu
and Brooks,32, 33 assumes the isotropic periodicity, which
comes from the images of the local region statistically dis-
tributed in an isotropic and periodic manner. The resulting
energy formula is expressed by a pairwise form. The point
distinguishable from other CB methods is that it can be ap-
plied not only to the Coulombic function but also to other
functions including the van der Waals (vdW) potential func-
tion. This method and its extension34 have been successfully
applied to bulk waters,35 aqueous solvation of ions,36 lipid
bilayers and monolayers,37 and used for constructing force
fields.38–40

Wolf et al.41, 42 found that the energy error in the straight
cutoff is nearly proportional to the net charge in the cutoff
sphere. The subtraction of these excess charge contributions
formalizes a simple pairwise formula for conducting the zero-
charge (ZC) CB scheme. They also revealed the importance
of the damping effect for the pair potential function to ac-
celerate the efficiency. The efficiency of the method of Wolf
et al. in terms of the accuracy and computational cost has
been demonstrated and utilized in many studies (see Ref. 13
and the references therein; also see Refs. 43–52 for recent
progress).

The force-matching method53, 54 concentrates on the ef-
fectiveness of the final form of the energy or force function.
It has recently been used for a new generation of coarse-
grained potentials that account for a simplified electrostatic
description of soluble proteins.55 Other important non-Ewald
electrostatics methods have been developed, including the
single sum technique,56 local molecular field theory,57 the
fast multipole method,58, 59 a fast multipole method combined
with a reaction field,60 the lattice-sum-emulated reaction-field
method,61 an image-charge reaction field method,62, 63 and a
model of electrostatic and liquid-structure forces.64

On the basis of the development of the ZC
principle,42, 65–71 the zero-dipole (ZD) summation method72

provides the energy derived by counting the interactions
for a neutralized subset regarding the dipoles as well as the
charges. This summation prevents the electrically non-neutral
dipole states that may artificially be generated by a simple
cutoff truncation, which often causes significant artifacts.
It has been applied to several systems,72–76 and provided
more accurate electrostatic energies than the ZC scheme.
A further developed scheme was proposed to reach more
accurate results. This scheme extends the viewpoint of the
summation over a neutralized subset in order to take into
account a multipole moment up to any order. The formalism,
named zero-multipole (ZM) method,77 gives a more accurate
pairwise sum expression of the excess energy, compared
with the ZD method, as long as the physical states admit the
description of the zero-multipole principle.

Aside from the potentiality on the computational cost,
a new CB method should be investigated in detail foremost
from the point of the accuracy. For the ZM method, gen-
eral theoretical discussions and a basic numerical consid-
eration on typical solid states were done in the previous
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paper.77 In this paper, we investigate the accuracy of the ZM
method applying to liquid states for two systems, which are
prototypic in molecular simulations. The first one is a sodium
chloride liquid (molten) system within a strongly-coupled
regime, where the Coulombic interaction governs the global
description of the system. The second system is a liquid
of pure water molecules, which are neutralized but polar
molecules, and provides the basis of the biomolecular sys-
tems. In these systems, we first examine the effect of both
the cutoff length and the damping parameter on the accuracy.
Second, we study the effect of the multipole moment l newly
provided by the current method. Furthermore, since such a
parameter-value dependence and a target-matter dependence
are not necessarily simply understandable in realistic applica-
tions, we provide a theoretical analysis of the error in the cur-
rent method. The error is divided into three components, and
the parameter dependencies are investigated for an individual
component. Utilizing the isotropic properties of liquid states
helps us to promote such theoretical analyses. These analyses
are also useful to seek a good assignment of the parameter
values.

In Sec. II A, we first briefly review the ZM summation
method. After discussing the background and a physical mo-
tivation of the method, we demonstrate technical points that
are required in Secs. III–V, on the emphasis of their physi-
cal interpretations. In particular, we state the notions of zero-
multipole state and show the excess energy representation via
a polynomial which is related to the excess energy error. In
Sec. II B, we currently propose a specific protocol for apply-
ing the ZM method to general molecular systems. In Sec. III,
the theoretical error analyses are performed with the assump-
tion of the isotropic condition of the target system that permits
a continuous density approximation. We analyze the three
components of the error and their parameter dependencies,
and reconsider the damping effect via the damping parame-
ter. Employing the numerical methods described in Sec. IV,
we show the results of MD simulations using the ZM schemes
applied to a molten NaCl ion system and a bulk water molecu-
lar system in Sec. V. Accuracies, stabilities, and applicability
of the method are discussed by investigating energy accura-
cies, conservation laws, and structural properties of the sys-
tems. The characteristic features of the method are analyzed
by clarifying the parameter dependencies on the basis of the
discussions in Sec. III and by comparing with conventional
methods. We conclude with remarks in Sec. VI.

II. ZERO-MULTIPOLE SUMMATION METHOD

A. Background and formula

Although the Coulombic interaction is long-ranged in
principle, as long as we consider a condensed phase such
as in realistic materials and biophysical environment, its ef-
fect is screened or hindered by the charge cancellation in
practice. In this point of view, the cutoff approach for eval-
uating the interactions is not wrong fundamentally. How-
ever, if one takes simply the straight-cutoff procedure, the
particle configuration inside this purely distance-judged cut-
off sphere does not capture such a charge-neutralized state

in general. This fact explains the observation such that
the straight cutoff often exhibits physical instability, causes
significant artifacts, and generates noise in evaluating the
energy.

Thus, the interactions should be counted for a certain
neutralized subset of charges as for individual particles, in-
stead of counting all the particles in a given cutoff sphere.
We consider that for equilibrated configurations observed in,
e.g., a physically stable system, neutrality of lth moment
multipoles, as well as charges (0th moment multipoles), is
attained (approximately) even in a local level, and this phys-
ical information should be taken into account to evaluate the
interactions.77 For such a state, a summation method that re-
flects this neutrality condition promises to provide a good
approximation to estimate the energy. In fact, in the ZD
method,72 which corresponds to the ZM method with the mul-
tipole moment of l = 1, its accuracy has been shown in ac-
tual numerical simulations for ion systems,72 a bulk water
system,73 a membrane protein system with explicit membrane
and solvent molecules and ions,74 and a double-stranded DNA
with explicit water and ions.75

The neutrality condition in the ZM method for N parti-
cles with charges (q1, . . . , qN) and configurations x ≡ (x1, . . . ,
xN) is specifically represented as follows: for any particle
i ∈ N ≡ {1, . . . , N}, there exists a neutralized subset M(l)

i

⊂ Ni ≡ N − {i} such that

∀j ∈ M(l)
i , rij < rc, (1a)

∑
j∈M(l)

i ∪{i}
qj = 0, (1b)

∑
j∈M(l)

i ∪{i}
qjxj = 0, (1c)

· · ·∑
j∈M(l)

i ∪{i}
qjxj ⊗ l. . . . ⊗ xj = 0, (1d)

∀j ∈ Ni − M(l)
i (rij < rc ⇒ rij � rc), (1e)

where rij ≡ ‖xij‖ is the distance of particles i and j (viz., xij

≡ xi − xj describes a 3-dimensional vector), and rc is the cut-
off length for the interactions. These conditions mean that:
(a) all particles in M(l)

i are inside the cutoff sphere; (b) the
sum of the charges in the neutralized subset adding the target
particle i, M(l)

i ∪ {i}, becomes zero [viz., the neutrality holds
on M(l)

i ∪ {i}, but for convenience, i is defined to be not in-
volved in M(l)

i ]; (c) the sum of the dipoles in M(l)
i ∪ {i} is

zero; the other conditions up to (d), which are represented by
higher order tensors, require the vanishing of mth multipoles
in M(l)

i ∪ {i} for m = 0, . . . , l [viz., the conditions of m = 0
and 1 correspond to conditions (1b) and (1c), respectively];
and (e) any particle (except i) not belonging to M(l)

i but in-
side the cutoff sphere are located near the cutoff surface (see
Fig. 1). We often refer to x as a (lth) ZM state.
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FIG. 1. The straight cutoff truncation takes into account all charges in a
given cutoff sphere with a radius rc centered about particle i. The current
zero-multipole summation method conceptually deals with the particles only
in the shaded region, which schematically represent the zero lth multipole
subset M(l)

i . The particles in the non-shaded region are the members of an

excess subset J (l)
i . Particle j at position xj is one of the members of J (l)

i ,

and displacement vector h
(i)
j is measured by the difference between xj and

its shifted position. The originally given displacement vector is h
(i)
0, j , and the

shifted position of xj, designated as x
(i)
j , is at the cutoff surface along the

vector xj − xi.

We calculate the total Coulombic energy E(x) as follows:

E(x) = 1

2

∑
i∈N

∑
j∈Ni

qiqj

rij

(2a)

= 1

2

∑
i∈N

∑
j∈Ni

qiqjV (rij )+ 1

2

∑
i∈N

∑
j∈Ni

qiqj

[
1

rij

−V (rij )

]

(2b)

≈ 1

2

∑
i∈N

∑
j∈M(l)

i

qiqjV (rij ) − α√
π

∑
i∈N

q2
i . (2c)

Here, for the decomposition in Eq. (2b) we have used

V (r) = erfc(αr)

r
, (3)

a Coulombic potential function with a damping factor
erfc(αr), complementary error function of αr, for which
α ≥ 0 [note V (r) = 1/r for α = 0, the non-damping case].
In the first term of Eq. (2c) we have utilized the strategy, i.e.,
the replacement

∑
j∈Ni

qjV (rij ) →
∑

j∈M(l)
i

qjV (rij ). (4)

Namely, the contributions that should be counted are those
from the ZM subset M(l)

i for every i. In other words, we as-
sume the approximation

∑
i∈N

∑
j∈Ni

qiqjV (rij ) ≈
∑
i∈N

∑
j∈M(l)

i

qiqjV (rij ). (5)

The second term of Eq. (2b) can be read as

1

2

∑
i∈N

∑
j∈Ni

qiqj

[
1

rij

− V (rij )

]
(6a)

= 1

2

∑
i∈N

∑
j∈N

qiqj

rij

erf(αrij ) − 1

2
lim
r→0

erf(αr)

r

∑
i∈N

q2
i (6b)

∼ − α√
π

∑
i∈N

q2
i for small α, (6c)

where we have used the fact that erf(αr) is decreasing as de-
creasing the value of α, so that the first term of Eq. (6b) can
be ignored for a small α. In fact, α = 0 yields Eq. (6c) to be
exact [viz., no-decomposition case in Eq. (2b)]. Our strategy
is to use a small value of α.

From Eqs. (1a) and (2c) we get

E(x) � 1

2

∑
i∈N

∑
j ∈ Ni

rij < rc

qiqjV (rij ) − Ê(l)(x) − α√
π

∑
i∈N

q2
i ,

(7)
where

Ê(l)(x) ≡ 1

2

∑
i∈N

∑
j∈J (l)

i

qiqjV (rij ), (8)

with J (l)
i ≡ {j ∈ Ni − M(l)

i | rij < rc}, noting that
∑

j∈M(l)
i

= ∑
j∈Ni , rij <rc

−∑
j∈J (l)

i
. We call J (l)

i an excess subset,
which generates a non-zero multipole inside a given cutoff
sphere. Here, Ê(l)(x) is an excess energy, which should be re-
moved from the energy that is evaluated on the simple cutoff
truncation.

Excess energy can be approximated by a simple form
with the accuracy of the lth degree with respect to displace-
ment vector h(i) = (h(i)

j ) (see Fig. 1), which can measure the

size (smallness) of the excess subset J (l)
i , for all individual

particles i. Namely, using condition (1) and a consistency con-
dition regarding J (l)

i ,77 we have

Ê(l) = Ĕ(l) + �(l), (9)

where

Ĕ(l)(x) = 1

2

∑
i∈N

∑
j∈J (l)

i

qiqjVl(rij ) (10a)

= 1

2

∑
i∈N

∑
j ∈ Ni

rij < rc

qiqjVl(rij ) + 1

2

∑
i∈N

q2
i a

(l)
0 (10b)

is the approximation, and

�(l) ≡
∑
i∈N

ui (11)

indicates the discrepancy described by the amplitude of the
displacement vector such that

ui(x
(i) + h(i)) = o(‖h(i)‖l) (h(i) → 0). (12)
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Here,

Vl(r) ≡
l∑

m=0

a(l)
m r2m (13)

is a polynomial of distance r with coefficients {a(l)
m } (see Ap-

pendix A for detail), which are determined so that the follow-
ing approximation of V by Vl at r ∼ rc is valid:

V (r) − Vl(r) = o
(|r − rc|l

)
(r → rc). (14)

The above formulae mean that the excess energy approxima-
tion becomes accurate as increasing l for a sufficiently small
h(i). Such a smallness is ensured by condition (1e). Under the
assumption that the replacement, Eq. (5), holds for a certain
moment l ≡ L, we expect a more accurate energy expression
for increasing l as long as l ≤ L. Note that the derivation of
Eq. (10b) is equivalent to deriving the relation such that the
contribution via the polynomial is zero on the union of {i}
and the neutralized subset, viz.,∑

i∈N

∑
j∈M(l)

i ∪{i}
qiqjVl(rij ) = 0, (15)

which is proved from the zero multipole conditions and
the consistency condition, as shown in Appendix C of
Ref. 77.

From Eqs. (7)–(13), we have an approximation to E(x),
represented as

E
(l)
ZM(x) ≡ 1

2

∑
i∈N

∑
j ∈ Ni

rij < rc

qiqj [V (rij ) − Vl(rij )]

−
[

a
(l)
0

2
+ α√

π

] ∑
i∈N

q2
i (16a)

= 1

2

∑
i∈N

∑
j ∈ Ni

rij < rc

qiqj [u(l)(rij ) − u(l)(rc)]

−1

2

[
u(l)(rc) + 2α√

π

] ∑
i∈N

q2
i , (16b)

where

u(l)(r) ≡ V (r) −
l∑

m=1

a(l)
m r2m (17)

[note V (rc) = Vl(rc), so a
(l)
0 = u(l)(rc); see Eq. (14)] and

its specific form is presented in Appendix A. Since u(0)(r)
= V (r) and u(1)(r) = V (r) − (DV (rc)/2rc)r2, the scheme
with l = 0 is equal to the method of Wolf et al.42 and that
with l = 1 is the ZD method.72

B. Application to general molecular system

For a classical molecular system, in general, we should
evaluate

E(NB)(x) ≡ 1

2

∑
i∈N

∑
j∈Ni−N B

i

qiqj

rij

(18a)

= 1

2

∑
i∈N

∑
j∈Ni

qiqj

rij

− 1

2

∑
i∈N

∑
j∈N B

i

qiqj

rij

, (18b)

where N B
i is the subset of particles that interact with par-

ticle i via bonding (bond, bend, torsion, etc.) interactions.
As discussed in detail in the ZD scheme,73 we apply the
ZM scheme, Eq. (16b), to the first term in Eq. (18b).
Thus,

E(NB)(x) � E
(NB)
ZM(l)(x) (19a)

≡ E
(l)
ZM(x) − 1

2

∑
i∈N

∑
j∈N B

i

qiqj

rij

(19b)

= 1

2

∑
i∈N

∑
j ∈ Ni

rij < rc

qiqj [u(l)(rij ) − u(l)(rc)]

− 1

2

∑
i∈N

∑
j∈N B

i

qiqj

1

rij

− 1

2

[
u(l)(rc)+ 2α√

π

]∑
i∈N

q2
i

(19c)

=
∑
i∈N

∑
j ∈ Ni − N B

i

rij < rc
i < j

qiqj [u(l)(rij ) − u(l)(rc)]

+
∑
i∈N

∑
j ∈ N B

i

i < j

qiqj

[
u(l)(rij ) − 1

rij

]

−u(l)(rc)
∑
i∈N

qi

⎛
⎜⎜⎜⎝qi

2
+

∑
j ∈ N B

i

i < j

qj

⎞
⎟⎟⎟⎠− α√

π

∑
i∈N

q2
i .

(19d)

Equation (19d) holds under a physically normal condi-
tion (i.e., state x satisfies ‖xij‖ < rc for every pair hav-
ing a bonding interaction) and may be convenient for
implementations.

The force acting on each atom i is given via the gradient
of the energy, as

− ∇iE
(NB)
ZM(l)(x)

=
∑

j ∈ Ni

rij < rc

qiqj e
(l)(rij )

xij

rij

−
∑
j∈N B

i

qiqj

r2
ij

xij

rij

∈ R3 (20a)
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=
∑

j ∈ Ni − N B
i

rij < rc

qiqj e
(l)(rij )

xij

rij

+
∑
j∈N B

i

qiqj

[
e(l)(rij ) − 1

r2
ij

]
xij

rij

(20b)

for l ≥ 1, where Eq. (20b) holds under the normal condition
stated for Eq. (19d). Here,

e(l)(r) ≡ −Du(l)(r) (21a)

= F (r) +
l∑

m=1

2ma(l)
m r2m−1 (21b)

with

F (r) ≡ −DV (r) = erfc(αr)

r2
+ 2α√

π

exp(−α2r2)

r
. (22)

Since e(l)(rij ) appears only as the form of e(l)(rij)/rij in
Eq. (20), in the implementation it may be convenient to use,
instead of e(l)(r), the form of

f (l)(r) ≡ e(l)(r)

r
= F (r)

r
+

l−1∑
m=0

2(m + 1)a(l)
m+1r

2m, (23)

for which the polynomial is represented via even powers of
distance r, likewise the pair potential function.

The first terms in Eqs. (19d) and (20b) take a usual non-
bonding pairwise-sum cutoff form with utilizing the pair func-
tion u(l)(r) − u(l)(rc), and the second terms in these equa-
tions are the bonding pairwise-sum form utilizing u(l)(r)
− 1/r. The remaining terms in Eq. (19d) can be evaluated
in advance for the simulation since it is irrelevant to con-
figuration x. Note that if we set N B

i to be an empty set [the
terms

∑
j∈N B

i
and

∑
j∈N B

i , i<j vanish] for every i, then each
equation in Eqs. (19) and (20) turns out to be the one for
a purely non-bonded system described in Sec. II A. Thus,
these equations can be seen as the equations for a general
system.

III. ANALYSIS OF THE ACCURACY: PARAMETER
DEPENDENCIES AND ERROR BOUNDS

The current ZM method includes three parameters, the
damping parameter α [length−1], cutoff length rc [length],
and the multipole moment l [no-dimension]. Below, we con-
sider the unit of the length to be angstrom. After the inves-
tigation of the parameter dependence of the energy function,
we analyze the error contained in the method. The error is
decomposed into three kinds: replacement by the ZM sum-
mation, Eq. (5); excess energy error defined by Eq. (9), �(l);
the error via neglecting the so-called Fourier term, repre-
sented as Eq. (6) [the first term of Eq. (6b) becomes the
Fourier reciprocal term in the traditional Ewald summation].
We investigate the dependence of individual errors on the
parameter values, in order to obtain the knowledge how we

can raise the accuracy and to analyze numerical results in
detail.

A. Parameter dependence of the energy function

The energy function, Eq. (16b), is completely determined
by a function

U (l) = u(l) − u(l)(rc) = V − Vl (24)

and the constant u(l)(rc) + 2α/
√

π , which depend on α, rc,
and l. Figure 2(a) shows the values of U (l)(r) ≡ U (l)(r; α, rc)
for several values of these parameters. We see that U (l) is de-
creasing function with increasing r and tends to zero at r = rc

for all the cases. Such a damping feature is far from the bare
Coulombic potential and emphasized as increasing α. Also
note that this damping of the potential by α is emphasized
as increasing rc. For example, in case of rc = 8, the value of
U (l)(r; α, rc) with α = 0.2 is slightly smaller than that with α

= 0, while in case of rc = 14, the value of U (l)(r; α, rc) with
α = 0.2 is one-order of the magnitude smaller than that with
α = 0. In addition, the damping is larger for a larger value of
l. Namely, if we consider a larger moment l, the value of the
potential function U (l) becomes smaller. Furthermore, the dif-
ference of the value between U (l)(r) and U (l+1)(r) is larger, as
α is small. In contrast, for a large α (e.g., �0.3) the difference
becomes very small (not shown) for a practical cutoff distance
region. The value of U (l)(r; α, rc) is increasing with respect to
rc [note the region of the horizontal axis in Fig. 2(a) is distinct
for each rc case].

The constant term u(l)(rc) + 2α/
√

π shows decreasing
behavior with increasing rc and increasing behavior with in-
creasing α and l [Fig. 2(b)]. These parameter dependencies
are the opposite to those for the function U (l) stated above,
and such a contrast should be sought for. The difference of the
constant term between l and l + 1 is larger, as α is smaller.

Thus, combined with the similar property of U (l), the total
difference among the ZM methods with individual l values is
larger as α is smaller. A small α complies with our assumption
and will be used in real applications. Thus, the investigation
of the difference resulting from the difference of the moment
should be important, and we will also discuss this issue in
numerical simulations in Sec. V. Note that the difference of
the α value dependence of the energy lessens as rc becomes
small: regarding the pair potential, it is an alternative expres-
sion of the enhancement of the damping by α with increasing
rc, as stated; regarding the constant term, it means a growth
of the plateau with decreasing rc, as seen in Fig. 2(b).

B. Excess energy: The origin of the damping effect

In this subsection we explain the damping effect in terms
of the excess energy accuracy. From Eq. (16a), the ZM energy
can be represented by

E
(l)
ZM(x) = 1

2

∑
i∈N

∑
j ∈ Ni

rij < rc

qiqj [V (rij ) − Vl(rij )] + const. (25)
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FIG. 2. (a) Pair potential functions in the ZM method with a cutoff length rc = 8 Å (left), rc = 12 Å (middle), and rc = 14 Å (right). Top three panels show
those with damping parameter α = 0 (Å−1), middle for α = 0.1 (Å−1), and bottom for α = 0.2 (Å−1). In each panel, four curves show the pair potential function
with l = 1, 2, 3, 4, from top to bottom, respectively. Notice that the right bottom panel (rc = 14, α = 0.2) uses an enlarged vertical-axis scale, compared with the
above two panels. (b) The dependence of the constant terms on damping parameter α in the ZM energy with a cutoff length rc = 8 Å (left), rc = 12 Å (middle),
and rc = 14 Å (right). In each panel, five curves show the constant terms: 2α/

√
π , u(l)(rc) + 2α/

√
π (l = 1, 2, 3, 4), from bottom to top, respectively.

While, the excess energy error is, from Eqs. (8)–(10a),

�exc(x) ≡ �(l)(x) (26a)

= Ê(l)(x) − Ĕ(l)(x) (26b)

= 1

2

∑
i∈N

∑
j∈J (l)

i

qiqj [V (rij ) − Vl(rij )]. (26c)

Namely, the pair potential function V − Vl defining the ZM
energy also describes the excess energy error defined on the
excess subsets. This fact has not been clarified before even for
the previous ZD scheme, and it is now clear by presenting a
systematic view in considering the current ZM method.

From Sec. III A we knew the behavior of U (l) = V − Vl

with respect to the parameters including α. In fact, as increas-
ing α, the value of U (l)(r) ≥ 0 is small [Fig. 2(a)]. This indi-
cates that if we use a large α then we can reduce the excess

energy error, and this correspondence can be interpreted as
the damping effect for the accuracy (by damping parameter
α). On the other hand, to investigate the dependence of this er-
ror on cutoff length rc, we should consider the following two
compensating factors. First, since the members in the excess
subset, J (l)

i , lie near the cutoff surface, the value of U (l)(r) at
r ∼ rc comes to an issue and is decreasing with increasing rc

[Fig. 2(a)]. Second, J (l)
i itself depends on rc, and its extent

would be, roughly speaking, proportional to r2
c .

To consider these factors, we provide an approximated
upper bound of the excess energy error. From Eq. (26), we
have

|�exc(x)| ≤ |q|2
2

∑
i∈N

Ei , (27a)

Ei ≡
∑

j∈J (l)
i

∣∣U (l)(rij )
∣∣ , (27b)
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FIG. 3. (a) The factor of the upper bound of the excess energy error, Eq. (28b), for several values of the parameters: damping parameter α, cutoff length rc, and
multipole moment l. (b) The factor of the upper bound of a part of the replacement error, Eq. (32b).

where |q| ≡ maxi∈N |qi |. As shown in Appendix B in detail, a
continuous density approximation for the particle distribution
leads Eq. (27) to

|�exc(x)| � 2πN |q|2 ρ0 W(α, rc, l, δ), (28a)

W(α, rc, l, δ) ≡
∫ rc

rc−δ

r2
∣∣U (l)(r; α, rc)

∣∣ dr. (28b)

Here, we have considered a spherical shell inside the cutoff
sphere with width δ to mimic the space containing the parti-
cles in the excess subset J (l)

i , and ρ0 represents an averaged

number density in this shell (ρ0 depends on rc in general).
The dependence of function U (l) on α, rc has been explicitly
denoted.

The dependencies of W(α, rc, l, δ) on parameters are
shown in Fig. 3(a). We see that the value of W is decreas-
ing as increasing rc and it is also decreasing as increasing α

or l. Obviously W(α, rc, l, δ) is an increasing function with
respect to δ (e.g., δ → 0 implies the vanishing of the excess
subset), for which we set δ = 1 in Fig. 3. Thus an approxi-
mated upper bound of the excess energy error is decreasing
with increasing the individual values of α, rc, and l.
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Despite limitations as stated in Appendix B, the estima-
tion of Eq. (28) is sufficient for our purpose. It is simple
enough to treat the error qualitatively and is universal due
to the independence of the system model. Since the absolute
value of the error fluctuates between the upper bound and zero
(we actually analyze the absolute error values in Sec. V), the
upper bound governs the global or averaged behaviors of the
absolute error, and its approximation is useful to give a rough
estimation of both the error itself and the dependencies on the
parameters. Thus, we shall use the most simple estimation,
Eq. (28), for analyzing numerical results.

Now, the above results suggest that the excess energy er-
ror is approximately decreasing with increasing rc or l, and
also supports the consideration at the beginning of this sub-
section such that the excess energy error is decreasing with
increasing α. Furthermore, they conform to the results of the
analytic expression, Eqs. (9), (11), and (12), regarding the de-
creasing property for �exc(x) with respect to l. However, note
that this dependence on l is wholly effective in the total ac-
curacy if the states admit moment L [viz., the ZM condition
(1) with moment L, as stated in Sec. II A] and if the theo-
retical moment l is smaller than or equal to the state moment
L. Under this condition the total accuracy improvement with
increasing l can be interpreted as the enhancement of the ex-
pressiveness of the Lth ZM state x in a given system via refin-
ing condition (1) such that it honestly describes the intrinsic
neutralized subset. On the other hand, if l is larger than L,
the other kind of the error may become principal, and the im-
provement of the excess energy error with increasing l may
not become wholly effective. This error, originated from the
validity of the condition l ≤ L, is classified into the replace-
ment error, which is described below.

C. Replacement via the neutralized subset

One of the remaining two approximations concerns the
replacement by the ZM summation, Eq. (5). The possible er-
ror can be represented as follows:

�rep(x) ≡ 1

2

∑
i∈N

∑
j∈Ni

qiqjV (rij ) − 1

2

∑
i∈N

∑
j∈M(l)

i

qiqjV (rij )

(29a)

= �cut(x) + �rem(x), (29b)

where

�cut(x) ≡ 1

2

∑
i∈N

∑
j ∈ Ni

rij ≥ rc

qiqjV (rij ), (30a)

�rem(x) ≡ 1

2

∑
i∈N

∑
j∈J (l)

i

qiqjV (rij ). (30b)

Equation (30a), �cut(x), is the error caused from the sim-
ple truncation of V at the cutoff length rc. In general, as
increasing rc, this tends to be small, where it often shows os-
cillating and slow convergent-like behavior. In fact, as indi-

cated in Ref. 42, the large-amplitude oscillating behavior was
observed in the non-damped case. Equation (30b), �rem(x),
is obtained by subtracting the neutralized sum from the sim-
ple cutoff sum. Although the quantity �rem(x) is formally
classified into an “error,” its signature is converse to that of
�cut(x) in most cases, so it should work as a compensating
(cancelling) factor to the first term.

Parameter dependency of each term can be roughly seen
from the behavior of its upper bound. Since

|�cut(x)| ≤ |q|2
2

∑
i∈N

∑
j ∈ Ni

rij ≥ rc

V (rij ), (31)

the upper bound of �cut(x) is clearly decreasing with increas-
ing the cutoff length rc or the damping parameter α. For
�rem(x), using a similar manner to that of the excess energy
in Sec. III B, we have

|�rem(x)| � 2πN |q|2 ρ0 G(α, rc, δ), (32a)

G(α, rc, δ) ≡
∫ rc

rc−δ

r2V (r; α)dr. (32b)

Figure 3(b) shows that G is decreasing with increasing α and
it is decreasing with increasing rc except α = 0, which be-
comes a special case. These results suggest that the replace-
ment error is composed of two compensating factors and that
the absolute values of the individual factor become small as
rc increases or α increases. Thus, the replacement error in-
clines to be small with increasing rc or α. In particular, the
replacement-error reduction with increasing α implies that the
parameter α exerts the damping effect on the replacement er-
ror, as well as the excess energy error.

The dependence of �rep(x) on multipole moment l is con-
sidered through J (l)

i . In the specific case that the states are
zero Lth moment states, the replacement by the ZM summa-
tion is irrelevant to l, as long as l ≤ L. This is because M(L)

i

can be used instead of M(l)
i , due to the fact that M(L)

i ⊂ M(l)
i

[see Eq. (1)] and that the resulting energy formula is irrele-
vant to the choice of the specificity of the neutralized subset
[see Eq. (16)]. Namely, J (L)

i can be used, instead of J (l)
i , for

l ≤ L in Eq. (30b). Since �rem(x) is thus irrelevant to l and
since �cut(x) is clearly independent of l, the irrelevance of the
replacement error follows. In contrast, if l > L, the cancel-
lation between �rem(x) and �cut(x) would not be sufficient.
Note that the validity of this assumption, viz., the most ap-
propriate moment L exist, should be evaluated in individual
cases. Our previous studies showed, for a sufficiently equi-
librated, disordered system, or even for ordered crystal sys-
tems, that l = 1 describes the states better than l = 0, indicat-
ing that such systems obey L ≥ 1. In Sec. V, we will examine
these issues in specific systems.

D. Long-ranged Fourier term

The remaining approximation is neglecting the first term
of Eq. (6b), �Fou(x) ≡ 1

2

∑
i, j∈N

qiqj

rij
erf(αrij). Obviously this
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is irrelevant to rc and l. From the fact that

|�Fou(x)| ≤ |q|2
2

∑
i∈N

∑
j∈N

erf(αrij )

rij

(33)

and from the increasing feature of erf(αr) with increasing α,
this kind of error would become large as α increases. Thus,
the existence of this error becomes the compensating factors
to the damping effect, which is demonstrated for both the ex-
cess energy error and the replacement error. The damping ef-
fect will become negligible by increasing the cutoff length,
which will be discussed again in Sec. V. On the other hand,
�Fou(x) decreases with small α values, and it completely van-
ishes when we use α = 0.73, 74 Note that more specific analy-
ses for this kind of the error were done in detail in Ref. 42.

E. Summary with remarks

An upper bound (not necessarily the supremum) of each
of the three kinds of the energy error was discussed. The error
bounds should govern the global behavior of individual errors.
For �exc(x) and �rem(x), we have assumed the continuity and
isotropy regarding the excess subset, which are plausible for
bulk liquids and should be useful to study liquid systems in
Secs. IV and V.

The parameter dependencies of the estimated upper
bounds of the individual errors are shown in Table I. Here
we assume l ≤ L with L being the moment of the system.
Characteristic features are as follows:

(i) The behavior of the excess energy error and that of the
replacement error are similar, but is different with respect
to the l dependence.

(ii) For the dependence on rc, we see that each error is de-
creasing or irrelevant. This cooperative (non compensa-
tional) feature also applies to the dependence on l. Only
α generates the compensations, i.e., decreasing with re-
spect to both the excess energy error and the replacement
error (these properties form the damping effect) but in-
creasing with respect to the Fourier term error.

The error analysis of the energy based on the formula,
Eq. (16), discussed thus far is for non-bonded systems, but it

TABLE I. Parameter dependencies of the upper bounds of the individual
three kinds of the energy errors in the ZM method: the replacement er-
ror (“Rep.”), the excess-energy error (“Exc.”), and the Fourier-term error
(“Fou.”). The parameters are the cutoff length rc, the damping parameter α,
and the multipole moment l. For example, for the column of parameter rc, the
upper bound of Rep. is decreasing with increasing rc, that of Exc. is decreas-
ing with increasing rc, and that of Fou. is irrelevant to rc. The dependency
of each upper bound leads to a rough estimation of the dependency of the
corresponding energy error on the parameters.

Error rc α l

Rep. Decreasinga Decreasing Irrelevantb

Exc. Decreasinga Decreasing Decreasing
Fou. Irrelevant Increasing Irrelevant

aIt does not necessarily mean a monotonic decreasing, due to the reflection of the struc-
ture factor.
bWe assume l ≤ L with L being the moment of the system.

also applies for general molecular systems. This is because
the energy formula, Eq. (19), for the latter systems differs
from that of the former systems only in the second term of
Eq. (19b) or that of Eq. (19c), which can be exactly evalu-
ated. This is essentially the same for Eq. (19d), which was
used in our numerical investigations.

IV. SIMULATION METHOD

The specific performance of the current method is dis-
cussed via numerical investigations by MD simulations on a
NaCl liquid system and a bulk liquid water system.

A. NaCl

We examined a three-dimensional bulk NaCl system
composed of 2304 ions (pure ion system including no
other material such as water molecules) obeying the Born–
Mayer–Huggins (BMH) potential.78 After an equilibration
run with the isotropic NTP (constant temperature and pres-
sure) MD simulation at temperature of 1100 K and pressure of
P = 1 atm, which correspond to a liquid phase, we started two
kinds of MD simulations via the myPresto program.79

The first one was a 1 ns NT V (constant temperature)
simulation at temperature of 1100 K, using the smooth par-
ticle mesh Ewald (PME) method80 for calculating the electro-
static interactions. This was done to sample the particle con-
figurations for investigating the accuracy of the ZM methods.
The energy error at the obtained configuration x was estimated
through the difference between the current Coulombic energy
E

(l)
ZM(x) and the reference Coulombic energy E(x), which was

evaluated by the Ewald method,4 and we averaged the error
ratio over nx = 1000 configurations, as

�ZM(l) ≡ 1

nx

∑
x

∣∣E(l)
ZM(x) − E(x)

∣∣/|E(x)|. (34)

For the multipole moment, we used l = 2, 3, 4, which corre-
spond to the methods for the zero-quadrupole, zero-octupole,
and zero-hexadecapole, respectively. We also used l = 1,
which corresponds to the ZD method. In both the Ewald and
PME methods, the damping parameter was 0.35 Å−1 and the
cutoff length of the real part evaluation was 12 Å.

Another kind of simulation was a 1 ns NV E (constant
energy) simulation using the ZM method for calculating the
electrostatic interactions. This was done to investigate the
stabilities of the MD simulations with employing the ZM
method, using the standard velocity Verlet integrator with the
time step of 2 fs. We investigated the total-energy conserva-
tions regarding the ZM methods with l = 1, 2, 3, 4 and α

= 0.1 and 0 Å−1. Initial temperatures for all the cases were
set to be 1100 K. Cutoff length was 12 Å for the BMH po-
tential energy including the Coulombic energy, and a simple
straight truncation was used for the attractive and repulsive
terms of the BMH function except the Coulombic term.

B. Water

A bulk water system of 4178 molecules of a simple
TIP3P model81 was studied. Similar to the NaCl case, an
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equilibration MD run under the isotropic NTP ensemble with
the temperature of T = 300 K and the pressure of P = 1 atm
was preliminary, and two kinds of MD simulations were
performed.

The first one was a 2 ns NT V MD simulation with em-
ploying the PME method (α = 0.35 Å−1, rc = 12 Å) at T
= 300 K to sample the configurations for investigating the ac-
curacy of the current ZM method. The energy accuracy was
evaluated by

�
(NB)
ZM(l) ≡ 1

nx

∑
x

∣∣E(NB)
ZM(l)(x) − E(NB)(x)

∣∣/|E(NB)(x)|, (35)

using Eq. (19d) for the ZM methods with multipole moments
l = 1, 2 and using Eq. (18b) for the reference energy evaluated
by the Ewald method. Here, nx = 1000 configurations were
sampled at every 1 ps during the last 1 ns.

The second one was a 2 ns NT V MD simulation at
T = 300 K using the ZM method with l = 2 to cal-
culate the radial distribution function (RDF) as a struc-
tural property of this water system. The parameters were α

= 0.06 Å−1 and rc = 12 Å. The RDF, gZM(r), with re-
spect to the distance, r, of two oxygen atoms were evalu-
ated. With the same protocol, we calculated the RDF using
the PME method (α = 0.35 Å−1, rc = 12 Å), gPME(r), and
measured the discrepancies between the methods via a ra-
tio, �gZM(r) ≡ |gZM(r) − gPME(r)| / |gPME(r)|. For compari-
son, we also calculated similarly the RDF by a MD simulation
using the force-switching (FSw-)Wolf ZC method70 with pa-
rameters α = 0.14 Å−1 and rc = 12 Å [gZC(r)], and that using
the ZD method72 with α = 0.06 Å−1 and rc = 12 Å [gZD(r)],
where these parameters showed good efficiencies in the pre-
vious studies.73 Discrepancies between these methods and the
PME method were also measured similarly via �gZC(r) and
�gZD(r), respectively.

The SHAKE algorithm was used to maintain the shape
of the TIP3P molecule. We used the atom-based cutoff mode
with rc = 12 Å for both the electrostatic and vdW interac-
tions. The importance of the atom-based mode was discussed
in Refs. 13 and 73.

V. RESULTS AND DISCUSSIONS

A. NaCl liquid

1. Energy accuracy

Figure 4 shows the electrostatic energy errors calculated
by the ZM summation methods with several values of the
damping parameter α, cutoff length rc, and moment l. Al-
though associated with oscillations, the errors were lower
on average for a larger cutoff length, and sufficient accura-
cies were attained at practical cutoff distances, e.g., 11–16 Å.
For example, the error for α = 0.14 was sufficiently small
(0.023%) at a short cutoff length of rc = 11 Å under the mo-
ment of l = 2; while for l = 3, the error with no-damping
case (α = 0) is ∼0.008% at rc = 12.5 Å. Apart from the de-
tailed differences provided by the difference of the value of
the parameters, we see that the accuracy is better for a larger
value of moment l up to l � 3, on average. The errors for
l = 1 are less than 0.1% if we take rc > 13 Å, those for

10-5

10-4

10-3

10-2

10-5

10-4

10-3

10-2

10-5

10-4

10-3

10-2

10 12 14 16 18
10-5

10-4

10-3

10-2

(a) l = 1

E
ne

rg
y 

er
ro

r 
ra

ti
o

α = 0.14

α = 0.10

α = 0.06

α = 0

(b) l = 2

E
ne

rg
y 

er
ro

r 
ra

ti
o

(c) l = 3

E
ne

rg
y 

er
ro

r 
ra

ti
o

(d) l = 4

E
ne

rg
y 

er
ro

r 
ra

ti
o

r
c

FIG. 4. The error ratio of the electrostatic energy of the ZM summation
method, �ZM(l) [Eq. (34)], using the reference energy obtained by the Ewald
method, in the molten NaCl ion system. l = 1 corresponds to the ZD method;
l = 2, 3, 4 corresponds to the current method for the zero-quadrupole, zero-
octupole, and zero-hexadecapole, respectively. The parameter rc (Å) indi-
cates the cutoff length and α (Å−1) the damping parameter.
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l = 2 attain this accuracy at rc > 10 Å, and those for l = 3,
4 attains this for all rc values we simulated. Although the
oscillations are reduced, the error for l = 4, compared with
that for l = 3, seems to be similar, or larger at certain rc re-
gions according to the oscillating behavior for l = 3. This
should be due to that many states {x} were the states described
well with the third moment, as will be demonstrated below in
detail.

In what follows, the dependence of the error on the val-
ues of parameters will be analyzed in detail. At first glance,
the behavior of the energy error curve for, e.g., l = 2, seems
to be complicated and peculiar, compared with those for other
ls. Including this issue, in order to understand the total behav-
iors, we analyze them with two specific viewpoints, crossing
and oscillation, of the error curves. These viewpoints, as well
as the theoretical analyses discussed in Sec. III, enable us to
provide a unified interpretation of the parameter dependencies
of the error.

a. Error curve crossing. For a small l, typically as seen in
the case of l = 1 in Fig. 4, larger the value of α, the energy
error is smaller. In fact, the damping effect in the ZC method
is important to attain the high accuracy.42, 72, 73 However, this
feature does not necessarily hold for a higher l. In fact, for
l = 3, 4, totally opposite behavior is observed: the energy error
is smaller as the value of α is small. While, for a mid range of
l, viz., l = 2, a mixed behavior, i.e., crossing between the error
curves with different α values, is observed: the energy error
for a larger value of α is smaller at a small rc and the error for
a smaller value of α is smaller at a large rc. Such crossings are
explicitly observed, e.g., for l = 2 at a cutoff length rc

∼= 13 Å
among α = 0.14 and α < 0.14, and also for l = 1 at rc∼= 15 Å between α = 0.14 and 0.1. In fact, these crossings
should not simply be the “mixed” behavior, but will lead to a
unified picture. Namely, the crossing will occur for all l, but it
will be observed at a very large rc for a small l and observed at
a very small rc for a large l (�3). The phenomena of the cross-
ing itself is originated from the dependency of the accuracy of
the method on parameters α and rc, and it is affected by the
moment l. The reason for the crossing and its dependence on
l will be clarified below, which is also important to attain the
efficiency via an appropriate choice of the parameter values.

The reason why the crossing between the curves with
different α values occurs at each moment l is due to two
factors. As discussed in Secs. III B and III C, the replace-
ment error �rep(x) and the excess energy error �exc(x) are
smaller for a larger rc. In addition, as α increases, these er-
rors are smaller, which is interpreted as the damping effect.
On the basis of these findings, first, imagine two energy error
curves that reflect only �rep(x) and �exc(x) [viz., not involve
�Fou(x)], where the one curve is with a small α and the other
with a large α. Then, the curve with a large α is positioned
under the curve with a small α, in most region of rc. This is
due to the damping effect and the finding in Sec. III A such
that the α-value dependence of the energy function, and thus
that of the error, lessen as rc becomes small. Second, consider
the remaining factor, �Fou(x), which is due to ignoring the
Fourier term. This error is larger as α is larger, and it is irrele-

vant to rc (Sec. III D), so remaining even at an arbitrary large
rc, in contrast to �rep(x) and �exc(x). Now, when we add the
contribution of �Fou(x) into the individual two curves consid-
ered above (viz., all the errors are included), the curve with
a large α is shifted upward with a larger amount, compared
with that with a small α. At the same time we should aware
that the curves are bounded from below, since they represent
the absolute values of the error. Thus crossing occurs even in
a moderate rc region. Namely, the difference of the parameter
dependencies between �rep(x) + �exc(x) and �Fou(x) brings
the observed error-curve crossing.

We then consider the reason for the faster crossing (viz.,
the crossing at a smaller rc) observed in a larger moment l,
under the assumption that many states are zero Lth moment
states, where L ∼ 3 in the current case. First, we shall state
that the energy accuracy is higher as increasing l until l ≤ L.
From the discussion in Sec. III, we see that the error rele-
vant to moment l is only the excess energy, and the other
two errors are almost irrelevant to l as long as l ≤ L, un-
der the above assumption. We also see that the degree of the
approximation of the excess energy is higher as l becomes
larger. This is the reason why the total accuracy is superior
as l (≤ L) increases. Second, we shall point out that this en-
ergy accuracy refinement with respect to increasing l should
be better for a smaller value of α. To explain this feature, we
note that the energy difference between l and l + 1 is larger as
α value decreases. As stated in Sec. III A, this can be clearly
confirmed by the difference of the pair potential function and
the difference of the constant term in the energy expression,
where both differences are larger as the value of α decreases.
Therefore, the accuracy of the energy with l + 1 should be
higher than that with l as α becomes small (as long as l + 1
≤ L). This explains the reason for the faster crossing for a
higher moment l. Namely, imagine the curves with αS and
that with αL, for which αS < αL and the both of them are ob-
tained by using the same moment l, and imagine that they are
crossing, viz., the curve with αS is above that with αL for a
small rc and vice versa for a large rc. Also imagine other two
curves having αS and αL, respectively, but having moment
l + 1. Then, from the above reason, the curve with αS and
l + 1 should be positioned greatly lower compared with the
curve with αS and l, since αS is relatively small; in contrast,
the curve with αL and l + 1 be slightly lower compared with
the curve with αL and l, since αL is relatively large. There-
fore, the cutoff length rc at which the crossing occurs becomes
smaller for l + 1, compared with that for l. This is the reason
of the fast crossing for a larger moment l.

b. Oscillation. We observe the oscillations in energy er-
ror curves with respect to a cutoff length. We see that this
phenomena is relevant to the method for calculating the elec-
trostatic interaction (viz., it depends on the value of the mul-
tipole moment l, implying distinctive method), and we will
see in Sec. IV B that this phenomena is also relevant to the
physical system.

We first consider the origin of the oscillation. We note
that the system should have a certain configurational struc-
ture, which is typically represented by the RDF. In Fig. 5 we
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FIG. 5. Radial distribution function [horizontal axis shows the distance of
two oxygen atoms, r (Å)] obtained by the PME method, and the energy errors
[horizontal axis shows the cutoff radius rc (Å)] obtained by the ZM method
[α (Å−1) = 0.06] with moment l = 1, 2, 3, in the molten NaCl ion system.

exhibit the RDF in a tail region, 10 Å ≤ r ≤ 18 Å, obtained
by the PME method, and observe the oscillations with the pe-
riod of about 1–2 Å. In fact, in the strongly-coupled regime
(corresponding to the melt), a single radial charge-distribution
function is oscillating82, 83 with respect to distance r between
two ions, and the oscillation in this function concerns with the
difference between the two ion sizes, the bare-ionic-strength
parameter (the charge value, the ion density, and the temper-
ature), and the boundary conditions. In Fig. 5 we also exhibit
the energy errors of the ZM methods with l = 1, 2, 3 using a
typical parameter value, i.e., α = 0.06. This implies a coher-
ence or relevance between the energy error oscillations and
the RDF oscillation. We try to explain this issue by using the
error analyses in Sec. III. Suppose simply an isotropic situa-
tion and consider a certain cutoff sphere of an arbitrarily fixed
particle. When we choose the value of the cutoff length rc to
be near the distance at which the particle density, ρ0, is high,
the number of the members in the excess subset J (l)

i becomes
relatively large, since such a member should be near the sur-
face. Thus, as well as Eq. (26), Eq. (28a) suggests that the
excess energy error �exc(x) becomes large at this cutoff
length, and this mechanism would induce the error oscillation.
Similar discussion also applies to the term �rem(x) in the re-
placement error, as seen from Eq. (32a). Likewise, for �cut(x)
[Eq. (30a)], its value tends to be large near this cutoff length,
although a certain phase shift between �exc(x) + �rem(x) and
�cut(x) should be considered since �cut(x) concerns the out-
side of the cutoff surface and �exc(x) + �rem(x) concerns the
inside of the cutoff surface. The remaining error, �Fou(x), is
irrelevant to this issue, since this error does not concern with
the choice of the value of rc. Note that a slightly more analytic
explanation is possible regarding the excess energy error. That
is, due to the enlargement of J (l)

i stated above, the number
of the nonzero components of initial displacement vector h

(i)
0

increases, which enlarges ‖h(i)
0 ‖. Thus, the excess energy er-

ror �exc(x) = �(l)(x), described by Eqs. (9), (11), and (12),
inclines to be large.

We can proceed to explain the fact that the amplitude of
the oscillation is smaller as increasing the value of moment
l. In Sec. III, we have seen that the error component that is

strongly relevant to moment l is only the excess energy error,
and that the excess energy error has a decreasing tendency
with increasing a moment l. Thus, if we raise the value of l
then the accuracy of the excess energy with choosing rc at
which the member density of J (l)

i is high should be princi-
pally improved. In fact, if we suppose that ρ0 ≡ ρ0(rc) is os-
cillating with respect to rc in Eq. (28a) [or else, density ρ

(β)
i (r)

in Eq. (B2) is oscillating with respect to r], then the oscilla-
tion of �exc(x) would be originated from that of ρ0(rc), and
the amplitude of the �exc(x) oscillation should be more sup-
pressed as increasing l because W is decreasing with increas-
ing l (as seen in Fig. 3(a)).

Nevertheless, we should point out that the above con-
sideration that connects with the structural feature and the
energy accuracy is still incomplete. In fact, we should ex-
plain the relations of, not only the period and amplitude of
the oscillation, but also the phase of the oscillation, between
the error and the RDF. The phase shift between �cut(x) and
�exc(x) + �rem(x) has been stated above, and the value of this
shift is allowed to depend on moment l, since the latter, espe-
cially �exc(x), depends on l [U (l)(r) is used in �exc(x) but
V (r) is used in �rem(x)]. This may be the origin of the ob-
served phase-difference on l, while more explicit discussions
will be required. Regarding the charge cancellation, it would
give a finer conclusion by considering the radial charge dis-
tribution function, rather than just the RDF. However, in any
case, the behavior of the oscillation and its dependence on
the method—a multipole moment—, especially for the am-
plitude, were evidenced in numerical simulations for the first
time.

2. Stability

Conservation of the total energy (total potential energy
plus the total kinetic energy) in NV E MD simulation with
the ZM method was studied to investigate the stability in inte-
grating the MD equations of motion. We set the cutoff length
of rc = 12 Å, which is in a practical region, and damping pa-
rameter of α = 0.1 Å−1, which showed an average behavior
in the energy errors (Fig. 4). As seen from Fig. 6, the con-
servations were good enough for these damped cases using α

= 0.1, in spite of the fact that the BMH potential, except the
Coulombic terms, was straight cut off at the same cutoff dis-
tance. In fact, the standard deviations of the trajectories were
0.183, 0.139, 0.135, 0.135 kcal/mol for the ZM methods with
the moment l = 1, 2, 3, 4, respectively. For a larger l, the
pair potential function is more damped near the cutoff dis-
tance [see Fig. 2(a)], which fact leads to the stability and con-
forms with these simulation results. Another reason of the rel-
atively large deviation in the case of the lowest moment, l = 1,
might be due to the average temperature of the system, which
were almost 1100 K (liquid phase) for l = 2, 3, 4, and even-
tually 1130 K for l = 1. The non-damped cases, viz., using
α = 0, also showed similar behaviors and sufficient conser-
vations for all these l values (not shown). Their standard de-
viations were 0.188, 0.137, 0.137, 0.134 kcal/mol for l = 1,
2, 3, 4, respectively. Although the damping strength of the
function becomes weaker as decreasing α [Fig. 2(a)], the re-
sults of the minimum value, α = 0, gave the similar stability
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FIG. 6. Total-energy trajectories of the NV E MD simulation for the molten
NaCl ion system, using the velocity-Verlet integrator with a 2 fs timestep. The
electrostatic interaction was calculated by the ZM summation method with
l = 1, 2, 3, 4 (from bottom to top), using the cutoff length of rc = 12 Å and
the damping parameter value of α (Å−1) = 0.1. The vertical axis shows the
difference (kcal/mol) of the total energy between the instantaneous value and
the time-averaged value, where the individual trajectories are shifted with
2 kcal/mol for every moment l for clarity.

with those of α = 0.1. This means that the pair potential func-
tion is well designed to ensure the stability in integrating the
equations.

In principle, these energy conservations are yielded by
a sufficient smoothness of the potential function. However,
this is not necessarily trivial,84, 85 as seen in the fast multipole
method,58 which utilizes the hierarchy of meshes to approxi-
mate the particle positions. In addition to the smoothness, an
atom-based cutoff mode86 is also critical in the CB method,73

and a pairwise expression of the potential energy is yet useful.
In fact, these three issues also ensure the conservation of the
total momentum P and the conservation of the center of mass
when P = 0 initially, typically in NV E simulations. These
conservations are yielded by the vanishing of the total force,
and it is indeed zero in the ZM method. The pairwise expres-
sion is not only simple but important to lead to this vanishing,
since it ensures the translational invariance of the potential
energy function. This kind of stability is also not necessarily
trivial,87 as seen in the PME method, which utilizes the grid
to capture the function.

B. Bulk water

1. Energy accuracy

Regarding the water system, Fig. 7 shows the results of
the energy errors for the ZM methods utilizing the scheme
described in Sec. II B. Similar to the NaCl case, the errors
decreased with increasing cutoff distance rc and became suf-
ficiently small in a practical distance region. In addition, the
error curves of the ZM method with l = 2 are smoother than
those with l = 1.
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FIG. 7. The error ratio of the electrostatic energy for the ZM summation
method, �

(NB)
ZM(l) [Eq. (35)], using the reference energy obtained by the Ewald

method, in the TIP3P bulk water system. (a) shows the errors of the ZM
summation method of moment l = 1 and (b) that of l = 2. The parameters
rc (Å) and α (Å−1) indicate the cutoff length and the damping parameter,
respectively.

However, we should point out three points that are dis-
tinguishable from the NaCl case. The first one is the α

dependence: as α is smaller, the errors are smaller, in a prac-
tical rc range shown in Fig. 7. Although this seems to be to-
tally different from that of the NaCl system, this is not the
qualitative difference but a quantitative difference. Namely,
in contrast to the NaCl system, as discussed in Ref. 73, the
error crossings in the water system occurs at a smaller rc less
than 10 Å (out of the practical range), and in a practical cut-
off range we just observe the behavior after the crossing. This
fast crossing is due to the fast convergence attained in the wa-
ter system. Such a fast convergence can be accounted for by
the randomness or mobility provided by the water molecule
system, for which the randomness must supply a more flexi-
ble configurational combination so as to enlarge a neutralized
subset, viz., reduce an excess subset J (l)

i , relative to the cut-
off sphere. Then �exc(x) and �rem(x) should become small.
On the other hand, for small α values, we assume that global
quantities �cut(x) and �Fou(x) are almost unchanged, or con-
sider that the α dependencies of these two quantities are al-
most unchanged. Thus the total error tends to be small, es-
pecially for a small rc, but the tendency is suppressed for a
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large rc, since the convergent value is similar due to the re-
maining of �Fou(x). This mechanism would induce the fast
convergence, resulting in the fast crossing of the error curves.
Regarding the effect of reducing J (l)

i , relatively small sizes of
the atomic radii in individual water molecules (the vdW ra-
dius of the hydrogen and that of the oxygen), compared with
that in the ion system (the ionic radius of chlorine is especially
large), may also contribute, since a small radius of j results in
small ‖h(i)

0, j‖ for each j ∈ J (l)
i [or it corresponds to lessen δ

in W(α, rc, l, δ) in Eq. (28b)].
The second distinguishable point is that the oscillation

amplitude is very small compared with the NaCl case. One
possible reason is that a prominent characteristic structure
does not appear in a radial direction with a far distance in
the water system (e.g., at the distance larger than 12 Å; see
also Sec. V B 2), in contrast to the NaCl liquid system. An-
other possible reason is that the oscillation, which should
be originated from the enlargement of �exc(x), �rem(x), and
�cut(x) as stated in Sec. V A 1 b, is diminished by the de-
crease of �exc(x) and �rem(x) in the water system, where
these two errors are defined on J (l)

i and the reduction of
J (l)

i has been suggested from the two mechanisms discussed
above.

The third point is that the energy accuracy for a higher
moment method, l = 2 in the current case, is similar or slightly
lower (for small α and rc) than that for l = 1 in the water
system. This can be understood that the zero-quadrupole (or a
more higher) moment assumption is not necessarily suitable
in the water case, in contrast to the NaCl case. On the basis
of this observation and the fact that the accuracy for l = 1 is
superior than that for l = 0,73 the description with the zero
dipole seems to be the most appropriate in the current water
system, viz., L ∼ 1.

Recall that the explanations so far to interpret the numer-
ical results obtained by the ZM scheme require the assump-
tion, l ≤ L, in most cases. Namely, the moment l of the utilized
method should be less than or equal to L, where sufficiently
many states in concern are assumed to be well described by
the zero Lth moment. For example, the interpretation of the
faster crossing behavior of the error curves for a higher mo-
ment observed in the NaCl case cannot be applied to the cur-
rent water case. In fact, such a behavior was not observed in
the water system if we compare the results between l = 1 and
l = 2. However, the interpretation applies to l = 0 and l = 1,
since they are ≤L, and in fact the faster crossings in l = 1 than
that in l = 0 were observed.73

Finally we note that these results do not necessarily mean
that the ZM scheme with l = 2 is inferior to that with l = 1.
This is because the values of the energy error themselves in
the scheme with l = 2 are sufficiently small to be acceptable.
In addition, the static property was fairly well described in the
scheme with l = 2 than those with l < 2, as discussed below.

2. Static property: RDF

Figure 8 shows the RDFs of the water system, obtained
by the PME method and by the ZM method with l = 1 and
l = 2. For comparison, we show the results of the FSw-Wolf
ZC method, which was used to stably conduct the MD simu-
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FIG. 8. RDFs (no dimension) with respect to the distance of two oxy-
gen atoms, r (Å), for the TIP3P water molecule system, obtained by the
PME method, the FSw-Wolf ZC method, the ZD method (ZM method with
l = 1), and the ZQ method (ZM method with l = 2). The cutoff lengths were
rc = 12 Å for all the methods. The top four curves show the values of RDFs
(left vertical axis) by the individual methods (ZQ and PME overlap). The
inset shows the RDFs in a whole distance region. Three dashed curves show
the discrepancies (the right vertical axis) from the PME, viz., the ratios �gZC,
�gZD, and �gZM. For comparison, the energy error ratios of the ZD method
[α (Å−1) = 0.06] (as in Fig. 7) are also indicated (right vertical axis), where
the horizontal axis should be read as the cutoff length (Å).

lation with the method corresponding to the l = 0 scheme70

(note the FSw-Wolf method is not equivalent to the l = 0 ZM
scheme but accommodates to it). As seen in the inset, over-
all the distance range, the structures obtained by the PME
method are captured by the ZM methods. Here, we concen-
trated on the tail region of the RDFs as emphasized in the
figure, because the previous study73 reveals that the differ-
ences from the PME remain near the cutoff length in the ZD
method (i.e., the l = 1 case).8 In fact, although better than the
ZC scheme, the error in the ZD method is oscillating around
the cutoff length of rc = 12 Å with the maximum amplitude
of about 2%. In contrast, the error in the ZM method with l
= 2 was smaller by nearly one-order of magnitude than that
with l = 1 (the differences of the solid curves between the
l = 2 ZM and the PME are invisible in the figure).

This improved accuracy would be a consequence of the
increased smoothness of the l = 2 scheme potential function,
compared with the l = 1 scheme potential function, especially
at the vicinity of the cutoff distance. In fact, moment l induces
a scheme of class Cl.77 Alternatively, a large α or a large rc has
a similar smoothing effect,73 so that such a parameter choice
was effective to attain the smaller discrepancy in the RDF. We
here find that a more drastic improvement can be obtained by
simply using a higher l.

One can observe that the oscillations of the energy error
curves, where the result obtained by the method with l = 1
is shown as a typical case in Fig. 8, seem to be coherent to
the behavior of the RDF. As was done in the NaCl study in
Sec. V A 1 b, this feature should explain the energy error os-
cillation. However, compared with the NaCl case, the oscil-
lations in the RDF (obtained by the PME) with the distance
range 10 Å � r � 18 Å is small in the water case, and this
should explain the small energy error oscillations observed
in the ZM method with l = 1 and l = 2 in the range of
10 Å ≤ rc ≤ 18 Å.
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VI. CONCLUSIONS

We have investigated the zero-multipole summation
method, which was developed for evaluating the electrostatic
energy of a point charge particle system in molecular simula-
tion. The current study reveals the properties of the method by
numerical simulations of the TIP3P bulk water system and the
molten ion system with the BMH force field, with the aid of
theoretical error analyses. We investigated the parameter de-
pendencies of the ZM energy function and analyzed the error
of the method theoretically and numerically.

Utilizing a positive damping parameter α in the pair po-
tential function is effective in many cases to raise the accuracy
of the cutoff-based method, as is known in the studies of the
ZC Wolf method. We revealed the origin of the damping ef-
fect from the viewpoint of the excess energy error and the
replacement error. We found that the excess energy error can
be expressed by the evaluation of the pair potential function
itself on the excess subset. Such a theoretical interpretation
was done for the first time, to the best of our knowledge. We
provided an approximated upper bound of the excess energy
error and found that it is decreasing with increasing the values
of α, rc, and l. Such parameter dependencies were investigated
also for both the replacement error and the Fourier term error.
These theoretical estimations are useful to understand various
phenomena obtained by the numerical simulations, to seek a
better assignment of the parameter values, and to promote the
further development of the method.

In the numerical simulations of the NaCl liquid sys-
tem, sufficient accuracies were obtained in a practical cutoff
distance region. We confirmed that the energy accuracy can
be improved by raising the multipole moment l, up to l = 3.
We investigated the characteristic phenomena of the cross-
ing of the energy-error curves with individual α values, and
analyzed the features and the origin. The origin is the com-
pensation between the damping effect and the anti-effect of
ignoring the Fourier term. This can be simply understood
from the dependencies of the three-kind errors on α and rc.
The reason that the crossing is faster with increasing the mo-
ment can be explained by the two factors: one is the accuracy
improvement of the excess energy by increasing l; another
one is the enhancement of the degree of the total accuracy
improvement within l ≤ L as the value of α is small.

We have analyzed the energy error oscillation with re-
spect to the cutoff length. We found its origin to be relevant
to the structure of the system such that the excess energy er-
ror and the replacement error become large when we set the
cutoff length near the distance at which the particle density is
high. The reasons why the oscillation amplitude is low for a
larger moment l should be due to the improvement of the ex-
cess energy accuracy as increasing l. However, for a complete
understanding, we have to explain the origin of the phase shift
for a certain l, although we have pointed out a possible reason
generated from the difference in the features among individ-
ual error terms. In addition, for a better grasp of the coher-
ence between the energy error oscillations and the structural
property of the system, further investigations such as varying
the simulation conditions including the temperature will be
helpful.

We also discussed the dependence of the efficiency on
the target matter, in terms of the simulation of the TIP3P wa-
ter molecule system. Although the accuracy is similar to the
NaCl case fundamentally, the dependencies of α and l were
quantitatively different in the water system. In fact, fast cross-
ing and small-amplitude oscillations were observed in the en-
ergy error curves. These are attributed to no prominent struc-
ture in a radial direction with a long distance, mobility of the
system, and relatively small atomic radii of the molecule. The
last two features lead to the effect of reducing the excess sub-
set. We explained these quantitative differences through this
effect with the aid of the theoretical error analyses. However,
qualitatively, the error properties are the same in general be-
tween the NaCl and water systems, as explained by the error
analyses. Although the zero multipole assumption would hold
at a small l in the water system, we also found that treating of
a higher multipole is significantly effective to reduce the error
in the radial distribution function.

The most nontrivial issue for the practical applications of
the current ZM method to individual physical systems may
be the setting of a suitable value of the moment l, due to the
fact that the total accuracy improvement is expected when
l ≤ L, which is intrinsic to the system. Based on the error
analyses and the simulation results, the following perspective
is suggested. For a system where the electrostatic interactions
govern the whole physical properties, the value of L tends
to have a large value. In contrast, for a system where ther-
mal kinetics or some random factor plays a prominent role
than the electrostatic interactions, the value of L could have a
smaller value. Roughly speaking, the former system such as
the strongly-coupled ionic system prefers l � 3 and the latter
system such as that where many water molecules freely move
prefers l = 1 or 2. Fortunately because the moment is a dis-
crete parameter, its setting is finished by efforts to try l = 1,
2, and 3 in practice, although complete understanding and
a priori estimation need further investigations.

We confirmed the stability of MD simulation by employ-
ing the ZM scheme with 1 ≤ l ≤ 4. This property is funda-
mentally supported by the sufficient smoothness of the cur-
rent energy function. The more stable feature with increasing
the moment l conforms to the enhancement of the function
smoothness with increasing l. As well as the smoothness, the
energy formula takes a pairwise form and permits the atom-
based cutoff mode, ensuring the exact zero total-force and so
the (zero) total-momentum conservations for NV E and typi-
cal NT V equations of motion.

In the current study, we concentrated on the accuracy and
stability of the method. The computational timing should be
comparable to that of the ZD scheme previously developed.
This is because only an even-power polynomial with respect
to the atomic distance is added to the pair potential function
in the ZD scheme, and the parameters of the polynomial can
be evaluated preliminary to the actual step of the MD simula-
tion. The parallel computational timing of the ZD method has
already been discussed in TIP3P water system73 and a mem-
brane protein system,74 and a good scalability is expected for
large systems. In fact, a GPU (graphics processing unit) im-
plementation of the ZD method enabled high speed and ac-
curate MD simulations of soluble proteins and biomembrane

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

133.1.91.151 On: Mon, 27 Apr 2015 02:22:41



194307-17 Fukuda, Kamiya, and Nakamura J. Chem. Phys. 140, 194307 (2014)

systems.76 These are the consequence from the simple pair-
wise energy function formula.

As well as a MD simulation, the simplicity of the cur-
rent method will be useful in a Monte Carlo calculation and
a molecular modeling procedure. Applications to various sys-
tems and problems are useful to understand the relationship
between the material properties and the zero-multipole as-
sumption in a deeper way. On the other hand, interpretations
from a viewpoint other than the neutrality for the ZM method
may be possible and would be of value for developing cutoff-
based methods.
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APPENDIX A: PAIRWISE-FUNCTION
REPRESENTATION

The specific form of Eq. (17) for 0 ≤ l ≤ 4 is presented
as follows:

u(0)(r) = V (r) ≡ erfc(αr)

r
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Here

dn ≡ (−)nDnV (rc)

is (−)n times the nth derivatives of V at rc, and its explicit
form is given for any n = 1, 2, . . . as follows:

dn = n!

rn+1
c

[
erfc(s) + 2√

π
e−s2

n∑
m=1

1

m!
smHm−1(s)

]∣∣∣∣∣
s=αrc

,

where Hn(s) ≡ (−)nes2 dn

dsn e−s2
is the Hermitian polynomial

with the Rodrigues representation. Namely, they are specifi-
cally given by

d1 = 1
r2
c

[
erfc(αrc) + 2√

π
e−(αrc)2

[αrc]
]
,

d2 = 2
r3
c

[
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[(αrc) + (αrc)3]
]
,

d3 = 6
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[
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π
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(αrc)+ 2
3 (αrc)3+ 2
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[
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π
e−(αrc)2 [

(αrc) + 2
3 (αrc)3

+ 1
6 (αrc)5 + 1

3 (αrc)7
]]

.

Thus, the parameters of the polynomial in u(l)(r) can be esti-
mated prior to actual simulation steps.

APPENDIX B: UPPER BOUND OF THE EXCESS
ENERGY ERROR

We derive Eq. (28) by using a continuity approximation
for the particle distribution and then make relevant remarks.

The derivation can be simply and consistently done by
noticing that Ei ≡ ∑

j∈A |U (l)(rij )|, where we put A ≡ J (l)
i

for simplicity, can be viewed as a value at y = xi of
an extended Newtonian potential E : y �→ 〈ρA,ψy〉. Here
ρA ≡ ∑

j∈A δ(xj ) is the (Schwartz) distribution of the num-
ber of the particles belonging in subset A, and we
have defined a function ψy by ψy(z) ≡ |U (l)(‖y − z‖)|
for R3 � z �= y. Namely, we have E(xi) = ∑

j∈A〈δ(xj ), ψxi
〉

= ∑
j∈A |U (l)(‖xi − xj‖)| = Ei . We approximate ρA by a lo-

cally integrable function

ρ0
A ≡ ρ0χA : y �→

{
ρ0, for y ∈ A,

0, otherwise,
(B1)

where A is the spherical shell inside the cutoff sphere, viz.,
A ≡ {y ∈ R3| rc − δ < ‖y − xi‖ < rc}, which mimics the
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space containing the particles in the excess subset A ≡ J (l)
i

(with 0 < δ < rc), and ρ0 is a constant representing an av-
eraged number density in A (e.g., ρ0 ∼ N/V0 in a uniform
system, where V0 is the volume of the MD cell). Namely,
the discrete-type distribution ρA can be approximated by the
continuous-type distribution ρ0

A, by assuming the uniformity
in A, i.e., #A/Vol(A) ∼ ρ0 (so the total quantity is assim-
ilated, viz., 〈ρ0

A, 1〉 = ρ0
∫
A dy ∼ #A = 〈ρA, 1〉, leading to a

consistent description; note #A is the total number of particles
in A). Thus we get

Ei = 〈ρA,ψxi
〉

� 〈ρ0
A,ψxi

〉

= 4πρ0
∫ rc

rc−δ

r2|U (l)(r)|dr,

using the functional property of ρ0
A and the following in-

tegrations: 〈ρ0
A,ψxi

〉 = ∫
R3 ρ0

A(y)ψxi
(y)dy = ρ0

∫
A |U (l)(‖y

− xi‖)|dy = ρ0
∫
{y∈R3|rc−δ<‖y‖<rc} |U (l)(‖y‖)|dy.

We remark that the above estimation of the upper bound
has several limitations. The estimation is based on the approx-
imation by the continuity and uniformity regarding the excess
subset. Furthermore, the signatures of the individual charges
are not taken into account. Actually, as increasing rc, even if
the excess subset grows, considerable amount of cancellation
with respect to qiqjU (l)(rij ) would occur due to an increase of
the variation of the particle configurations and should work to
reduce the actual error values in many cases. To reduce these
limitations, e.g., it may be useful to generalize Eq. (B1) as

ρ0
A

(β)
i

(y) ≡ c
(β)
i ρ

(β)
i (‖y − xi‖)χA(β)

i
(y), (B2)

where ρ
(β)
i (r) represents a distribution function of particles

that are located at a distance r from particle i and have a
charge value q(β), A(β)

i mimics the space containing the par-
ticles in A

(β)
i that consists of particles in J (l)

i with having a
charge value q(β), and c

(β)
i is a normalization constant. Here,

we have still used the continuity approximation but employed
the isotropy instead of the uniformity regarding J (l)

i . In this
approach we have

�exc(x) = 1

2

∑
α,β∈


q(α)q(β)E (α,β),

E (α,β) ≡
∑

i∈N (α)

E (β)
i ,

E (β)
i ≡

∑
j∈A

(β)
i

U (l)(rij ) � 〈
ρ0

A
(β)
i

, ψxi

〉
,

where N (α) is a set of particles having a charge value q(α),
and 
 is a set of the charge values [e.g., 
 = {−1, 1}
for NaCl ion system]. Although this generalization would
lead to good descriptions for the cancellation stated above,
it needs the information of ρ

(β)
i prior to the simulation, for

which ρ
(β)
i depends on a system in general. In addition, a

finer representation may be required in some cases. For exam-
ple, δ, which is the characterization of J (l)

i , may change with
increasing rc since the counter part, viz., M(l)

i , may grow rela-

tive to the cutoff sphere with increasing rc. To assess this, like-
wise, we need efforts to obtain reliable information on such a
system-dependent property.

1M. Patra, M. Karttunen, M. T. Hyvönen, E. Falck, and I. Vattulainen, J.
Phys. Chem. B 108, 4485 (2004).

2M. M. Reif, V. Krautler, M. A. Kastenholz, X. Daura, and P. H. Hünen-
berger, J. Phys. Chem. B 113, 3112 (2009).

3S. Srivastava, A. Santos, K. Critchley, K. S. Kim, P. Podsiadlo, K. Sun, J.
Lee, C. Xu, G. D. Lilly, S. C. Glotzer, and N. A. Kotov, Science 327, 1355
(2010).

4P. P. Ewald, Ann. Phys. (Leipzig) 369, 253 (1921).
5S. W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London, Ser.
A 373, 27 (1980).

6M. Karttunen, J. Rottler, I. Vattulainen, and C. Sagui, “Electrostatics in
Biomolecular Simulations: Where are we now and where are we heading?”
in Computational Modeling of Membrane Bilayers, edited by S. E. Feller
(Academic Press, Amsterdam, 2008).

7C. Sagui and T. A. Darden, Annu. Rev. Biophys. Biomol. Struct. 28, 155
(1999).

8G. A. Cisneros, M. Karttunen, P. Ren, and C. Sagui, Chem. Rev. 114, 779–
814 (2014).

9A. Baumketner and J. E. Shea, J. Phys. Chem. B 109, 21322 (2005).
10C. Peter, W. F. van Gunsteren, and P. H. Hünenberger, J. Chem. Phys. 119,

12205 (2003).
11Y. Yonetani, J. Chem. Phys. 124, 204501 (2006).
12M. Saito, J. Chem. Phys. 101, 4055 (1994).
13I. Fukuda and H. Nakamura, Biophys. Rev. 4, 161 (2012).
14L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).
15J. A. Barker and R. O. Watts, Mol. Phys. 26, 789 (1973).
16O. Steinhauser, Mol. Phys. 45, 335 (1982).
17M. Neumann, Mol. Phys. 50, 841 (1983).
18M. Neumann, J. Chem. Phys. 85, 1567 (1986).
19M. Belhadj, H. E. Alper, and R. M. Levy, Chem. Phys. Lett. 179, 13 (1991).
20P. H. Hünenberger and W. F. van Gunsteren, J. Chem. Phys. 108, 6117

(1998).
21R. Gargallo, P. H. Hünenberger, F. X. Avilés, and B. Oliva, Protein Sci. 12,

2161 (2003).
22R. Schulz, B. Lindner, L. Petridis, and J. C. Smith, J. Chem. Theory Com-

put. 5, 2798 (2009).
23A. Baumketner, J. Chem. Phys. 130, 104106 (2009).
24J. M. Míguez, D. González-Salgado, J. L. Legido, and M. M. Piñeiro, J.

Chem. Phys. 132, 184102 (2010).
25B. Ni and A. Baumketner, J. Mol. Model. 17, 2883 (2011).
26E. Yakub and C. Ronchi, J. Chem. Phys. 119, 11556 (2003).
27P. K. Jha, R. Sknepnek, G. I. Guerrero-García, and M. O. de la Cruz, J.

Chem. Theory Comput. 6, 3058 (2010).
28E. Yakub and C. Ronchi, J. Low Temp. Phys. 139, 633 (2005).
29E. Yakub, J. Phys. A: Math. Gen. 39, 4643 (2006).
30E. Yakub, C. Ronchi, and D. Staicu, J. Chem. Phys. 127, 094508 (2007).
31G. I. Guerrero-García, P. González-Mozuelos, and M. O. de la Cruz, J.

Chem. Phys. 135, 164705 (2011).
32X. Wu and B. R. Brooks, J. Chem. Phys. 122, 044107 (2005).
33X. Wu and B. R. Brooks, J. Chem. Phys. 131, 024107 (2009).
34X. Wu and B. R. Brooks, J. Chem. Phys. 129, 154115 (2008).
35K. Takahashi, T. Narumi, and K. Yasuoka, J. Chem. Phys. 133, 014109

(2010).
36J. A. Te and T. Ichiye, Chem. Phys. Lett. 499, 219 (2010).
37R. M. Venable, L. E. Chen, and R. W. Pastor, J. Phys. Chem. B 113, 5855

(2009).
38J. B. Klauda and B. R. Brooks, J. Chem. Theory Comput. 4, 107 (2008).
39J. B. Lim, B. Rogaski, and J. B. Klauda, J. Phys. Chem. B 116, 203 (2012).
40H. Nakamura, T. Ohto, and Y. Nagata, J. Chem. Theory Comput. 9, 1193

(2013).
41D. Wolf, Phys. Rev. Lett. 68, 3315 (1992).
42D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem. Phys.

110, 8254 (1999).
43M. B. Webb, S. H. Garofalini, and G. W. Scherer, J. Phys. Chem. B 113,

9886 (2009).
44G. Jiménez-Serratos, C. Avendaño, A. Gil-Villegas, and E. González-

Tovar, Mol. Phys. 109, 27 (2011).
45T. S. Hofer, M. Hitzenberger, and B. R. Randolf, J. Chem. Theory Comput.

8, 3586 (2012).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

133.1.91.151 On: Mon, 27 Apr 2015 02:22:41

http://dx.doi.org/10.1021/jp031281a
http://dx.doi.org/10.1021/jp031281a
http://dx.doi.org/10.1021/jp807421a
http://dx.doi.org/10.1126/science.1177218
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1098/rspa.1980.0135
http://dx.doi.org/10.1098/rspa.1980.0135
http://dx.doi.org/10.1146/annurev.biophys.28.1.155
http://dx.doi.org/10.1021/cr300461d
http://dx.doi.org/10.1021/jp051325a
http://dx.doi.org/10.1063/1.1624054
http://dx.doi.org/10.1063/1.2198208
http://dx.doi.org/10.1063/1.468411
http://dx.doi.org/10.1007/s12551-012-0089-4
http://dx.doi.org/10.1021/ja01299a050
http://dx.doi.org/10.1080/00268977300102101
http://dx.doi.org/10.1080/00268978200100281
http://dx.doi.org/10.1080/00268978300102721
http://dx.doi.org/10.1063/1.451198
http://dx.doi.org/10.1016/0009-2614(91)90284-G
http://dx.doi.org/10.1063/1.476022
http://dx.doi.org/10.1110/ps.03137003
http://dx.doi.org/10.1021/ct900292r
http://dx.doi.org/10.1021/ct900292r
http://dx.doi.org/10.1063/1.3081138
http://dx.doi.org/10.1063/1.3422528
http://dx.doi.org/10.1063/1.3422528
http://dx.doi.org/10.1007/s00894-011-0975-x
http://dx.doi.org/10.1063/1.1624364
http://dx.doi.org/10.1021/ct100365c
http://dx.doi.org/10.1021/ct100365c
http://dx.doi.org/10.1007/s10909-005-5451-5
http://dx.doi.org/10.1088/0305-4470/39/17/S51
http://dx.doi.org/10.1063/1.2764484
http://dx.doi.org/10.1063/1.3656763
http://dx.doi.org/10.1063/1.3656763
http://dx.doi.org/10.1063/1.1836733
http://dx.doi.org/10.1063/1.3160730
http://dx.doi.org/10.1063/1.2992601
http://dx.doi.org/10.1063/1.3462241
http://dx.doi.org/10.1016/j.cplett.2010.09.043
http://dx.doi.org/10.1021/jp900843x
http://dx.doi.org/10.1021/ct700191v
http://dx.doi.org/10.1021/jp207925m
http://dx.doi.org/10.1021/ct300998z
http://dx.doi.org/10.1103/PhysRevLett.68.3315
http://dx.doi.org/10.1063/1.478738
http://dx.doi.org/10.1021/jp901667c
http://dx.doi.org/10.1080/00268976.2010.524171
http://dx.doi.org/10.1021/ct300062k


194307-19 Fukuda, Kamiya, and Nakamura J. Chem. Phys. 140, 194307 (2014)

46Q. Wang, D. J. Keffer, S. Deng, and J. Mays, J. Phys. Chem. C 117, 4901
(2013).

47Q. He, D. C. Joy, and D. J. Keffer, J. Power Sources 241, 634 (2013).
48J. A. Gee, J. Chung, S. Nair, and D. S. Sholl, J. Phys. Chem. C 117, 3169

(2013).
49S. F. Yang, L. M. Xiong, Q. Deng, and Y. P. Chen, Acta Mater. 61, 89

(2013).
50T. Pham, K. A. Forrest, P. Nugent, Y. Belmabkhout, R. Luebke, M. Ed-

daoudi, M. J. Zaworotko, and B. Space, J. Phys. Chem. C 117, 9340 (2013).
51A. Goyal, T. Rudzik, B. Deng, M. Hong, A. Chernatynskiy, S. B. Sinnott,

and S. R. Phillpot, J. Nucl. Mater. 441, 96 (2013).
52K. McLaughlin, C. R. Cioce, T. Pham, J. L. Belof, and B. Space, J. Chem.

Phys. 139, 184112 (2013).
53F. Ercolessi and J. B. Adams, Europhys. Lett. 26, 583 (1994).
54Q. Shi, P. Liu, and G. A. Voth, J. Phys. Chem. B 112, 16230 (2008).
55E. Spiga, D. Alemani, M. T. Degiacomi, M. Cascella, and M. Dal Peraro,

J. Chem. Theory Comput. 9, 3515 (2013).
56R. J. Petrella and M. Karplus, J. Comput. Chem. 26, 755 (2005).
57Y. G. Chen and J. D. Weeks, Proc. Natl. Acad. Sci. U.S.A. 103, 7560

(2006).
58L. Greengard and V. Rokhlin, J. Comput. Phys. 73, 325 (1987).
59L. F. Greengard, The Rapid Evaluation of Potential Fields in Particle Sys-

tems (MIT Press, Cambridge, 1988).
60G. Mathias, B. Egwolf, M. Nonella, and P. Tavan, J. Chem. Phys. 118,

10847 (2003).
61T. N. Heinz and P. H. Hünenberger, J. Chem. Phys. 123, 034107 (2005).
62Y. Lin, A. Baumketner, S. Deng, Z. Xu, D. Jacobs, and W. Cai, J. Chem.

Phys. 131, 154103 (2009).
63Y. Lin, A. Baumketner, W. Song, S. Deng, D. Jacobs, and W. Cai, J. Chem.

Phys. 134, 044105 (2011).
64S. A. Hassan, J. Phys. Chem. B 111, 227 (2007).
65P. Demontis, S. Spanu, and G. B. Suffritti, J. Chem. Phys. 114, 7980 (2001).
66D. Zahn, B. Schilling, and S. M. Kast, J. Phys. Chem. B 106, 10725 (2002).

67M. C. C. Ribeiro, J. Phys. Chem. B 107, 9520 (2003).
68C. Avendaño and A. Gil-Villegas, Mol. Phys. 104, 1475 (2006).
69C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006).
70I. Fukuda, Y. Yonezawa, and H. Nakamura, J. Phys. Soc. Jpn. 77, 114301

(2008).
71Y. Yonezawa, I. Fukuda, N. Kamiya, H. Shimoyama, and H. Nakamura, J.

Chem. Theory Comput. 7, 1484 (2011).
72I. Fukuda, Y. Yonezawa, and H. Nakamura, J. Chem. Phys. 134, 164107

(2011).
73I. Fukuda, N. Kamiya, Y. Yonezawa, and H. Nakamura, J. Chem. Phys.

137, 054314 (2012).
74N. Kamiya, I. Fukuda, and H. Nakamura, Chem. Phys. Lett. 568–569, 26

(2013).
75T. Arakawa, N. Kamiya, H. Nakamura, and I. Fukuda, PLoS One 8, e76606

(2013).
76T. Mashimo, Y. Fukunishi, N. Kamiya, Y. Takano, I. Fukuda, and H. Naka-

mura, J. Chem. Theory Comput. 9, 5599 (2013).
77I. Fukuda, J. Chem. Phys. 139, 174107 (2013).
78M. P. Tosi and F. G. Fumi, J. Phys. Chem. Solids 25, 45 (1964).
79Y. Fukunishi, Y. Mikami, and H. Nakamura, J. Phys. Chem. B 107, 13201

(2003).
80U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G.

Pedersen, J. Chem. Phys. 103, 8577 (1995).
81W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L.

Klein, J. Chem. Phys. 79, 926 (1983).
82P. Keblinski, J. Eggebrecht, D. Wolf, and S. R. Phillpot, J. Chem. Phys.

113, 282 (2000).
83T. G. Desai, J. Chem. Phys. 127, 154707 (2007).
84T. C. Bishop, R. D. Skeel, and K. Schulten, J. Comput. Chem. 18, 1785

(1997).
85A. Neelov and C. Holm, J. Chem. Phys. 132, 234103 (2010).
86P. J. Steinbach and B. R. Brooks, J. Comput. Chem. 15, 667 (1994).
87R. D. Skeel, D. J. Hardy, and J. C. Phillips, J. Comput. Phys. 225, 1 (2007).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

133.1.91.151 On: Mon, 27 Apr 2015 02:22:41

http://dx.doi.org/10.1021/jp309793z
http://dx.doi.org/10.1016/j.jpowsour.2013.05.011
http://dx.doi.org/10.1021/jp312489w
http://dx.doi.org/10.1016/j.actamat.2012.09.032
http://dx.doi.org/10.1021/jp402304a
http://dx.doi.org/10.1016/j.jnucmat.2013.05.031
http://dx.doi.org/10.1063/1.4829144
http://dx.doi.org/10.1063/1.4829144
http://dx.doi.org/10.1209/0295-5075/26/8/005
http://dx.doi.org/10.1021/jp807205q
http://dx.doi.org/10.1021/ct400137q
http://dx.doi.org/10.1002/jcc.20197
http://dx.doi.org/10.1073/pnas.0600282103
http://dx.doi.org/10.1016/0021-9991(87)90140-9
http://dx.doi.org/10.1063/1.1574774
http://dx.doi.org/10.1063/1.1955525
http://dx.doi.org/10.1063/1.3245232
http://dx.doi.org/10.1063/1.3245232
http://dx.doi.org/10.1063/1.3530094
http://dx.doi.org/10.1063/1.3530094
http://dx.doi.org/10.1021/jp0647479
http://dx.doi.org/10.1063/1.1364638
http://dx.doi.org/10.1021/jp025949h
http://dx.doi.org/10.1021/jp034566w
http://dx.doi.org/10.1080/00268970600551155
http://dx.doi.org/10.1063/1.2206581
http://dx.doi.org/10.1143/JPSJ.77.114301
http://dx.doi.org/10.1021/ct100357p
http://dx.doi.org/10.1021/ct100357p
http://dx.doi.org/10.1063/1.3582791
http://dx.doi.org/10.1063/1.4739789
http://dx.doi.org/10.1016/j.cplett.2013.03.014
http://dx.doi.org/10.1371/journal.pone.0076606
http://dx.doi.org/10.1021/ct400342e
http://dx.doi.org/10.1063/1.4827055
http://dx.doi.org/10.1016/0022-3697(64)90160-X
http://dx.doi.org/10.1021/jp035478e
http://dx.doi.org/10.1063/1.470117
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1063/1.481819
http://dx.doi.org/10.1063/1.2796161
http://dx.doi.org/10.1002/(SICI)1096-987X(19971115)18:14<1785::AID-JCC7>3.0.CO;2-G
http://dx.doi.org/10.1063/1.3430521
http://dx.doi.org/10.1002/jcc.540150702
http://dx.doi.org/10.1016/j.jcp.2007.03.010

