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We have studied a left serial algebra over an algebraically closed field with
(*, n) as right modules in [4] and further investigated an artinian left serial
ring R with (*, 1) in [7], when ej/ej2 is square-free for each primitive idem-
potent e, where J is the Jacobson radical of R. On the other hand, we have
given a characterization of a certain artinian ring with (*, 3) in [6].

For a left serial ring i?, we shall obtain, in the second section of this paper,
a characterization of R with (*, 1) (Theorem 1), and one of R with (*, 2) (Theo-
rem 2) in the third section. We shall study hereditary rings with (*, 2) in
the forthcoming paper.

In order to give a complete study of a left serial ring with (*, 1), we need
deep properties of a division ring (much more difficult than Artin problem,
see (#)).

We shall use the same terminologies given in [7] and every ring R is a
both-sided artinian ring with identity, unless otherwise stated.

1. Left serial rings

In this section, we assume that R is a left serial ring. Then
eJi==^®Ak, where the Ak are hollow right jR-modules by [8], Corollary

4.2. We shall describe this situation as the following diagram:

eR
I

A A, .*'• An ej

L J L 24 ... A A ... A "" 4 . . . 4 PT

I I I I II
or

eR

A B2 "•'• Nu ej

L L LA2l - A 2 h B21 - B2h "'• N21 - N2tn
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where A, B, ••• are hollow modules, (cf. [3], §2).
Let e be a primitive idempotent and put A=eRe/eJe, and for a submodule

A of eR, A(A)={%\x^eRe, xAaA}, where * is the coset of x in A. Then
A(A) is a division subring of A (see [1]). It is clear that A(A)=A(A)=
{x\xGeRe, xAaA and xAcA} provided A is hollow; A=Aj](A).

Let A{DAix be as in the diagram above. We put R—RU* (t>i) and
Ail=(Ail-\-eJt)leJt. Then we can express An+eJ* as a direct sum Aix@C,
where C (ZeJt—Ail (see the diagram above). Let p and q be the projections
of An+eJ* to An and C respectively. We can define A{Aix) and A(An). Since
eRejeJe^{eRejeJte)l{eJejeJte), A{A{1) is canonically contained in A(An). Con-
versely, let X be an element in A such that x(Ail-\-eJt)(ZAil-\-eJt. Put / =
gw/l-̂ !,- and / is in HomR(Ail, ej*)y where xt means the left-sided multiplica-
tion of x. Let An=aR and ag=a for some primitive idempotent g. Since
b=f(a)=f(a)g, there exists d in e/e such that da=b (note />£), since i? is left
serial. Then xx \ ̂ ,-1=(/W|+j*/) | _ i4 a =^ | -4rt+/=/W/1 ̂ ,x+^/1 ̂ *i and ^ | i4rt

GHom^(i t l, ^4tl). Hence (X—d)=X^A(Ail). Thus we have (from now on
Aij means always a hollow module in the diagram above)

Lemma 1. Let R be a left serial ring, and let Atl and An be as above.
Then J

Lemma 2. Let R be a left serial ring. Let An contain An and Ajk. Then
A(Ajl)dA(An), and if f: Aix^Aik, there exists a unit S in eRe which induces f
and SAil=Ail.

Proof. Assume / : Aj^Ajk. There exists a unit x in eRe such that
xAjX—Ajk from [7], Lemma 2, and xx induces / , since R is left serial. For x,
we employ the similar argument given in the proof of Lemma 1. Let ej' =
Aix@E and/), q the projections. Consider qx^A^ (=--£). Since g(Ajl)=qxAjl

=qAjk=0, g is not a monomorphism. Hence g=di for some d in eje and
so (x—d)AilClAil. Hence (x—d)t induces/. If we put k=l in the above,
we obtain the first half of the lemma.

2. (*,1)

First we recall the definition of (*, n)
(*, n) Every maximal submodule of a direct sum of n hollow modules is also

a direct sum of hollow modules [5].

We shall study, in this section, left serial rings R with (*, 1). We ob-
tained a characterization of a left serial ring with (*, 1), when ejjej2 is square-
free, i.e., A1^B1^"'^N1 in [7], Theorem. Hence we may consider eR
satisfying AX^BV
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Now we shall study such a ring with (*, 1).

Lemma 3. Let R be left serial. Assume that A^BX and (*, 1) holds.
Then, for any submodules C,Z)Z>,- in Ax such that CijDi is simple and

f; Cl\Bl^C2\I>ly f or f"1 is extendible to an element g in Hom^AJD^ AxjD2) or

Proof. There exists a unit element u in eRe such that B1 = uA1. Put
C2—UC2, D'2=uD2 and f'=Utf Then/ ' (or f~lujl) is extendible to an element
g' in Homje^/A, BJDfi (or Hom^BJD^ AJDJ) by [6], Theorem 4. Then
g=uj1gf (org=gful) is the desired extension of/(or/"1).

Proposition 1. Let Ry Ax and Bx be as in Lemma 3. / / there are three
non-zero hollow modules Aiu Ai2, Ai3 (dAx) for some i, they are isomorphic to
one another.

Proof. First we shall show Aix^Ai2. Put Cx=Aix®Ai3 and C2=Ai2®Aiz.
Considering R/Jt+1 from [3], Lemma 1, we may assume that the A{j are simple.
Now/: CJAn^Aftt&CdAft. Then by Lemma 3, there exists an element x in
eRe which induces / or /"*, i.e., f(a-\-Ail)=xa-j

rAi2 for a^Ax. Since Cx, C2

are contained in ej* but not in eji+1> x is a unit, and xAil=Ai2 (or xAi2=Ail)
from the argument of the proof of [4], Theorem 3. Therefore An^Ai2. Since
R is left serial and AtJ are hollow, An^Ai2 from [7], Lemma 2.

Let A D A J be division rings. [ ] r ([ ]7) means the dimension of A over Ax

as a right (left) Ai-module.

Proposition 2. Let Aly Bx be as in Lemma 3. Then for AixZ^AjX [A(An):
AiAjJl^lAiJ'-'IAaJt-'^l, except A^'^AJ^AJ, and An*Aj2 (in the
exceptional case A(Ail)=A(Ajl)y cf. Example 2 below).

Proof. We may assume from Lemma 1 and [3], Lemma 1 that JJ+1=0,
and hence AuJ

J~i+1=0, and so Ajx is simple. Let An=aR and {e, §2, 53, ••-,§/}
be a linearly independent set in A,-=A(-4,-1) over Aj=A(Ajl) such that

n for all k. We shall show Ajl+82Ajl+83Ajl^ \-SiAjl = Ajl®

i ; © •" ©Mil - If ^ y i + M ; i + - +St-1Ajl) n 8,;4yi=t=O, StAjlc:Ajl

H \-8t-iAjii since 8tAn is simple. Then Sta=a1-{-S2a2-\ hS/-i^_i, where
dj&Afl. The mapping; a->a{ gives an endomorphism of An. Hence a ,=^a
for some k^Aj by Lemma 2. Accordingly Sf=£1+52fe2H \-"8t-J*t-i> since
JJ+1=z0, a contradiction. From the similar argument we can show that
{AJ19 82An, - , M i i } is independent. Hence [A(An): A(An)]r < | AtJ'-'l.
Assume \AnJ

i'i\>3. Then by Proposition 1 AilJ
j-i=Ajl®Aj2® ••• ®Ajp\

p^3 and An^Ajk for 2<^<^>. There exists #4 in A; (xk^eRe) such that
xkAj1=XkAj]=Ajk. We shall show that {£, #2, •••, ̂ } is linearly independent
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over A .̂ Assume %p=Tt1+%2k2-\ h#*-i^-i> where kiAj^dA^ and

S i n c e J A n = 0 , A j p = x p A j l = ^ p A j J c z k l A j l + ^ 2 A j l - ] 5 4 2

a contradiction. Hence \AilJ
i"i\<:[A(Ail):A(Ajl)]r. Finally assume

l^i/ '" ' f I <2 . If An^Aj2, we have the same result. If Ant&Aj2, p<2 from
Proposition 1, and A,=Ay from the initial argument. If Aj2='--=Ajp=0, it is
clear that A; = Ay. Hence [A(A0: A(-4yi)]r = 1 •

We consider the situation in Proposition 2 and / w + 1 =0. Let AklJ
n~k=

J2®Anj. If p>3, Attl^Anj for all j by Proposition 1. Put Ak=A(Akl) and

An=A(^4wl). Then [A*: An]r=£ by Proposition 2. Further AkJ
n~k = Anl@

82Anl@-~®8pAnl=Ana@82Ana@~-@8pAna, where Anl=aR, and every simple
submodule in AklJ

n~k is of a form SAn<z for some 8 in A*. Now we shall identify
AklJ»-k=Ana®82Ana®---@8pAna=(Ak®S2An®---®SpAn)a with A*-An©S2An

© • • • e V ^ L e . , H o m , ( 4 , i W " " * ) ^ (Aka=AkJ»-k) as left Alright A,-
modules. Let 7\Z) T2 and ^ D ^ be submodules in AklJ

n~k such that / : TJT2

^SJS2 and | T1\ = \S1\(\T1\ < I5J), | 2^/7^1=1. Then / is extendible to an
element h in HomR(AJT2y AlIS2). Since Sly Tx are contained in AklJ

n~k, h
is given by a unit element # in eRe. As given in the proof of Lemma 2,
(x-\-j)i\Akl is in H o m ^ ^ u i H ) for some j in £/#. Since JT2=0, x-\-j
induces/, and x+j^A(Akl)y which means (x+j)T2— S2 ((x-\-j)T2czS2) and

x+jfa+Sz for any tx in Tx. We translate the above fact to A*=
l, AklJ»-k).

For any An-subspace Vu V2 in Ak with \ Vx\ = | V21(| Vx\ < | V2\) and
( # ) ^iAn0Fx, ^2AW©F2 ( ^ G A A ) , f̂er̂  exists x in Ak such that xV1=V2

F2) and xvx=v2 (mod F"2).

Lemma 4. L^ A D A J fe division rings. Assume that (#) Ao/^ /or A
and A,. Then [A: AJ7<2.

Proof. We may assume A^A^ Let S be a fixed element in A—AY and
S' an element in A—Ax. Put F1=F2=A1 , ^ = 8 and ^2—8'^ for any y^Ax

in (#). Then there exists x in Ax such that x8=S'y-{-z for some z in Aj. Hence
S'A1CA1©A1S. Since 8' is arbitrary, A ^ A ^ A i S , and so [A: AJ ; <2.

Proposition 3. Let R, Ax and Bx be as in Lemma 3. Then for
A(An) and A(An) satisfy (#) and so [A(An):

Proof. It is clear by Proposition 2 that if An^Aj2y A(An)=A(Ajl). If
An^Aj2, Ajl^Aj2^'"^Ajt by Proposition 1, where t=[A(An): A(An)]r.
Then A(An) and A(An) satisfy (#) from the remark before Lemma 4. Hence
[A(An): A(^4y1)]/<2 from Lemma 4.
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Corollary 4. Let Ax and Bx be as above. Assume either A{AX) is com-
mutative or R is an algebra over a field zoith finite dimension. Then A1J

t~1=
An@Ai2for alli>2, i.e., [A(AX): A(Aix)]r<2.

Proof. From the assumption and Proposition 3, [A(AX):

Proposition 5. Let Al9 Bx be as in Lemma 3. Assume J(Ail)=Ai+11(&
v IfP>2> A+u is uniserialfor all k.

Proof. Assume that ]{A^n) is not uniserial, i.e., ](Aj_xx)=Ajx®Aj2® •••
fory>z+l. We shall divide ourselves into two cases.

i) Ai+n^Ai+l2. Then p^2 by Proposition 1, and Ai+uJ
i"i''1=0 by

assumption: A^Bly Proposition 1 and [7], Lemma 3. Put D1=Aj1(BJ(Aj2),
D2=Ai+12@J(Aj2), C^Aj.+D, and C2=Aj2+D2. Then / : CJD^Aj^CJD,.
Since (*, 1) is satisfies, / or f~l is extendible to xt for some x in eRe by
Lemma 3. Being/(A^+D^=Aj2-{-D2y x is a unit. Hence xD1dD2 or xD2dD1

(see the proof of [4], Theorem 3). However, by [7], Lemma 3, it is impossible.
ii) Ai+nttAi+12^-"^Ai+lp. Then An^Aj2 by Proposition 1. Since

Ai+n^Ai+l2i A^O^AC^+n) by Proposition 2. Similarly AC4,--n)=#A(^i).
Hence [A(AJ: A(i4,+U)]#=[A(A): A(^0]i = [A(^,--ii): A(An)l = 2 by Pro-
position 3 and Lemma 4. However A(A1)Z^A(Ai+n)ZDA(Aj_n)ZDA(An) by
Lemma 2, which is impossible.

We shall give the structure of Av From Propositions 1 and 5 we obtain
the following diagrams (a) and (V).

A « Bx ej
I j

A

Assume ^>3 and J(^f.1) = ^<-+n#=0. Put A = ^ . - ^
and C 2 = i 4 a + A - T h e n CJD^ An~ C2/D2. However,

Hence we obtain a contradiction as above. Thus we
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have

(b:)

from

I
0

Corollary

A

\

5

'A,,

1
0

(t>3)

M. HARADA

or

0 0 .

ej

Lemma 5. Let R be left serial. Then in the diagram (a), any two dis-
tinct simple sub-factor modules {e.g. AJAs+ly AnIAi+n) are not isomorphic to one
another.

Proof. Assume Ak^Ap2 for k^i — 1 and p^i. Put Ak=akR, Ap2=ap2R
and akg=ak, ap2g=ap2 f°r a primitive idempotent g. Since A^Bly Ak*=&Bk

and Ap2^Bp2=bp2R\ bp2g=bp2. Then there exists d in Bx such that dak=bp2

by [7], Lemma 2, and d^T(eJp~ke). Since 0*bp2(=Jpg, dbk^T(eJpg). Let
dbk=xl+x2; Xj=Xjg ^Bij ( j= l , 2). Assume x2^T(eJpg). Then bp2=x2u for
some unit # in £/?£, and so d(ak—bku)=—x1u. Hence - ^ ^ - x ^ G T f j B ^ ) .
Accordingly, Bpl^Bp2, which contradicts [7], Lemma 3. Therefore x2&T(eJpg)y

and so x1=x1gGiT(eJpg). Again we obtain the same contradiction from [7],
Lemma 3. Thus Ak^Ap2. We can use the same argument for other cases
(note that, for the case Ak^Ak'y (k<k'<i—l), use [7], Lemma 7).

Lemma 6. Assume that R is a left serial ring. Then in (b^ we have the
same situation as in Lemma 5 for simple sub-factor modules between Ax and ](Ai^l).
Further A(At) and A(An) satisfy (#), provided (* 1) holds. For (b2) any two
of simple sub-factor modules between Ax and J(A-_i) (and of An) are not isomorphic
to one another, respectively. (Some simple sub-factor modules between Ax and

i^1) may be isomorphic to one of An.)

Proof. The first halves of (b^ and (b2) are obtained from the argument
similarly to Lemma 5. The last one of (bx) is clear from Proposition 3.

Lemma 7. Let R be left serial, and consider the diagram (a). Let
C1ZDD1 and C2ZDD2 be submodules in Ax such that f: C1\D2

I^C2\I>2 and
\CJD1\=l. Then f or f"1 is extendible to an element in Hom^AJD^ AJD2)
or HomR(AJD2, AJDJ.

Proof. We may assume Ci = ciR-\-Di and Cig — Ci for i= 1, 2. If
q G T ( ^ ) ( * < i - l ) , C1=Ah and Dl=J(C1) = AM. Then c2(=T(Ak) by
Lemma 5. Hence there exists a unit d in eRe such that dcx=c2. We may
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assume dA1=A1 by Lemma 2. Then dD1=dAkJcC2J—D2. Therefore
dt is an extension of./. Thus we may assume that /(^4,_1) contains Cx and
C2. From Lemma 5 every submodule in J(^4/_i) is standard (see the defini-
tion before Lemma 10 below). Let C1 = AJ1@Ak2> Dx = Aj+1®Ak2. Since
C,/A«C2 /A, C2 = An®Ak,2, D2 = Aj+11®Ak,2. If k<k' (resp. k>kf\ f is
extendible to an element dt in Hom5(i1/Z)2, AJDJQiom^AJD^ AJD2)) as
above by Lemmas 2 and 5.

Lemma 8. Let R be left serial. In the diagram (bj), vie assume that
and A(An) satisfy (#). Further we assume [A(A): A(A*i)]/=2 in (b2). Then
we obtain the same result as in Lemma 7.

Proof. Let Cj be as in the proof of Lemma 7. If Cj is in T{ASj) (sj^i — 1),
then C1=C2=ASl and D1=D2=ASi+1 by Lemma 6. Hence we can prove the
lemma as in the proof of Lemma 7. Similarly if C1=A$i and C2 is contained
in J(^4I_1), we can easily prove the lemma, since D1=](C1). Therefore we may
assume ](Ai_^) contains Cx and C2.

(bj) Since C, is in ](Ai_1)y we have the lemma from (#).
(b2) Let J(Ai.1)=Ail®Ai2ZD C{ZiDl be submodules with | CJD11 = 1. Let

>̂y be the projection of J(^4,_i) to A{j. We shall show for C (=Cj) and Z) (=£>i)
that there exists a unit x in eife such that

(1) xA1=A1 and ^C=-4*_11©-4,2D^D=i4iki©-4j2.
First we remark the following fact: for C=Arl®At2y there exists a unit

y in #/?£ such that yA1=A1 and yC=An®Ar2.
i) £>r. There exists j ; in eRe such that yA1=A1 and yA{1=Ai2 by

Lemma 2. Since yAi23=Ai2, _p1(ĵ 4,-2)4=0, and so p1y(Ai2)=An by Lemma 6.
Hence yC=-4/1©-4f2.

ii) £<r. Take a unit y' such that y'Ai2=Ail 2indy'A1=A1.
Put D(/)=DDAij and D<»=Pj(D) 0 = 1 , 2). Then ^ : D^ID(1)

Let jD(1)=i4ifcl, D(2)=As2y D{1)=Ak_tl and Di2)=As_t2. We may assume
from the remark (actually &=,y by Lemma 6). There exists a? in ejRe such that
Xt induces g. Hence xD(1)(ZD(2). Putting a=e+x, a(Z>(1)©Z>(2))cZ)(1)©Z)(2)
and a(Ak_n+D(1)®D(2))czaAk_n+Dil)®D(2)=D. a is clearly a unit, and so
a-lD=Ak-tl+D{l)®D(2) = Ak_n®As2. Now a - 1CDcT lD = Ak,1®As2, where
k'=k—t. Since |C/Z)|=1, a " ^ is one of the following: Ak'_n®As2y Ak'X®
As-12 and (eJ

ry)Ak'_n@a~1D (in the last case k'=s), where y^eRe and
yAk'-n = As-l2. Noting yAk^ = As2 and ^ < ^ , we obtain (1) from the initial
remark.

Next we assume that C^Di are of the form (1). Put C{=A ^_nffi-45l-2

and Di=Akil®Asi2 for i = l , 2. Since/: C^D^CJD^ kl=k2 (=k) by Lemma
6. We shall divide ourselves to the following cases:

(a) ^<min(^, s2)- We may assume s{^s2. Let Ak^=aR. Then there
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exists a unit z in eRe such that f(a-\-Dl)=zaJ{-D2 and zAk-n=Ak_u, zA1=A1

by Lemma 2. Since k^s2<:Sly zD1=z(Akil®ASi2)dAkl®ASi2=D2. Hence zt

is an extension of/.
(/3) J2<£<$i (^i^&O2). We obtain the same result as in (a). (Take/"1.)
(y) &<max(sj, s2). We may assume sx^s2. Let Ak-12=aR and S-4,-2=-4,-1

(pAy—A^) for some unit S by Lemma 2. Then ^4^_u=S^i? and f(Sa-\-D1)=
Swa+D2 for some w with wA1=A1 and «k4jfc_12=-4*.-12. Since [ A ^ ) : A(̂ 4,-2)]/
=2 , there exist yx and ^2 i*1 e^e s u c n t n a t Sw7= J i+J 2 S and yjAi2=Ai2, and
yjA1=A1 f o r /= l , 2, i.e., S«?=^1+jy2S+j; .7G*/e- T n e n jA^Szo— yx—
ClAly and so y2(8a)=(Sw—y1—j)a=Swa—(y1-\-j)a = Swa (mod Z)2) and
D2, since s^s^k and j ^eje. Hence (j>2)/ is an extension of/.

Finally we consider the general case. Let / : ClID1->C2/D2 be as before.
Then there exist uly u2 in eRe as in (1). Take

/ ' : (Aki_u(BASi2)l(Akil®ASi2) -^U Q/A X C2jD

Applying the above argument to / ' , we can find v in eRe such that vt induces
/ ' (or f'~l) and vA1=A1. Therefore {uflu^i ((u2vuTl)i) induces / (or / " x ) .

Thus we obtain

Theorem 1. Let R be a left serial ring, and eJ = Al®B1®---®N1 a
direct sum of hollow modules. Then (*, 1) holds for any hollow right R-module
if and only if the following conditions are satisfied:

1) If A^Bly Ax has the structure of (a), (b2) or (b2) such that (#) holds
for A(AX) and A(A{1) if t>Z in (b2), and [A{A^: A(^,1)] /-2 if t=2 in (b2) and

(b2).
2) The condition in [7], Theorem is satisfied.

Proof. If Ax^Bly we obtain 2). Assume Al^Bv We have studied
an isomorphism / : C1/Z>2«C2/Z)2 for submodules C^Di in Ax. If C2 is a
submodule of Blf xC2 is a submodule in Al9 where xB1—A1 for some unit x.
Then using the manner given in the proof of Lemma 8, we can extend / to an
element in Homie(-41/.D1, BJD^ or Homi?(.B1/Z>2, AJD^.

Proposition 6. Let R be as above. Assume A^B^ ••• ̂ Nx for each
primitive idempotent. Then (*, 1) holds for any hollow right R-module if and
only if Y) in Theorem 1 holds.

REMARK. If R is left serial, eR has the structure in § 1. Under this as-
sumption, for a fixed primitive idempotent ey we have studied a problem: when
is eJ/K a direct sum of hollow modules for any submodule K? Hence Theo-
rem 1 gives a characterization of such e, provided R is left serial. This remark
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is applicable to the next section, in particular to Proposition 7 below.
We shall give some algebras concerning Theorem and Propositions.
1 Let LZ)K'Z)K be fields with [L: K']=[K': K]=2. Let L=K'+K'u

and K'=KJ
rKv. We construct a similar example to ones in [4].

eji = e}L+eJ
I

(12)K'+B « (12)uK'+uB

(12)(23)K « (12)(23)vK (12)(23)wi£" « (12)(23)iwK; e J 2

0 0 0 0

e2R=e2K'+eJ %#=e 3 ^

1 I
(23)*: (23)vK 0

0 0

where B=(12)(23)K®(12)(23)vK and lex=ej for any / in L, k'ez=e2k' for
3

any kf in K'. Then i ? — 2 © ^ is a left serial algebra. Further we can show

from Theorem 1 that (*, 1) holds for any hollow right iJ-module ((12)(23)j£«
(l2)(23)vK^(\2)(23)uK). This example shows that [7], Lemma 6 is not true
if i—j.

2

(12)K+B « (12)vK+vB

(12)(23)K * (12)(2A)K (12)(23)vK * (12)(24)©^

0 0 0 0

e2R=e2K+e2J

(23)K (24)K 0 0

0 0

where JB = (12)(23)K:©(12)(24)JK: and k'el = elk' for any kr in K'. Then

i ? = S © ^ is a left serial algebra with (*, 1) ((12)(23)i^(12)(24)/<0.

3 In Example 1, we replace Kr by an extension KQ over K (K'0=K(v)
and [jRTS: J?]>3). We add further semisimple modules (\2){2Z)v2K®
(\2){2Z)vzK®-~ to B and (23)W2JS:©(23)V3JK:©••• to eJR. Then (*, 1) does
not hold by Corollary 4.
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3 (*,2)

We shall give a characterization of left serial rings with (*, 2).

Proposition 7. Let R be a right artinian ring and e a fixed primitive idem-
potent. Assume that (*, 2) holds for any tzoo hollow modules of form eR/K. Then
ej is a direct sum of uniserial modules.

Proof. Since eR@eJ is a maximal submodule of eR(BeR, e /=
»=i

by assumption, where the At are hollow. We shall show by induction that
AilAJk is uniserial for all i. If k=0, AilAif=0. Assume that Ai/AJ"
is uniserial for all i. Let AmJnIAmJn+l=Bml@Bm2@ — ®B!!1Sm, where the Bmj

are simple. We shall show sm=l. Otherwise, Bml + 0 and Bm23=Q. Put Bf=

S 0 4 ; " © B y , where AmJ*+1dBjC:AmJ' for j = l , 2 and BlIAmJ^1 = Bna®

Bm3®-®BmSmf B2IAmJ»+1=Bml®Bm3®-®BmSm, and D=eRIBf®eRIBf. We
shall show, in this case, that D does not satisfy (*, 2). Contrarily assume
that D satisfies (*, 2). Then D contains a maximal submodule M with a direct
summand M} isomorphic to eR = eRI(Bf f](e-\-j)Bf) where j^eje by [3],
Lemma 3. Since eJn+1Z)Bfz)eJn+2 and jBfdeJn+\ (e+j)Bf=Bf. Hence
M^eRKBfnBf) (=eR). We shall denote Ai\AiJ

n (i*m) and AJB'3 by
if* and Amy respectively, where B^AmJn+l=^®Bmj. Let M=M1@M* and

\Ai\=ni and | ^ m | = « m + l , where «,-<«„ and «M=w+l. Then \eR\ = \M1\

= 2 « , + 2 and |Z)| = 2 2 « , + 2 . Put 5 = Z)/J(D)=)M = M/J(Z>). We note

that M=(e-\-e)eR/eJ in D (see [3], Lemma 3). Since |Z5|=2, M is a simple
module. Now M * - S © M , - ; M,- are hollow by (*, 2). If M2=(M2+](D))j

J(Z))=-M, eR/Bf is an epimorphic image of M2 by the remark above. Then
\M2\>\eR\—l and so |Af| > \MX\ + \M2\ > \D\, a contradiction. Hence
M*Cj(Z)). Let <p be the given isomorphism of eR to Mx. It is clear that
<p(eJ)aJ(D), and hence

( 2 ) ]{D) = <p{eJ)@M*

(noteMz>J(D)). Put Q=A1e>--®Am^1, and e /=g©J; m . Then

( 3 )

where Q^Q^Q, L,=Am\Bnl and L2 = AmjBm2. From (3)
g } . Hence

( 4 )

On the other hand, Soc(9>(^ffl))=Soc(L1)©Soc(L2), and Soc{<p(eJ))=Soc(<p{Q))
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@Soc((p(Am)). Let p be the projection of ](D) onto Q2 in (4). Then
is a monomorphism from the above observation (note soc(M*)n

Soc(<p(ej))=0), and hence so is p \M*. Hence | M* | < | Q2 | = S n{. Therefore

(note nm=nJ
r1^2), which is a contradiction. Hence AmJn/AmJn+1 is simple.

The following lemma is substantially due to T. Sumioka [9].

Lemma 9. Let R be left serial and ej a direct sum of uniserial modules
A{ and A\, i.e., £/=2©<4i=2ffi-4i. Let d' be an element in eje such that
d'Alc6=A'lfi, for A^CZAj and A[p(zA[. Then there exists d in A{f\eje such
that d,\Allt=d'l\Alllt. Further for such d dA^O

Proof. Put Ale6=aaR, Ai=a1R and A'lfi=a'pR (dract=a^). Assume that
a<*g=a<* a nd apg=aP for a primitive idempotent g. Let d'=^±d'r\ d'r^A'r.
Since A{-DA[^a^ = d/ao6=^d/

rao6, a'fi = d[a*. Put d=d[<=A[r\eJe. Since
da^a'p, iGT( / p "*^) . Assume <fa,-4=0 for some Ai=atR (z' + l). Then dax

(4=0) and da{ are elements in T(A/
lp_c6+1), which is a contradiction to [7],

Lemma 7. Hence dAt=0 for i 4= 1.

Let Af=S©Aff-. For JVjCl;, t = l, 2, ••-,*, we call S©N,- a standard

submodule of M* (with respect to the decomposition
t=i

Lemma 10 ([9], Lemma 3.3) Let R be a left serial ring such that ej is a
direct sum of uniserial modules A{. Then every submodule in ej is a standard
submodule with respect to some direct decomposition of ej> whose direct summands
are all uniserial.

Proposition 8. Let R be left serial and ej a direct sum of uniserial modules.
Then (*, 2) holds for any direct sum of two hollow modules of form eR/K.

Proof. We may consider a maximal submodule Mr in Dr=e
where Ei are submodules in ej. There exists a maximal submodule M in
D=eR®eR such that M-DEX®E2 and MI(E1®E2)=M'. From [0], Theorem
2 there exists a decomposition D=eR(f)®eR such that M=eR(f)(BeJ, where
f&HomR(eR,eR). Since E2c0@eJ, D/E2 = eR(f)®eJ/E2. Hence M' =
Mj{El®E2)^(eR{f)®eJIE2)lcp{El), where cp\ El-^eR{f)@eJjE2 is the natural
mapping. Accordingly, since eR^eR(f)y we may show for submodules X{ in
ej (f=l, 2) and Y in D*=eR/X1®eJIX2

( 5 ) D*/Y is a direct sum of hollow modules.

First assume Xx^eJ. Let S' be a submodule in ej@e] such that (YiD)S'
•DXX®X2 and S'&X&X^ (=S) is simple. We shall show
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(6) D*IS^eRIX{®eJIX'2y

where X[(ZeR and X2deJ.

Put Xl = Aetl® — ®Ame6m, X2 = Aifil(&---@A'mpm by Lemma 10, where ej=

| t and AfacA'j. Then ScAJA^Q-QAJA^®

If Sc±®AilAifipD*IS=eRIX1®eJISf. Since eJjS'

is a direct sum of uniserial modules by Lemma 10, D*/S is a direct sum of
m

hollow modules. We obtain the same result for a case

Let A-: eJlX^eJIX^AilAi*. and qs: eJ/X^eJ^^A^A'^. be the projec-
tions. We shall show (6) by induction on t, where t=(the number of {p{ and
<£,-|/>,-(S)4=0 and ̂ (5)4=0}). If t=\, we are done from the observation above.
Now we may assume that S = {*i+/a(*1)H r/.(*i)+/i(*iH

^4^^.)}. From the above assumption, we may assume /i=f=0. If Of1=/S1, then
there exists a unit # in î?^ such that x^Aip^JAi^-^A^^A^^fi'1. Ac-
cordingly xA'lfil=Aleil, and so

Next assume <x{>(3i or af1</91. In the former case we obtain */ in e/e as the
above x. Let or1</31. Then there exists d' in ^ such that d/i\Alctl^1/Al0Cl

induces/i. From Lemma 9, we may assume df^A[ and d'Ak=0 for
Further, since d'{eR)(ZA[

( 8) # (=

Case (7)

( 9) eR/X&eJIXt = eR/X, ©(^{

Then S c ^ ^ + S ^ ) ^ ) , where # and 5< are the projections of (9). It is

clear that (the number of {pi, j;})=(the number of {ph qj})— 1.
Case (8)

(10) eR/X&eJ/Xt = (eR/XJ{h')®eJjX2.

Then S c ^ ^ + S 9J)(S). Hence we obtain the same situation. If X1=eJ,
i t y

x is simple. This is a special case in the above argument. In case (9), since
[pl9 we obtain the isomorphism /x: eRjX1®{

Similarly in case (10) we have /2:

Then (the number of {/>„ yyl
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=(the number of qh pi \ ipi(S)4= 0, qj(S) =#=0>) — 1 for fc=l, 2 (note f(J((eR/X1)
(« ' ) )=JW^i)) . Further D*IS~fk(D*)lfk(S)=D*lfk(S). Therefore (6) holds
by induction on t. If we take a chain Y=S'p+lZ)S'p'D»'^SilDX1(BX2=So
such that Si/Si+1 is simple, we can show (5).

From the above proof and Proposition 7 we have

Theorem 2. Let R be a left serial ring and e a primitive idempotent. Then
the following conditions are equivalent:

1) (*, 2) holds for a direct sum of any two hollow right R-modules of form
eRjK.

2) ej is a direct sum of uniserial modules.
3) Every factor module of eR®eJ is a direct sum of hollow modules {direct

sum of a hollow module and uniserial modules).
4) Every factor module of eR(&eJ(n) is a direct sum of hollow modulesy where

ej(n) is a direct sum of n-copies of ej.

We shall study further structures of R with (*, 2) when ej is square-free.

Lemma 11. Let R be a left serial ring. Let a=e-\-d (d^eje) be a unit
in eRe. Assume A^Aj if i^j. Then if aAx^rAl9 aA{=Ai for £4=1, where

,- and the A{ are uniserial.

Proof. From [7], Lemma 5 d^Aj for some j . Since aAx^Al9

and so dA^O. Therefore dAk=0 for &4=1 by Lemma 9.

Proposition 9. Let R be left serial. Assume that ej is a direct sum of
tn

uniserial modules At: eJ=^>l@Ai and that el is square-free. Let X be a sub-

module of ej. Then there exist uniquely k and kr (not depending on X) such that

X=a (^^Aij^Au^-^A^^^aAki^Ak+u^^'-'^A^ where A^a
Aj, and <xAk(ZAk(&Ak'. Further all A{ except Ak are characteristic and the
number of hollow modules of form eRjK is finite up to isomorphism

m

Proof. Let ^ / = 2 © ^ / be as in the proposition. Assume that a sub-
i=i

factor module of Ax is isomorphic to one of A2. Then from [7], Lemma 2
there exists d in A2 (or Ax) which induces this isomorphism. If we have the
same situation between A{ and Ah we obtain d' in A{ (or Aj). Then i=2
by assumption and [7], Lemma 4. Since A2 is uniserial, Soc(^2)^-4i*/-^i*+i
<=&AjS/Ais+1 for some k and s. Hence j= 1 by [7], Lemmas 2 and 4. There-
fore, for j 4=1, 2, any sub-factor modules of Aj are not isomorphic to any one

of Ak for all k^j. Put Fl=Al®A2 and F2=f}(BAj. Then we can easily

show by induction on m that every submodule of F2 is standard. Further from
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the argument after (1) in the proof of Lemma 8, every submodule of Fx is of
a form a(AUl®A2i2); a=e+d, d^A2. Let pt be the projection of ej onto
Fh and X a submodule of ej. Put XU)=pj(X) and X(j)=XC\Fj. Assume
X<n*X<x>, and X(1) = a(Alh®A2k2). A^A^a'^A^A^a^X^^a^X^
=Alkj@A2k2. Hence some simple sub-factor module T of X^jX^ is iso-
morphic to one of Ax or A2. Since X{1) jX^^X^ jX{2)i T is isomorphic to
a sub-factor module of X(2)/X(2), On the other hand, every submodule of
F2 is standard, and so T is isomorphic to a sub-factor module of some Aj (j >3),
which is impossible from the initial observation. Hence X(-l)=X(1)y and

X=X(i)@Xto=a(Alh@Ato)@^®AjkJ=a(il®Aikl) by Lemma 11. The re-

maining part is clear from the above.

Lemma 12. Let R be a right artinian ring with (*, 2). Let D be a direct
sum of tzvo hollow modules and M a maximal submodule of D. Then M has the
following decomposition: M=M1®M2\ Mx is a hollow module not contained in
](D)and](D)=](M1)®M2.

Proof. Let D=eRIE®e'RjE\ If eR^e'R, M=eR\E@e'J\E' (or eJ/E®
e'R/E'). If eR^e'R, we can obtain the lemma for any M similarly to (2) in
the proof of Proposition 7.

For two integers a(l) and a(2), we denote max{a(l), a{2)} (resp. min{a(l),
a(2)}) by a (resp. a). If R is a right artinian ring with (*, 2),

(11) ^ / = S © Ai; the A{ are uniserial
1 = 1

from Proposition 7.

Proposition 10. Let R be a left serial ring with (*, 2) awd /e£ ej and A{

be as above. We assume that ej is square-free. Put Ei=Alo6l(i)®
a"®Ano6n(i);

Akc6k(i)^Ak for z=l , 2 and all k. Then every maximal submodule M of D=
eRIE^eR/Ez is isomorphic to eRf{A^x

A% , unless M^eRIEx®eJjE2 or

Proof. We may assume that R is basic. Assume M=^e-\-"ea)eRejeJey

=]{D)^eJj(Elr[{a+j)E2)®M2 by Lemma 12 and [3], Lemma 3. On the
other hand, E1n(a+j)E2=

fy(Aloil(3)® ••• ®Anan(3)) by Proposition 9. Hence
A^AlH^®''*®AnlAMn{^. Since ej is square-free, either
) or AJAl06l(2). Therefore a,(3) = a,(l) or a-(2). Further

Considering the projection of ej to Aiy we obtain orf-(3)>a8-(l) (note A^jAi
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(ZeJ). Similarly a,(3)>a,(2), and so tf,(3)=a,-. Therefore Mj

Corollary 11. Let R be as above. Then the number of isomorphism classes
of maximal submodules in a direct sum of {fixed) two hollozo modules is at most
three.

REMARK. Assume in (11) that ej is not square-free. Then we can show,
by direct computation, the following fact:

Let D=eR/E1®eRIE2 be a direct sum of hollow modules eR/E^ Then
the number of isomorphism classes of maximal submodules in D at most three
for any Ex and E2 if and only if one of the following occurs,

i) m=2, A^A2 and \AX\ <2.
ii) m=3, A^A2^A3 and l^l =1.
iii) m=3y A^A2^A3 and 1^1=1.

For example, m=2, A1&A2 and \AX\ >3\ D=eRIA1®eR/(Au®A23). Then D
contains the following maximal submodules:

eJIA&eRKAuQAn), eRjA^eJUA^A^ eRIA12®AJA13 and eR/A13®
AJAn (cf. the proof of [6], Lemma 3). Therefore Corollary 11 characterizes
almost left serial rings with (*, 2) and ej being square-free.

Lemma 13. Let R be a left serial ring. Assume that ej is square-free
nt

and ej is a direct sum of uniserial modules; eJ=y%l(BAi. Let x be a unit in eRe

and xAx^Av Then there exists d in eje such that {x-\-d)Ai=Ai for all i.
Proof. Let p{ be the projection of ej onto Ah and Aj=ajR for j=l, 2, •••,

m. Since ej is square-free, pixA1(Z](Ai) for /4=1. Hence pixl\Al={di)i for
some d( in ](Ai) by [7], Lemma 2. By assumption and [7], Lemma 4, only
one dh say d2y is non-zero, since xA13

zA1. Similarly for j 4=1, 2 and*'4=./,
piXtlAj^dji)! for some rfyiej(i4,). Then djk=0 (*4=2) by [7], Lemma 4.
Assume dj2 + 0, and so d^a^Q. Since d2^0, O+d^Rdd^ajR (or dj2ajRa
d2aj£). Let d2a1=dj2ajr (and axg=ax and rg=r for a primitive idempotent g).
Hence there exist non-zero three elements axg, aprg and d2axg. This is a
contradiction to [7], Lemma 5. Hence xAj=Aj (/4=1, 2). If xA9^A2, we
obtain again a contradiction to [7], Lemmas 2 and 4. Finally, since 0=1=̂ 2̂ 1
CZA2, d2Aj—0 for j 4=1 from Lemma 9. Therefore (x—d2)Ai=Ai for all i.

From Proposition 10 we know the form of maximal submodules in eRjEx

®eRjE2 up to isomorphism, provided (*, 2) holds and ej is square-free. We
shall show explicitly such an isomorphism. Let eJ=Al@A2@"*@An be a
direct sum of uniserial submodules. Put Ei=Alc6l(i)®A2c6z(i)®'" ®Anana) for
i=ly 2, where AJttjU)C:Aj. Set D=eRjEl®eRjE2 and let M be a maximal
submodule in D. Put



388 M. HARADA

®An\AndLn and D=DIJ(D)IDM=MIJ(D). We may assume M=(e+ek)A (cf.
[2], p. 93), where ^=|=OEA (R is basic). From Lemma 13, we may assume
kA~Ai for all i. We define a mapping <p: M*->D by setting for xEEeR,

(12) ^

^ ^

where the S, S' are Kronecker deltas such that S3#.rt|.(2)=0 provided a,( l)=
Since ( A ^ e - e ^ i O n ^ ^ <P is an 28-
homomorphism. (<p(M*)+J(D))IJ(D)=M means # * ) c ¥ , and so £>(Af*)
= M , since |M*| = \S\ -1= \M\.

Finally we shall give a property of a right artinian ring with (*, 2). Put

h and Q= 2 © 4̂̂  in (11). Assume Ak^Ak, for all &, &' such that
* + i
2

Proposition 12. L^̂  i?, P «/zrf ^ 6̂  â  above. Let L be a direct summand
of ej such that L/LJ^P/PJ. Then there exists a unit a—e+j (j^eje) such that
aP=L.

Proof. From the assumption L/LJ^P/PJ and Krull-Remak-Schmidt
theorem, L^P. We apply the exchange property of L to eJ=P@Q. Then
eJ=L(BP'®Qr, where P ' c P and Q'czQ. Since no one of indecomposable
direct summands of L is isomorphic to any one in Q, eJ=L(BQ- Put D=eRjP
@eRjL. We shall employ the similar argument to the proof of Proposition 7.
From [3], Lemma 3 and its proof, D contains a maximal submodule M such
that M=MX®M* with M^eRjK, where K=P fl ccL, a=e+j. Now

(13) J(0) = 0i©02, where 0 , « 0 .

Further, as in the proof of Proposition 7,
]{D)=<p(eJjK)®M*, <p: eRjK-^-D is the given injection. On the other

hand, <p{{Q+K)IK)=Qlf), where/: &-»&. Hence

(14) ](D) = <p((Q+K)IK)@Q2 and <p(P/K)c:Q2.

L,etp be the projection of ](D) onto <22
 m (14), and x an element in^(Soc(M*))

f\<p(PIK); x=p(y) for some j> in Soc(M*). Then y = (l—p)y+py and
(l—p)ye<p((Q+K)IK). Hence y<^<p(eJIQ) n M * = 0 , and so *=0. Similarly,
we know p \ Soc(M*) is a monomorphism. Hence

(15) p(M*)®(PIK)aQ2 and

Now | M | = IMJ + I M * ! - ki?/i^| + \M*\ = 1 + \Q\ + \PIK\ + \M
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from (15). Hence p(M*)®^(P/K) = Q2 =
m

S ®Aky and so (p(PjK) is isomorphic to a direct sum of some Ak

by Krull-Remak-Schmidt theorem. On the other hand, As^Ak for
and hence P=K=P f] aL. Therefore aL=P.

EXAMPLE 4. Let Q be the field of rationals. We regard Q{f/~H\) {=L)
as a jg-space. Then we can directly compute that V=Q®Q{\/^\-\-y/ — \)
is not transferred to a standard submodule of L=QQ)Qa®Qa2®Qaz by a
unit, where a=\/—1. Hence

VO L

is a left serial ring with (*, 2) by [3], Proposition 3, however (0, V) is not trans-
ferred to a standard submodule of a decomposition eJ=(0, £?)©(0, Qa)®
(0, £>a2)©(0, £)<23), (cf. Lemma 10 and Proposition 9).
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