<table>
<thead>
<tr>
<th>Title</th>
<th>Generalizations of Nakayama ring. V. (Left serial rings with (*,2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Harada, Manabu</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 24(2) P.373-P.389</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1987</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/5155</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/5155</td>
</tr>
</tbody>
</table>
We have studied a left serial algebra over an algebraically closed field with \((*, n)\) as right modules in [4] and further investigated an artinian left serial ring \(R\) with \((*, 1)\) in [7], when \(eJ/eJ^2\) is square-free for each primitive idempotent \(e\), where \(J\) is the Jacobson radical of \(R\). On the other hand, we have given a characterization of a certain artinian ring with \((*, 3)\) in [6].

For a left serial ring \(R\), we shall obtain, in the second section of this paper, a characterization of \(R\) with \((*, 1)\) (Theorem 1), and one of \(R\) with \((*, 2)\) (Theorem 2) in the third section. We shall study hereditary rings with \((*, 2)\) in the forthcoming paper.

In order to give a complete study of a left serial ring with \((*, 1)\), we need deep properties of a division ring (much more difficult than Artin problem, see (#)).

We shall use the same terminologies given in [7] and every ring \(R\) is a both-sided artinian ring with identity, unless otherwise stated.

1. Left serial rings

In this section, we assume that \(R\) is a left serial ring. Then
\[eJ = \sum_k \oplus A_k, \]
where the \(A_k\) are hollow right \(R\)-modules by [8], Corollary 4.2. We shall describe this situation as the following diagram:

\[
\begin{array}{cccc}
A_1 & \rightarrow & A_2 & \rightarrow & \cdots & \rightarrow & A_n & \rightarrow & eJ \\
| & & | & & | & & | & & \\
A_{11} & \rightarrow & A_{1a_1} & \rightarrow & A_{21} & \rightarrow & \cdots & \rightarrow & eJ^2 \\
| & & | & & | & & | & & \\
A_{1} & \rightarrow & B_2 & \rightarrow & \cdots & \rightarrow & N_{1} & \rightarrow & eJ \\
| & & | & & | & & | & & \\
A_{21} & \rightarrow & A_{21} & \rightarrow & B_{21} & \rightarrow & \cdots & \rightarrow & eJ^2 \\
\end{array}
\]

or

\[
\begin{array}{cccc}
A_1 & \rightarrow & B_2 & \rightarrow & \cdots & \rightarrow & N_1 & \rightarrow & eJ \\
| & & | & & | & & | & & \\
A_{21} & \rightarrow & A_{21} & \rightarrow & B_{21} & \rightarrow & \cdots & \rightarrow & eJ^2 \\
\end{array}
\]
where \(A, B, \cdots \) are hollow modules. (cf. [3], §2).

Let \(e \) be a primitive idempotent and put \(\Delta = eRe/Je \), and for a submodule \(A \) of \(eR \), \(\Delta (A) = \{ x | x \in eRe, xA \subset A \} \), where \(x \) is the coset of \(x \) in \(\Delta \). Then \(\Delta (A) \) is a division subring of \(\Delta \) (see [1]). It is clear that \(\Delta (A) = \Delta (A) = \{ x | x \in eRe, xA \subset A \} \) provided \(A \) is hollow; \(\overline{A} = A \mid J(A) \).

Let \(A_i \supset A_{ii} \) be as in the diagram above. We put \(R = R/J(t > i) \) and \(A_{ii} = (A_{ii} + eJ^t) / eJ^t \). Then we can express \(A_{ii} = A_{ii} \) as a direct sum \(A_{ii} \oplus C \), where \(C \subset eJ^t - A_{ii} \) (see the diagram above). Let \(p \) and \(q \) be the projections of \(A_{ii} + eJ^t \) to \(A_{ii} \) and \(C \) respectively. We can define \(\Delta (A_{ii}) \) and \(\Delta (A_{ii}) \). Since \(eRe/eJe \cong (eRe/eJ^t)e/eJ^t \), \(\Delta (A_{ii}) \) is canonically contained in \(\Delta (A_{ii}) \). Conversely, let \(x \) be an element in \(\Delta \) such that \(x(A_{ii} + eJ^t) \subset A_{ii} + eJ^t \). Put \(f = qx_i | A_{ii} \) and \(f \) is in \(\text{Hom}_R(A_{ii}, eJ^t) \), where \(x_i \) means the left-sided multiplication of \(x \). Let \(A_{ii} = ar \) and \(ag = a \) for some primitive idempotent \(g \). Since \(b = f(a) = f(a)g \), there exists \(d \) in \(eJe \) such that \(da = b \) (note \(i > t \)), since \(R \) is left serial. Then \(x_i | A_{ii} = (px_i + qx_i) | A_{ii} = px_i | A_{ii} + f = px_i | A_{ii} + d_i | A_{ii} \) and \(px_i | A_{ii} \in \text{Hom}_R(A_{ii}, A_{ii}) \). Hence \((x-d) = x \in \Delta (A_{ii}) \). Thus we have (from now on \(A_{ii} \) means always a hollow module in the diagram above).

Lemma 1. Let \(R \) be a left serial ring, and let \(A_{ii} \) and \(A_{ii} \) be as above. Then \(\Delta (A_{ii}) = \Delta (A_{ii}) \).

Lemma 2. Let \(R \) be a left serial ring. Let \(A_{ii} \) contain \(A_{j} \) and \(A_{jk} \). Then \(\Delta (A_{j}) \subset \Delta (A_{ii}) \), and if \(f : A_{ji} \cong A_{jk} \), there exists a unit \(g \) in \(eRe \) which induces \(f \) and \(gA_{ii} = A_{ii} \).

Proof. Assume \(f : A_{ji} \cong A_{jk} \). There exists a unit \(x \) in \(eRe \) such that \(xA_{ji} = A_{jk} \) from [7], Lemma 2, and \(x_i \) induces \(f \), since \(R \) is left serial. For \(x \), we employ the similar argument given in the proof of Lemma 1. Let \(eJ^t = A_{ii} \oplus E \) and \(p, q \) the projections. Consider \(qx_i | A_{ii} \) (\(= g \)). Since \(g(A_{ji}) = qx_{j}A_{ji} = qA_{ji} = 0 \), \(g \) is not a monomorphism. Hence \(g = d_i \) for some \(d \) in \(eJe \) and so \((x-d)A_{ii} \subset A_{ii} \). Hence \((x-d) \) induces \(f \). If we put \(k = 1 \) in the above, we obtain the first half of the lemma.

2. \((*, 1)\)

First we recall the definition of \((*, n)\)

\((*, n)\) Every maximal submodule of a direct sum of \(n \) hollow modules is also a direct sum of hollow modules [5].

We shall study, in this section, left serial rings \(R \) with \((*, 1)\). We obtained a characterization of a left serial ring with \((*, 1)\), when \(eJ/eJ^2 \) is square-free, i.e., \(\overline{A} \cong \overline{B} \cong \cdots \cong \overline{N} \) in [7], Theorem. Hence we may consider \(eR \) satisfying \(A_1 \cong B_1 \).
Let R be left serial. Assume that $A_i \approx B_i$ and $(\ast, 1)$ holds. Then, for any submodules $C_i \supset D_i$ in A_i such that C_i/D_i is simple and $f; C_i/D_i \approx C_2/D_2$, f or f^{-1} is extendible to an element g in $\text{Hom}_R(A_i/D_i, A_i/D_2)$ or $\text{Hom}_R(A_i/D_2, A_i/D_i)$.

Proof. There exists a unit element u in eRe such that $B_1 = uA_1$. Put $C_1 = uC_2, D_1 = uD_2$ and $f' = u_i f$. Then f' (or $f^{-1} u_i ^{-1}$) is extendible to an element g' in $\text{Hom}_R(A_i/D_i, B_i/D_1)$ (or $\text{Hom}_R(B_i/D_2, A_i/D_i)$) by [6], Theorem 4. Then $g = u_i ^{-1} g'$ (or $g = g' u_i$) is the desired extension of f (or f^{-1}).

Proposition 1. Let R, A_i and B_i be as in Lemma 3. If there are three non-zero hollow modules A_{i1}, A_{i2}, A_{i3} for some i, they are isomorphic to one another.

Proof. First we shall show $A_{i1} \approx A_{i2}$. Put $C_1 = A_{i1} \otimes A_{i3}$ and $C_2 = A_{i2} \otimes A_{i3}$. Considering R/J^{i+1} from [3], Lemma 1, we may assume that the A_{ij} are simple. Now $f; C_1 \approx A_{i3} \approx C_2 \approx A_{i2}$. Then by Lemma 3, there exists an element x in eRe which induces f or f^{-1}, i.e., $f(a + A_{i3}) = xa + A_{i2}$ for $a \in A_i$. Since C_1, C_2 are contained in $e J^{i}$ but not in $e J^{i+1}$, x is a unit, and $xA_i = A_{i2}$ (or $xA_{i2} = A_{i1}$) from the argument of the proof of [4], Theorem 3. Therefore $A_{i1} \approx A_{i2}$. Since R is left serial and A_{ij} are hollow, $A_{i1} \approx A_{i2}$ from [7], Lemma 2.

Let $\Delta \supset \Delta_1$ be division rings. $[\]_r ([\]_l)$ means the dimension of Δ over Δ_1 as a right (left) Δ_1-module.

Proposition 2. Let A_i, B_i be as in Lemma 3. Then for $A_{i1} \supset A_{i2}$ $[\Delta(A_{ij})]: \Delta(A_{ij}) = |A_{i1}J^{j-i+1}|/|A_{i1}J^{j-i}|$, except $A_{i1}J^{j-i} = A_{i2} \oplus A_{i2}$ and $A_{i1} \approx A_{i2}$ (in the exceptional case $\Delta(A_{ij}) = \Delta(A_{ij})$, cf. Example 2 below).

Proof. We may assume from Lemma 1 and [3], Lemma 1 that $J^{j-i+1} = 0$, and hence $A_{i1}J^{j-i+1} = 0$, and so A_{ij} is simple. Let $A_{ij} = aR$ and $\{e, \delta_2, \delta_3, \ldots, \delta_k\}$ be a linearly independent set in $\Delta_i = \Delta(A_{ij})$ over $\Delta_i = \Delta(A_{ij})$ such that $\delta_i A_{i1} \subset A_{i1}$ for all k. We shall show $A_{i1} + \delta_2 A_{i1} + \delta_3 A_{i1} + \cdots + \delta_k A_{i1} = A_{i1} \oplus \delta_2 A_{i1} + \delta_2 A_{i2} \oplus \cdots \oplus \delta_k A_{i1}$. If $(A_{i1} + \delta_2 A_{i1} + \cdots + \delta_k A_{i1}) \cap \delta_i A_{i1} = 0, \delta_i A_{i1} \subset A_{i1} \oplus \cdots + \delta_i A_{i1}$, since $\delta_i A_{i1}$ is simple. Then $\delta_i a = a_1 + \delta_2 a_2 + \cdots + \delta_k a_k$, where $a_j \in A_{i1}$. The mapping; $a \rightarrow a_i$ gives an endomorphism of A_{i1}. Hence $a_i = k_i a$ for some $k_i \in A_{i1}$ by Lemma 2. Accordingly $\delta_i = \delta_i A_{i1} + \delta_i A_{i2} + \cdots + \delta_i A_{i1}$, since $J^{j-i+1} = 0$, a contradiction. From the similar argument we can show that $\{A_{i1}, \delta_2 A_{i1}, \ldots, \delta_k A_{i1}\}$ is independent. Hence $[\Delta(A_{ij})]: \Delta(A_{ij}) = |A_{i1}J^{j-i}|$. Assume $|A_{i1}J^{j-i}| > 3$. Then by Proposition 1 $A_{i1}J^{j-i} = A_{i1} \oplus A_{i2} \oplus \cdots \oplus A_{ip}$, for $2 < k < p$. There exists x_p in $D_i (x_p \in eRe)$ such that $x_p A_{i1} = x_p A_{i1} = A_{i1}$. We shall show that $\{e, x_2, \ldots, x_p\}$ is linearly independent.
over Δ_j. Assume $x_j = x_{j-1} + x_{j-2} + \cdots + x_1 + k$, where $k \in eRe$.

Since $J A_j = 0$, $A_j = x_j A_j = x_j A_{j-1} + x_{j-1} A_{j-1} + \cdots + x_1 A_1$, a contradiction. Hence $|A_i J^{-i}| \leq |\Delta(A_i)|$. Finally assume $|A_i J^{-i}| \leq 2$. If $A_j \approx A_j$, we have the same result. If $A_j \approx A_j$, $p \leq 2$ from Proposition 1, and $\Delta_i = \Delta_j$ from the initial argument. If $A_2 = \cdots = A_i = 0$, it is clear that $\Delta_i = \Delta_i$. Hence $|\Delta(A_j)| = 1$.

We consider the situation in Proposition 2 and $J^{*+1} = 0$. Let $A_i J^{-k} = \sum_{j=1}^k A_{j-1}$. If $p \geq 3$, $A_i = A_j$ for all j by Proposition 1. Put $\Delta_i = \Delta(A_i)$ and $A_i = A_i$. Then $[\Delta_i : \Delta_i] = p$ by Proposition 2. Further $A_i J^{-k} = A_i \oplus \delta_i A_i \oplus \cdots \oplus \delta_i A_i$, where $A_i = A R$, and every simple submodule in $A_i J^{-k}$ is of a form $A_i A_i$ for some δ in Δ_i. Now we shall identify $A_i J^{-k} = \Delta_i A_i \oplus \delta_i A_i \oplus \cdots \oplus \delta_i A_i$ with $A_i = A_i \oplus \delta_i A_i \oplus \cdots \oplus \delta_i A_i$, i.e., $\text{Hom}_R(A_i, A_i J^{-k}) = A_i (A_i = A_i J^{-k})$ as left A_i right Δ_i-modules. Let $T_1 \supset T_1$ and $S_1 \supset S_2$ be submodules in $A_i J^{-k}$ such that $f: T_1 / T_2 \approx S_1 / S_2$ and $|T_1| = |S_1| (|T_1| < |S_1|), |T_1 / T_2| = 1$. Then f is extendible to an element h in $\text{Hom}_R(A_i, A_i / S_2)$. Since S_1, T_1 are contained in $A_i J^{-k}$, h is given by a unit element x in eRe. As given in the proof of Lemma 2, $(x+j) A_i$ is in $\text{Hom}_R(A_i, A_i)$ for some j in eRe. Since $J T_2 = 0$, $x+j$ induces f, and $x+j \in A_i$ means $(x+j) T_2 = S_2 ((x+j) T_2 \subset S_2)$ and $f(t_1 + T_2) = (x+j) t_1 + S_2$ for any t_1 in T_1. We translate the above fact to $A_i = \text{Hom}_R(A_i, A_i J^{-k})$.

For any Δ_i-subspace V_1, V_2 in Δ_i with $|V_1| = |V_2| (|V_1| \leq |V_2|)$ and $V_i = x V_i (\forall V_i \in \Delta_i)$, there exists x in Δ_i such that $x V_1 = V_2 (x V_1 \subset V_2)$ and $x v_1 \equiv v_2 (\mod V_2)$.

Lemma 4. Let $\Delta \supset \Delta_1$ be division rings. Assume that $(\#)$ holds for Δ and Δ_1. Then $[\Delta : \Delta_1] \leq 2$.

Proof. We may assume $\Delta = \Delta_1$. Let δ be a fixed element in $\Delta - \Delta_1$ and δ' an element in $\Delta - \Delta_1$. Put $V_1 = V_2 = \Delta_1$, $v_1 = \delta$ and $v_2 = \delta' y$ for any $y \in \Delta_1$ in $(\#)$. Then there exists x in Δ_1 such that $x \delta = \delta' y + z$ for some z in Δ_1. Hence $\delta' \Delta_1 \subset \Delta_1 \oplus \Delta_1 \delta$. Since δ' is arbitrary, $\Delta_1 = \Delta_1 \oplus \Delta_1 \delta$, and so $[\Delta : \Delta_1] \leq 2$.

Proposition 3. Let R, A_1 and B_1 be as in Lemma 3. Then for $A_i \supset A_j$, $\Delta(A_i)$ and $\Delta(A_j)$ satisfy $(\#)$ and so $[\Delta(A_i) : \Delta(A_j)] \leq 2$.

Proof. It is clear by Proposition 2 that if $A_i \approx A_j$, $\Delta(A_i) = \Delta(A_j)$. If $A_i \approx A_j \approx \cdots \approx A_j$, Proposition 1, where $t = [\Delta(A_i) : \Delta(A_j)]$. Then $\Delta(A_i)$ and $\Delta(A_j)$ satisfy $(\#)$ from the remark before Lemma 4. Hence $[\Delta(A_i) : \Delta(A_j)] \leq 2$ from Lemma 4.
Corollary 4. Let A_1 and B_1 be as above. Assume either $\Delta(A_1)$ is commutative or R is an algebra over a field with finite dimension. Then $A_1J^{i-1} = A_{i+1} \oplus A_{i+2}$ for all $i \geq 2$, i.e., $[\Delta(A_1) : \Delta(A_{i+1})]_F = 2$.

Proof. From the assumption and Proposition 3, $[\Delta(A_1) : \Delta(A_{i+1})]_F = 2$.

Proposition 5. Let A_i, B_i be as in Lemma 3. Assume $J(A_{j-1}) = A_{j-1} \oplus A_{j+1} \oplus \cdots \oplus A_{j+p}$. If $p \geq 2$, A_{i+1} is uniserial for all k.

Proof. Assume that $J(A_{j-1})$ is not uniserial, i.e., $J(A_{j-1}) = A_{j+1} \oplus A_{j+2} \oplus \cdots$ for $j > i + 1$. We shall divide ourselves into two cases.

i) $A_{i+1} \cong A_{i+2}$. Then $p \leq 2$ by Proposition 1, and $A_{i+1}J^{-i-1} = 0$ by assumption: $A_1 \cong B_1$, Proposition 1 and [7], Lemma 3. Put $D_1 = A_1 \oplus J(A_2)$, $D_2 = A_1 \oplus \cdots \oplus J(A_p)$, $C_1 = A_1 + D_1$ and $C_2 = A_2 + D_2$. Then $f: C_1/D_1 \cong A_1 \cong C_2/D_2$. Since $(*)_1$ is satisfies, f or f^{-1} is extendible to x for some x in eRe by Lemma 3. Being $f(A_1J^1 + D_1) = A_1J^1 + D_2$, x is a unit. Hence $xD_1 \subset D_2$ or $xD_2 \subset D_1$ (see the proof of [4], Theorem 3). However, by [7], Lemma 3, it is impossible.

ii) $A_{i+1} \cong A_{i+2} \cong \cdots \cong A_{i+p}$. Then $A_{j+1} \cong A_{j+2}$. By Proposition 1. Since $A_{i+1} \cong A_{i+2}$, $\Delta(A_1) = \Delta(A_{i+1})$ by Proposition 2. Similarly $\Delta(A_j) = \Delta(A_{j+1})$. Hence $[\Delta(A_1) : \Delta(A_{i+1})], = [\Delta(A_1) : \Delta(A_j)], = [\Delta(A_j) : \Delta(A_{j+1})], = 2$ by Proposition 3 and Lemma 4. However $\Delta(A_1) \supset \Delta(A_{i+1}) \supset \Delta(A_{j+1})$ by Lemma 2, which is impossible.

We shall give the structure of A_1. From Propositions 1 and 5 we obtain the following diagrams (a) and (b').

Assume $t \geq 3$ and $J(A_{i+1}) = A_{i+1} \cong 0$. Put $D_1 = A_{i+1} \oplus A_{i+2}$, $D_2 = A_{i+1} \oplus A_{i+2} \oplus A_{i+3}$, $C_1 = A_{i+1} + D_1$ and $C_2 = A_{i+1} + D_2$. Then $C_1/D_1 \cong A_{i+1} \cong C_2/D_2$. However, $xD_1 \subset D_2$. Hence we obtain a contradiction as above. Thus we
Lemma 5. Let R be left serial. Then in the diagram (a), any two distinct simple sub-factor modules (e.g. A_i/A_{i+1}, A_{i+1}/A_{i+1}) are not isomorphic to one another.

Proof. Assume $A_k \approx A_{k'}$ for $k \leq i-1$ and $p \geq i$. Put $A_k = a_kR$, $A_{k'} = a_{k'}R$ and $a_kg = a_k$, $a_{k'}g = a_{k'}$ for a primitive idempotent g. Since $A_k \approx B_k$, $A_{k'} \approx B_{k'}$ and $A_{k'} \approx B_{k'} = b_{k'}R$; $b_{k'}g = b_{k'}g$. Then there exists d in B such that $da_k = b_{k'}$ by [7], Lemma 2, and $d \in T(e^{f_{*}}g)$. Since $0 \neq b_{k'} \in J^{*}g$, $db_k \in T(e^{f_{*}}g)$. Let $db_k = x_1 + x_2$; $x_j = x_jg \in B_{ij}$ $(j=1, 2)$. Assume $x_j \in T(e^{f_{*}}g)$. Then $b_{k'} = x_2u$ for some unit u in eRe, and so $d(a_k - b_{k'}) = -x_1u$. Hence $-x_1u = -x_1ug \in T(B_{k'})$. Accordingly, $B_{k'} \approx B_{k'}$, which contradicts [7], Lemma 3. Therefore $x_2 \in T(e^{f_{*}}g)$, and so $x_1 = x_1g \in T(e^{f_{*}}g)$. Again we obtain the same contradiction from [7], Lemma 3. Thus $A_k \approx A_{k'}$. We can use the same argument for other cases (note that, for the case $A_k \approx A_{k'}$, $(k < k' < i-1)$, use [7], Lemma 7).

Lemma 6. Assume that R is a left serial ring. Then in (b) we have the same situation as in Lemma 5 for simple sub-factor modules between A_i and $J(A_{i-1})$. Further $\Delta(A_i)$ and $\Delta(A_{i+1})$ satisfy (#), provided ($*1$) holds. For (b2) any two of simple sub-factor modules between A_i and $J(A_{i-1})$ (and of A_{i+1}) are not isomorphic to one another, respectively. (Some simple sub-factor modules between A_i and $J(A_{i-1})$ may be isomorphic to one of A_{i+1}.)

Proof. The first halves of (b1) and (b2) are obtained from the argument similarly to Lemma 5. The last one of (b1) is clear from Proposition 3.

Lemma 7. Let R be left serial, and consider the diagram (a). Let $C_i \supseteq D_1$ and $C_i \supseteq D_2$ be submodules in A_i such that $f: C_i/D_2 \approx C_i/D_2$ and $|C_i/D_1| = 1$. Then f or f^{-1} is extendible to an element in $\text{Hom}_R(A_i/D_1, A_i/D_2)$ or $\text{Hom}_R(A_i/D_2, A_i/D_1)$.

Proof. We may assume $C_i = c_iR + D_i$ and $c_ig = c_i$ for $i = 1, 2$. If $c_i \in T(A_i)$ $(k \leq i-1)$, $C_i = A_k$ and $D_i = J(C_i) = A_{i+1}$. Then $c_2 \in T(A_k)$ by Lemma 5. Hence there exists a unit d in eRe such that $dc_i = c_2$. We may
assumed $dA_1 = A_1$ by Lemma 2. Then $dD_1 = dA_4 J \subseteq C_2 J = D_2$. Therefore d_1 is an extension of f. Thus we may assume that $J(A_{i-1})$ contains C_1 and C_2. From Lemma 5 every submodule in $J(A_{i-1})$ is standard (see the definition before Lemma 10 below). Let $C_i = A_{ji} \oplus A_{k2}, \ D_i = A_{ji+1} \oplus A_{k2}$. Since $C_1/D_1 = C_2/D_2, \ C_2 = A_{ji} \oplus A_{k2}, \ D_2 = A_{ji+1} \oplus A_{k2}$. If $k \leq k'$ (resp. $k \geq k'$), f is extendable to an element d_1 in $\text{Hom}_R(A_i/D_i, A_i/D_i)$ as above by Lemmas 2 and 5.

Lemma 8. Let R be left serial. In the diagram (b1), we assume that $\Delta(A_1)$ and $\Delta(A_{i1})$ satisfy $(\#)$. Further we assume $[\Delta(A_1): \Delta(A_{i1})]=2$ in (b2). Then we obtain the same result as in Lemma 7.

Proof. Let c_j be as in the proof of Lemma 7. If c_j is in $T(A_{si})$ $(s_j \leq i-1)$, then $C_i = C_2 = A_{si}$ and $D_i = D_2 = A_{si+1}$ by Lemma 6. Hence we can prove the lemma as in the proof of Lemma 7. Similarly if $C_1 = A_{si}$ and C_2 is contained in $J(A_{i-1})$, we can easily prove the lemma, since $D_1 = J(C_1)$. Therefore we may assume $J(A_{i-1})$ contains C_1 and C_2.

(b1) Since C_i is in $J(A_{i-1})$, we have the lemma from $(\#)$.

(b2) Let $J(A_{i-1}) = A_{i1} \oplus A_{i2} \to C_i \supseteq D_i$ be submodules with $|C_i/D_i| = 1$. Let p_j be the projection of $J(A_{i-1})$ to A_{ij}. We shall show for $C (=C_1)$ and $D (=D_1)$ that there exists a unit x in eRe such that

1) $xA_1 = A_1$ and $xC = A_{i1} \oplus A_{i2} \supseteq xD = A_{i1} \oplus A_{i2}$.

First we remark the following fact: for $C = A_{i1} \oplus A_{i2}$, there exists a unit y in eRe such that $yA_1 = A_1$ and $yC = A_{i1}\oplus A_{i2}$. i) $t \geq r$. There exists y in eRe such that $yA_1 = A_1$ and $yA_{i1} = A_{i1}$ by Lemma 6. Since $yA_{i2} \neq A_{i2}, \ p_j(yA_{i2}) \neq 0$, and so $p_j' y(A_{i2}) = A_{i1}$ by Lemma 6. Hence $yC = A_{i1} \oplus A_{i2}$.

ii) $t < r$. Take a unit y' such that $y'A_{i2} = A_{i1}$ and $y'A_1 = A_1$.

Put $D' = D \cap A_{ji}$ and $D' = p_j(D)$ $(j = 1, 2)$. Then $g': D' \supseteq D' = p_j(D)$ $(j = 1, 2)$. Let $D' = A_{k1}, \ D' = A_{k2}, \ D' = A_{k-1}$ and $D' = A_{k-2}$. We may assume $k \leq s$ from the remark (actually $k = s$ by Lemma 6). There exists α in eRe such that x_1 induces g. Hence $xD' \subseteq D' \subsetneq D'$. Putting $\alpha = e + x, \ (D' \oplus D') \supseteq D' \oplus D'$ and $\alpha(A_{k-1} \oplus A_{k-2}) \subseteq \alpha A_{k-1} \oplus A_{k-2} \oplus D' = D'$. We may assume $k \leq s$ from the remark (actually $k = s$ by Lemma 6). Hence $\alpha = e + x_1$. $\alpha(A_{k-1} \oplus A_{k-2}) \subseteq \alpha A_{k-1} \oplus A_{k-2} \oplus D' = D'$. α is clearly a unit, and so $\alpha^{-1} A_{k-1} \oplus D' = A_{k-1} \oplus A_{k-2}$. Now $\alpha^{-1} A_{k-1} \oplus D' = A_{k-1} \oplus A_{k-2}$, where $k' \equiv 0, 1$. Since $|C/D| = 1, \ \alpha^{-1} C$ is one of the following: $A_{k-1} \oplus A_{k-2}, \ A_{k-1} \oplus A_{k-2}$ and $(e+y)A_{k-1} \oplus \alpha^{-1} D$ (in the last case $k' = s$), where $y \in eRe$ and $yA_{k-1} = A_{k-2}$ and $k \leq s$, we obtain (1) from the initial remark.

Next we assume that $C_1 \supset D_1$ are of the form (1). Put $C_i = A_{i1} \oplus A_{i2}$ and $D_i = A_{i1} \oplus A_{i2}$ for $i = 1, 2$. Since $f: C_i/D_i \approx C_i/D_i, \ k_1 = k_2$ (by Lemma 6). We shall divide ourselves to the following cases:

(a) $k \leq \min(s_1, s_2)$. We may assume $s_1 \geq s_2$. Let $A_{k-1} = aR$. Then there
exists a unit z in eRe such that \(f(a+D_1) = za+D_2 \) and \(zA_{k-11} = A_{k-11} \), \(zA_1 = A_1 \) by Lemma 2. Since \(k \leq s_2 \leq s_1 \), \(zD_1 = z(A_{k+1} \oplus A_{s_2}) \subseteq A_{k+1} \oplus A_{s_2} = D_2 \). Hence \(z_1 \) is an extension of \(f \).

(\(\beta \) \) \(s_2 \leq k \leq s_1 \) \((s_1 \leq k \leq s_2) \). We obtain the same result as in (\(\alpha \)). (Take \(f^{-1} \).

(\(\gamma \) \) \(k < \max(s_1, s_2) \). We may assume \(s_1 \geq s_2 \). Let \(A_{k-12} = aR \) and \(\delta A_{12} = A_{11} \) for some unit \(\delta \) by Lemma 2. Then \(A_{k-11} = \delta aR \) and \(f(\delta a+D_1) = \delta wa+D_2 \) for some \(w \) with \(wA_{1} = A_1 \) and \(wA_{k-12} = A_{k-12} \). Since \([\Delta(A_1) : \Delta(A_{11})] = 2 \), there exist \(y_1 \) and \(y_2 \) in \(eRe \) such that \(\delta w = \bar{y}_1 + \bar{y}_2 \) and \(y_j A_{12} = A_{12} \) and \(y_j A_1 = A_1 \) for \(j = 1, 2 \). i.e., \(\delta w = \bar{y}_1 + \bar{y}_2 \beta + j \). \(x \in eFe \). Then \(jA_1 = (\delta w - \bar{y}_1 - \bar{y}_2 \beta)A_1 \subseteq A_1 \), and so \(y_2(\delta a) = (\delta w - \bar{y}_1 - j)a = \delta w a - (\bar{y}_1 + j)a \equiv \delta w a \pmod{D_1} \) and \(y_2 A_1 \subseteq D_2 \), since \(s_2 \leq s_1 \leq k \) and \(j \in eFe \). Hence \(y_2 \) is an extension of \(f \).

Finally we consider the general case. Let \(f : C_1/D_1 \to C_2/D_2 \) be as before.

Then there exist \(u_1, u_2 \) in \(eRe \) as in (1). Take

\[
\begin{align*}
 f' : (A_{k_1} \oplus A_{s_2})/(A_{k_1} \oplus A_{s_2}) & \to C_1/D_1 \to C_2/D_2 \to C_2/D_2
\end{align*}
\]

Applying the above argument to \(f' \), we can find \(v \) in \(eRe \) such that \(v_1 \) induces \(f' \) (or \(f^{-1} \)) and \(vA_1 = A_1 \). Therefore \((u_1, v_1, u_2^{-1}) \) \(((u_2, v_2^{-1}) \) induces \(f \) (or \(f^{-1} \)).

Thus we obtain

Theorem 1. Let \(R \) be a left serial ring, and \(eJ = A_1 \oplus B_1 \oplus \cdots \oplus N_1 \) a direct sum of hollow modules. Then \((\ast, 1)\) holds for any hollow right \(R \)-module if and only if the following conditions are satisfied:

1) If \(A_1 \approx B_1 \), \(A_1 \) has the structure of (a), (b) or (b) such that (\#) holds for \(\Delta(A_1) \) and \(\Delta(A_{11}) \) if \(t \geq 3 \) in (b), and \([\Delta(A_1) : \Delta(A_{11})] = 2 \) if \(t = 2 \) in (b) and (b).

2) The condition in [7], Theorem is satisfied.

Proof. If \(A_1 \approx B_1 \), we obtain 2). Assume \(A_1 \approx B_1 \). We have studied an isomorphism \(f : C_1/D_2 \approx C_2/D_2 \) for submodules \(C_1 \supseteq D_1 \) in \(A_1 \). If \(C_2 \) is a submodule of \(B_1 \), \(xC_2 \) is a submodule in \(A_1 \), where \(xB_1 = A_1 \) for some unit \(x \). Then using the manner given in the proof of Lemma 8, we can extend \(f \) to an element in \(\text{Hom}_R(A_1/D_1, B_1/D_2) \) or \(\text{Hom}_R(B_1/D_2, A_1/D_1) \).

Proposition 6. Let \(R \) be as above. Assume \(A_1 \approx B_1 \approx \cdots \approx N_1 \) for each primitive idempotent. Then \((\ast, 1)\) holds for any hollow right \(R \)-module if and only if 1) in Theorem 1 holds.

Remark. If \(R \) is left serial, \(eR \) has the structure in § 1. Under this assumption, for a fixed primitive idempotent \(e \), we have studied a problem: when is \(eJ/K \) a direct sum of hollow modules for any submodule \(K \)? Hence Theorem 1 gives a characterization of such \(e \), provided \(R \) is left serial. This remark
is applicable to the next section, in particular to Proposition 7 below. We shall give some algebras concerning Theorem and Propositions.

1 Let $L\supset K'\supset K$ be fields with $[L: K']=[K': K]=2$. Let $L=K'+K'u$ and $K'=K+Kv$. We construct a similar example to ones in [4].

$$e_1 R = e_1 L + e_1 J$$

$$(12)K'+B \cong (12)uK'+uB$$ $e_1 J$

$$(12)(23)K \cong (12)(23)vK$$ $$(12)(23)uK \cong (12)(23)uvK$$ $e_1 J^3$

$$e_2 R = e_2 K' + e_2 J$$

$$e_3 R = e_3 K$$

$$(23)K \cong (23)vK$$

$$(23)K \cong (23)vK$$

$$(23)K \cong (23)vK$$

$$(23)K \cong (23)vK$$

where $B=(12)(23)K \oplus (12)(23)vK$ and $l'e_i = e_i l$ for any l in L, $k'e_i = e_i k'$ for any k' in K'. Then $R=\sum_{i=1}^3 e_i R$ is a left serial algebra. Further we can show from Theorem 1 that $(\ast, 1)$ holds for any hollow right R-module $((12)(23)K \cong (12)(23)vK \cong (12)(23)uvK)$. This example shows that [7], Lemma 6 is not true if $i=j$.

2

$$e_1 R = e_1 K' + e_1 J$$

$$(12)K+B \cong (12)\nu K+\nu B$$ $e_1 J$

$$(12)(23)K \cong (12)(24)K$$ $$(12)(23)vK \cong (12)(24)vK$$ $e_1 J^3$

$$e_2 R = e_2 K + e_2 J$$

$$e_3 R = e_3 K$$

$$e_4 R = e_4 K$$

$$(23)K \cong (24)K$$

where $B=(12)(23)K \oplus (12)(24)K$ and $k'e_1 = e_i k'$ for any k' in K'. Then $R=\sum_{i=1}^4 e_i R$ is a left serial algebra with $(\ast, 1)$ $(12)(23)K \cong (12)(24)K$.

3 In Example 1, we replace K' by an extension K'_0 over K ($K'_0 = K(v)$ and $[K'_0: K] \geq 3$). We add further semisimple modules $(12)(23)\nu^2 K \oplus (12)(23)\nu^3 K \oplus \cdots$ to B and $(23)\nu^2 K \oplus (23)\nu^3 K \oplus \cdots$ to $e_2 R$. Then $(\ast, 1)$ does not hold by Corollary 4.
We shall give a characterization of left serial rings with \((\ast, 2)\).

Proposition 7. Let \(R\) be a right artinian ring and \(e\) a fixed primitive idempotent. Assume that \((\ast, 2)\) holds for any two hollow modules of form \(eR/K\). Then \(eJ\) is a direct sum of uniserial modules.

Proof. Since \(eR\oplus eJ\) is a maximal submodule of \(eR\oplus eJ\) by assumption, where the \(A_i\) are hollow. We shall show by induction that \(A_i/A_iJ^*\) is uniserial for all \(i\). If \(k=0\), \(A_1/A_1J^*=0\). Assume that \(A_i/A_iJ^*\) is uniserial for all \(i\). Let \(A_mJ^*/A_mJ^{*+1}=B_{m1}\oplus B_{m2}\oplus \cdots \oplus B_{m_m}\), where the \(B_{mj}\) are simple. We shall show \(s_m=1\). Otherwise, \(\overline{B}_{m1} \neq 0\) and \(\overline{B}_{m2} \neq 0\). Put \(B^*_j=\sum_{i=1}^{m-1} A_iJ^*/B_j\), where \(A_mJ^{*+1} \subset B_j \subset A_mJ^*\) for \(j=1, 2\) and \(B_i/A_iJ^{*+1}=\overline{B}_{m1}\oplus B_{m2}\oplus \cdots \oplus \overline{B}_{m_m}\), and \(D=eR/B_j\oplus eR/B^*_j\). We shall show, in this case, that \(D\) does not satisfy \((\ast, 2)\). Contrarily assume that \(D\) satisfies \((\ast, 2)\). Then \(D\) contains a maximal submodule \(M\) with a direct summand \(M_1\) isomorphic to \(\overline{eR}=eR/(B_j^* \cap B^*_j)\) where \(j \in eJe\) by \([3]\), Lemma 3. Since \(eJ^{*+1} \supset B^*_j \supset eJ^{*+2}\) and \(jB^*_j \subseteq eJ^{*+2}\), \((e+j)B^*_j=B^*_j\). Hence \(M_1=eR/(B^*_j \cap B^*_j)\) \((=\overline{eR})\). We shall denote \(A_i/A_iJ^*(i=m)\) and \(A_m/B_j\) by \(\overline{A}_i\) and \(\overline{A}_m\), respectively, where \(B_j/A_jJ^{*+1}=\sum_{i=1}^{m} \overline{B}_{mj}\). Let \(M=M_1 \oplus M^*\) and \(|\overline{A}_1|=n_1\) and \(|\overline{A}_m|=n_m+1\), where \(n_1 \leq n_m\) and \(n_m=1+1\). Then \(|\overline{eR}|=|M_1| =\sum_{i=1}^{n} n_i+2\) and \(|D|=2 \sum_{i=1}^{n} n_i+2\). Put \(\overline{D}=D/J(D)\supset \overline{M}=M/J(D)\). We note that \(\overline{M}=(\overline{e}+\overline{e})eR/eJ\) in \(\overline{D}\) (see \([3]\), Lemma 3). Since \(|\overline{D}|=2\), \(\overline{M}\) is a simple module. Now \(M^*=\sum_{i=1}^{n} M_i; M_i\) are hollow by \((\ast, 2)\). If \(\overline{M}_2=(M_2+J(D))/J(D)=\overline{M}, eR/B^*_j\) is an epimorphic image of \(M_2\) by the remark above. Then \(|M_2| \geq |\overline{eR}|-1\) and so \(|M_1| \geq |M_1|+|M_2| \geq |D|\), a contradiction. Hence \(M^* \subset J(D)\). Let \(\varphi\) be the given isomorphism of \(\overline{eR}\) to \(M_1\). It is clear that \(\varphi(\overline{eJ}) \subset J(D)\), and hence

\[
(2) \quad J(D) = \varphi(\overline{eJ}) \oplus M^*
\]
(note \(M \supset J(D)\)). Put \(Q=A_1 \oplus \cdots \oplus A_{m-1}\), and \(\overline{eJ}=Q \oplus A_m\). Then

\[
(3) \quad J(D) = Q_1 \oplus Q_2 \oplus Q_3 \oplus L_2,
\]
where \(Q_1=Q_2=Q, L_1=Q_m \oplus \overline{B}_{m1}\) and \(L_2=Q_m \oplus \overline{B}_{m2}\). From \(3\) \(\varphi(Q) = \{q+0+q+0|q \in Q\}\). Hence

\[
(4) \quad J(D) = \varphi(Q) \oplus L_1 \oplus Q_2 \oplus L_2.
\]

On the other hand, \(\text{Soc}(\varphi(\overline{A}_m))=\text{Soc}(L_1) \oplus \text{Soc}(L_2)\), and \(\text{Soc}(\varphi(\overline{eJ}))=\text{Soc}(\varphi(Q))\).
\(\oplus \text{Soc}(\varphi(A_n)) \). Let \(p \) be the projection of \(J(D) \) onto \(Q_2 \) in (4). Then \(p|\text{Soc}(M^*) \) is a monomorphism from the above observation (note \(\text{soc}(M^*) \cap \text{Soc}(\varphi(\widetilde{e}J))=0 \)), and hence so is \(p|M^* \). Hence \(|M^*| \leq |Q_2| = \sum_{i=1}^{n} n_i \). Therefore \(|M| = |M_1| + |M^*| \leq \sum_{i=1}^{n} n_i + 2 + \sum_{i=1}^{n} n_i = 2 \sum_{i=1}^{n} n_i + 2 - n_m \leq 2 \sum_{i=1}^{n} n_i + 1 = |D| - 1 \) (note \(n_m = n + 1 \geq 2 \)), which is a contradiction. Hence \(A_mJ^*/A_mJ^{*+1} \) is simple.

The following lemma is substantially due to T. Sumioka [9].

Lemma 9. Let \(R \) be left serial and \(eJ \) a direct sum of uniserial modules \(A_i \) and \(A'_i \), i.e., \(eJ = \bigoplus A_i = \bigoplus A'_i \). Let \(d' \) be an element in \(efe \) such that \(d'A_{i_1} = A'_{i_1} \) for \(A_{i_1} \subset A_i \) and \(A'_{i_1} \subset A'_i \). Then there exists \(d \) in \(A_i \cap efe \) such that \(d|A_{i_1} = d'|A'_{i_1} \). Further for such \(d \) \(dA_i = 0 \) (\(i \neq 1 \)).

Proof. Put \(A_{i+a} = a_aR, A_{i+a} = a_aR \) and \(A'_{i+a} = a'_aR \) (\(d'_{a_a} = a'_a \)). Assume that \(a_ag = a_a \) and \(a'_bg = a'_b \) for a primitive idempotent \(g \). Let \(d' = \sum d'_a, d'_a \in A'_a \). Since \(A'_1 \supset A_1 \Rightarrow a'_a = d'a_a = \sum d'_aa_a, a'_a \neq d'_aa_a \). Put \(d = d'|A_i \cap efe \). Since \(da_a = a'_a, \ d \in T(J^R_a) \). Assume \(da_i \neq 0 \) for some \(A_i = a_aR \) (\(i \neq 1 \)). Then \(da_i \) is an element in \(T(A'_1 - \varphi) \), which is a contradiction to [7], Lemma 7. Hence \(da_i = 0 \) for \(i \neq 1 \).

Let \(M = \bigoplus_{i=1}^{t} N_i \). For \(N_i \subset M_i, i=1, 2, \ldots, t \), we call \(\bigoplus_{i=1}^{t} N_i \) a standard submodule of \(M \) (with respect to the decomposition \(\bigoplus_{i=1}^{t} M_i \)).

Lemma 10 ([9], Lemma 3.3) Let \(R \) be a left serial ring such that \(eJ \) is a direct sum of uniserial modules \(A_i \). Then every submodule in \(eJ \) is a standard submodule with respect to some direct decomposition of \(eJ \), whose direct summands are all uniserial.

Proposition 8. Let \(R \) be left serial and \(eJ \) a direct sum of uniserial modules. Then (\(*, 2 \)) holds for any direct sum of two hollow modules of form \(eR/K \).

Proof. We may consider a maximal submodule \(M' \) in \(D' = eR/E_1 \oplus eR/E_2 \), where \(E_i \) are submodules in \(eJ \). There exists a maximal submodule \(M \) in \(D = eR \oplus eJ \) such that \(M \supset E_1 \oplus E_2 \) and \(M(E_1 \oplus E_2) = M' \). From [0], Theorem 2 there exists a decomposition \(D = eR(f) \oplus eJ \) such that \(M = eR(f) \oplus eJ \), where \(f \in \text{Hom}_e(eR, eR) \). Since \(E_2 \subset 0 \oplus eJ \), \(D/E_2 = eR(f) \oplus eJ/E_2 \). Hence \(M' = M/(E_1 \oplus E_2) = (eR(f) \oplus eJ/E_2)/\varphi(E_1) \), where \(\varphi; E_1 \to eR(f) \oplus eJ/E_2 \) is the natural mapping. Accordingly, since \(eR \approx eR(f) \), we may show for submodules \(X_i \) in \(eJ \) (\(i=1, 2 \)) and \(Y \) in \(D^* = eR/X_1 \oplus eJ/X_2 \)

(5) \(D^*/Y \) is a direct sum of hollow modules.

First assume \(X_1 \subseteq eJ \). Let \(S' \) be a submodule in \(eJ \oplus eJ \) such that \((Y) \supset S' \supset X_1 \oplus X_2 \) and \(S'/(X_1 \oplus X_2) (= S) \) is simple. We shall show
(6) \[D^*/S \cong eR/X_1 \oplus eJ/X_2, \]
where \(X_1 \subset eR \) and \(X_2 \subset eJ \).

Put \(X_1 = A_{a_1} \oplus \cdots \oplus A_{a_m}, \)
\(X_2 = A_{a_1} \oplus \cdots \oplus A_{a_n} \) by Lemma 10, where \(eJ = \sum_{i=1}^{n} A_i \), \(A_{a_1} \subset A_1 \) and \(A_{a_2} \subset A_2 \). Then \(S \subset A_1 \oplus A_{a_1} \oplus \cdots \oplus A_{a_n} \oplus A_{a_1} \oplus A_{a_2} \oplus \cdots \oplus A_{a_n} \). If \(S \subset \sum_{i=1}^{n} A_i \oplus A_{a_1} \oplus A_{a_2} \) \(D^*/S = eR/X_1 \oplus eJ/X_2 \). Since \(eJ/X_2 \) is a direct sum of uniserial modules by Lemma 10, \(D^*/S \) is a direct sum of hollow modules. We obtain the same result for a case \(S \subset \sum_{i=1}^{m} A_i \).

Let \(p_i : eJ/X_1 \oplus eJ/X_2 \to A_i/A_{a_i} \) and \(q_i : eJ/X_1 \oplus eJ/X_2 \to A_i/A_{a_i} \) be the projections. We shall show (6) by induction on \(t \), where \(t = \) (the number of \(\{ p_i \) and \(q_i | p_i(S) \neq 0 \) and \(q_i(S) \neq 0 \}) \). If \(t = 1 \), we are done from the observation above. Now we may assume that \(S = \{ s_1 + f_1(s_1) + \cdots + f_m(s_1) + f_i(s_1) + \cdots + f_{m_i}(s_1) | s_1 \in A_{a_1} \oplus A_{a_2} \oplus \cdots \oplus A_{a_n} \} \). From the above assumption, we may assume \(f_1 \neq 0 \). If \(\alpha_1 = \beta_1 \), then there exists a unit \(x \) in \(eRe \) such that \(x \mid A_{a_1} \oplus A_{a_2} \to A_{a_3} / A_{a_1} \). Accordingly \(xA_{a_1} = A_{a_1} \) and so

(7) \[x_1 (= h) \in \text{Hom}_R (A_i/A_{a_1}, eR/X_1). \]

Next assume \(\alpha_1 > \beta_1 \) or \(\alpha_1 < \beta_1 \). In the former case we obtain \(d \) in \(eJ \) as the above \(x \). Let \(\alpha_1 < \beta_1 \). Then there exists \(d' \) in \(eJ \) such that \(d' \mid A_{a_1-1} \). Further, since \(d'eR \subset A_i \), we may assume \(d' \in A_i \) and \(d'A_k = 0 \) for \(k \neq 1 \). From Lemma 9, we may assume \(d' \in \text{Hom}_R (A_{a_1-1} \oplus A_{a_2} \oplus A_{a_3} / A_{a_1}, A_i/A_{a_1} / A_{a_2} \). \)

The above assumption, we may assume \(f_1 \neq 0 \). If \(\alpha_1 = \beta_1 \), then there exists a unit \(x \) in \(eRe \) such that \(x \mid A_{a_1-1} \oplus A_{a_2} \to A_{a_3} / A_{a_1} \). Accordingly \(xA_{a_1} = A_{a_1} \) and so

(8) \[d' (= h') \in \text{Hom}_R (eR/X_1, A_i/A_{a_1}). \]

Case (7)

(9) \[eR/X_1 \oplus eJ/X_2 = eR/X_1 \oplus (A_i/A_{a_1})(h) \oplus \sum_{i=2}^{n} A_i/A_{a_i}. \]

Then \(S \subset (\sum_{i=1}^{m} p_i + \sum q_i)(S) \), where \(p_i \) and \(q_i \) are the projections of (9). It is clear that (the number of \(\{ p_i, q_i \} \) (the number of \(\{ p_i, q_i \} \))

Case (8)

(10) \[eR/X_1 \oplus eJ/X_2 = (eR/X_1)(h') \oplus eJ/X_2. \]

Then \(S \subset (\sum_{i=1}^{m} p_i + \sum q_i)(S) \). Hence we obtain the same situation. If \(X_1 = eJ \), \(eR/X_1 \) is simple. This is a special case in the above argument. In case (9), since (\(A_i/A_{a_1})(h) \cong A_i/A_{a_1} \), we obtain the isomorphism \(f_1 : eR/X_1 \oplus (A_i/A_{a_1})(h) \oplus \sum A_i/A_{a_i} \to eR/X_1 \oplus eJ/X_2 \). Similarly in case (10) we have \(f_2 : (eR/X_1)(h') \oplus eJ/X_2 \to eR/X_1 \oplus eJ/X_2 \). Then (the number of \(\{ p_i, q_i | p_i(f_i(S)) \neq 0, q_i(f_i(S)) \neq 0 \})
(the number of \(q_i, p_i \mid \{ p_i(S) \neq 0, q_i(S) = 0 \} \) for \(k = 1, 2 \) (note \(f(J((eR/X_i) (h')) = J(eR/X_i)) \). Further \(D^*/S \approx f_0(D^*)/f_0(S) = D^*/f_0(S) \). Therefore (6) holds by induction on \(t \). If we take a chain \(Y = S_{k+1} \supset S_k \supset \cdots \supset S_1 \supset X_1 \oplus X_2 = S_0 \) such that \(S_i/S_{i+1} \) is simple, we can show (5).

From the above proof and Proposition 7 we have

Theorem 2. Let \(R \) be a left serial ring and \(e \) a primitive idempotent. Then the following conditions are equivalent:

1) \((*, 2)\) holds for a direct sum of any two hollow right \(R \)-modules of form \(eR/K \).
2) \(eJ \) is a direct sum of uniserial modules.
3) Every factor module of \(eR \oplus eJ \) is a direct sum of hollow modules (direct sum of a hollow module and uniserial modules).
4) Every factor module of \(eR \oplus eJ^{(n)} \) is a direct sum of hollow modules, where \(eJ^{(n)} \) is a direct sum of \(n \)-copies of \(eJ \).

We shall study further structures of \(R \) with \((*, 2)\) when \(eJ \) is square-free.

Lemma 11. Let \(R \) be a left serial ring. Let \(\alpha = e + d \ (d \in eJ) \) be a unit in \(eRe \). Assume \(A_i \cong A_j \) if \(i \neq j \). Then if \(\alpha A_i \neq A_i, \alpha A_i = A_i \) for \(i \neq j \), where \(eJ = \bigoplus_i A_i \) and the \(A_i \) are uniserial.

Proof. From [7], Lemma 5 \(d \in A_j \) for some \(j \). Since \(\alpha A_i \neq A_i, j \neq 1 \), and so \(dA_i \neq 0 \). Therefore \(dA_k = 0 \) for \(k \neq 1 \) by Lemma 9.

Proposition 9. Let \(R \) be left serial. Assume that \(eJ \) is a direct sum of uniserial modules \(A_i; eJ = \bigoplus_i A_i \) and that \(eJ \) is square-free. Let \(X \) be a submodule of \(eJ \). Then there exist uniquely \(k \) and \(k' \) (not depending on \(X \)) such that \(X = \alpha \bigoplus_i A_i = A_i \oplus \cdots \oplus A_{k-i+k'} \oplus A_{k+i+k'+\cdots+n_i} \), where \(A_{j+i} \subseteq A_j \) and \(\alpha A_k \subseteq A_k \oplus A_{k'} \). Further all \(A_i \) except \(A_k \) are characteristic and the number of hollow modules of form \(eR/K \) is finite up to isomorphism.

Proof. Let \(eJ = \bigoplus_i A_i \) be as in the proposition. Assume that a sub-factor module of \(A_i \) is isomorphic to one of \(A_2 \). Then from [7], Lemma 2 there exists \(d \) in \(A_2 \) (or \(A_1 \)) which induces this isomorphism. If we have the same situation between \(A_i \) and \(A_j \), we obtain \(d' \) in \(A_i \) (or \(A_j \)). Then \(i \neq 2 \) by assumption and [7], Lemma 4. Since \(A_2 \) is uniserial, \(\text{Soc}(A_2) \cong A_{k+i}/A_{k+i+1} \approx A_{j+k}/A_{k+1} \) for some \(k \) and \(s \). Hence \(j = 1 \) by [7], Lemmas 2 and 4. Therefore, for \(j \neq 1, 2 \), any sub-factor modules of \(A_j \) are not isomorphic to any one of \(A_k \) for all \(k \neq j \). Put \(F_1 = A_1 \oplus A_2 \) and \(F_2 = \bigoplus_{i \neq 1, 2} A_i \). Then we can easily show by induction on \(m \) that every submodule of \(F_2 \) is standard. Further from
the argument after (1) in the proof of Lemma 8, every submodule of \(F_x \) is of a form \(\alpha(A_{1k} \oplus A_{2k}) \); \(\alpha = e + d, d \in A_2 \). Let \(p_i \) be the projection of \(eJ \) onto \(F_i \), and \(X \) a submodule of \(eJ \). Put \(X^{(j)} = p_j(X) \) and \(X^{(j)} = X \cap F_j \). Assume \(X^{(0)} = X, \) and \(X^{(0)} = \alpha(A_{1k} \oplus A_{2k}) \). \(A_1 \oplus A_2 = \alpha^{-1}(A_1 \oplus A_2) \supset \alpha^{-1}X^{(0)} \supset \alpha^{-1}X = A_{1k} \oplus A_{2k} \). Hence some simple sub-factor module \(T \) of \(X^{(0)} \) is isomorphic to one of \(A_1 \) or \(A_2 \). Since \(X^{(0)} / X^{(0)} = X^{(0)} / X^{(2)}, \) \(T \) is isomorphic to a sub-factor module of \(X^{(0)} / X^{(2)} \). On the other hand, every submodule of \(F_2 \) is standard, and so \(T \) is isomorphic to a sub-factor module of some \(A_j (j \geq 3) \), which is impossible from the initial observation. Hence \(X^{(0)} = X^{(0)} \), and \(X = X^{(0)} \oplus X^{(0)} = \alpha(A_{1k} \oplus A_{2k}) \oplus \sum_{j \geq 3} \oplus A_{jk} = \alpha(\sum_{i=1}^{n} A_{ik}) \) by Lemma 11. The remaining part is clear from the above.

Lemma 12. Let \(R \) be a right artinian ring with \((*, 2)\). Let \(D \) be a direct sum of two hollow modules and \(M \) a maximal submodule of \(D \). Then \(M \) has the following decomposition: \(M = M_1 \oplus M_2; M_1 \) is a hollow module not contained in \(J(D) \) and \(J(D) = J(M_1) \oplus M_2 \).

Proof. Let \(D = e_1 R/E \oplus e_2 R/E' \). If \(e_1 R \cong e_2 R, M = eR/E \oplus e'J/E' \) (or \(eR \cong e'R \), we can obtain the lemma for any \(M \) similarly to (2) in the proof of Proposition 7.

For two integers \(\alpha(1) \) and \(\alpha(2) \), we denote \(\max \{\alpha(1), \alpha(2)\} \) (resp. \(\min \{\alpha(1), \alpha(2)\} \)) by \(\alpha \) (resp. \(\alpha \)). If \(R \) is a right artinian ring with \((*, 2)\),

\[
(11) \quad eJ = \sum_{i=1}^{n} A_i; \text{the } A_i \text{ are uniserial}
\]

from Proposition 7.

Proposition 10. Let \(R \) be a left serial ring with \((*, 2)\) and let \(eJ \) and \(A_i \) be as above. We assume that \(eJ \) is square-free. Put \(E_i = A_{i_1} \oplus \cdots \oplus A_{n_i} \); \(A_{i_1} \subset A_i \) for \(i = 1, 2 \) and all \(k \). Then every maximal submodule \(M \) of \(D = eR/E \oplus eR/E' \) is isomorphic to \(eR/(A_{i_1} \oplus A_{i_2} \oplus \cdots \oplus A_{i_k}) \oplus A_1 / A_{i_1} \oplus A_2 / A_{i_2} \oplus \cdots \oplus A_n / A_{i_k} \) unless \(M = eR/E \oplus eJ/E' \) or \(eR \cong e'R \).

Proof. We may assume that \(R \) is basic. Assume \(\overline{M} = (\bar{e} + \bar{\alpha})eRe/eJ \). \(0 \neq \bar{\alpha} \in eRe/eJ \). Then \(A_1 / A_{i_1} \oplus \cdots \oplus A_n / A_{i_n} \oplus (A_1 / A_{i_1} \oplus \cdots \oplus A_n / A_{i_n}) = J(D) = eJ/(E_1 \cap (\alpha + j)E_2) \oplus M_2 \) by Lemma 12 and [3], Lemma 3. On the other hand, \(E_1 \cap (\alpha + j)E_2 = \gamma(A_{i_1} \oplus \cdots \oplus A_{i_n}) \) by Proposition 9. Hence \(eJ/E_1 \cap (\alpha + j)E_2 \approx A_1 / A_{i_1} \oplus \cdots \oplus A_n / A_{i_n} \). Since \(eJ \) is square-free, either \(A_1 / A_{i_1} \approx A_1 / A_{i_2} \) or \(A_1 / A_{i_1} \). Therefore \(\alpha(3) = \alpha(1) \) or \(\alpha(2) \). Further \(A_{i_1} \oplus \cdots \oplus A_{i_n} \) implies \(A_{i_1} \oplus \cdots \oplus A_{i_n} \). Considering the projection of \(eJ \) to \(A_i \), we obtain \(\alpha(3) \approx \alpha(1) \) (note \(A_i \approx \gamma A_i \)).
Similarly \(\alpha_i(3) \geq \alpha_i(2) \), and so \(\alpha_i(3) = \alpha_i \). Therefore \(M_2 \approx \sum_{i=1}^n A_i / A_i x_i \).

Corollary 11. Let \(R \) be as above. Then the number of isomorphism classes of maximal submodules in a direct sum of (fixed) two hollow modules is at most three.

Remark. Assume in (11) that \(eJ \) is not square-free. Then we can show, by direct computation, the following fact:

Let \(D = eR / (A_1 \oplus eR / (A_2 \oplus A_3) \). Then \(D \) contains the following maximal submodules:

\[eJ / A_1 \oplus eR / (A_2 \oplus A_3), \quad eR / A_1 \oplus eJ / (A_2 \oplus A_3), \quad eR / A_1 \oplus A_2 / A_2, \] and \(eR / A_1 \oplus A_2 / A_2 \). (cf. the proof of [6], Lemma 3). Therefore Corollary 11 characterizes almost left serial rings with \((*, 2)\) and \(eJ \) being square-free.

Lemma 13. Let \(R \) be a left serial ring. Assume that \(eJ \) is square-free and \(eJ \) is a direct sum of uniserial modules; \(eJ = \sum_{i=1}^n A_i \). Let \(x \) be a unit in \(eRe \) and \(xA_i = A_i \). Then there exists \(d \) in \(eJe \) such that \((x + d)A_i = A_i \) for all \(i \).

Proof. Let \(p_i \) be the projection of \(eJ \) onto \(A_i \), and \(A_j = a_j R \) for \(j = 1, 2, \ldots, m \). Since \(eJ \) is square-free, \(p_i x A_i \subset J(A_i) \) for \(i \neq 1 \). Hence \(p_i x A_i = (d_i) \), for some \(d_i \) in \(J(A_i) \) by [7], Lemma 2. By assumption and [7], Lemma 4, only one \(d_i \), say \(d_2 \), is non-zero, since \(xA_2 = A_2 \). Similarly for \(j \neq 1 \) and \(i \neq j \), \(p_j x A_j = (d_j) \), for some \(d_j \). Then \(d_k = 0 \) (\(k \neq 2 \)) by [7], Lemma 4. Assume \(d_2 \neq 0 \). Since \(d_2 \neq 0 \), \(0 + d_2 a_2 R \subset d_2 a_2 R \). Let \(d_2 a_2 = d_2 a_2 \) (and \(a_2 g = a_2 \) and \(a_2 g = a_2 \) for a primitive idempotent \(g \)). Hence there exist non-zero three elements \(a_2 g, a_2 g \) and \(d_2 a_2 g \). This is a contradiction to [7], Lemma 5. Hence \(xA_j = A_j \) (\(j \neq 1, 2 \)). If \(xA_3 = A_3 \), we obtain again a contradiction to [7], Lemmas 2 and 4. Finally, since \(0 + d_2 A_2 \subset A_2 \), \(d_2 A_j = 0 \) for \(j \neq 1 \) from Lemma 9. Therefore \((x + d_2)A_i = A_i \) for all \(i \).

From Proposition 10 we know the form of maximal submodules in \(eR / E_1 \oplus eR / E_2 \) up to isomorphism, provided \((**, 2)\) holds and \(eJ \) is square-free. We shall show explicitly such an isomorphism. Let \(eJ = A_1 \oplus A_2 \oplus \cdots \oplus A_n \) be a direct sum of uniserial submodules. Put \(E_i = A_j / A_j x_j \) for \(i = 1, 2 \), where \(A_j x_j \subset A_j \). Set \(D = eR / E_1 \oplus eR / E_2 \) and let \(M \) be a maximal submodule in \(D \). Put \(M^* = eR / (A_1 A_2 \oplus \cdots \oplus A_n \oplus A_1 x_1 \oplus A_2 x_2 \oplus \cdots \).
\(\oplus A_s/A_s. \) and \(\bar{D} = D[J(D)] \Rightarrow \bar{M} = M[J(D)] \). We may assume \(\bar{M} = (\bar{c} + \bar{e}k)\Delta \) (cf. [2], p. 93), where \(k \equiv 0 \in \Delta \) (\(R \) is basic). From Lemma 13, we may assume \(kA_i = A_i \) for all \(i \). We define a mapping \(\varphi : M^* \rightarrow D \) by setting for \(x \in eR, a_i \in A_i, \)

\[
(12) \quad \varphi(x(A_{1a_1} \oplus \cdots \oplus A_{n a_n}) + (a_1 + A_{1a_1}) + \cdots + (a_n + A_{n a_n}))
\]

\[
= (x + a_1d_{\delta a_1(1)} + \cdots + a_n d_{\delta a_n(1)}) + (A_{1a_1(1)} \oplus \cdots \oplus A_{n a_n(1)})
\]

\[
+ (kx + a_1d'_{\delta a_1(2)} + \cdots + a_n d'_{\delta a_n(2)}) + (A_{1a_2(2)} \oplus \cdots \oplus A_{n a_n(2)}),
\]

where the \(\delta, \delta' \) are Kronecker deltas such that \(\delta_{\delta a_n(2)} = 0 \) provided \(\alpha_i(1) = \alpha_i(2) \).

Since \((A_{1a_1(1)} \oplus \cdots \oplus A_{n a_n(1)}) \cap (A_{1a_2(2)} \oplus \cdots \oplus A_{n a_n(2)}) = A_{1a_1(1)} \oplus \cdots \oplus A_{n a_n(2)} \), \(\varphi \) is an \(R \)-homomorphism. \((\varphi(M^*) + J(D))/J(D) = \bar{M} \) means \(\varphi(M^*) \subset M \), and so \(\varphi(M^*) = M \), since \(|M^*| = |S| - 1 = |M| \).

Finally we shall give a property of a right artinian ring with \((*, 2)\). Put \(P = \sum_{k=1}^i A_k \) and \(Q = \sum_{k=1}^i A_k \) in (11). Assume \(\bar{A}_k \approx \bar{A}_{k'} \) for all \(k, k' \) such that \(k \leq i < k' \).

Proposition 12. Let \(R, P \) and \(Q \) be as above. Let \(L \) be a direct summand of \(ej \) such that \(L/LJ \approx P/PJ \). Then there exists a unit \(\alpha = e + j \) \((j \in eJ)\) such that \(\alpha P = L \).

Proof. From the assumption \(L/LJ \approx P/PJ \) and Krull-Remak-Schmidt theorem, \(L \approx P \). We apply the exchange property of \(L \) to \(eJ = P \oplus Q \). Then \(eJ = L \oplus P' \oplus Q' \), where \(P' \subset P \) and \(Q' \subset Q \). Since no one of indecomposable direct summands of \(L \) is isomorphic to any one in \(Q \), \(eJ = L \oplus Q \). Put \(D = eR/P \oplus eR/L \). We shall employ the similar argument to the proof of Proposition 7. From [3], Lemma 3 and its proof, \(D \) contains a maximal submodule \(M \) such that \(M = M_1 \oplus M^* \) with \(M_1 \approx eR/K, \) where \(K = P \cap \alpha L, \) \(\alpha = e + j \). Now

\((13) \quad J(D) = Q_1 \oplus Q_2, \) where \(Q_i \approx Q \).

Further, as in the proof of Proposition 7,

\(J(D) = \varphi(eJ/K) \oplus M^* \), \(\varphi : eR/K \rightarrow D \) is the given injection. On the other hand, \(\varphi((Q + K)/K) = Q_1(f) \), where \(f : Q_1 \rightarrow Q_2 \). Hence

\((14) \quad J(D) = \varphi((Q + K)/K) \oplus Q_2 \) and \(\varphi(P/K) \subset Q_2 \).

Let \(p \) be the projection of \(J(D) \) onto \(Q_2 \) in (14), and \(x \) an element in \(p(Soc(M^*)) \cap \varphi(P/K) \); \(x = p(y) \) for some \(y \) in \(Soc(M^*) \). Then \(y = (1 - p)y + py \) and \((1 - p)y \in \varphi((Q + K)/K) \). Hence \(y \in \varphi(eJ/Q) \cap M^* = 0 \), and so \(x = 0 \). Similarly, we know \(p \mid Soc(M^*) \) is a monomorphism. Hence

\((15) \quad p(M^*) \oplus (P/K) \subset Q_2 \) and \(p(M^*) \approx M^* \).

Now \(|M| = |M_1| + |M^*| = |eR/K| + |M^*| = 1 + |Q| + |P/K| + |M^*| \leq \)
1 + |Q| + |Q_2| = |D| - 1 = |M| from (15). Hence $p(M^*) \oplus \varphi(P/K) = Q_s = \sum_{k=1}^{n} A_k$ and so $\varphi(P/K)$ is isomorphic to a direct sum of some $A_k (k \geq i+1)$ by Krull-Remak-Schmidt theorem. On the other hand, $A_i \cong A_k$ for $s \leq i < k$, and hence $P=K=P \cap aL$. Therefore $aL=P$.

Example 4. Let Q be the field of rationals. We regard $Q(\sqrt{\omega}-1)$ as a Q-space. Then we can directly compute that $V=Q \oplus Q(\sqrt{-1}+\sqrt{\omega}-1)$ is not transferred to a standard submodule of $L=Q \oplus Q\alpha \oplus Q\alpha^2 \oplus Q\alpha^3$ by a unit, where $\alpha=\sqrt{-1}$. Hence

$$(L \quad L)$$

$$(0 \quad Q)$$

is a left serial ring with $(*, 2)$ by [3], Proposition 3, however $(0, V)$ is not transferred to a standard submodule of a decomposition $eI=(0, Q) \oplus (0, Q\alpha) \oplus (0, Q\alpha^2) \oplus (0, Q\alpha^3)$, (cf. Lemma 10 and Proposition 9).

References

Department of Mathematics
Osaka City University
Sugimoto-3, Sumiyoshi-ku
Osaka 558, Japan