
Title A Lightweight Visualization of Interprocedural
Data-Flow Paths for Source Code Reading

Author(s) Ishio, Takashi; Etsuda, Shogo; Inoue, Katsuro

Citation

Issue Date 2012

Text Version author

URL http://hdl.handle.net/11094/51552

DOI 10.1109/ICPC.2012.6240506

rights

© 2012 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future
media, including reprinting/republishing this
material for advertising or promotional
purposes, creating new collective works, for
resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work
in other works.

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

A Lightweight Visualization of Interprocedural
Data-Flow Paths for Source Code Reading

Takashi Ishio, Shogo Etsuda and Katsuro Inoue
Graduate School of Information Science and Technology

Osaka University
1-5 Yamadaoka, Suita, Osaka, Japan

{ishio, s-etuda, inoue}@ist.osaka-u.ac.jp

Abstract—To understand the behavior of a program, devel-
opers must read source code fragments in various modules.
For developers investigating data-flow paths among modules,
a call graph is too abstract since it does not visualize how
parameters of method calls are related to each other. On the
other hand, a system dependence graph is too fine-grained to
investigate interprocedural data-flow paths. In this research,
we propose an intermediate-level of visualization; we visualize
interprocedural data-flow paths among method parameters and
fields with summarized intraprocedural data-flow paths. We have
implemented our visualization as an Eclipse plug-in for Java. The
tool comprises a lightweight data-flow analysis and an interactive
graph viewer using fractal value to extract a small subgraph
of data-flow related to variables specified by a developer. A
case study has shown our visualization enabled developers to
investigate more data-flow paths in a fixed time slot. In addition,
we report our lightweight data-flow analysis can generate precise
data-flow paths for 98% of Java methods.
Index Terms—data-flow analysis, static analysis, software vi-

sualization, program comprehension.

I. INTRODUCTION

Many software developers spend much of their time to
investigate source code [1]. Some estimate that understanding
source code accounts for more than half of the total cost
of maintenance [2]. Program understanding is difficult partly
because a single functionality is implemented by a complex
interaction of modules, e.g. methods and classes in Java.
To investigate an interaction of modules, developers often
search code fragments related to their current task, using
explicit dependencies including control-flow and data-flow
among modules [3].

While developers have to investigate data-flow paths, ex-
isting source code viewers focus on method call as a main
relationship [4], [5], [6], [7]. To analyze interprocedural data-
flow using these tools, developers have to manually investigate
intraprocedural data-flow paths among method parameters and
fields on source code. On the other hand, system dependence
graph (SDG) [8] represents the details of control-flow and
data-flow of a program. Although SDG includes sufficient
data-flow information for developers, a SDG for a typical
program is too large to visualize [9].

In this paper, we propose an intermediate-level data-flow
visualization for developers to investigate interprocedural data-
flow paths. We visualize data-flow paths among formal pa-
rameters and actual parameters of method invocation and field

access. To exclude the implementation details of a method
from a data-flow graph, we summarize intraprocedural data-
flow paths between formal/actual parameters as direct edges
between the vertices. The resultant data-flow graph shows how
method parameters and fields are related to each other.

Our data-flow visualization tool comprises two compo-
nents: data-flow analyzer and visualizer. The analyzer employs
control-flow-insensitive data-flow analysis. In other words, we
simply connect data-flow edges from all assignment statements
of a variable to all reference statements of the variable. The
analysis is applicable to a part of a system whose control-
flow information is not available. In addition, the analysis is
efficient, consistent with existing tools, and precise enough for
developers to understand data-flow paths.

Our visualizer is an interactive graph viewer integrated into
Eclipse. When a mouse button is clicked on a method name
or a variable name in a text editor, inter-procedural data-flow
paths related to the selected entity are visualized in the graph
viewer. To keep the size of a visualized graph manageable,
we have employed fractal value [10]. Our visualization tool
automatically stops graph traversal at vertices which have a
large number of data-flow edges so that developers can decide
whether they continue investigating the data-flow paths or not.

We have evaluated the effectiveness of our tool for pro-
gram understanding and the performance of the tool. In the
experiment, we have assigned two program understanding
tasks on JEdit, a Java text editor, to 16 participants. The
result shows the participants using Eclipse enhanced with
our data-flow graph view could more completely investigate
data-flow paths than the participants using a regular Eclipse.
Although our data-flow analysis may generate infeasible edges
because of flow-insensitivity, we have found no problems
caused by the infeasible data-flow edges. In addition, we have
shown that only 1.9% of methods of 8 Java software include
infeasible intraprocedural data-flow paths. This result shows
that a lightweight data-flow analysis is practical enough for
Java visualization tools.

This paper makes the following contributions:
• We have defined a flow-insensitive inter-procedural data-

flow analysis. The analysis is an approximation of pro-
gram slicing that is applicable to a part of a system whose
control-flow information is not available. It is consistent
with program analysis tools integrated in Eclipse JDT.

• We have proposed a visualization that focuses on inter-
procedural data-flow paths. We have summarized intra-
procedural data-flow paths to exclude the implementation
details from a graph view.

• We have shown the effectiveness of the inter-procedural
data-flow information in the experiment using a prototype
working with Eclipse and an existing graph layout tool.

The remainder of the paper is structured as follows. In
Section II, we present related work. In Section III, we describe
our data-flow analysis method. The result of experiments is
shown in Section IV. Section V presents the conclusions and
future work of our research.

II. RELATED WORK

A. Software Visualization for Program Comprehension
There are two approaches to software visualization for

program comprehension: one starts from an overview of a
program and the other starts from an implementation detail
[11]. Our approach and several tools are involved in the latter
approach.

Method call is important to investigate source code frag-
ments. Fluid Source Code View [6] is a source code viewer
that helps developers understanding an interprocedural control-
flow path. While a regular source code editor such as Eclipse
shows each file in a split view, this tool shows multiple
methods of multiple classes in a single view by inlining
called methods into the body of their callers. This tool is
good for investigating the detailed behavior of a method that
strongly depends on other methods. On the other hand, this
approach does not support backward traversal of method calls
to investigate how a method depends on its callers.

The relationships among source code fragments should be
visualized so that developers can select an appropriate source
code location to be investigated. Code Bubbles [4] is a unified
viewer of source code and its related documents. The tool
focuses on the user interface based on the bubble metaphor.
The tool shows a number of source code fragments and
their method call relationships so that developers can keep
the progress of their investigation tasks. On the other hand,
the tool does not analyze the implementation details of each
code fragment. To investigate data-flow paths, developers must
open and read source code fragments. Our research visualizes
summarized data-flow paths in source code so that developers
can choose source code fragments to be investigated and
ignore irrelevant source code.

A visualization tool should reflect the structure of source
code fragments. DA4Java [7] shows an overview of Java
source code as a nested graph. Vertices in the graph repre-
sent source code entities which are packages, classes, meth-
ods and fields. Edges in the graph represent class inheri-
tance/subtyping, method calls and field access. DA4Java rep-
resents a class as a node which contains vertices representing
methods and fields belonging to the class. We have followed
the idea of the nested visualization for data-flow graph visu-
alization.

B. Program Slicing
Program slicing [12] is a well-known technique to extract a

program slice, or a set of program statements related to slicing
criteria selected by a developer. A program slice is computed
by backward traversal of System Dependence Graph (SDG)
from slicing criteria [8].

SDG is a directed graph whose vertices represent statements
of a program. Its directed edges represent data and control
dependencies. A data dependency is a relation between an
assignment and a reference of a variable. When all of the fol-
lowing conditions are satisfied, we say that a data dependency
from statement s1 to statement s2 exists:

1) s1 assigns a value to v, and
2) s2 refers to v, and
3) At least one execution path from s1 to s2 without re-

defining v exists.
The third condition depends on a control-flow graph of a
method containing s1 and s2.

A control dependency is a relation between a conditional
statement and a controlled statement. We say that a control
dependency from statement s1 to statement s2 exists if:

1) s1 is a conditional predicate, and
2) The result of s1 determines whether s2 is executed or

not.
The definition of control dependence relation also depends on
a control-flow graph.

Program slicing is effective to investigate the detailed be-
havior of a program for debugging [13]. SDG is also employed
to support source code reading, e.g. to locate features in source
code [5] and to search similar code fragments [14].

Although SDG includes sufficient data-flow information for
developers, there are still two challenges to applying program
slicing to program comprehension tasks. Firstly, program
slicing is not always applicable since the complete set of
source code for a system is not always available. For example,
components of web applications may be controlled by an
external framework. In this research, we approximate program
slicing using a flow-insensitive analysis so that we can analyze
a part of a system without control-flow information. Secondly,
visualizing a SDG for a typical program is difficult because
of its large amount of vertices [9]. In this research, we
visualize only statements related to interprocedural data-flow
such as method invocations and field access. In addition to a
reduced data-flow graph, we introduce an interactive viewer
to visualize a subgraph closely related to a selected variable.

C. Lightweight Analysis
Our approach is an approximation of data dependence

analysis. Jász [15] proposed Static Execute After/Before de-
pendencies as another approximation of data dependencies.
The approach is a control-flow-based approximation without
data-flow analysis, while our approach is a data-flow analysis
without control-flow analysis. The control-flow-based approx-
imation is effective for data-flow paths involved in a sequential
procedure. However, the approach is not good at handling a

static int max (int x, int y) {
int result = y;
if (x > y)

result = x;
return result;

}

Fig. 1. An example procedure

message loop involved in GUI and server applications, since
such a message loop connects control-flow paths among all
functionalities invoked by messages. Our analysis can extract
data-flow paths in such applications.

Nguyen [16] has proposed a flow-insensitive data-flow
analysis for mining source code patterns. The analysis con-
structs a directed acyclic graph named groum whose nodes
represent method calls and field access in a Java method. A
data dependency edge between two nodes is generated if the
two nodes share at least a common variable. Since a groum
ignores data-flow paths caused by loop structures (e.g. while
or for statements) it is not directly applicable to program
comprehension.

III. DATA-FLOW VISUALIZATION

We propose a data-flow visualization for developers to
investigate interprocedural data-flow paths. To exclude the
implementation details of a method, we summarize intraproce-
dural data-flow paths, while we keep interprocedural data-flow
paths. We have defined Variable Data-Flow Graph (VDFG) as
a Java program model. Our visualization tool is an interactive
viewer for VDFG working with Eclipse JDT.

Our data-flow analysis is control-flow-insensitive, context-
insensitive and object-insensitive. It should be noted that our
data-flow analysis is consistent with program analysis features
provided by Eclipse JDT. For example, “Mark Occurrences”
feature shows all assignment and reference statements of a
selected variable. This feature is a control-flow-insensitive
approximation of data dependency. Eclipse JDT also provides
a cross-reference feature for method call and field access. The
cross-reference tool depends on class hierarchy; it is context-
insensitive and object-insensitive.

A. Variable Data-Flow Graph

We have defined VDFG as a directed graph to represent
data-flow paths in a Java program. VDFG includes both
variables and instructions as vertices since variables are im-
portant to investigate data-flow paths. Our analysis is control-
flow insensitive; therefore, we do not construct control-flow
graphs for a target program. To approximate data and control
dependencies without control-flow graphs, we have defined
approximated data and control dependencies as follows.

• If a statement s1 assigns a value to v and another
statement s2 refers to v, then s2 depends on s1 via v.

• A statement is controlled by its enclosing control state-
ment such as if and while.

x

x > y

result = x

y

result = y

result

return result

$re turn

if

control

��������	���
��

����
��	���
��

���
���	���
��

���
��������	����

��
������	����

���
���

Fig. 2. The variable data-flow graph of the procedure max in Figure 1

Compared with data dependency for program slicing de-
scribed in Section II-B, we have removed the third condition.
The difference may generate infeasible data dependency but
miss no traditional data dependency. Approximated control
dependency is based on syntax tree instead of control-flow
graph.

To describe VDFG, we use an example code fragment
shown in Figure 1. The code fragment is a method named
max. The method takes two parameters x and y and returns
the larger one. Figure 2 shows the VDFG of the method.

VDFG comprises three kinds of vertices and two kinds of
edges as follows.

• A variable vertex corresponds to a variable or a literal.
Variables include a local variable, a formal parameter of
a method (formal-in), a return value of a method (formal-
out), an actual parameter of a method call (actual-in), a
return value of a method call (actual-out), an instance
variable (field), a class variable (static field) and a literal.
In Figure 2, a rectangle indicates a variable vertex. Ver-
tices x, y and result respectively correspond to the lo-
cal variables “int x”, “int y” and “int result”.
Vertex “$return” represents the return value of the
method.

• An operator vertex corresponds to an operator of an
expression. An operator vertex has one or more incoming
data-flow edges from vertices corresponding to operands.
If the resultant value of an operator is assigned to a
variable or used by another operator, the operator vertex
has an outgoing data-flow edge. In Figure 2, ellipse
vertices represent operators. For example, “x > y” is
a comparison operator takes as inputs two edges from x
and y and give the resultant value to the following if
statement.
We treat method calls, field access and array access as

special operators whose operands, e.g. a receiver object
and parameters, are represented by variable vertices.

• A control vertex corresponds to a control statement such
as if and while. A control vertex has an incoming data-
flow edge representing the conditional expression and
outgoing control edges to call-site vertices and operator
vertices controlled by the condition. In Figure 2, assign-
ment “result = x;” is controlled by the enclosing if
statement. Therefore, vertex “if” has a control edge to
operator vertex “result = x”.

• A data-flow edge is an edge representing a data-flow.
An intraprocedural data-flow edge connects between a
variable vertex and an operator vertex. An interproce-
dural data-flow edge connects a data-flow for a method
parameter or a field. In this paper, a data-flow edge is
represented by a solid arrow without a label.

• A control-flow edge is an edge from a control vertex to
an operator vertex. This edge represents an approximated
control dependency. In this paper, a control edge is
represented by a dotted arrow.

A VDFG is constructed by the following steps.
1) Create a variable vertex for each variable declaration.
2) Translate each statement into vertices and edges.
The first step processes fields, local variables and literals.

All instance fields and class fields in the target program are
translated into variable vertices. Each field corresponds to a
single vertex, since our analysis is object-insensitive. For each
method, local variables are translated into variable vertices.
Literals, this and the return value (formal-out) of a method
are also regarded as local variables of the method.

The second step is a rule-based transformation of abstract
syntax tree (AST). Figure 3 shows four rules frequently used in
the transformation. A rule specifies AST nodes to be translated
and a set of vertices connected by edges generated for the
AST nodes. A rule includes two special vertices; “e.out”
is a placeholder for a sub-expression, “$out” is a vertex
that replaces such a placeholder, respectively. For example,
statement “result = x;” is an assignment statement that
matches rule (a). The rule indicates that an assignment state-
ment is represented by three vertices and two edges. We
create a new operator vertex with label “result = x” and
connect a data-flow edge from the vertex to variable vertex
“result”. In this expression, the right hand side e is a
reference to variable “x”. Hence, the placeholder “e.out”
is replaced with variable vertex “x”. If the right hand side
of the assignment were an expression “x + y”, the operator
vertex for the assignment would have an incoming edge from
another operator vertex “x + y” generated by rule (b).

Rules to process major Java language constructs are listed
as follows.

• A compound operator is decomposed to primitive op-
erators. A pre-increment operator and a post-increment
operator such as “x++” and “--x” are regarded as
statements “x = x + 1” and “x = x - 1”. A com-
pound assignment operator, e.g. “+=”, is regarded as

a combination of a simple assignment operator and a
regular binary operator. For example, “a += 2;” is the
same as “a = a + 2;”.

• Control statements are translated into control edges. if,
while, for, do-while and switch statements are
simply translated into control vertices. A control vertex
has an incoming data-flow edge from its control predi-
cate and outgoing edges to all operator vertices in the
controlled block. Statements break and continue are
ignored.

• A method call expression is translated into a set of
method call vertices. We create a method call vertex
for each method that may be invoked by the method
call according to dynamic binding. Dynamic binding is
resolved by Class Hierarchy Analysis [17].
Each method call vertex comprises a single operator
vertex and a set of variable vertices representing actual
parameters as shown in rule (c) of Figure 3. We connect
interprocedural data-flow edges from each of actual-in pa-
rameter vertices to its corresponding formal-in parameter
vertex. A data-flow edge for a return value is connected
from the formal-out vertex of a called method to the
actual-out vertex of a call site.
According to the above rule, a static method without
parameters cannot have edges to the callers. To solve
the problem, we add a pseudo parameter “called” to
a method to visualize a link from a call-site. Since the
pseudo vertices are added for visualization, they have no
effect on graph traversal.

• A return statement “return e;” in a method is re-
garded as an assignment from the expression e to the
formal-out vertex of the method.

• A constructor of an object is regarded as a method call
taking as input a new object. We represent the new object
initialized by the constructor call by a pseudo literal
“new C”. The literal is necessary because a constructor
of class C may be called to initialize an instance of a
subclass of C.

• A field access instruction is regarded as similar to a
method call. As shown in rule (d) of Figure 3, a field
reference vertex has two parameters. One of the param-
eters is an actual-in vertex that specifies an owner of a
field, the other is an actual-out vertex that receives a value
from the field, respectively. A field assignment has two
actual-in vertices; one specifies an object and the other
specifies a value for a field. Since our analysis is object-
insensitive, actual-in vertices to specify objects are not
connected to any other vertices.

• An array access is also regarded as a method invocation.
An array read instruction is translated into an operator
vertex associated with two actual-in vertices and an
actual-out vertex. The two actual-in vertices represent
an array instance and an index, the actual-out vertex
represents a value, respectively. An array write instruction
is translated into an operator vertex associated with three
actual-in vertices that represent an array instance, an

v ($out)

e .out

v = e

e1.out

e1 + e2

e2.out

$out

e1.method(e2, . . .)
$obj $arg1 .. .

$re turn

$out

e1.out e2.out

e1.f $obj $value

$out

e1.out f

(a) Assignment (b) Binary operator (c) Method invocation (d) Field reference
“v=e” “e1+e2” “e1.method(e2, ...)” “e1.f”

Fig. 3. VDFG construction rules

Code 1: Code 2:
int X; int X;
int Y; int Y;
int Z; int Z;
X = Y; Y = Z;
Y = Z; X = Y;

VDFG for Code 1 and Code 2:

XY X = YZ Y = Z

Fig. 4. Two code fragments that result in the same VDFG

index and a value. An instruction to obtain the length of
an array (array.length) is translated into an operator
vertex that takes as input an array instance and outputs a
value.

Our analysis does not support several aspects of Java
language as follows.

• We do not analyze library classes whose source code
is not available. A method call to a library class is not
connected to the called methods.

• The statements in a catch block are simply translated
into a VDFG without a special rule.
We ignored data-flow paths for an exception object from
a method call or a throw statement to a catch block,
although we could represent such a data-flow in VDFG.
Developers who investigate exceptional control-flow can
use another visualization tool such as Flow View special-
ized for exception handling [18].

• We did not take multi-threaded execution into account
as regular control-flow paths. VDFG includes data de-
pendencies between threads if the threads communicate
by variables. A synchronized block is represented as
a control vertex that takes as input an expression and
controls statements in the block.

After a Java program is translated into a VDFG, we add
summary edges that represent intraprocedural data-flow paths
as direct edges. To visualize relationships between method
parameters and fields, we compute all data-flow paths from

formal-in and actual-out vertices to formal-out and actual-in
vertices. The former (formal-in and actual-out) vertices are
entry points of data-flow from the outside of a method. The
latter (formal-out and actual-in) vertices are exit points of the
method. If a transitive path of intraprocedural data-flow edges
exists between vertices, we add a summary data-flow edge
between the vertices. If no data-flow path exist between the
vertices but a path including control-flow edges exists, we add
a summary control-flow edge between the vertices.

The rule-based transformation uses only ASTs of source
files, a list of variable declarations, a class hierarchy tree
and a call graph for the whole program. While control-flow
insensitivity reduces time and memory cost for the analysis,
control-flow insensitivity may extract infeasible paths. An
example is shown in Figure 4. On the left side, there is no
data dependency between those two assignments “X=Y” and
“Y=Z”. The new value of X has no effect on the second
statement. On the right side, the code has a data dependency
because the new value of Y is used by the second statement.
In our approach, both code result in the same graph including
two data-flow edges from Z to Y and from Y to X. For the
left code fragment, a transitive path from Z to X is infeasible.
This is a shortcoming of our approach.

B. Graph Traversal and Visualization

Using VDFG, we can extract data-flow paths related to
a variable selected by a developer. As SDG-based program
slicing [8] constructs a system dependence graph and uses
it to compute multiple slices, we construct a VDFG for a
Java program and use it to extract multiple subgraphs for
visualization. Given a variable selected by a developer, we
execute backward traversal from the vertex corresponding to
the variable in order to extract a set of variables and statements
that affect the variable. Similarly, forward traversal extracts
a set of variables and statements affected by the selected
variable.

Since a VDFG represents the whole Java program, a simple
application of graph traversal results in a too large subgraph as
similar to program slicing [19]. To keep the size of a visualized

VFS

boolean load(View,Buffer,String)

JEditBuffer

boolean isReadOnly()

void setFileReadOnly(boolean)

void setReadOnly(boolean)

boolean isEditable()

Buffer

int checkFileStatus(View)

void finishSaving(View,String,String,String,boolean,boolean)

boolean checkFileForLoad(View,VFS,String)

void setPath(String)

called

true void setReadOnly (boolean)

called

readOnly readOnlyOverride

return

||

readOnly
||

called

boolean isReadOnly ()called

readOnly

=

=

called

called

newReadOnly void setFileReadOnly (boolean)

called

false void setFileReadOnly (boolean)

called

void setFileReadOnly (boolean)

called

true void setFileReadOnly (boolean)

2 node more ...

4 node more ...

Fig. 6. A screenshot of a Variable Data-flow Graph extracted from JEdit

1.0

0.5 0.5

0 .1 0 .1 0 .1 0 .1 0 .1 0.25 0.25

0.25w(vroot) = 1.0

w(vchild) =
w(vparent)

NumberOfChildren(vparent)

Fig. 5. Fractal values

subgraph manageable, we have employed fractal value [10].
A fractal value w(v) is a weight for a tree node v. The fractal
value for the root node vroot is defined as w(vroot) = 1.0. A
fractal value of a node is divided to the children as follows.

w(vchild) =
w(vparent)

NumberOfChildren(vparent)

Figure 5 shows an example of this computation. We start a
graph traversal with the fractal value 1.0 and terminate the
traversal at nodes whose fractal values are less than threshold
0.04 that is experimentally determined. Since the sum of the
fractal values of leaf nodes is always 1.0, the threshold 0.04
indicates at most 25 leaf nodes are included for visualization.

An important feature of fractal value is that the fractal value
of a node is the same as its parent if there are no sibling
nodes. We continue a graph traversal through a variable if the
value of the variable is determined by another single variable,
e.g. a parameter incoming from a single caller. We extract a
subgraph so that developers can skip such a simple data-flow
path on the visualized graph without reading source code. On
the other hand, backward traversal stops at methods called by
a large number of other methods, e.g. setter/getter methods.
Similarly, forward traversal stops at return values and fields
used by a large number of methods. In these cases, we add a
pseudo node labeled “more ...” to the extracted subgraph
in order to indicate the graph traversal is terminated at the
node. Developers can start another graph traversal from the
method by selecting one of the methods.

After a subgraph is extracted, we visualize the subgraph
on the screen. Since we focus on interprocedural data-flow
paths, the graph view visualizes method call, field access and
their parameter vertices connected with summary edges. Other
vertices and edges are omitted in the graph view by default.

Our VDFG view is implemented as an Eclipse plug-in. To
help developers to investigate source code, the VDFG view
interacts with a text editor; a mouse click on a method name
or a field name triggers a graph traversal as follows.

• A click on a method declaration shows backward data-
flow paths from all parameters of the method and forward
data-flow paths from the return value vertex of the
method.

• A click on a method call site shows forward data-flow
paths from the actual parameters and backward data-flow
paths from the return value of the method call. In other
words, the graph view shows all data-flow paths related
to the selected method call.

• A click on a field declaration or a field reference shows
both forward and backward data-flow paths from the
vertex corresponding to the field.

Figure 6 shows a subgraph of a VDFG of JEdit visual-
ized when a developer clicked on a method call instruction
isReadOnly() involved in isEditable method.

Our visualization approach is a hierarchical view as similar
to DA4Java [7]. A class is represented by a rectangle which
contains its methods and fields. Each method involved in
the subgraph is also represented as a rectangle including
vertices representing the instructions of the method. We have
excluded the other methods and fields that are not involved
in the subgraph from the graph view, since such methods
and fields are irrelevant to the visualized subgraph. We have
used Graphviz [20] for graph layout simply because of its
availability. Any other graph layout tools are also applicable.

The highlighted (yellow) call-site in Figure 6 has
an incoming data-flow edge from isReadOnly method.
The return value depends on readOnlyOverride and
readOnly fields. The fields are assigned by setReadOnly
and setFileReadOnly methods. setReadOnly method
is called by load method of a file system class,
setFileReadOnly method is called by 4 methods in a
buffer class, respectively. Using the graph, we can infer
how the return value of isReadOnly method is determined
without reading source code.

The graph view provides hyperlinks to Java source code so
that developers can quickly confirm the implementation details
of a method that are omitted in the graph view. Developers
can move to a method declaration, a method call site or a field
declaration in a Java editor by selecting a vertex in the graph
view.

The graph view also allowed developers to execute an
additional forward/backward search on VDFG if necessary.
In addition, developers can keep a copy of a visualized graph
and restart the search from the preserved copy. Using these
features, developers can incrementally explore a large VDFG.

IV. EXPERIMENT

A. Case Study: Source Code Reading
To evaluate the effectiveness of our visualization, we had

16 participants work on program understanding tasks. 12 par-
ticipants are graduate students studying software engineering.
They are familiar with Java since they implement tools for
their research in Java. 4 participants are developers working
in a software company. They develop some package software
or enterprise applications written in Java.

We have assigned two tasks for each participant; one task
using Eclipse enhanced with the VDFG plug-in and another
task using a regular Eclipse 3.4. We have compared the data-
flow paths investigated by participants in a limited time slot.

We have chosen JEdit, an open source text editor, as a target
program since no participants had known its source code. JEdit
has a functionality to sound a beep when JEdit cannot execute
an action specified by a user. Such a code fragment frequently
appears in JEdit. We have randomly selected two source code
locations in JEdit 4.3pre11:

• Task A: EditAbbrevDialog.java, Line 153

public void actionPerformed(...) {
...
if (editor.getAbbrev() == null ||

editor.getAbbrev().length() == 0) {
getToolkit().beep(); // 153
return;

}
...

• Task B: JEditBuffer.java, Line 2038

public void undo(TextArea textArea)
{
...
if(!isEditable())
{
textArea.getToolkit().beep(); // 2038
return;
}
...

We have asked the participants to identify conditions which
sound a beep and explain how the if statements are affected
by the external environment such as actions conducted by a
user, the status of GUI components and the status of a file
system. We have chosen if statements since understanding
precise if conditions is important for bug fix tasks [21]. In
Task A, beep is called if a text input widget have no text
that must be specified by a user to execute the command. In
Task B, beep is called if file editing is not permitted by a
file system. To explain the conditions for Task A and Task
B, 8 methods and 13 methods in JEdit must be investigated,
respectively. We have asked the participants to write down
their answers on a paper.

The time for a task is limited to 30 minutes in order to
observe the detailed behavior of a participant, in addition to
the limited time for the experiment in the company. The time
does not include VDFG construction, since we would like to
compare only the effectiveness of the tool. We have observed
the activities of each participant with a video camera.

The tasks are sequentially assigned. For each participant, we
had a 30 minute session to explain the concept of VDFG and
give a trial task to learn our tool. After the introduction, we
have assigned a task. 30 minutes later, we have interrupted his
or her investigation activity and assigned the other task. Some
participants who finished the task within 30 minutes used the
remaining time for verifying their answers.

To evaluate the correctness of an answer, we have deter-
mined a correct answer for each task in prior to the experiment.
The correct answers are defined as data-flow paths. For exam-
ple, Figure 7 is a very simplified version of the answer of Task
B. The graph has three data-flow paths from different methods:

load
 weight=0.25

An argument of
se tPer formingIO(boolean)

(t rue)

save
 weight=0.25

A return value of
i sPer formingIO()

(t rue)

A return value of isEditable()
(false)

checkFileStatus()
weight=0.5

An argument of
se tFi leReadOnly(boolean)

(t rue)

A re turn value of
isFi leReadOnly()

(t rue)

Fig. 7. An example of score computation. The graph is a simplified version
of the answer of Task B.

load, save and checkFileStatus. We have computed
a score for each answer using the following function:

Score(A) =
∑

v∈V

w(v)
|path(v,m) ∩A|
|path(v,m)|

In this function, A is a set of data-flow edges included in
an answer of a participant. V is a set of source vertices of
data-flow paths in the correct answer. m is the target method
where beep is called. w(v) is a weight value for each vertex
determined by fractal values [10] described in Section III-B.
If an answer included a gray part of Figure 7, the answer
included 3 of 3 edges for load, 2 of 3 edges for save and
1 of 3 edges for checkFileStatus. The resultant score is
0.25× 3

3 + 0.25× 2
3 + 0.5× 1

3 = 0.583.
Table I shows the assigned tasks and the scores for each

participant. We have summarized the resultant scores in Figure
8. The average score of participants working with VDFG is
0.79, while the average score of participants working with a
regular Eclipse is 0.71. Wilcoxon signed-rank test shows the
difference is statistically significant (p=0.03). The visualization
of VDFG enabled participants to more completely discover the
data-flow paths implicated in the task.

We have observed that a visualized VDFG is frequently
used by participants. After the participants have selected a
method or a variable to obtain a VDFG, they have repeatedly
selected a return value vertex or a method parameter vertex
in the graph to read source code. Without VDFG, participants
have to identify data-flow paths using a call graph view and
several search functionalities provided by Eclipse.

We have also observed participants used VDFG to recognize
where they have investigated. When a value of a variable
depends on two or more methods, participants have to inves-
tigate one of data-flow paths and come back to the variable.
The participants using VDFG could exhaustively investigate
such data-flow paths. On the other hand, participants working
without VDFG are hard to identify their previous source
code locations. Several participants have lost their previous
locations and restarted their investigation from the starting

with VDFG without VDFG

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8. Comparison of data-flow paths identified by developers

points of the tasks, since they did not explicitly manage the
progress of source code reading.

Although 13 of 16 participants performed better using
VDFG, three participants P8, P10 and P16 performed better
using Eclipse. P16 has the worst score for VDFG because
he did not write down several data-flow paths in his answer,
even though he has actually investigated the paths. Such an
error could be eliminated if the tool automatically recorded
the history of investigated files. On the other hand, P8 and
P10 answered the correct data-flow using a regular Eclipse.
They are familiar with Eclipse because they use Eclipse for
daily development tasks. They often clicked on a variable
name to highlight the variable and quickly scrolled the editor
by a mouse wheel to identify the data-flow paths related to
the variable. P8 and P10 have also frequently used keyboard
shortcut to obtain method call and field access relationships.
Although our VDFG visualized the same information they
have referred to, the behavior of two participants are much
faster on the regular Eclipse.

Participants have found no problems caused by precision of
our data-flow analysis. As described in Section III-A, VDFG
may include infeasible edges. Indeed, an infeasible path is
caused by the following code fragment for Task A:

dialog = new EditAbbrevDialog(..., abbrev, ...);
abbrev = dialog.getAbbrev();

Variable abbrev in the first line does not depend on the
second line. Our VDFG visualized a summary data-flow edge
from the return value of getAbbrev to a parameter of the
constructor call EditAbbrevDialog. However, participants
have read the source code in a few seconds and simply ignored
the infeasible edge.

Our data-flow analysis simply ignores library classes.
For example, a method call JTextField.setText has
no data-flow path to the return value of a method call
JTextField.getText. However, the participants have
never complained the lack of such data-flow paths. Instead,
they have investigated data-flow paths of a JTextField vari-
able to find the caller methods of setText and getText.

TABLE II
THE NUMBER OF VARIABLES AND METHODS INCLUDING INFEASIBLE DATA-FLOW PATHS

Software #class #method #m-inf-edge #m-inf-path #var #var-inf #summary #summary-inf
Apache Ant 1.7.0 2342 18928 1720 (9.1%) 332 (1.8%) 52083 3404 (6.5%) 328785 1383 (0.4%)
Apache Batik 1.6 3608 23479 2512 (10.7%) 224 (1.0%) 71088 5803 (8.2%) 516648 4884 (0.9%)
Apache Tomcat 6.0.14 2297 23478 2393 (10.2%) 817 (3.5%) 73176 4057 (5.5%) 484731 4285 (0.9%)
Azureus 3.0.3.4 5378 28943 1814 (6.3%) 665 (2.3%) 90066 3144 (3.5%) 500926 3413 (0.7%)
HSQLDB 1.8.1 381 4876 727 (14.9%) 3 (0.0%) 14465 1380 (9.5%) 98767 88 (0.0%)
JEdit 4.3pre11 1132 7751 704 (9.1%) 304 (3.9%) 24623 1034 (4.1%) 148856 1119 (0.8%)
Spring Framework 2.5.5 4529 28476 1159 (4.1%) 543 (1.9%) 73130 1580 (2.2%) 289827 1803 (0.6%)
Univ Web App 4456 37521 2864 (7.6%) 667 (1.8%) 103261 4794 (4.6%) 533905 2917 (0.5%)
Total 23971 173241 13892 (8.0%) 3351 (1.9%) 501405 25195 (5.0%) 2901355 19892 (0.7%)

TABLE I
THE RESULTANT SCORES. “/VDFG” INDICATES THAT A PARTICIPANT

USED VDFG FOR THE TASK.

Score
Participant 1st Task 2nd Task with VDFG w/o VDFG
P1 (Student) A/VDFG B 0.857 0.781
P2 (Student) A/VDFG B 1.000 0.723
P3 (Student) A/VDFG B 1.000 0.621
P4 (Industry) A/VDFG B 0.857 0.652
P5 (Student) A B/VDFG 0.875 0.857
P6 (Student) A B/VDFG 0.708 0.429
P7 (Student) A B/VDFG 0.621 0.571
P8 (Industry) A B/VDFG 0.760 1.000
P9 (Student) B/VDFG A 0.733 0.714
P10 (Student) B/VDFG A 0.858 1.000
P11 (Student) B/VDFG A 0.817 0.714
P12 (Industry) B/VDFG A 0.590 0.429
P13 (Student) B A/VDFG 0.714 0.590
P14 (Student) B A/VDFG 0.857 0.723
P15 (Student) B A/VDFG 1.000 0.908
P16 (Industry) B A/VDFG 0.429 0.671

B. Infeasible Paths
Infeasible paths in the VDFG of JEdit did not cause a

problem for investigation tasks. To estimate the effectiveness
of our approach on other software, we have extracted data
dependency from various Java applications and compared the
result with data-flow edges in VDFG. In VDFG, all assignment
statements which write a variable have data-flow edges to all
statements that refer to the variable. Consequently, a pair of
an assignment and a reference to a variable which has no
traditional data dependency is an infeasible data-flow edge in
VDFG.

We have extracted intraprocedural data dependency on local
variables and formal parameters (excluding this and a return
value) for each method using Java bytecode analysis. Instance
fields and class fields are not included in this analysis since
data-flow paths related to these variables depend on alias
analysis. In the analysis, we took try-catch statements into
account. We hypothesized every instruction in a try block
may throw an exception and jump to a catch block.

We have chosen 7 open source software and a web appli-
cation for a university developed by a company. We analyzed
the binary distribution archives of the applications including
library classes. The web application developed by a company
includes several open source libraries.

int getValue() {
1: int v = readValue(); // -> line 2, 5
2: if (v < 0) {
3: v = 0; // -> line 5
4: }
5: return v;

}

Fig. 9. An example of a method that includes an infeasible edge (from line
3 to line 2) but no infeasible paths

Table II shows the result of our analysis. #class, #method
and #var are the number of classes, methods and local
variables, respectively. #m-inf-edge indicates the number of
methods which have at least one infeasible edge. #m-inf-
path indicates the number of methods which have at least
one infeasible summary edge. #v-inf indicates the number of
variables which cause infeasible edges. #summary indicates
the number of summary edges in the VDFG. #summary-inf
indicates the number of infeasible summary edges. Each row
corresponds to a program. “Total” row excluded redundant
classes included in two or more programs. Consequently, the
sum of each row is not the same as the bottom row.

The result shows that infeasible edges are caused by only
5% of local variables. This is because a programming habit
in Java: developers do not reuse a local variable for another
purpose. We have found that about 85% of local variables are
assigned only once. 10% of local variables are assigned twice
or more, but all reference statements are reachable from all
assignment statements.

Surprisingly, infeasible summary edges are included in only
1.9% of methods, about a quarter of methods which include
infeasible edges. This indicates that some infeasible data-flow
edges did not result in infeasible summary edges. Figure 9
shows an example of such methods. In this code, the if
statement (line 2) refers to variable v; therefore, an infeasible
edge is extracted for variable v from line 3 to line 2. However,
the additional edge does not affect to an existing data-flow path
from the return value of readValue (line 1) to the return
value of getValue (line 5).

The result shows that the numbers of infeasible data-flow
paths are not so vary for each project. Therefore, in terms of
precision of data-flow analysis, our approach is promising to
analyze applications other than JEdit.

TABLE III
TIME TO EXTRACT VDFG FROM SOURCE CODE

Software #LOC Parse VDFG Total
Apache Ant 1.7.0 198,394 65sec 19sec 84sec
Apache Batik 1.6 297,320 155sec 33sec 188sec
Apache Tomcat 6.0.14 322,971 181sec 50sec 231sec
Azureus 3.0.3.4 552,295 353sec 115sec 468sec
HSQLDB 1.8.1 157,388 83sec 12sec 95sec
JEdit 4.3pre11 168,872 108sec 17sec 125sec
Spring Framework 2.5.5 487,177 358sec 120sec 478sec
Univ Web App 29,258 28sec 1sec 29sec

C. Performance
To evaluate the performance of our tool, we have measured

the time spent to analyze the software used in Section IV-B.
In this analysis, we have excluded library classes. The tool has
been executed on a workstation with a 1.80GHz Intel Core2
Duo processor and 2GB main memory running Windows Vista
Business and 32-bit Sun Java Virtual Machine 1.6.

In Table III, column “Parse” indicates the time to construct
abstract syntax trees, variable tables, a class hierarchy tree and
a method call graph using MASU Framework [22]. Column
“VDFG” indicates the time to construct VDFG using the
information obtained from the parser.

Our visualization tool required only a few minutes to
construct the whole VDFG for a Java program; for each mouse
click on a method name, it takes a few seconds to traverse and
visualize a subgraph of VDFG. The performance is efficient
enough for daily tasks.

V. CONCLUSION

We have proposed a visualization of interprocedural data-
flow paths to support source code reading tasks. Through the
experiment, we have shown our tool could help developers
more completely investigate data-flow paths. Although our
analysis generates infeasible data-flow paths, the number of
such edges is limited. The participants of the experiment have
found no problems on infeasible data-flow paths.

Our data-flow analysis is control-flow-insensitive, context-
insensitive and object-insensitive. However, developers did
not consider the limitation as a problem since developers
know that various features of Eclipse are also control-flow-
insensitive, context-insensitive and object-insensitive.

In the future work, we would like to evaluate how pre-
cision of data-flow analysis techniques affect source code
reading tasks. We are also planning to apply our control-
flow-insensitive data-flow analysis to approximate slice-based
software metrics [23]. A combination of our work and Jász
[15] work is also interesting since such a combination takes
both control-flow and data-flow into account but may be faster
than traditional program slicing.

ACKNOWLEDGMENT

We thank Mr. Takeshi Murayama and developers of Hitachi
Government & Public Corporation System Engineering, Ltd.
for supporting our experiment.

This work was supported by KAKENHI (No.23680001).

REFERENCES

[1] T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, 2010, pp. 185–194.

[2] R. K. Fjeldstad and W. T. Hamlen, “Application program maintenance
study: Report to our respondents,” in Proceedings of GUIDE 48, 1983.

[3] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on Software
Engineering, vol. 32, no. 12, pp. 971–987, 2006.

[4] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. L. Jr., “Code bubbles: Rethinking
the user interface paradigm of integrated development environments,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, 2010, pp. 455–464.

[5] K. Chen and V. Rajlich, “Case study of feature location using depen-
dence graph,” in Proceedings of the 8th International Workshop on
Program Comprehension, 2000, pp. 241–247.

[6] M. Desmond, M.-A. Storey, and C. Exton, “Fluid source code views,”
in Proceedings of the 14th IEEE International Conference on Program
Comprehension, 2006, pp. 260–263.

[7] M. Pinzger, K. Gräfenhain, P. Knab, and H. C. Gall, “A tool for visual
understanding of source code dependencies,” in Proceedings of the 16th
IEEE International Conference on Program Comprehension, 2008, pp.
254–259.

[8] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages
and Systems, vol. 12, no. 1, pp. 26–60, 1990.

[9] J. Krinke, “Visualization of program dependence and slices,” in Pro-
ceedings of the 20th IEEE International Conference on Software Main-
tenance, 2004, pp. 168–177.

[10] H. Koike, “Fractal views: a fractal-based method for controlling infor-
mation display,” ACM Transactions on Information Systems, vol. 13, no.
March, pp. 305–323, 1995.

[11] R. DeLine, G. Venolia, and K. Rowan, “Software development with code
maps,” Communications of the ACM, vol. 53, pp. 48–54, 2010.

[12] M. Weiser, “Program slicing,” IEEE Transactions on Software Engineer-
ing, vol. 10, no. 4, pp. 352–357, 1984.

[13] S. Kusumoto, A. Nishimatsu, K. Nishie, and K. Inoue, “Experimental
evaluation of program slicing for fault localization,” Empirical Software
Engineering, vol. 7, no. 1, pp. 49–76, 2002.

[14] X. Wang, D. Lo, J. Cheng, L. Zhang, H. Mei, and J. X. Yu, “Matching
dependence-related queries in the system dependence graph,” in Pro-
ceedings of the 26th IEEE/ACM International Conference on Automated
Software Engineering, 2010, pp. 457–466.

[15] J. Jász, Árpád Beszédes, T. Gyimóthy, and V. Rajilich, “Static execute
after/before as a replacement of traditional software dependencies,” in
Proceedings of the 24th IEEE International Conference on Software
Maintenance, 2008, pp. 137–146.

[16] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen, “Graph-based mining of multiple object usage patterns,”
in Proceedings of the 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT symposium on the
Foundations of Software Engineering, 2009, pp. 383–392.

[17] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented
programs using static class hierarchy analysis,” in Proceedings of the
9th European Conference on Object-Oriented Programming, 1995, pp.
77–101.

[18] H. Shah, C. Görg, and M. J. Harrold, “Visualization of exception
handling constructs to support program understanding,” in Proceedings
of the 4th ACM Symposium on Software Visualization, 2008, pp. 19–28.

[19] D. Binkley, N. Gold, and M. Harman, “An empirical study of static pro-
gram slice size,” ACM Transactions on Software Engineering Method-
ology, vol. 16, no. 2, p. 8, 2007.

[20] Graphviz Project. [Online]. Available: http://www.graphviz.org/
[21] K. Pan, S. Kim, and E. J. Whitehead, Jr., “Toward an understanding of

bug fix patterns,” Empirical Software Engineering, vol. 14, no. 3, pp.
286–315, 2009.

[22] MASU Framework. [Online]. Available: http://masu.sourceforge.net/
[23] T. M. Meyers and D. Binkley, “An empirical study of slice-based cohe-

sion and coupling metrics,” ACM Transactions on Software Engineering
and Methodology, vol. 17, no. 1, pp. 2:1–2:27, 2007.

