
Title Program Slicing Tool for Effective Software
Evolution Using Aspect-Oriented Technique

Author(s) Ishio, Takashi; Kusumoto, Shinji; Inoue, Katsuro

Citation

Version Type AM

URL https://hdl.handle.net/11094/51555

rights

© 2003 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future
media, including reprinting/republishing this
material for advertising or promotional
purposes, creating new collective works, for
resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work
in other works.

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Program Slicing Tool for Effective Software Evolution
Using Aspect-Oriented Technique

Takashi Ishio, Shinji Kusumoto, Katsuro Inoue
Graduate School of Information Science and Technology,

Osaka University
1-3 Machikaneyama, Toyonaka,

Osaka 560-8531, Japan
+81 6 6850 6571

{t-isio, kusumoto, inoue}@ist.osaka-u.ac.jp

Abstract

One of the issues in software evolution is debugging.
Debugging large and complex software systems evolved re-
quires a lot of effort since it is very difficult to localize and
identify faults. Therefore, reducing the effort of debugging
process is an important step towards efficient software evo-
lution. Program slicing, especially dynamic slicing, has
been proposed to efficiently localize faults in a procedural
program and an object-oriented program. Although several
tools have been developed for Java programs, these are dif-
ficult to maintain because of the frequent revision of Java
languages. Aspect-Oriented Programming (AOP) is a new
technology for the separation of concerns in program de-
velopment. Using AOP, modularizing crosscutting aspects
of a system is possible. One useful application of AOP is for
modularizing the collecting program’s dynamic information
for program analysis. Since the collection of dynamic infor-
mation affects the over-all target program, this functional-
ity is a typical crosscutting concern. In this paper, we apply
AOP to develop a program debugging tool using program
slicing. First, we examine the application of AOP for col-
lecting dynamic information from program execution and
for calculating program slices. Next, we develop a program
slicing system using AspectJ. Finally, we describe the bene-
fits, usability, and cost effectiveness of a module of dynamic
analysis based on AOP.

1. Introduction

Software evolution generally means that software can
change its structure and functions to tolerate changes of
its specification and operating environment in which it is
used[1]. Software is often modified to reflect new function-

ality with the changes of its specification. In the modifica-
tion, several bugs are usually injected and so debugging is
an important task in software evolution. However, debug-
ging large and complex software systems evolved requires
a lot of effort since it is very difficult to localize and identify
faults. Therefore, reducing the effort of debugging process
is an important step towards efficient software evolution.

Program slicing is a very promising approach to localize
faults efficiently in a program[19]. By definition, program
slicing is a technique which extracts all statements that may
possibly affect a certain set of variables in a program. The
set of all extracted statements is called a program slice. In
this paper, we label a program slice simply as a slice.

In recent software development, a programmer uses
not only procedural languages like C and Pascal but also
Object-Oriented languages like Java [9] and C++[10].
Since Object-Oriented languages include new concepts
such as class, inheritance, dynamic binding and poly-
morphism[11], Object-Oriented programs have many
dynamically-determined elements. In the slice calcula-
tion process, observing program execution, and using in-
formation about statements actually executed is effective.
Dependence-Cache (DC) slicing has been proposed for use
in a dynamic data dependence analysis and a static con-
trol dependence analysis to calculate accurate slices with
lightweight costs [3, 16]. Ohata et al., for example, extends
the DC slicing method for Object-Oriented languages [14].

In the process of DC slice calculation of Java languages,
how to analyze dynamic data dependence is an important
issue. An analyzer implements a function that observes a
target program to track and to collect information about dy-
namic data dependence. In past research, such a function
has not been encapsulated in a single module. Instead, the
function has been implemented as a pre-processor, which
inserts analysis operations in the target program code [14],

or as a customized Java Virtual Machine (JVM) [4]. In im-
plementing and maintaining the rules of conversion, how-
ever, the former approach is difficult, and the latter approach
is expensive because JVM must be re-customized when new
versions are released.

On the other hand, Aspect-Oriented Programming
(AOP) proposes a new module unit, or aspect, for encap-
sulating crosscutting concerns, such as logging and syn-
chronization [2]. Since such concerns crosscut objects, pro-
gram codes implementing such concern must be distributed
among objects in Object-Oriented Programming. In AOP,
one concern can be written in a single aspect.

AOP appears usable and useful, but actual examples that
show the usefulness of applying AOP to program develop-
ment are few. One useful application of AOP is to modu-
larize the program’s ability for collecting dynamic informa-
tion for program analysis. Dynamic information, in short,
is a series of program executions and is useful to analyse
dynamic data dependence for DC slice calculation [3].

In this paper, we introduce an AOP for encapsulating dy-
namic program analysis into an aspect and for achieving a
cost-effective DC slice calculation. We implement a DC
slice calculation system using AspectJ [17], and conduct
an experiment to evaluate the usefulness of our approach
compared to a customized JVM approach. As a result, we
confirm that the AOP approach can greatly reduce the cost
needed for calculating DC slices, and we achieve a practical
precision for the slice.

The structure of this paper is as follows: In Section 2,
we describe the DC slicing. In Section 3, we present a
briefly overview of Aspect-Oriented Programming and our
approach to DC slice calculation using AOP. In Section 4,
we describe the implementation of DC slicing tool. In Sec-
tion 5, we evaluate the proposed method and compare our
method to the customized JVM approach and discuss exper-
imental results. In Section 6, we conclude our discussion
with remarks regarding plans for future work.

2. Program Slicing

Program slicing is a promising approach for program de-
bugging, testing, and understanding [19]. Given a source
program p, a program slice is a collection of statements pos-
sibly affecting the value of slicing criterion (in the pair <s,
v>, s is a statement in p, and v is a variable defined or re-
ferred to at s).

Although many slice calculation algorithms have already
been proposed, we use a program dependence graph (PDG)
in this research [7].

2.1. Program Dependence Graph

A PDG is a directed graph whose nodes represent state-
ments in a source program, and whose edges denote depen-
dence relations (data dependence or control dependence)
between statements. An edge drawn from node Vs to node
Vt represents “node Vt, which depends on node Vs”. PDG
also includes special nodes which represent method call and
parameter passing [8].

Control dependence and data dependence are defined as
follows.

Control Dependence (CD) Consider statements s1 and s2

in a source program p. When all of the following con-
ditions are satisfied, we say that a control dependence
(CD), from statement s1 to statement s2 exists if:

1. s1 is a conditional predicate, and

2. the result of s1 determines whether s2 is executed
or not.

This relation is written by CD(s1, s2) or s1 �s2.

Data Dependence (DD) When all of the following con-
ditions are satisfied, we say that a data dependence
(DD), from statement s1 to statement s2 by a variable
v, exists if:

1. s1 assigns a value to v, and

2. s2 refers to v, and

3. at least one execution path from s1 to s2 without
re-defining v exists (we call this condition reach-
able).

This relation is denoted by DD(s1 , v, s2) or s1 �v

s2 .

The program slicing calculation consists of the following
four phases:

Phase 1: Defined and Referred Variables Extraction
We identify defined variables and referred ones for
each statement in a source program.

Phase 2: Data Dependence Analysis and Control Depen-
dence Analysis
We extract data dependence relations and control de-
pendence relations between program statements.

Phase 3: Program Dependence Graph Construction
We construct a PDG using dependence relations ex-
tracted in Phase 2.

Phase 4: Slice Extraction
We calculate the slice for the slicing criterion speci-
fied by the user. In order to calculate the slice for a

2

slicing criterion <s, v>, PDG nodes are traversed in
reverse order from Vs (node Vs denotes statement s.).
The corresponding statements to the reachable nodes
during this traversal form the slice for <s, v>.

We can obtain sufficient information about control de-
pendence from static analysis (from only source code).
However, in static analysis, information about data depen-
dence contains a redundant part because we analyze all exe-
cution paths, including paths which may be never executed.
If we use program slicing for debugging and program un-
derstanding, analyzing detailed information about one pro-
gram execution path with a specific input is effective. De-
pendence Cache (DC) slicing has been proposed to realize
such a requirement [3, 14, 16].

In DC slice calculation, the data dependence analysis
is performed during program execution, and the informa-
tion of dynamically determined elements is collected. Con-
trol dependence is analyzed statically from the source code
since a high cost is needed to analyze control dependence
during program execution. DC slicing requires a reasonable
cost for the calculation of practical programs [3, 14, 16].

2.2. Dynamic Data DependenceAnalysis in DC Slice
Calculation

When a value is assigned to variable v at statement t and
the value of variable v is referred to at statement s, dynamic
data dependence (DD) relation about v from t to s can be
extracted if we can resolve v’s defined statement t. We cre-
ate a table, or Cache Table, that contains all variables in a
source program and the most-recently defined statement in-
formation for each variable. When variable v is referred to,
we extract a dynamic DD relation about v using the Cache
Table. The following shows the extraction algorithm for dy-
namic DD relations.

Step 1: We create a cache C(v) for each variable v in a
source program.
C(v) represents the statement which most recently de-
fined v.

Step 2: We execute a source program and conduct the fol-
lowing processes on each execution point.
In executing statement s,

• when variable v is referred to, we draw a DD
edge from the node corresponding to C(v) to the
node corresponding to s about v, or

• when variable v is defined, we update C(v) to s.

For example, Figure 1 is a program using an array. Table
1 shows the transition of cache C(v) of each variable v at
each statement when the program is executed with input c =
0.

Table 1. Cache transition of Figure 1
Statement
number a[0] a[1] a[2] a[3] a[4] b c
executed

1 1 - - - - - -
2 1 2 - - - - -
3 1 2 3 - - - -
4 1 2 3 4 - - -
5 1 2 3 4 5 - -
6 1 2 3 4 5 - 6
7 1 2 3 4 5 7 6

1: a[0] = 0;
2: a[1] = 1;
3: a[2] = 2;
4: a[3] = 2;
5: a[4] = 2;
6: read(c);
7: b = a[c] + 5;

Figure 1. Example program using array

The table becomes C(a[0]) = 1, C(a[1]) = 2, C(a[2]) =
3, C(a[3]) =4, C(a[4]) = 5 and C(c) = 6 when statement 6
is executed. When variable a[0] is referred to at statement 7,
data dependence statement1 �a[0]

statement7 is extracted
because statement 7 refers to a[0] and C(a[0]) = 1.

Figure 2 shows an example of the DC slice. This DC
slice with input = “inc” and slice criteria = (d) is the part
contained in rectangles (a)..(f) of Figure 2.

3. Dynamic Analysis Using Aspect-Oriented
Programming for Software Evolution

The DC slice calculation requires dynamic program in-
formation. Although various ways exist in implementing
the dynamic analysis, each way requires a high cost in im-
plementation or in runtime.

3.1. Aspect-Oriented Programming

The goal of Aspect-Oriented Programming (AOP) is to
separate concerns in software. While the hierarchical mod-
ularity of object-oriented languages are extremely useful,
they are inherently unable to modularize crosscutting con-
cerns, such as logging and synchronization. AOP provides
language mechanisms that explicitly capture the crosscut-
ting structure. Encapsulating the crosscutting concern as a
module unit aspect, which is easier to develop, maintain and
reuse is possible. Aspects separated from an object-oriented

3

class Count {

 public static void main(String[] args) {
 if (args.length == 0) {
 System.out.println("java Main [sft|inc]");
 return;
 }

 Counter counter;
 boolean isIncrementCounter = false;
 if (args[0].equals("inc")) {
 counter = new IncrementCounter();
 isIncrementCounter = true;
 } else if (args[0].equals("sft")) {
 counter = new ShiftCounter();
 } else return;

 int x = 0;
 for (int i=0; i<1000; ++i) {
 counter.proceed();
 x = counter.value();
 if (x > 1000) break;
 System.out.println(x);
 }

 String result;
 if (isIncrementCounter) {
 result = "increment counter = ";
 result = result + Integer.toString(x);
 } else {
 result = "shift counter = ";
 result = result + Integer.toString(x);
 }
 System.out.println(result);
 }
}

abstract class Counter {
 private int count = 1;
 public Counter() {}
 public int value() { return count; }
 public void proceed() { count = newValue(count); }
 abstract protected int newValue(int old);
}

class IncrementCounter extends Counter {
 protected int newValue(int old) {
 return old + 1;
 }
}

class ShiftCounter extends Counter {
 protected int newValue(int old) {
 return old << 1;
 }
}

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. Source program and DC slice exam-
ple (slice criteria = (d), input = “inc”)

program are composed by Aspect Weaver to construct the
program with a crosscutting structure.

AspectJ is an aspect weaver for Java. AspectJ provides
language constructs to write aspects. Join points are well-
defined points in the execution of the program. The pro-
grammer chooses collections of join points as pointcuts,
and defines a method-like construct named advice, which
is an additional behavior at the join points. Examples of
join points which programmer can use are shown in Table
2. Advice can be united by three types of forms, before (im-
mediately before join points), after (immediately after), and
around (before and behind).

AspectJ is an Aspect Weaver, which composes objects
and aspects at source code level. AspectJ generates normal
Java code, which includes aspects. Since AspectJ knows
where an aspect is built in, AspectJ can generate codes ac-
cessing the information of source codes as the context of an

Table 2. Pointcut Designators of AspectJ
type of join point representations
call method or constructor is called.
execute an individual method or

constructor is invoked.
get a field of object is read.
set a field of object is set.
handler an exception handler is invoked.

aspect, e.g. the join points’ position in the source code, and
in the signature of methods.

3.2. Example of an Aspect

Here, an aspect which records dynamic bindings is
shown in Figure 3, as an example of the aspect. This code
records how dynamic bindings are resolved. In actuality,
whenever a method is called, it records a signature of the
method to be invoked and actually executed.

On one hand, if the aspect is not available, we have to
insert code which records method invocation to the over-
all the program. On the other hand, since we can use a
character “*” for pattern matching with a class name or a
method name in AspectJ, an aspect becomes a small and
simple module. Also, extra codes do not have to be written
in objects. We can reuse the aspect and the objects indepen-
dently.

3.3. Dynamic Analysis of Program Execution

The analysis of dynamic information from program exe-
cution is a technology required for both program slice cal-
culation and the measurement of dynamic software metrics.

In the past, the following methods of dynamic analysis
have been used for Java programs:

(a) Using a preprocessor to insert analysis operations into
the target program [14].

(b) Using Java Virtual Machine Profiler Interface (JVMPI)
to collect dynamic information [15].

(c) Using Java Debugger Interface (JDI) [12] to collect dy-
namic information.

(d) Using customized Java Virtual Machine for dynamic
analysis [4].

In method (a), the preprocessor and conversion rules on
an abstract syntax tree are made to insert operations for
analysis in the target program. However, making generic
conversion rules because of complex language factors, such

4

aspect LoggingAspect {

 pointcut AllMethodCalls():
 !within(LoggingAspect) &&
 call(* *.*(..));

 pointcut MethodExecs():
 !within(LoggingAspect) &&
 execution(* somepackage.*.*(..));

 static Stack callStack = new Stack();
 static JoinPoint lastCall = null;

 Object around(): AllMethodCalls() {
 callStack.push(thisJoinPoint);
 lastCall = thisJoinPoint;
 proceed(); // execute original call
 lastCall = callStack.pop();
 }

 before(): MethodExecs() {
 if (lastCall != null) {
 Logger.logs("executed",
 lastCall.getSignature(),
 lastCall.getSourceLocation(),
 thisJoinPoint.getSignature(),
 thisJoinPoint.getSourceLocation());
 }
 }
}

Figure 3. The aspect which records dynamic
bindings

as multi-threading and exception handling is difficult. Prob-
lems of maintainability and reusability of a preprocessor ex-
ist, as well as conflict with other preprocessors. Therefore,
implementing and maintaining the preprocessor is costly.

In (b), JVMPI is used to observe program execution.
JVMPI is an interface of JVM used for profiling the CPU
and for memory usage. JVM makes it possible to collect de-
tailed events on program execution (e.g. method call, thread
control, memory allocation and garbage collection). How-
ever, an overhead that JVM generates the events is expen-
sive. Also, an analyzer using JVMPI must process events
which are asynchronously generated. When an analyzer
causes an error, both the analyzer and the JVM are aborted.
Therefore, debugging the analyzer itself is difficult.

In (c), JDI is used to observe program execution. JDI is
an interface with libraries used to implement a debugger. A
program using JDI communicates with the Java Virtual Ma-
chine Debugger Interface (JVMDI) of JVM, which executes
a program being debugged. JVMDI is a similar interface to
JVMPI. A debugger program can set breakpoints, receive
events such as field accesses and method calls, and receive
stack frame information at each breakpoint. However, a de-
bugger communicates with a target JVM by a socket, and
frequently blocks the execution of a program to get infor-

mation from the JVM. Consequently, JDI requires a high
runtime cost. Although using JVMDI directly is possible,
similar problems to the JVMPI approach arise.

(d) is a method that customizes JVM to observe and an-
alyze program execution. An advantage of this method is
that JVM can access all information in a Java runtime envi-
ronment. However, JVM customization depends on its im-
plementation. Whenever a new version of JVM is released,
it must be re-customized.

Also, in (b), (c) and (d), the program has to be analyzed
at the Java bytecode level. On one hand, therefore, a byte-
code optimization by a Just In Time (JIT) compiler usually
affects the analysis result.

On the other hand, in the AOP approach, a dynamic
analysis aspect can be composed by join points, which is
more abstract than syntactic tree conversion rules. The
aspect approach achieves good modularity, maintainability
and reusability. The approach also achieves complex han-
dling of control elements, such as multi-threading and ex-
ception in a well-organized way. Moreover, AspectJ com-
poses the source codes of objects and aspects, and does not
depend on implementation of a specific JVM. Since a pro-
gram linked to the aspect becomes a standard Java program,
debugging the aspect using a small test program and a de-
bugger for Java is easy.

3.4. Dynamic Analysis Using AspectJ

In AspectJ, an aspect can access contextual information,
e.g., a position of a join point, the signature of a method be-
ing called or the field being accessed. The dynamic analysis
aspect can be written using this feature of AspectJ.

An algorithm of the data dependence analysis and poly-
morphism resolution using AspectJ can be described as fol-
lows .

• Data Dependence Analysis

When new value is set to a field: The aspect logs a
signature of the field, and the position of the as-
signment statement.

When a field is referred to: The aspect receives the
statement information of the last assignment to
a field, and logs a data dependence relation from
the assignment to the reference.

• Polymorphism Resolution

When a method is called (before call): The aspect
pushes the method signature and the position of
calling into a call stack prepared for each thread
of control.

When a method is invoked (before execution):
The aspect checks the top of the call stack,

5

public aspect DataDependsAnalysisAspect {

 pointcut target():
 !within(slice.aspect.*);

 pointcut exclude():
 within(somepackage.*);

 pointcut field_set():
 target() && !exclude() &&
 (set(* *) || set(static * *));

 pointcut field_get():
 target() && !exclude() &&
 (get(* *) || get(static * *));

 FieldDef def = new FieldDef();

 before(): field_set() {
 def.put(
 thisJoinPoint.getTarget(),
 thisJoinPoint.getSignature(),
 thisJoinPoint.getSourceLocation());
 }
 before(): field_get() {
 SourceLocation setpos =
 def.get(thisJoinPoint.getTarget(),
 thisJoinPoint.getSignature());
 Logger.logDataDepends(
 thisJoinPoint.getTarget(),
 thisJoinPoint.getSignature(),
 setpos,
 thisJoinPoint.getSourceLocation());
 }
}

Figure 4. A piece of the implementation of dy-
namic data dependence analysis

and generates a call edge from the caller to the
actually invoked method.

After a method call: The aspect removes the top of
the call stack.

When an exception is thrown: The aspect removes
the top of the call stack.

A piece of code where the dynamic data dependence
analysis is implemented is shown in Figure 4. A polymor-
phism resolution is a multi-threaded extension of the code,
as shown in Figure 3.

The dynamic analysis aspect uses a wildcard of AspectJ
to analyze all assignments and references of a field. In this
implementation, we can add the aspect into the target pro-
gram without any changes of the aspect. If we do not want
to analyze certain classes in the target program, writing a
new aspect using inheritance in AspectJ is possible.

The aspect keeps the original behaviors of the program.
When the aspect is linked into the program, the control flow

Target Program (Java)

AspectJ

Java Bytecode
(Aspect Woven)

Java Virtual Machine

Normal
Result

Analysis
Result

PDG

Source Code Viewer
(GUI)

User

slice criterion DC Slice

Dynamic Analysis Aspect

PDG Constructor

Figure 5. DC slicing system

and the data flow are modified. However, since the aspect
only reads data of the program without modifying such data,
the data flow is not affected. Also, the aspect handles ob-
jects using weak reference so as not to affect the lifetime of
objects. On one hand, weak reference is an available mech-
anism in Java, which does not prevent the weak-referenced
object from being collected as garbage. On the other hand,
since the control flow that is simply modified by the aspect
may cause an infinite loop, an effort which prevents causing
a loop is required. We will discuss this issue in Section 4.4.

4. Implementation

4.1. DC Slicing Tool

We have implemented a dynamic analysis module using
AspectJ, and have then developed a DC slice calculation
system for Java. Figure 5 illustrates the system overview.

Using this system, a user can calculate a DC slice by the
following steps:

Step 1: The AspectJ compiler compiles the target Java pro-
gram and the dynamic analysis aspect.

Step 2: The program is executed as usual in a Java pro-
gram. The dynamic analysis aspect in the program
generates a file containing dynamic information of the
program execution.

Step 3: The DC slice calculation tool is executed with the
source code of the target program and a dynamic in-
formation file which is generated by Step 2. The tool
extracts static information from the source code, con-
structs PDG, and then opens a window of a source code
viewer.

Step 4: The slice criterion is specified and the DC slice is
viewed via a graphical user interface.

6

4.2. Static Analysis Supplement

In AOP, an aspect may be limited by usable join points
and by the applicable operation to the join points. The join
points of AspectJ do not include local control structures
(e.g. if, while, for statements), nor does AspectJ allow ac-
cess to local variables. Because such join points are fine
grained, such join points require remarkable implementa-
tion cost, and such join points are rarely required.

Although the usual dynamic analysis requires the obser-
vation of the behavior of all variables and control structures,
we cannot implement the proper dynamic analysis in As-
pectJ. Instead, we statically collect information about lo-
cal variables and control structures for the compensation.
This approach seems sufficient because the data dependence
of local variables and the execution paths of local control
structures are limited, and they are only affected slightly
from dynamically determined elements in OOP. In section
5.2, we will discuss this issue based on the result of experi-
mental evaluation.

4.3. Analysis of Libraries

Since AspectJ links the aspects to a target source code,
AspectJ cannot link them into library classes. In this case,
the library classes indicate reusable components which are
not included as source codes.

In this research, libraries are excluded from analysis for
the following reasons:

Library classes are reliable. Since library classes are re-
peatedly reused, it can be assumed that defects in the
libraries are already removed. Therefore, we do not
need to conduct a detailed analysis into the library
classes.

Amount of code of library is numerous. The cost of the
dynamic analysis of libraries is generally higher than
for the main program.

When a program uses callback from the library, a hidden
dependence via the library might be caused. This depen-
dence can be extracted by the dependence analysis at byte-
code level [4].

However, even if we use the bytecode analysis, a depen-
dence analysis to important objects, such as file I/O and ba-
sic data structures, cannot be done because of the limitations
in the Java language described in Section 4.4. Therefore, we
cope with the problem by using static analysis.

When a program calls a method in a library, the aspect
receives only information from the caller method. Next,
the aspect extracts a virtual data dependence relation be-
tween a call statement and a return value. We assume that
a return value of the called method is usually affected by

Aspect onMethodCall

Foo.getX()

4.call
5.activate

3. require Hashcode

caller

1. call
2. activate

Foo.HashCode()

Figure 6. An example of a loop caused by an
aspect

the parameters of a call. Also, if another method is called
from a library, the aspect receives only information of the
called method. Next, the aspect extracts a virtual control
dependence relation between the last call to a library and
the called method.

4.4. Loop Caused by Aspect

Although AspectJ has an advantage that allows program-
mers to write aspects in Java easily, AspectJ causes depen-
dences from the dynamic analysis aspect to classes used to
collect and log information. Therefore, if the aspect is built
into such classes, the aspect and classes might cause a loop.

The example of such a loop is shown in Figure 6. In
Figure 6, the aspect operates by corresponding to a method
call Foo.getX. The aspect calls Foo.hashCode to get the
hash code of the object, and calling Foo.getX occurs in
Foo.hashCode. Solving the problem that the aspect and
classes cause a loop is not possible in Java language. Only
the approach such as the customized JVM approach can
solve this problem.

Since we have implemented the data analysis module us-
ing a Java standard library, a loop might be caused if the
target program has the methods called from a standard li-
brary. Since we use only a hash table and an output stream
in a standard library, two methods are called from the li-
brary. One method is Object.toString, which is a method
that converts an object into a character string to make data
readable. Another method is Object.hashCode, which is a
method that calculates the hash code for fast access to data
structures. Avoiding the loop is possible by not joining the
aspect to their methods. This implementation causes a de-
crease in the completeness of the information, but we con-
sider that this incompleteness does not influence practical
use because these methods are only used to store objects to
a certain data structures, such as the hash table, and these
methods are usually independent on the other part of the
program.

7

Table 3. Target programs
Program # of classes Size (LOC)

P1 Simple database 4 262
P2 Sorting 5 228
P3 DC slice calculation 125 16207

Table 4. Slice size [LOC]

Slice criterion Customized JVM Aspect Aspect/JVM
S1 (P1) 29 36 1.24
S2 (P2) 28 50 1.79
S3 (P3) 708 839 1.19

5. Experimental Evaluation

5.1. Overview

In order to evaluate the proposed DC slice system, we
have compared the DC slice system to the system developed
using the customized JVM approach [4] from the viewpoint
of cost and module size necessary for dynamic analysis.
Since a customized JVM analyzes Java bytecodes, the JVM
extracts data dependencies even in the libraries.

In the evaluation, we have used the programs shown in
Table 3 as the input of the systems. P1 is a simple database
program which contains few elements of the object-oriented
language. P2 is a program which uses polymorphism to
switch sorting algorithms. P3 is the DC calculation sys-
tem presented in this paper. The calculation system includes
many features of Java, such as polymorphism, classes and
package hierarchies, exception handling, and interactive
user interfaces.

We have executed each program once with certain input
data, and calculated the DC slice for arbitrary slice criterion.

In Section 5.2, we evaluate and discuss DC slice size. In
Section 5.3 and 5.4 we also discuss time cost and module
size necessary for DC slice calculation.

5.2. Resulting Slice Size

Here, we compare the two slicing tools from the view-
point of resulting slice size.

Table 4 shows the size of DC slice for slice criterion S1
in P1, S2 in P2, and S3 in P3. Since each program outputs a
set of data to file or GUI, the slice criterion is chosen from
the variables referred at an output statement.

The DC slices calculated by both systems included the
correct DC slice that is obtained manually. Redundant state-
ments, however, were included. We may conclude that the

difference of the slice size shows the difference of correct-
ness.

With respect to the redundant statements, in our ap-
proach, we have to statically analyze the target program to
collect information about local variables and local control
structures. Therefore, statements which are possibly depen-
dent but are actually non-dependent may be included in the
slice result. For example, assume that there are some con-
ditional clauses in the program and one of them is not ex-
ecuted because the corresponding conditional predicate is
not satisfied. Then, the statements in the conditional clause,
which were not executed may be included in our approach,
but not included in customized JVM approach.

On one hand, for the program P1 with a slicing criterion
S1, the DC slice sizes of the customized JVM approach was
29 lines of code (LOC) and the size of our approach was 36
LOC, respectively. No substantial difference exists because
the program size of P1 is small and does not include the
characteristics of an object-oriented program.

On the other hand, for the program P2 with a slicing cri-
terion S2, the size of our approach became about twice the
size of the customized JVM approach. Program P2 is small
but contains several methods which use many local vari-
ables and nested control structures.

The difference is not huge for a program P3 with a slic-
ing criterion S3, although the size of P3 is much larger than
the other programs, P1 and P2. Program P3 is skillfully de-
composed into modules with proper sizes, and each method
has a few local variables and simple control structures.

As we expected, the result shows that the size of the
DC slice of our approach is larger than the slice of the cus-
tomized JVM approach for programs that include many lo-
cal variables and local control structures. However, for the
size of the target program (especially P3), the difference of
the resulting slice size between the two approach is insignif-
icant. Therefore, we believe that our approach is effective
for the large scale programs.

Even if statements never executed are included in a slice
using static information, no dynamic information, such as
a method call and a field reference exist. Since their state-
ments have no inter-method dependence relations, the dif-
ference of slice size is limited. In the future, we hope to treat
the issue by asking how such a difference affects a task of
developers.

Removing never executed statements from a slice using
the information of a control flow is our future work.

5.3. Analysis Cost

Here, we evaluate the time necessary for calculating the
DC slice.

Table 5 shows the time needed to execute the Java pro-
gram with a normal JVM, with a customized JVM, and the

8

Table 5. Execution time (JIT disabled) [sec.]

Target program Normal Customized JVM Aspect
P1 0.18 1.8 0.26
P2 0.19 2.8 0.39
P3 1.2 81.0 10.3

Table 6. Execute time (JIT enabled) [sec.]
target program Normal Aspect

P1 0.24 0.34
P2 0.24 0.41
P3 1.1 9.9

program aspect which has been inserted with a normal JVM
(our approach) for the same input. These values are mea-
sured in a JIT disabled environment. The execution time
with enabled JIT is shown in Table 6.

In general, our approach shows good performance when
compared with the customized JVM approach. We believe
that the cost of a dynamic analysis of the local variables is
very expensive, because of infrequent use of the library in
P1 and P2. Moreover, in P3, analyzing internal process-
ing in the library required further cost. As program size
becomes larger, analysis cost must increase further because
more libraries are used.

Our aspect approach has the advantage that we can use
a JIT compiler to improve performance. In small programs
such as P1 and P2, performance of the program without op-
timization by JIT compiler is better, because the optimiza-
tion is not effective in this case. However, in a practically-
large scale program like P3, the JIT compiler is very effec-
tive to improve performance. Although the effect of the JIT
compiler is unequal in runtime environment, this effect has
experimentally been shown that JIT makes a crucial differ-
ence on system performance [13]. Improving performance
is paramount because a program is executed repeatedly in
the debugging process.

5.4. Effort to Implement the Slicing Tool

In this section, we examine the effort of implementing
the slice tool.

A dynamic analysis module implemented as an aspect
reached about 400 LOC. The total DC slice calculation tool
reached about 16,000 LOC in Java.

In our approach, the aspect can be described at a highly
abstracted level and has good readability compared with the
pre-processor approach. Moreover, because the aspect is
small and simple, the programmer (user) can easily switch

to other implementation to adapt each runtime environment.
On the other hand, in the customized JVM approach,

it was necessary to add about 16,000 lines of code to the
JVM and Java compiler, which consists of about 500,000
LOC[5]. The additional codes consist of two parts, dynamic
data analysis and source analysis. The dynamic data anal-
ysis handles local variables that the aspect does not handle.
The source analysis extracts a map between source codes
and byte codes. This map is needed for mapping a slice to
source codes.

Furthermore, the overall program must be re-customized
when the original JVM is updated. Therefore, keeping the
customized JVM consistent with the original JVM is unre-
alistic. Our aspect approach, which uses the aspect written
once, is applicable to any platform where the aspect weaver
is available. Since AspectJ is written in Java, the aspects
achieve good reusability, much cheaper to implement than
the customized JVM approach.

6. Conclusion and Future Work

In this paper, we have examined an application of the
aspect-oriented programming to collect dynamic informa-
tion in program slicing calculation. Through the implemen-
tation of a dynamic program analysis module in AOP, we
have developed a DC slice calculation system and evaluated
its usefulness.

Since we make pointcuts of the aspect in a generic form,
the dynamic data dependence analysis aspect can be wo-
ven into various object-oriented programs without changes.
Therefore, we improve maintainability and reusability of
the module.

In our research, we have chosen AspectJ to implement
the module. AspectJ has a restriction that does not allow
us to analyze local variables and local control structures.
However, compared with the customized JVM approach,
we achieved cost reduction and maintainability improve-
ment with a larger slice. Moreover, our aspect approach
is not dependent on a Java-specific factor. Our method also
allows possible implementation dynamic analysis using an
appropriate aspect weaver for other languages.

In future work, we would like to evaluate our slicing sys-
tem for large programs. We will also examine how dynamic
information about local variables and local control struc-
tures affects a slice size and how such a difference affects a
debugging task. Finally, we plan to examine the applicabil-
ity of Aspect-Oriented Programming to other application in
software development.

References

[1] T. Katayama: “A theoretical framework of software
evolution”, Proceedings of International Workshop on

9

Principle of Software Evolution 1998, pp. 1-5 (1998).

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
V. Lopes, J. Loingtier and J. Irwin: “Aspect Oriented
Programming”, Proceedings of the 11th annual Eu-
ropean Conference for Object-Oriented Programming,
vol.1241 of LNCS, pp.220-242(1997).

[3] Y. Ashida, F. Ohata and K. Inoue: “Slicing Methods
Using Static and Dynamic Information”, Proceedings
of the 6th Asia Pacific Software Engineering Confer-
ence, pp.344-350, Takamatsu, Japan, December(1999).

[4] K. Konda, F. Ohata, K. Inoue: “Extraction Method
for Dynamic Dependence Relations between Bytecodes
Using Java Virtual Machine”, JSSST Computer Soft-
ware, Vol.18, No.3, pp.40-44 in Japanese (2001).

[5] K. Konda: “An Extraction Method for Dynamic De-
pendence Relations between Bytecodes Using Java Vir-
tual Machine”, Master’s Thesis, Osaka University, in
Japanese (2002).

[6] H. Agrawal and J. Horgan: “Dynamic Program
Slicing”, SIGPLAN Notices, Vol.25, No.6, pp.246-
256(1990).

[7] K. J. Ottenstein and L. M. Ottenstein: “The program
dependence graph in a software development environ-
ment”, Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Soft-
ware Development Environments, pp.177–184, Pitts-
burgh, Pennsylvania, April (1984).

[8] R. Ueda, K. Inoue and H. Iida: “A Practical Slice
Algorithm for Recursive Programs”, Proceedings of
the International Symposium on Software Engineering
for the Next Generation, pp.96–106, Nagoya, Japan,
February (1996).

[9] J. Gosling, B. Joy, and G. Steele: “The Java TM Lan-
guage Specification”, Addison-Weseley (1996).

[10] B. Stroustrup : “The C++ Programming Language
(Third edition)”, Addison-Wesley (1997).

[11] G. Booch: “Object-Oriented Design with Applica-
tion”, The Benjamin/Cummings Publishing Company,
Inc (1991).

[12] “Java Platform Debugger Architecture”,
http://java.sun.com/j2se/1.4/docs/guide/jpda/architecture.html

[13] Performance Comparison of JIT,
http://www.shudo.net/jit/perf/index.html

[14] F. Ohata, K. Hirose, M. Fujii, and K. Inoue: “A
Slicing Method for Object-Oriented Programs Using
Lightweight Dynamic Information”, Proceedings of
the 8th Asia Pacific Software Engineering Conference,
pp.273-280(2001).

[15] S. Kusumoto, M. Imagawa, K. Inoue, S. Morimoto, K.
Matsusita and M. Tsuda: “Function point measurement
from Java programs”, Proceedings of the 24th Interna-
tional Conference on Software Engineering, pp. 576-
582 (2002).

[16] T. Takada, F. Ohata, K. Inoue: “Dependence-Cache
Slicing: A Program Slicing Method Using Lightweight
Dynamic Information”, Proceedings of the 10th In-
ternational Workshop on Program Comprehension,
pp.169-177, Paris, France, June (2002).

[17] AspectJ Team, “The AspectJ Programming Guide”,
http://aspectj.org/doc/dist/progguide/

[18] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “De-
sign Patterns: Elements of Reusable Object-Oriented
Software”, Addison Wesley (1995).

[19] M. Weiser: “Program slicing”, IEEE Transactions on
Software Engineering, SE-10(4):352-357(1984).

10

