
Title Aspect-Oriented Modularization of Assertion
Crosscutting Objects

Author(s) Ishio, Takashi; Kusumoto, Shinji; Inoue, Katsuro
et al.

Citation

Version Type AM

URL https://hdl.handle.net/11094/51556

rights

© 2005 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future
media, including reprinting/republishing this
material for advertising or promotional
purposes, creating new collective works, for
resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work
in other works.

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Aspect-Oriented Modularization of Assertion Crosscutting Objects

Takashi Ishio1, Toshihiro Kamiya2, Shinji Kusumoto1 and Katsuro Inoue1

1Graduate School of
Information Science and Technology,

Osaka University
1-3 Machikaneyama, Toyonaka,

Osaka 560-8531, Japan
{t-isio, kusumoto, inoue}@ist.osaka-u.ac.jp

2Ubiquitous Software Group,
Information Technology Research Institute,

National Institute of
Advanced Industrial Science and Technology

Akihabara Dai Bldg. 1-18-13 Sotokanda,
Chiyoda-ku, Tokyo, 101-0021, Japan

t-kamiya@aist.go.jp

Abstract

Assertion checking is a powerful tool to detect software
faults during debugging, testing and maintenance. Although
assertion documents the behavior of one component, it is
hard to document relations and interactions among several
objects since such assertion statements are spread across
the modules. Therefore, we propose to modularize such as-
sertion as an aspect in order to improve software maintain-
ability. In this paper, taking Observer pattern as an exam-
ple, we point out that some assertions tend to be croscutting,
and propose a modulalization of such assertion with aspect-
oriented language. We show a limitation of traditional as-
sertion and effectiveness of assertion aspect through the
case study, and discuss various situations to which asser-
tion aspects are applicable.

1. Introduction

Design by Contract[23] provides behavioral specifica-
tions including preconditions, postconditions and invari-
ants to improve robustness of software. Preconditions pro-
tect the called component from illegal calls, and postcondi-
tions protect the caller against erroneous implementations,
respectively[26]. However, they are hard to handle proper-
ties held in interactions among objects because traditional
assertions specify behaviors of one object used by arbitrary
clients.

We show one variant of Observer pattern[6] for an ex-
ample. In the Observer pattern, observers and subjects are
modeled as many-to-many relationship, in other words, a
number of observers may observe one subject and an ob-
server may observe several subjects. After a developer has

implemented the observer pattern, the developer may reuse
the many-to-many relationship code for one subject-to-
many observers relationship because many-to-many imple-
mentation covers one-to-many usage. Although the devel-
oper may add assertions to observers and subjects in order
to prohibit attaching an observer to several subjects, the as-
sertions in the observers and the subjects strongly depend
on each other.

This kind of assertions crosscutting objects is caused
when a developer assumes some interaction patterns among
the objects. Assertion specifying interactions is a promising
tool for software maintenance since the behavior out of the
interaction patterns expected by the developer may indicate
a defect[4]. To use assertions effectively, we need a method
to write assertions in a well-modularized manner since as-
sertions crosscutting objects are harmful to the maintain-
ability of software.

We propose to modularize assertions crosscutting objects
as an aspect using an aspect-oriented language. In order to
show the effect of modularization, we have defined a simple
language whose pointcuts are a subset of AspectJ and com-
pared two versions of the observer pattern with the one-to-
many constraint in Java and in our language. As a result,
modularized assertion simplifies objects and improves the
maintainability of the objects.

This paper consists of six sections. In the next section,
we present the background of the research. Section 3 de-
scribes our proposal modularizing crosscutting assertions
to aspects. In Section 4, we show the difference between
our approach and traditional assertion. In Section 5 we dis-
cuss software quality affected by our approach, situations
to which our approach is applicable and related work. We
draw conclusions in Section 6.

Observer

1. attach(Observer)

3. detach(Observer)

2. update(Subject)

update();

Subject

Collection
 observers;
attach();
detach();
notify();

Figure 1. Observer Pattern

2. Motivation

Design by Contract[23] improves robustness of software
by specifying the behavior of a component based on pre-
conditions and postconditions for each method of the com-
ponent. Preconditions protect the called component from il-
legal calls, and postconditions protect the caller against er-
roneous implementations, respectively[26].

Practical programming languages such as Java and C++
have assert as a language construct, a function of the
standard library, or a macro of a preprocessor. The behav-
ior of assert(expr) statement is shown as follows.

assert(true) → do nothing
assert(false) → throw a runtime exception

Preconditions and postconditions of a method are re-
garded as assert statements inserted into the beginning
of the method and the end of the method, respectively.

Assertion checking is powerful, practical, scalable and
simple to use. Assertion is effective to detect software faults
during debugging, testing and maintenance[25]. Assertion
supports developers in understanding the software because
it documents the behaviors of a component and effectively
prevents developers from depending on implementation de-
tails of the component[21].

Several behavioral specification languages and
tools including JML[13], jContractor[15], Larch[8]
and Contract4J[3] are proposed to use assertion effec-
tively. They provide several convenient functions and
predicate to improve expressiveness of assertions. A de-
veloper describes properties for each method of a com-
ponent using these languages. Gibbs et al. have proposed
Temporal Invariants, or an extension of assertion for tem-
poral properties held in a series of method calls for one
component[7]. On the other hand, Yamada et al. have pro-
posed Moxa, or an aspect-oriented extension of JML[27].
Moxa provides language constructs to write common prop-
erties to several methods and classes. These approaches
extend assertions to describe a property related to sev-
eral methods. However, they are hard to handle properties
held in interaction among objects because traditional asser-
tions specify behaviors of only one object used by arbitrary
callers.

We show a variant of Observer pattern[6] for an exam-
ple. Observer pattern is an interaction pattern between Ob-
servers and Subjects. Figure 1 shows the structure of the
pattern. Subject represents an object which has some
data, and Observer represents an object watching sub-
jects. An observer first attaches itself to a subject by call-
ing the attach method. When the state of a subject is up-
dated, the subject notifies the attached observers by calling
update method of them. The notified observers call some
methods of the subject to get updated information. An ob-
server calls the detach method of a subject when the ob-
server no longer need notification message from the sub-
ject. Observers and subjects are modeled as many-to-many
relationship in the pattern. In other words, a number of ob-
servers may observe one subject and an observer may ob-
serve several subjects.

The assertion is hard to handle inter-object properties
since the traditional assertion is described for each class.
We discuss a variant of the observer pattern, a model of one
subject-to-many observers relationship in order to show a
limitation of the traditional assertion. After a developer has
implemented an instance of the usual observer pattern, the
developer can reuse the many-to-many relationship code for
one-to-many relationship since many-to-many implementa-
tion covers one-to-many usage. The developer may want
to add assertions in order to prevent an observer from be-
ing attached to several subjects. However, it is a hard task
for the developer to describe the assertion for that purpose
in a modularized manner since an observer has no variable
which represents how many subjects the observer attaches
to. So a developer need to add a field containing an attached
subject to Observer and modify Subject to check and up-
date the field when an observer is attached. The scattered
code damages modularity and maintainability of the com-
ponents. We show detailed code in Section 4.

We propose to write such crosscutting assertions in an
aspect. In Aspect-Oriented Programming[16], an aspect is
a module unit for a crosscutting structure such as above ex-
ample. The features of our approach are following:

• Our approach is based on aspect-oriented program-
ming. It is important to separate crosscutting assertions
from objects since assertion is often regarded as a part
of the interface of an object[23]. The crosscutting as-
sertions of objects affect modularity and maintainabil-
ity of the objects.

• An aspect-oriented approach also enables develop-
ers to separate assertions into aspects for each pur-
pose. Developers could not group assertions for each
purpose in traditional approaches since traditional as-
sertions are written for each method of a class.
While Moxa also supports developers to group com-
mon properties for several methods, our approach al-

lows developers to group several properties of classes
for each purpose.

• Crosscutting assertions are caused in various situa-
tions. For example, developers write a method along
with assumptions for the usage of the method. The
developers usually write such assumptions in a com-
ment such as “This method foo is to be called from
the method bar”. We should assert such assumptions
since other developers may accidentally break assump-
tions when they reuse the method, and violated as-
sumptions often cause a defect. We discuss the appli-
cability of our approach in Section 5.4.

• Developers can deploy an aspect including application
specific assertions to legacy components. Heineman
pointed out that a service should be provided to en-
force local properties specified by components as well
as global properties specified by the application[11].

In the next section, we present the details of our ap-
proach.

3. Assertion as an Aspect

We propose to modularize crosscutting assertions in as-
pects. First we discuss language constructs which are useful
to describe assertion. After the short discussion, we intro-
duce a new simple aspect-oriented language whose point-
cut designators are a small subset of AspectJ[1] to show ba-
sic language constructs to write assertions.

Pre-/post-conditions of a method are checked be-
fore/after the method is called respectively. There-
fore, we regard them as before/after advices with
a call pointcut in AspectJ. When assertions are sepa-
rated from the objects, the separated assertions need a way
to access context information including a method caller ob-
ject, a callee object, their own (member) objects, method
parameters and a return value through context expo-
sure provided by AspectJ.

Comparing with an aspect implementing some function-
ality (or non-functional requirements), an aspect for asser-
tion has following features.

• An aspect observes method call events and often ac-
cesses contextual information, a caller object and a
callee object. So a developer often uses pointcut desig-
nators including call, this, target and args.

• An aspect has utility methods and fields to collect in-
formation through several method calls.

• An aspect sometimes needs to access private members
of the object.

We have developed a simple aspect-oriented language
specialized to write an aspect for assertion based on the

above features. Our language provides several pointcut des-
ignators to easily access context information.

We allow a module of our language to include a block
written in AspectJ to declare methods for utility functions
and advices handling context information. We have defined
our language to be converted to AspectJ since our purpose
is not to develop a new practical language but to use a sim-
ple subset of AspectJ to write assertions.

3.1. Assertion Module

In this language, a developer declares assertion aspect
using the keyword assertion. The declaration of a mod-
ule consists of the name of the module, a module level
pointcut and a set of advices.

assertion name (params) : pointcut
 << advice definition >>
end

The name of a module is provided just for management,
it has no meaning in programming semantics. A module
may have a module level pointcut describing a common
pointcut among advices included in the module. The point-
cut is optional, a developer may omit “: pointcut” frag-
ment. Our language provides following primitive pointcuts
to specify context in simple expression:

• p calls q represents a method call from p to q.
p and q usually specify objects declared as param-
eters of the module. p and q may be type name or
a wild card “*” when the developers have no in-
terest in caller/callee objects, respectively. This
statement is translated into following pointcut des-
ignators: call(* *.*(..)) && this(p) &&
target(q).

• p calls q.method(params), which is an-
other form of the pointcut, is also allowed
to specify the signature of the methods. This
form is translated into the following pointcut
designators: call(* *.method(..)) &&
args(params) && this(p) && target(q).

• if(expr) represents a condition of the context. The
assertions in the context module are enabled when the
expr is true. This pointcut is exactly same as if
pointcut of AspectJ.

• method(signature) represents a method signa-
ture constraint. This pointcut is simply converted to
call(signature) pointcut. A developer uses this
pointcut to specify methods when the developer is not
interested in objects.

Although above pointcuts are sufficient to write usual
assertions, other pointcut designators are also useful to

write assertions. For example, cflowbelow can specify
pre/post-conditions for recursive method calls. Examining
how powerful pointcuts such as cflow and dflow[20] af-
fect the expressiveness of assertions is future work.

Parameters in the module declaration are module level
variables, so all advices in the module can access the pa-
rameters. It allows developers to declare common parame-
ters for each assertion.

3.2. Assertion Advice

An assertion module includes a number of advices. An
advice is defined in the following format:

def name (params) : pointcut
 pre
 <<expression or code block>>
 post
 <<expression or code block>>
end

The name, the parameters and the pointcut of an advice
are same as the module level declaration. pre and post
specify preconditions and postconditions, respectively. A
developer writes a list of boolean expressions and code
blocks in AspectJ. A list of expressions separated by “;”
specifies conditions that must be satisfied. A code block
is a procedure executed at the beginning or the end of the
method. We assume that the code block updates variables
for assertion checking. Here we show an example code as
follows.

assertion OneSubjectManyObserver
def attach(Observer o, Subject s):

* calls s.attach(o)
pre o.subject == null;
post o.subject == s;

s.getObservers().contains(o);
{
Logger.log(o, "connects", s);

}
end

end

The above code is same as following AspectJ code:

aspect OneSubjectManyObserver {
// condition attach
before(Observer o, Subject s):
call(* Subject.attach(Observer)) &&
target(s) && args(o) {
assert o.subject == null;

}
after(Observer o, Subject s):
call(* Subject.attach(Observer)) &&
target(s) && args(o) {

Observer

1. attach(Observer)update();

Subject

attach();

Subject
 subject;

assert(observer.subject == null);
observer.subject = this;

Figure 2. Crosscutting assertion in Java

assert o.subject == s;
assert s.getObservers().contains(o);
Logger.log(o, "connects", s);

}
}

And an assertion module may include utility methods,
member variables (fields), inter-type declarations, internal
classes and arbitrary advices in AspectJ. The format is very
simple as follows.

{
 <<AspectJ Code Block>>
}

3.3. Implementation

We have implemented a translator from our lan-
guage into AspectJ using Racc, or a parser generator
for Ruby[24]. Our translator converts pointcut declara-
tions to AspectJ style, and just copies code blocks to the
output. Therefore, developers can use several pointcut des-
ignators which are not directly supported by our translator,
e.g. cflow. Since our language is translated into As-
pectJ, the code optimization of AspectJ provides executable
code with less-overhead[12].

4. Case Study

We have implemented an Observer pattern with the one
subject-to-many observers relationship constraint as a case
study. One-to-many relationship means that an observer can
register to only one subject, and one subject can be observed
by multiple observers. Such relationship is found when a
subject represents a data model and several views for the
model are provided as observers. Developers can simply
reuse normal Observer pattern to achieve the purpose, but
some constraints are needed to prevent an observer to watch
several subjects. Here, we are comparing two implementa-
tions, in Java and our language, in the view point of the
modularity.

Figure 2 shows the overview of the implementation in
Java, and Figure 3 shows code fragments added to the usual

// Extended interface for Observer
interface Observer2 extends Observer {
public Subject getSubject();
public void setSubject(Subject subject);

}

// Extend an Observer
public class NewObserver extends AnObserver
implements Observer2 {
Subject subject;

public void setSubject(Subject subject) {
this.subject = subject;

}

public Subject getSubject() {
return subject;

}
}

// New subject
public class ASubject implements Subject {

:
:

public void attach(Observer o) {
assert (o instanceof Observer2) &&
(((Observer2)o).getSubject() == null);
assert !observers.contains(o);
this.observers.add(o);
assert observers.contains(o);
((Observer2)o).setSubject(this);

}

public void detach(Observer o) {
assert (o instanceof Observer2) &&
(((Observer2)o).getSubject() == this);
assert observers.contains(o);
this.observers.remove(o);
assert !observers.contains(o);
((Observer2)o).setSubject(null);

}
}

Figure 3. One-to-many relationship in Java

Observer pattern implementation. This implementation is
problematic because it damages the encapsulation of Ob-
server. An observer has a reference to a subject and the
method Subject.attach checks and updates the field.
When an observer calls attach, the subject checks that
the observer is not connected to any subjects using the
subject field of the observer. After the subject accepts
the observer, the subject updates the observer’s field. The
observer must not modify the field by itself nevertheless it
is the field of the observer. It is a bad manner to prevent a
component to modify its field and to allow another compo-

Observer

attach(Observer)update();

Subject

attach();

Subject Observer.subject;

assert(observer.subject == null);
observer.subject = this;

OneSubjectManyObserverAspect

Figure 4. Assertion modularized in an aspect

nent to modify the field.
The broken encapsulation also affects maintainability

of the code. Developers need to maintain two versions of
the subject and the observer for one-to-many and many-
to-many relationships because the code fragments included
in the observer and the subject depend on each other to
implement the one-to-many constraint. Developers cannot
mix one-to-many observers and many-to-many observers
for one subject.

Figure 4 shows the overview of a solution in our ap-
proach. The aspect has separated crosscutting assertions
from subjects and observers. The source code is shown in
Figure 5. The field of Observer.subject is also moved
to the aspect. The aspect introduces the field subject
into Observer. Its value must be null before the method
attach, and a reference to subject is set to the field af-
ter attach is called. The value is cleared after the method
detach is called.

The aspect modularizes all related assertions, fields and
methods. The modularization prevents a developer to acci-
dentally mix these assertions with assertions for other pur-
poses and to misuse methods and fields defined only for the
assertions.

An advantage of our approach is that developers can
deploy one-to-many relationship for generic observers and
subjects. Another advantage is that developers can mix one-
to-many observers and many-to-many observers for one
subject since the aspect affects only a pair of AnObserver
and ASubject.

Our language enables a developer to easily write asser-
tions. When a developer uses AspectJ to implement one-to-
many observer pattern aspect, the implementation is simi-
larly modularized as our language. The difference from our
language is that a developer writes a pair of before and af-
ter advices for a method in AspectJ instead of a set of pre-
conditions and postconditions in one advice.

assertion OneSubjectManyObserver

{ // AspectJ inter-type declaration
public Subject AnObserver.subject = null;

}

def attach(ASubject s, AnObserver o):

* calls s.attach(o)
pre !s.getObservers().contains(o);

o.subject == null;
post s.getObservers().contains(o);

{ // code executed after s.attach
o.subject = s;

}
end

def detach(ASubject s, AnObserver o):

* calls s.detach(o)
pre s.getObservers().contains(o);

o.subject == s;
post !s.getObservers().contains(o);

{
o.subject = null;

}
end
end

Figure 5. One-to-many relationship aspect

5. Discussion

In this section, we discuss about behavioral subtyping,
modular reasoning, situations to which our approach is ap-
plicable and related work.

5.1. Behavioral Subtyping

Behavioral subtyping guarantees that all objects of a sub-
type preserve all of the original type’s invariants[5]. Our ap-
proach enables developers to add assertions to a component
using an aspect, or an external module. When a developer
creates a new subclass of a component, assertion should au-
tomatically affect the new subclass for the consistency of
the assertion. For example, when an aspect adds an asser-
tion to a class P, a class Q which is a subclass of P is also
affected by the assertion.

Our approach allows developers to add preconditions to
a component. This feature may break behavioral subtyping
since a subtype may have weak preconditions and strong
postconditions of the supertype, but cannot have strong pre-
conditions and weak postconditions[19]. However, we de-
cided to allow strong preconditions since a developer some-
times can assume the stronger preconditions based on ap-
plication constraints[11].

On the other hand, we prohibit removing assertions from
objects for safety. Although the behavioral subtyping al-
lows weak preconditions, we prevent a developer from be-
ing confused by mixing a code fragment explicitly violat-
ing a precondition with an aspect removing the precondi-
tion.

5.2. Modular Reasoning

Assertion documents the abstract behavior of a method.
Well-modularized assertions provide useful information for
a developer to understand interactions among objects.

Assertions separated from a component might reduce the
comprehensibility of the component since assertions for a
component crosscut a class and several assertion modules.
Therefore, Aspect Visualizer[2] and tools finding aspects
are important for managing aspects. If a developer finds as-
pects using Aspect Visualizer, the developer can inspect all
related assertions. This is easier than finding all crosscutting
assertions in other classes with grep or other tools[17]. A
program just crashes even if a developer who does not know
assertion added by an aspect writes a code fragment which
violates the assertion. A developer can get assertion infor-
mation from the stack trace after a program crashed, so it is
not too serious problem.

5.3. Avoiding Side Effects

Assertion aspect should have no side effects for the state
of objects. If the side-effect free methods are available, we
should enforce aspects to call only such methods. Java with
Access Control proposed by Kniesel et al.[18] is promising
approach for this purpose since it provides readonly con-
text prohibiting side effects and a method statically check-
ing the context.

We allow an aspect to have its own state in order to cal-
culate some statistical value, record a log or other similar
purposes. Assertion aspect does not reduce maintainability
since a developer does not need impact analysis for an as-
sertion aspect when the aspect has no side effect on other
objects.

5.4. Applicability

We have shown the example of the Observer pattern.
Here we discuss the applicability of our approach. Our ap-
proach is also applicable to following situations:

• Client specific assertions for a reusable component.
A simple example is a list (e.g. java.util.List)
containing strings which match a certain regular ex-
pression. If several developers want to share such a list
in their application, they may develop a new list com-
ponent. However, many lists are hard to maintain when

each component needs a customized list respectively.
This problem is well-known since a developer often
needs to handle a set of data with containers, and C++
template mechanism and Java Generics support con-
tainers with type constraints. Our assertion approach
supports other constraints that cannot be handled in
type checking mechanisms.

• Assertions for experimental/untrusted code. A devel-
oper can add strict assertions to only new code but not
to other well-tested code when the developer creates
a new client accessing a long-lived component. After
the new client is tested, the developer may remove as-
sertions easily by just removing the assertion aspect.
A developer can also write assertions for untrusted in-
put from an external component added by a user af-
ter the system is released, e.g. a plug-in extending the
software.

• Assertions describing developers’ expectation. Devel-
opers sometimes have implicit assumptions such as
“When this method foo calls the method bar, the ob-
ject holds a particular condition.” Although some de-
velopers declare this kind of expectation as a comment,
other developers may accidentally break such assump-
tions when they introduce subclasses or aspects[22].
Our assertion may protect the method from the ille-
gal usage by specifying the caller’s state. Specifying
strict assertion for the usage of a component, devel-
opers might assure the behavior and the quality of the
component.

• Assertions for component behavior affecting other
components. A component usually accesses other
components to achieve its task. Our assertion can
specify a condition about method calls to other com-
ponents. Since a wrong series of method calls from a
component indicates a defect of the component[4], an
assertion checking the behavior of an object is use-
ful for developers. Developers can write assertions and
utility advices checking the behavior of the object in-
dependent from the object code. Temporal invariants
are also useful for this purpose[7].

• Collaborating with unit testing. JUnit[14] is a well-
known unit testing tool for Java. JUnit provides class
libraries which supports to write assertions and a tool
which executes a test suite and collects the result. Our
approach supports to test interactions among objects in
addition to unit testing since assertion methods of JU-
nit can specify only the state of an object but cannot
specify the expected behavior of the object, e.g. meth-
ods should be called in a test case.

5.5. Related Work

Zhao et al. proposed Pipa, or an extended language of
JML which enables programmers to write assertions for
advices[28]. Hanneman et al. have shown the usefulness
of aspects implementing interactions among objects[9], and
published their code[10]. If a developer introduces Pipa into
a Observer pattern implemented in AspectJ, the result may
be similar to our approach because Pipa code fragments are
assertions for each advice and our code fragments are trans-
lated into assertion statements in advices. However, the pur-
pose of Pipa is different from ours. Pipa aims to introduce
assertion checking for advices, our approach aims to mod-
ularize crosscutting assertions. The concept of crosscutting
assertion in our approach includes assertion for a set of the
components which may be coded only in classes as main
functionality (base code).

Yamada et al. proposed Moxa, another extension of
JML[27]. Moxa provides an assertion module which en-
ables programmers to write assertions shared by several
methods and classes. Our approach focuses on modulariz-
ing crosscutting assertions into an aspect, their approach fo-
cuses on modularizing common properties into an aspect.
The approaches may collaborate with each other.

Gibbs et al. have proposed Temporal Invariants, or
an extension of assertion for temporal properties for one
component[7]. Temporal invariants can describe tempo-
ral properties held in a series of method calls for one
component. This approach can replace a process collect-
ing context information (some flags checking control flow)
with an expression of the temporal logic. When a devel-
oper can write temporal invariants for several components,
it would be more useful tool.

6. Summary

Assertion documents the behavior of a component. As-
sertion checking is a powerful tool to detect software faults
during debugging, testing and maintenance. Since tradi-
tional assertions are described for each method, the asser-
tions crosscut several modules in order to specify inter-
object properties. Crosscutting assertions are harmful to the
modularity and maintainability of the components. There-
fore we have proposed to modularize such assertion as an
aspect using an aspect-oriented language. We have intro-
duced a simple aspect-oriented language to show basic lan-
guage constructs to write assertions, and developed a trans-
lator for the language into AspectJ. We have implemented
two version of the Observer pattern in java and our language
and have shown that crosscutting assertions in Java are
modularized in our language. Aspect-oriented assertion is
promising to improve software maintainability, and is appli-
cable to various situations. In the future work, we are plan-

ning to research design by contract for inter-aspect proper-
ties and examine how powerful pointcuts such as cflow
and dflow affect the expressiveness of assertions.

Acknowledgement

This work was supported by MEXT.Grant-in-Aid for
JSPS Fellows (No.17-9539).

References

[1] The AspectJ Team. http://eclipse.org/aspectj/
[2] Clement, A., Colyer, A. and Kersten, M.: Aspect-Oriented

Programming with AJDT. Proceedings of Workshop on
Analysis of Aspect-Oriented Software (AAOS 2003), Darm-
stadt, Germany, July 2003.

[3] Contract4J, http://www.contract4j.org/
[4] Dallmeier, V., Lindig, C. and Zeller, A.: Lightweight De-

fect Localization for Java. Proceedings of the 19th European
Conference on Object-Oriented Programming (ECOOP
2005), Glasgow, UK, July 2005.

[5] Findler, R. B., Latendresse, M. and Felleisen, M.: Behavioral
Contracts and Behavioral Subtyping. Proceedings of the 9th
Foundations of Software Engineering (FSE 2001), pp.229-
236, Vienna, Austria, September 2001.

[6] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design
Patterns. Addison-Wesley Pub Co., Boston, Massachusetts,
1995.

[7] Gibbs, T. H. and Malloy, B. A.: Weaving Aspects into C++
Applications for Validation of Temporal Invariants. Proceed-
ings of Conference on Software Maintenance and Reverse
Engineering (CSMR 2003), pp.249-258, Benevento, Italy,
March 2003.

[8] Guttag, J. V., Horning, J. J. and Wing, J. M.: The Larch Fam-
ily of Specification Languages. IEEE Software, Vol.2, No.5,
pp.24-36, September 1985.

[9] Hannemann, J. and Kiczales, G.: Design Pattern Implemen-
tation in Java and AspectJ. Proceedings of the 17th An-
nual Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2002), pp.161-173,
Seattle, Washington, November 2002.

[10] Hannemann, J.: Aspect-Oriented Design Pattern Implemen-
tations. http://www.cs.ubc.ca/˜jan/AODPs/

[11] Heineman, G. T.: Integrating Interface Assertion Check-
ers into Component Models. Proceedings of the 6th In-
ternational Component-Based Software Engineering (CBSE
2003) Workshop, pp.37-42, Portland, Oregon, May 2003.

[12] Hilsdale, E. and Hugunin, J.: Advice Weaving in AspectJ.
Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD 2004), pp.26-35,
Lancaster, UK, March 2004.

[13] JML Reference, http://www.dc.fi.udc.es/ai/tp/jml/JML/docs/
jmlrefman/jmlrefman/

[14] JUnit. http://junit.org/

[15] Karaorman, M., Holze, U. and Bruno, J.: jContractor: A Re-
flective Java Library to Support Design By Contract. Pro-
ceedings of the 2nd International Conference on Meta-Level
Architectures and Reflection (Reflection 1999), pp.175-196,
Saint-Malo, France, July 1999.

[16] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J. M. and Irwin, J.: Aspect-Oriented Program-
ming. Proceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP 1997), pp.220-242,
Jyvaskyla, Finnland, June 1997.

[17] Kiczales, G., Mezini, M.: Aspect-Oriented Programming and
Modular Reasoning. Proceedings of the 27th International
Conference on Software Engineering (ICSE 2005), pp.49-58,
St. Louis, Missouri, May 2005.

[18] Kniesel, G. and Theisen, D.: JAC - Access Right Based
Encapsulation for Java. Software Practice and Experience,
Vol.31, No.6, pp.551-576, May 2001.

[19] Liskov, B. H. and Wing, J. M.:A Behavioral Notion of Sub-
typing. ACM Transactions on Programming Languages and
Systems,Vol.16, No.6, pp.1811-1841, November 1994.

[20] Masuhara, H. and Kawauchi, K.: Dataflow Pointcut in
Aspect-Oriented Programming. Proceedings of the 1st
Asian Symposium on Programming Languages and Systems
(APLAS 2003), pp.105-121, Beijing, China, November 2003.

[21] McCamant, S. and Ernst, M. D.: Predicting Problems Caused
by Component Upgrades, Proceedings of the 11th Foun-
dations of Software Engineering (FSE 2003), pp.287-296,
September 2003.

[22] McEachen, N. and Alexander, R. T.: Distributing Classes
with Woven Concerns - An Exploration of Potential Fault
Scenarios. Proceedings of the 4th International Conference
on Aspect-Oriented Software Development (AOSD 2005),
pp.192-200, Chicago, Illinois, March 2005.

[23] Meyer, B.: Object Oriented Software Construction. Prentice
Hall, New York, New York, 1988.

[24] Racc: LALR(1) Parser Generator for Ruby.
http://www.loveruby.net/en/prog/racc.html

[25] Rosenblum, D. S.: A Practical Approach to Programming
with Assertions. IEEE Transactions on Software Engineer-
ing, Vol.21, No. 1, pp.19-31, January 1995.

[26] Siedersleben, J.: Errors and Exceptions - Rights and Respon-
sibilities. Proceedings of Workshop on Exception Handling
in Object Oriented Systems: towards Emerging Application
Areas and New Programming Paradigms, pp.2-9, Darmstadt,
Germany, July 2003.

[27] Yamada, K. and Watanabe, T.: Moxa: An Aspect-Oriented
Approach to Modular Behavioral Specifications. Proceed-
ings of Workshop on Software-Engineering Properties
of Languages and Aspect Technologies (SPLAT 2005),
http://www.daimi.au.dk/˜eernst/splat05/, Chicago, Illinois,
March 2005.

[28] Zhao, J. and Rinard, M.: Pipa: A Behavioral Interface Spec-
ification Language for AspectJ. In Proceedings of the 6th
International Conference on Fundamental Approaches to
Software Engineering (FASE 2003), pp.150-165, Warsaw,
Poland, April 2003.

