
Title Investigation of Coding Patterns over Version
History

Author(s) Ishio, Takashi; Inoue, Katsuro; Date, Hironori

Citation

Version Type AM

URL https://hdl.handle.net/11094/51557

rights

© 2012 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future
media, including reprinting/republishing this
material for advertising or promotional
purposes, creating new collective works, for
resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work
in other works.

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Investigation of Coding Patterns over Version History

Hironori Date, Takashi Ishio, Katsuro Inoue

Graduate School of Information Science and Technology, Osaka University
1-5, Yamadaoka, Suita, Osaka 565-0871, Japan
Email: {h-date, ishio, inoue}@ist.osaka-u.ac.jp

Abstract—A coding pattern is a sequence of method calls
and control structures, which appears repeatedly in the source
code. In this paper, we have extracted coding patterns of each
version of two Java applications, and then explored the life-
span of all of the coding patterns across those versions. This
paper reports the characteristics of coding patterns of various
life-spans. While learning from coding patterns enables us to
perform appropriate modifications and enhancements for the
software, many coding patterns are unstable as similar to the
result of clone genealogy research.

Keywords-Repository Mining; Coding Pattern; Sequential
Pattern Mining; Java;

I. INTRODUCTION

A coding pattern is a frequent sequence of method calls

and control statements to implement a particular kind of con-

cerns that are not modularized in the software [1]. Coding

patterns include API usage patterns and application-specific

behavior patterns. For example, a method call hasNext
followed by a method call next is a typical usage of an

Iterator object in Java. In addition to many instances

of such API usage patterns, a large-scale application often

includes its own coding patterns. For example, Apache Tom-

cat 6.0.14 has a logging feature for debugging. The feature

is implemented by 304 pairs of isDebugEnabled and

debug method calls. Azureus 3.0.2.2 is a multi-threaded

program; it includes 151 methods using AEMonitor class

to synchronize multi-threaded execution. A text editor jEdit

4.3 often calls isEditable with an if statement so that

the text editor can prevent users from modifying a read-only

file. Since coding patterns reflect implicit rules in a program,

knowledge of patterns helps developers understand source

code, and detect potential defects in the program [2], [3],

[4].

Our research group developed a Coding Pattern Mining

Tool named Fung, and in the previous research [1] we

mined coding patterns from several applications. Figure

1 shows an example of coding pattern extracted from

JHotDraw. From two class definitions, we obtain a coding

pattern for “Undo” with length 4 and support (instance)

2, 〈createUndoActivity(), setUndoActivity(), getUndoActiv-

ity(), setAffectedFigures()〉. This means that the four method

calls appear in those two classes in such order.

While existing work [5], [6], [7] used patterns extracted

from source code as useful source code fragments, some

org.jhotdraw.standard.DuplicateCommand
public void execute() {
 super.execute();
 setUndoActivity(createUndoActivity());
 FigureSelection selection = view().get...

 //create duplicate figure(s)
 FigureEnumeration figures = (Figure...
 getUndoActivity().
 setAffectedFigures(figures);
 view().clearSelection();
}

org.jhotdraw.standard.ResizeHandle

public void invokeStart(
 int x, int y,
 DrawingView view) {
 setUndoActivity(
 createUndoActivity(
 view));
 getUndoActivity().
 setAffectedFigures(...
 ((RseizeHandle.Undo...
}

Undo Pattern
 (length=4)

createUndoActivity()
setUndoActivity()
getUndoActivity()
setAffectedFigures()

Subclasses of AbstractCommand

Subclasses of AbstractHandle instanceof

Figure 1. Undo pattern in JHotDraw 5.4b1 [1]

patterns may be involved only in a particular version of

source code. If a pattern appears in multiple versions, the

stable pattern is likely more reusable; in addition, the knowl-

edge about such stable patterns may be effective for source

code reading tasks. However, a long pattern of method calls

always implies many shorter patterns of method calls. It is

difficult to manually select likely stable patterns from the

similar patterns.

In this research, we have investigated how many versions

of an application include the same pattern, as similar to

Clone Genealogy [8], [9]. Our pattern mining tool uses

PrefixSpan, a sequential pattern mining algorithm [10]. Each

coding pattern is a sequence of method calls and control

elements such as if, while and try-catch. A pattern

survives until the sequential order of method calls and

control elements are modified.

We have applied our pattern mining to each version of

two applications, dnsjava and JmDNS. We have chosen these

middle-size applications so that we can extract all possible

patterns which have at least two instances and comprise at

least two elements. In other words, if two methods include

the same two method calls in the same order, we recognize

the method calls as one of the shortest patterns. If the pair

of method calls are not modified across versions, the pattern

is recognized as a stable pattern.

We have analyzed 51 versions of dnsjava and 20 versions

of JmDNS. Our results show that many patterns disappear

in a few versions. Although we have extracted 25,909

patterns in source code, only 35 patterns are found in the all

versions of an application. While the generalizability of our

investigation is limited since we could not detect renamed

methods, the result indicated that coding patterns should be

extracted from a number of latest versions.

II. CODING PATTERN MINING

The mining process of coding pattern we use here com-

prises two steps: normalization step and mining step. The

normalization step translates each Java method, constructor

or initializer in a program into a single sequence of call

elements and control elements.

A method call is translated into a method call element

with the method name and argument list. A constructor call

is also translated into a constructor call element with the

package name, class name and argument list.

The control elements are taken by the normalization rules

shown in Table I. Some of these rules come from our

previous work [1], but we have extended them by includ-

ing additional control elements, try-catch-finally and

synchronized, to enrich coding patterns.

In the mining step, we use a sequential pattern mining

algorithm named PrefixSpan[10]. Sequential pattern mining

extracts frequent subsequences from a set of sequences.

Fung extracts only closed patterns; in other words, Fung

filters out redundant shorter subpatterns whose instances are

completely covered by the instances of a longer pattern.

III. RESEARCH QUESTION

Our research question for the investigation of the life-span

of the coding patterns is as follows.

RQ: Are the coding patterns generally stable over the
version history?

In our previous paper, we have investigated the coding

patterns in a single version of a software system [1]. In this

work, we will trace the coding patterns through multiple

versions of the software system. We would like to know if

the coding patterns are fragile in the sense that a pattern

found in a version can be easily disappear in the later

versions. Or the patterns are fairly stable in the later versions.

If a pattern might be fragile, we would think that the

pattern is temporary one, so we should not reuse the pattern

in other systems. If it is stable, the pattern would be an

important one to the later reuse for efficient and reliable

coding.

Table I
NORMALIZATION RULES OF CONTROL ELEMENTS

Source for (<init>; <cond>; <inc>) <body>
Sequence <init>, <cond>, LOOP, <body>, <inc>, <cond>,

END-LOOP
Source for (: <init>) <body>
Sequence <init>, LOOP, <body>, END-LOOP
Source while (<cond>) <body>
Sequence <cond>, LOOP, <body>, <cond>, END-LOOP
Source do <body> while (<body>)
Sequence LOOP, <body>, <cond>, END-LOOP
Source if (<cond>) <then> else <else>
Sequence <cond>, IF, <then>, ELSE, <else>, END-IF
Source <cond> ? <then> : <else>
Sequence <cond>, IF, <then>, ELSE, <else>, END-IF
Source try <try> catch () <catch> ... finally <finally>
Sequence TRY, <try>, CATCH, <catch>, ..., FINALLY,

<finally>, END-TRY
Source synchronized(<exp>) <body>
Sequence <exp>, SYNCHRONIZED, <body>,

END-SYNCHRONIZED
Source synchronized return-type method-name(args) <body>
Sequence SYNCHRONIZED, <body>, END-SYNCHRONIZED
Source throw <exp>
Sequence <exp>, THROW

Table II
TARGET PROGRAMS

Application Version Range #Version #Pattern
dnsjava 0.1 to 2.0.1 51 17,284
JmDNS 0.2 to 3.4.1 20 8,625

IV. OVERVIEW OF EXPERIMENTS

To answer the research question, we have extracted coding

patterns over multiple versions. We have mined for patterns

from each single version individually, and then we have

searched identical patterns in multiple versions. Two coding

patterns are judged as identical if all the elements of the

patterns are identical. It is necessary to check not only

consecutive two versions but all pairs of arbitrary two

versions, since the identical patterns may be found at non-

consecutive two versions. For example, a pattern extracted

in version 1 can temporarily disappear from version 2, and

appear in version 3 again.

We define the life-span of a pattern as the number of

versions where we find the identical pattern. For example,

if a pattern is found in the version 1, 2 and 3, then its life-

span is 3. If a pattern is found in the version 1 and 3 but

not in 2, then its life-span is 2.

Fung takes two parameters: the minimum length of a

pattern and the minimum number of occurrences (instances)

of a pattern. We have extracted patterns which comprise at

least 2 method calls and appear in at least 2 methods. We

have chosen these values so that we can extract all possible

patterns. If we extract only patterns which have at least 10

instances, we cannot distinguish a pattern which still have

9 instances (but not reported by Fung) and a completely

deleted pattern.

�

����

����

����

����

����

�

����

�����

�����

�����

�����

�����

�����
�
��

�
��

�
��

�
��

�
��

�
�	

�
�

�
��

�
��
��

�
��
��

�
��
��

�
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��

�
��
��

�
��
��

�
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
�	

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
�	
��

�
�	
��

�
�	
��

�
�	
��

�
�	
��

�
�	
�	

�
��
��

�
��
��

�	

�������

Figure 2. LOC and the number of patterns of dnsjava

�

���

����

����

����

����

�

����

����

����

����

�����

�����

�����

�����

�����

�
��

�
��
��
�
�

�
��
��
�
�

�
��
�	

�
�

�
��

�
��

�
��

�
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

�
��
��

	
�

�������

Figure 3. LOC and the number of patterns of JmDNS

We have analyzed two open source systems, dnsjava1 and

JmDNS2. Table II shows the target versions we have used in

the experiments. Also it shows the number of patterns found

by Fung.

V. RESULT OF EXPERIMENTS

A. Life-Span and Pattern Length

Figure 2 and Figure 3 show LOC (Lines Of Code) and the

number of patterns extracted in each version of dnsjava and

JmDNS. We can easily recognize that LOC grows over the

versions, and that the number of pattern mostly grows along

the LOC growth with minor decreases. We have investigated

the correlation between LOC and the number of patterns.

As a result, the correlation coefficients become 0.912 on

dnsjava and 0.721 on JmDNS. Thus there is a strong positive

correlation between LOC and the number of patterns.

Figure 4 presents the frequency distribution of the life-

span in dnsjava, and Figure 5 in JmDNS. The life-span of

patterns mined in dnsjava range from 1 to 51, and that in

JmDNS range from 1 to 20. The most frequent life-span is

1 in dnsjava and 2 in JmDNS.

Figure 6 indicates that the frequency of pattern length and

life-span in dnsjava, and Figure 7 indicates that in JmDNS.

The range of pattern length is 2 to 45 in dnsjava, and 2

to 79 in JmDNS. In dnsjava, the peak 425 appears at 2 in

1dnsjava, http://sourceforge.net/projects/dnsjava/
2JmDNS, http://sourceforge.net/projects/jmdns/

����

����

����

���	

	
�

��	

	��

��	

�		
���

�������	�

���

���

���������
��

�
 �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� � � �
 � �� 	 ��
 � � � � � ��

�

���

����

����

����

����

����

����

����

����

����

� � � � � � 	
 � �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� ��

Figure 4. Life-span of patterns in dnsjava

����

����

����

��	

��� ��

���

�	

���

� �
 ��
��

�� �
 ��
� �

�� ��

	

�		

�			

��		

�			

��		

� � � � �
 � � � �	 �� �� �� �� �� �
 �� �� �� �	

Figure 5. Life-span of patterns in JmDNS

life-span and 2 in pattern length. In JmDNS, the peak 204

appears at 2 in life-span and 6 in pattern length. In JmDNS,

compared to dnsjava, there exist patterns including many

elements. In both cases, there are a few long-lived patterns

including many elements.

B. Examples of Patterns

You can see the complete list of the patterns which appear

in all versions of dnsjava in Table III and JmDNS in Table

IV. There are only 14 patterns out of total 17,284 patterns

in dnsjava, and 21 patterns out of total 8,625 patterns in

JmDNS. As the number of instances of a pattern differs

depending on software versions, we show the minimum and

maximum values, and the values in the first and the last

version. Characteristics of these patterns with the longest

life-span are as follows.

• Most patterns are related to the usage of Java library.

• Pattern length tends to be short.

VI. OBSERVATIONS

We answer to the following research question.

RQ: Are the coding patterns generally stable over the
version history?
A: No, the coding patterns are NOT generally stable over

�

�

��

��

��

��

��

��

��

�

��

���

���

���

���

���

���

���

���

� � � � 	 �� �� �� �� �	 �� �� �� �� �	 �� �� �� �� �	 �� �� �� �� �	 ��

Figure 6. Pattern length and life-span in dnsjava

�
�

��
��

��
��

��
��

��
��

��
��

	�
	�

	�
��

��

�

�

�

�

	�

���

�	�

���

�
�

	

�
��

��
�	

�

��

Figure 7. Pattern length and life-span in JmDNS

Table III
PATTERNS WHICH APPEARS IN ALL VERSIONS OF DNSJAVA

#Instance
Len. Min. Max. Ver. 0.1 Ver. 2.0.1 Pattern

2 2 6 2 5 〈getHeader(), getRcode()〉
2 3 8 3 7 〈getHeader(), getName()〉
2 5 7 5 5 〈java.io.InputStreamReader.<init>(java.io.InputStream), java.io.BufferedReader.<init>(java.io.Reader)〉
3 3 11 3 11 〈LOOP, equals(java.lang.Object), END-LOOP〉
3 3 23 3 23 〈LOOP, get(int), END-LOOP〉
3 3 4 3 3 〈LOOP, getCount(int), END-LOOP〉
3 2 4 3 4 〈LOOP, startsWith(java.lang.String), END-LOOP〉
3 5 18 5 7 〈hasMoreTokens(), nextToken(), hasMoreTokens()〉
3 7 13 7 12 〈LOOP, charAt(int), END-LOOP〉
3 6 11 8 9 〈LOOP, length(), END-LOOP〉
4 5 12 5 7 〈LOOP, nextToken(), hasMoreTokens(), END-LOOP〉
4 4 8 7 6 〈length(), LOOP, length(), END-LOOP〉
5 4 10 4 6 〈hasMoreTokens(), LOOP, nextToken(), hasMoreTokens(), END-LOOP〉
5 3 6 5 5 〈length(), LOOP, charAt(int), length(), END-LOOP〉

Table IV
PATTERNS WHICH APPEARS IN ALL VERSIONS OF JMDNS

#Instance
Len. Min. Max. Ver. 0.2 Ver. 3.4.1 Pattern

2 2 2 2 2 〈charAt(int), writeByte(int)〉
2 2 2 2 2 〈parseInt(java.lang.String), registerService(javax.jmdns.ServiceInfo)〉
2 2 5 2 3 〈toLowerCase(), remove(java.lang.Object)〉
2 2 3 3 2 〈substring(int, int), parseInt(java.lang.String)〉
2 3 15 3 12 〈toLowerCase(), get(java.lang.Object)〉
2 3 4 4 3 〈getAddress(), getPort()〉
3 2 33 2 33 〈TRY, close(), END-TRY〉
3 2 14 2 14 〈LOOP, get(java.lang.Object), END-LOOP〉
3 2 5 2 5 〈LOOP, put(K, V), END-LOOP〉
3 2 12 2 9 〈IF, equals(java.lang.Object), END-IF〉
3 2 13 2 13 〈IF, get(java.lang.Object), END-IF〉
3 2 2 2 2 〈isQuery(), getAddress(), getPort()〉
3 3 3 3 3 〈LOOP, charAt(int), END-LOOP〉
3 3 4 3 4 〈LOOP, writeByte(int), END-LOOP〉
3 3 12 4 5 〈SYNCHRONIZED, get(java.lang.Object), END-SYNCHRONIZED〉
3 2 11 4 10 〈IF, length(), END-IF〉
3 4 9 4 7 〈IF, put(K, V), END-IF〉
4 2 2 2 2 〈SYNCHRONIZED, getProperties(), get(java.lang.Object), END-SYNCHRONIZED〉
4 2 2 2 2 〈LOOP, length(), startsWith(java.lang.String), END-LOOP〉
7 2 2 2 2 〈IF, write(int), ELSE, write(int), ELSE, write(int), END-IF〉
9 2 2 2 2 〈LOOP, IF, write(int), ELSE, IF, write(int), END-IF, END-IF, END-LOOP〉

the version history.
As described in Section V, there are few coding patterns

with long life-span. On the other hand, coding patterns with

short life-span account for a large part of all patterns.

According to Figure 4 and Figure 5, most patterns live

very short in the history, and there are few patterns appearing

in all versions. The total of the patterns living through less

than 15 versions is 90% of all dnsjava’s patterns, and the

median life-span is 3. Similarly, the total of the patterns

living through less than 8 versions covers 90% of all in

JmDNS patterns, and the median is 2.

Our results on coding patterns are consistent with the

result of code clone genealogy research [8]. Many code

clones also disappear in a few versions, and code clones

including method calls imply coding patterns. Some disap-

peared coding patterns are affected by code cloning activity

of developers.

VII. THREATS TO VALIDITY

A. Experimental Objects

We chose 2 as the threshold of the minimum occurrence

of a pattern so that we can extract all possible patterns in

pattern mining process. As pattern mining under this severe

condition consumes huge time, we cannot adopt large size of

applications as targets of experiments. An effective solution

to this limitation is the reimplementation of Fung with more

efficient sequential pattern mining algorithm.

As dnsjava and JmDNS have the word “dns” in the names

of the applications, you may think these applications to be

unfair (biased) experimental objects. However, each “dns”

implies different kind of service; dnsjava is an implementa-

tion of DNS, while JmDNS is an implementation of multi-

cast DNS used in local networks. The implementations are

not related to each other.

The generality of our findings is limited since we have

analyzed only 2 applications. Further experiments with var-

ious kinds of software make it clear whether our findings

are general or not.

B. Change of Method Name

In case that a callee method name has changed, we cannot

tie the renamed methods over versions. Thus, we cannot

bind the before and after versions of the patterns which

include the call of the renamed method. As the change of

a method name should imply the change of the contents in

the method body, the meaning of the related patterns may

change. Therefore, there is no need to treat patterns as the

same ones before and after the change of the method name.

C. Verbose Subpatterns

Our pattern tracking algorithm in this paper cannot

track relationships among super/sub-patterns. Suppose that

a method has a sequence of method calls 〈A, B, C〉 and

another method has a sequence of method calls 〈A, B, C,

D〉. Fung recognizes a pattern 〈A, B, C〉 in these methods.

If a developer added a method call D to the former method,

Fung recognizes a new pattern 〈A, B, C, D〉 and filters out

〈A, B, C〉 because the shorter pattern is covered by the new

pattern. In this case, we regard the pattern 〈A, B, C〉 as a

disappeared pattern. We did not track this kind of super/sub-

patterns because a longer pattern implies a huge number of

patterns. For example, the pattern 〈A, B, C, D〉 implies four

3-element patterns (〈A, B, C〉, 〈A, B, D〉, 〈A, C, D〉 and 〈B,

C, D〉) and six 2-element patterns (〈A, B〉, 〈A, C〉, 〈A, D〉,
〈B, C〉, 〈B, D〉 and 〈C, D〉). In general, a pattern comprising

N elements implies nearly 2N subpatterns.

According to the limitation, the life-span in this paper

is possibly underestimated. For more detailed investigation,

we should improve the tracking algorithm to deal with

super/subpatterns.

VIII. CONCLUSION

In this paper, We investigated the stability of coding

patterns across versions. We defined a life-span of coding

pattern as the number of versions where we find the identical

pattern, and investigated the 51 versions of dnsjava and 20

versions of JmDNS.

As a result, many patterns disappear in a few versions.

90% of all dnsjava’s patterns are found in at most 15

versions. The median life-span is 3. Similarly, 90% of all

JmDNS’s patterns are found in at most 8 versions. The

median life-span is 2.

While the generalizability of our investigation is limited

since we could not detect renamed methods and super/sub

patterns, the result indicated that coding patterns should be

extracted from a number of latest versions so that developers

can filter out temporary patterns.

ACKNOWLEDGMENT

This research was supported by JSPS KAKENHI Grant

Number 23680001.

REFERENCES

[1] T. Ishio, H. Date, T. Miyake, and K. Inoue, “Mining coding
patterns to detect crosscutting concerns in java programs,”
in Proceedings of the 15th Working Conference on Reverse
Engineering, 2008, pp. 123–132.

[2] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi,
and T. N. Nguyen, “Graph-based mining of multiple object
usage patterns,” in Proceedings of the Joint Meeting of the
12th European Software Engineering Conference and the 17th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 2009, pp. 383–392.

[3] H. Kagdi, M. Collard, and J. Maletic, “An approach to mining
call-usage patterns with syntactic context,” in Proceedings of
the 22nd International Conference on Automated Software
Engineering, 2007, pp. 457–460.

[4] Z. Li and Y. Zhou, “PR-Miner: Automatically extracting
implicit programming rules and detecting violations in large
software code.” in Proceedings of the Joint Meeting of the
10th European Software Engineering Conference and the 13th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2005, pp. 306–315.

[5] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns
as partial orders from source code: From usage scenarios to
specifications,” in Proceedings of the Joint Meeting of the
11th European Software Engineering Conference and the 15th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 2007, pp. 25–34.

[6] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi,
H. V. Nguyen, J. Al-Kofahi, and T. N. Nguyen, “Graph-based
pattern-oriented, context-sensitive source code completion,”
in Proceedings of the 34th International Conference on Soft-
ware Engineering, 2012, pp. 69–79.

[7] S. Thummalapenta and T. Xie, “PARSEWeb: A programmer
assistant for reusing open source code on the web,” in Pro-
ceedings of the 22nd International Conference on Automated
Software Engineering, 2007, pp. 204–213.

[8] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An
empirical study of code clone genealogies,” in Proceedings of
the Joint Meeting of the 10th European Software Engineering
Conference and the 13th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, 2005, pp.
187–196.

[9] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and
A. E. Hassan, “An empirical study on inconsistent changes
to code clones at release level,” in Proceedings of the 16th
Working Conference on Reverse Engineering, 2009, pp. 85–
94.

[10] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal,
and M. Hsu, “Prefixspan: Mining sequential patterns by
prefix-projected growth,” in Proceedings of the 17th Interna-
tional Conference on Data Engineering, 2001, pp. 215–224.

