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Abstract

Aspect-Oriented Programming (AOP) introduces a new
software module unit named aspect to encapsulate crosscut-
ting concerns. While AOP modularizes crosscutting con-
cerns to improve maintainability and reusability, AOP in-
troduces a new factor of complexity. It is difficult to find
defects caused by an aspect modifying or preventing the be-
havior of other objects and aspects. In this paper, we exam-
ine a method to support a debugging task in aspect-oriented
software development. We propose an application of a call
graph generation and program slicing to assist in debug-
ging. A call graph visualizes control dependence relations
between objects and aspects and supports the detection of
an infinite loop. On the other hand, program slicing shows
the user changes of dependence relations caused by aspects.
We implement a program-slicing tool for AspectJ and apply
it to certain programs. The experiment illustrates how our
approach effectively helps developers understand the influ-
ence of aspects in a program.

1. Introduction

Aspect-Oriented Programming (AOP) proposes a new
module unit, or aspect, for encapsulating crosscutting con-
cerns such as logging and synchronization [17]. In Object-
Oriented Programming, program code implementing cross-
cutting concerns is normally scattered among objects re-
lated to the concerns. In AOP, one crosscutting concern can
be written in a single aspect. AOP improves maintainability
and reusability of objects and aspects.

The goal of Aspect-Oriented Programming (AOP) is to
separate concerns in software. While the hierarchical mod-
ularity of object-oriented languages are extremely useful,
they are inherently unable to modularize crosscutting con-

cerns, such as logging and synchronization. AOP provides
language mechanisms that explicitly capture the crosscut-
ting structure. Encapsulating the crosscutting concern as a
module unit aspect, which is easier to develop, maintain and
reuse is possible. Aspects separated from an object-oriented
program are composed by Aspect Weaver to construct the
program with a crosscutting structure.

In AspectJ, an aspect represents a crosscutting concern
as a set of advices. An advice is a method-like unit con-
sisting of a procedure and a condition used to execute the
procedure. The condition of an advice execution is spec-
ified by a pointcut. A pointcut is defined by a subset of
join points, which are well-defined events during program
execution, such as method calls and field accesses. Using
join points, a programmer can separate crosscutting con-
cerns from objects. Various applications of AOP have been
reported [16, 12, 21].

Although AOP is useful, it introduces a new complexity
into a program. Since an aspect modifies the behavior of ob-
jects, a programmer must inspect objects and related aspects
to understand system behavior; otherwise, the programmer
may inject a defect, which is hard to detect, such as acciden-
tal advice executions and inter-aspect problems. A typical
inter-aspect problem occurs when two aspects prevent each
other’s behavior, while each aspect behaves correctly when
the aspect stands alone [19]. Early detection of inter-aspect
problems is crucial to support the debugging tasks.

In this paper, we propose an application of a call graph
generation and program slicing to support a debugging task
for aspect-oriented software development. A call graph is
a directed graph whose vertices and edges represent meth-
ods and method call relations, respectively. We add advice
vertices and advice execution relations into a call graph for
detection of infinite loops and accidental advice executions.
On the other hand, program slicing is a very promising ap-
proach to localize faults in a program [25]. By definition,
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program slicing is a technique which extracts all statements
that may possibly affect a certain set of variables in a target
program. We extend a DC slicing [18], which is a program-
slicing method based on static and dynamic dependence re-
lations in a program.

We implement a call graph calculation and a program-
slicing tool as an Eclipse [6] plug-in. When a programmer
runs a program and finds the incorrect value of a variable
using a debugger, he/she calculates a program slice based
on the variable to find the statements which have affected
the incorrect value.

We conduct two experiments to evaluate the tool. In one
experiment, we apply the tool to certain programs and show
that program slicing visualizes changes of dependence rela-
tions caused by aspects. In the other experiment, we have
students debug a program of AspectJ using a program slice.
As a result, we show program slicing is appropriate for the
debugging of aspect-oriented programs.

The structure of this paper is as follows: in Section 2,
we present a brief overview of Aspect-Oriented Program-
ming. In Section 3, we describe infinite loop detection using
a call graph. In Section 4, we present an extension of pro-
gram slicing for an aspect-oriented program. In Section 5,
we evaluate the proposed method and discuss experimen-
tal results. In Section 6, we conclude our discussion with
remarks regarding plans for future work.

2. Aspect-Oriented Programming

2.1. Features of Aspect-Oriented Program-
ming

Aspect-Oriented Programming is an improved program-
ming paradigm based on the other module mechanisms such
as procedural programming and Object-Oriented Program-
ming. In OOP, an object implements a part of the system’s
functionality. Objects interact with each other via messages
(or method calls) to achieve the system’s goal. While the
hierarchical modularity of object-oriented languages is ex-
tremely useful, they are inherently unable to modularize
crosscutting concerns, such as logging and synchronization.
Since such concerns are implemented as an interaction of
related objects, program code must be scattered among ob-
jects. Scattered code causes the following problems:

• When a specification of a crosscutting concern is
changed, programmers must modify all related objects.

• Programmers cannot reuse an object independently of
other objects since objects are connected to each other
with a crosscutting concern.

• Programmers cannot reuse implementation of a con-
cern independently of objects. If another set of ob-

class SomeClass {
  public void doSomething(int x) { ... }
}

aspect LoggingAspect {
  before(): call(void SomeClass.doSomething(..)) {
    Logger.logs(thisJoinPoint); 
} }

aspect ParameterValidationAspect {
  before(int x):
    args(x) && call(void *.doSomething(..)) {
    if ((x < 0)||(x > Constants.X_MAX_FOR_SOMETHING)) {
      throw new RuntimeException("invalid parameter!"); 
} } }

Figure 1. Aspect examples: Logging and pa-
rameter checking

jects interacts in the same way, programmers must re-
implement the concern.

AOP introduces a new module unit named ‘aspect’ to en-
capsulate a crosscutting concern. In AOP, one concern can
be written in a single aspect. An aspect consists of some
advices. An advice is a method-like unit consisting of a
procedure and a condition used to execute the procedure.
A condition to execute an advice is specified by a point-
cut. A pointcut is defined by a subset of join points, which
are well-defined events during program execution, such as
method calls and field accesses. Using join points, a pro-
grammer can separate crosscutting concerns from objects.
Modularized crosscutting concerns have good maintainabil-
ity and reusability.

A part of available join points are shown as follows:

• A method call to an object,

• A method execution of an object after dynamic bind-
ing,

• A field access of an object, and

• Exception handling.

Advices are linked to objects by three types of forms:
before (immediately before join points), after (immediately
after), and around (replacement of join points). Advices can
access runtime context information, for example, a called
object, a caller object, and parameters of a method call.

A sample code of aspects is shown in Figure 1. Loggin-
gAspect logs a method call to SomeClass.doSomething. Pa-
rameterValidationAspect validates all method calls when-
ever the method name is doSomething, and throws an ex-
ception if the validation fails. In this example, when the
specification of the parameter validation is changed, pro-
grammers change only the aspect instead of all callers of
doSomething. On the other hand, both aspects are executed
when SomeClass.doSomething is called. In such a case, a
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compiler (or an interpreter) serializes advices being exe-
cuted. In AspectJ, programmers write the precedence of
aspects to adjust the execution sequence of advices.

Various applications of AOP have been reported. In
OOP, design patterns are design components describing
how objects should interact [8]. Since an interaction of ob-
jects is a kind of crosscutting concern, programmers can
write a pattern as an aspect. Aspects implementing design
patterns are reusable components [12]. On the other hand,
it is also useful for applications to support debugging and
to write crosscutting concerns in a distributed software en-
vironment [16, 21].

2.2. Complexity of Aspects

Although AOP is useful, AOP introduces new complex-
ity as follows:

(a) Multiple advices may be executed at the same join
point. An execution sequence of advices may affect
the result of calculation. An example is the program in
Figure 1. When the parameter validation aspect throws
an exception, the output depends on whether or not the
logging aspect is executed before the parameter vali-
dation.

(b) An advice may be activated during another advice ex-
ecution. In such a case, an aspect may change the be-
havior of another aspect. When two advices are ac-
tivated during an execution of each other advice, the
advices cause an infinite loop.

(c) An incorrect pointcut definition causes accidental ad-
vice executions. It is impossible to predict the behavior
of an advice accidentally executed.

(d) In the software evolution process, a pointcut definition
may become obsolete according to the changes of ob-
jects.

Problems (a) and (b) are known as inter-aspect issues
[19]. A research regarding how to solve such issues ex-
ists [5]. Problems (c) and (d) are partially supported by the
Integrated Development Environment in AspectJ [4]. For
problem (d), aspect-aware refactoring is proposed since as-
pects may conflict with refactoring techniques in OOP [11].

Detecting inter-aspect problems and accidental advice
executions is difficult since aspect interference is required
in certain cases. For example, ParameterValidationAspect
must validate method calls in other aspects. Therefore, we
focus on the debugging defects caused by aspects instead of
focusing on the safe composition rules of aspects [15]. We
propose a debugging support based on a call graph and pro-
gram slicing. Program slicing focuses on the problems (a)
and (c), and call graph construction focuses on the problem
(b).

3. Loop Detection using Call Graph

Carelessly defined, incorrect pointcuts cause accidental
advice executions. Accidental advice executions are hard to
detect since a programmer who inspects a code fragment is
hard to recognize whether or not the code fragment is mod-
ified by aspects when the fragment is viewed in isolation
[22]. A typical result of an incorrect pointcut is an infinite
loop [3]. Infinite loops should be statically detected in a
compilation process instead of runtime.

A call graph is a simple way to visualize advice execu-
tions and to detect an infinite loop. A call graph is a di-
rected graph representing the calling relationships between
the program’s methods [9]. When a cyclic path from a ver-
tex v to the vertex v itself exists, the path represents a can-
didate of an infinite loop.

We use a simple extension of a call graph for AOP. We
treat an advice as a method in the same way AspectJ com-
piles an advice into a standard Java method [14]. When a
join point specified by a pointcut of an advice exists in a
method body, we regard the advice execution as a method
call from the method to the advice. We construct a call
graph whose vertices and edges represent methods and ad-
vices, and method call relations and advice execution rela-
tions, respectively. If a path from a vertex vm corresponding
to a method m to a vertex vadv corresponding to an advice
adv exists, the advice adv may be called during the execu-
tion of the method m.

A key point of the call graph construction is how to han-
dle control flow that is dynamically determined in AOP. In
AspectJ, such control flow is caused by the polymorphic
methods of objects and the dynamic pointcut designators
of aspects. In order to resolve such dynamic elements, we
construct a call graph in the following steps.

First, the class hierarchy of a program is extracted from
source code. This class hierarchy includes the method
lookups modified by the inter-type declaration of the as-
pects in the program[22].

Next, we construct a method call graph whose vertices
and edges represent methods and method calls, respectively.
We resolve a polymorphic method as follows: When the
method m of the class c overrides the method m defined in
the superclass d and the method n calls d.m, a method call
edge from vn to vc.m and another edge from vn to vd.m are
connected.

Finally, advices vertices and advice call edges are added
to the graph. Dynamic pointcut designators such as cflow
and if are dynamically checked in the program execution.
We regard join point shadows[14] which may trigger an ad-
vice execution as an advice call. before and after ad-
vices are simply replaced to method calls as shown in Figure
2. An around advice is handled in another way since an
around advice replaces join points. Figure 3 shows that
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Foo.foo()

before() : call(Foo.foo());

after() : call(Foo.foo());

call

call

foo() body
call

before() : 
  execution(Foo.foo());

call

after() : 
  execution(Foo.foo());

call

Figure 2. Before advice call and after advice
call handled as method calls

around() : call(Foo.foo());

call return value

advice body

Foo.foo() body

return valuecall

Figure 3. Around advice call handled as a
method call

an around advice replace a method call. When a keyword
proceed exists in an around advice, the keyword repre-
sents an original join point replaced by the advice. We re-
gard the proceed keyword as a method call relation from
the proceed to the original join point when the join point is
a method call.

A call graph approach is easier to implement than other
approaches such as formal techniques. Both a framework
to detect inter-aspect dependence relations [5] and a frame-
work to allow programmers to manually control advice exe-
cutions exist [19]. However, these approaches cannot detect
accidental aspect dependence relations which are not inter-
aspect relations. A call graph visualizes all aspect depen-
dence relations in a program.

We can detect candidates of infinite loops from a call
graph based on depth first search [23]. Figure 4 shows
an example of a call graph. An ellipse vertex represents
a method, and a rectangle vertex represents an advice. All
edges represent a method call relation. The program rep-
resented by the call graph consists of three classes: Main,
Counter, AnotherCounter, and two aspects, Foo and Bar.
The aspect Foo counts a method call of Main.getX() us-
ing a Counter object. The aspect Bar logs the result of
Main.getX(). Any vertices are not explicitly connected to
vertices representing constructors since these objects and
aspects are created by static initializers when the Java Vir-
tual Machine loads classes. In the graph of Figure 4, a cyclic

public Main()

public Object()

public Bar() public Counter()

Bar#before set(int Counter.f)

Main#getX() PrintStream#println(int)

Main#main(String[])

Foo#before call(public static int Main.getX(..))

public Foo()

public AnotherCounter()

Counter#incF()

AnotherCounter#incF()

Figure 4. A call graph

path including the vertex corresponding to the advice be-
fore(): call(Main.getX) is represented by bold line edges.
The cyclic path is an infinite loop.

Programmers can confirm that inter-aspect dependence
relations are their intentional result. Programmers detect ac-
cidental dependence relations and remove errors of a control
flow. Our tool is implemented for call graph construction
and cycle detection. Since a call graph grows proportionally
to program size, automatically extracting cycles and depen-
dence relations between aspects is important. The imple-
mentation details are described in Section 5.1

4. Program Slicing

Program slicing is a promising approach for program de-
bugging, testing, and understanding [25]. Given a source
program p, a program slice is a collection of statements pos-
sibly affecting the value of slicing criterion (in the pair <s,
v>, s is a statement in p, and v is a variable defined or
referred to at s). We extend program slicing to an aspect-
oriented program to aid in a debugging task.

4.1. A Slice Calculation Algorithm

A program slice is calculated through the following three
phases:

(a) Extract dependence relations in a target program,

(b) Construct a program dependence graph, and

(c) Traverse a graph.

Phase (a) is an extraction of dependence relations. Pro-
gram slicing is based on data and control dependence re-
lations. A data dependence relation is a relation between
an assignment and a reference of a variable. When all of
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the following conditions are satisfied, we say that a data de-
pendence relation from statement s1 to statement s2 by a
variable v exists:

1. s1 assigns a value to v, and

2. s2 refers to v, and

3. At least one execution path from s1 to s2 without re-
defining v exists. We call this condition reachable.

The above definition is a static data dependence relation.
A dynamic data dependence relation is extracted when the
value assigned at a statement s1 has reached to a reference
statement s2 during program execution.

On the other hand, a control dependence relation is a
relation between a conditional statement and a controlled
block. Consider statements s1 and s2 in a source program
p. When all of the following conditions are satisfied, we
say that a control dependence relation, from statement s 1 to
statement s2 exists if:

1. s1 is a conditional predicate, and

2. The result of s1 determines whether s2 is executed or
not.

A dynamic control dependence relation is extracted when a
statement s2 is executed after a conditional predicate s1 is
evaluated during program execution.

Phase (b) is a construction of a program dependence
graph. The nodes of a graph represent statements of a pro-
gram, and directed edges represent data and control depen-
dence relations. In Phase (c), a program slice is calculated
by backward traversal of the program dependence graph
from a slicing criterion.

We choose DC slicing from three slicing methods: static
slicing, dynamic slicing and DC slicing. These slicing
methods are classified by a method how to extract depen-
dence relations. Static slicing is used for program under-
standing and verification [25] since static slicing analyzes
source codes of a program to extract the possible behaviors
of the program. Dynamic slicing analyzes a program ex-
ecution with a certain input data. Since a dynamic slice
includes statements actually executed, dynamic slicing is
used to support a debugging task [1]. In DC slice calcu-
lation, the dynamic data dependence analysis is performed
during program execution, and the information of dynami-
cally determined elements is collected. Control dependence
relations are statically extracted from the source code since
a high cost is required to analyze control dependence rela-
tions during program execution. DC slicing requires a rea-
sonable cost for the calculation of practical programs [18].
Therefore, our approach is based on DC slicing.

class Count {

  public static void main(String[] args) {
    if (args.length == 0) return;

    Counter counter;
    boolean isIncrementCounter = false;
    if (args[0].equals("inc")) {
      counter = new IncrementCounter();
      isIncrementCounter = true;
    } else if (args[0].equals("sft")) {
      counter = new ShiftCounter();
    } else return;

    for (int i=0; i<3; ++i) counter.proceed();
    String result = Integer.toString(counter.value());
    System.out.println(result);
}

abstract class Counter {
  private int count = 1;
  public Counter() {}
  public int value() { return count; }
  public void proceed() { count = newValue(count); }
  abstract protected int newValue(int old);
}

class IncrementCounter extends Counter {
  protected int newValue(int old) { return old + 1; }
}

class ShiftCounter extends Counter {
  protected int newValue(int old) { return old << 1; }
}

(a)

(b)

(c)

(d)

(e)

Figure 5. DC slice example

An example of a DC slice for Java is shown in Figure
5. In this program, an instance of the class Increment-
Counter, and an instance of the class ShiftCounter, output
their value. The input parameter of this program determines
which counter is used. A slice with input “inc” and slicing
criterion (c) is indicated by rectangles (a), · · · , (e) in Fig-
ure 5. When a program results in an invalid output, pro-
grammers choose the variable which contains the output as
a slicing criterion, and calculate a slice to localize a fault.

4.2. Extension of Program Slicing for
Aspect-Oriented Program

We extend program slicing to an aspect-oriented pro-
gram to aid in a debugging task. We assume that a target
program has no infinite loops since a programmer has al-
ready removed infinite loops using a call graph. Therefore,
our approach focuses on a debugging task to remove a de-
fect detected by a test case. In the debugging process, a
programmer first runs a test case to collect dynamic infor-
mation. Next, a programmer activates a tool to construct a
program dependence graph. Finally, a program slice is cal-
culated by user-specific slice criteria. A programmer can
localize a fault using the program slice.

Program slicing for aspect-oriented languages has al-
ready been proposed, but has not been implemented and
evaluated yet [26]. In this paper, we choose AspectJ as a
target language and extend program slicing from Java to As-
pectJ. In this basic idea, which is the same as a call graph
extension, we regard an advice execution as a method call.
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Data dependence relations and control dependence rela-
tions in advices are the same as program slicing for OOP.
Features of program slicing introduced for AOP are follow-
ing:

Join point information: An advice can access runtime
context information such as a caller object and pa-
rameters of a method call. We regard such informa-
tion as parameters passed to the advice from the join
point. In order to access context information, As-
pectJ provides thisJoinPoint object. The method
thisJoinPoint.getArgs(int) is prepared for
accessing parameters. Since the parameter of the
method call to getArgs is determined in runtime, the
caller of getArgs is handled as references to all pa-
rameters of the method of the join point. The other
context properties such as the method signature and
this object are regarded as a reference to a parame-
ter passed to the advice from the join point.

A pointcut reference: An advice depends on a pointcut
definition. A program slice includes a pointcut defi-
nition when a corresponding advice is included in the
slice. Since a pointcut determines an advice execution,
we connect a control dependence edge from a pointcut
to an advice.

A dynamic pointcut: Dynamic context sometimes deter-
mines whether or not an advice is executed. Since
a program slice should include all statements which
may affect a slicing criterion, the slice always includes
statements which may have been affected by advices
which use a dynamic context. Static analysis can re-
duce a slice based on a call graph [20]; however, this
is a subject for future work.

An advice call relation: The idea of handling an advice
call is same as the case of the call graph construction.
A vertex corresponding to a join point shadow is re-
garded as a caller vertex of the advice.

4.3. Dynamic Analysis

In the DC slice calculation process, dynamic informa-
tion of a target program is required. Dynamic information
consists of dynamic data dependence relations and dynamic
binding information. Dynamic analysis, a process collect-
ing such information, is also a crosscutting concern. There-
fore, we implement a dynamic analysis aspect in AspectJ.
This aspect is based on the dynamic analysis aspect for Java
[16]. Programmers link the aspect to the target program to
extract dynamic information.

A dynamic analysis aspect collects dynamic information
as follows:

• Data Dependence Relation

When a new value is set to a field: The aspect logs a
signature of the field and the position of the as-
signment statement.

When a field is referred to: The aspect receives the
position of the last assignment to a field, and logs
a data dependence relation from the assignment
to the reference.

• Polymorphism Resolution

When a method is called (before call): The aspect
pushes the method signature and the position of
calling into a call stack prepared for each thread
of control.

When a method is invoked (before execution):
The aspect checks the top of the call stack,
and generates a call edge from the caller to the
actually-invoked method.

After a method call: The aspect removes the top of
the call stack.

When an exception is thrown: The aspect removes
the top of the call stack.

Since aspects cannot access local variables in AspectJ,
we analyze intra-method dependence relations statically
and inter-method dependence relations dynamically. As a
result, our slice becomes larger than a complete DC slice.
To calculate a complete DC slice, intra-method dependence
relations need to be extracted dynamically. Though dy-
namic information is effective to distinguish objects and to
extract inter-method dependence relations, dynamic intra-
method dependence relations are less effective[16]. When a
dynamic analysis aspect conflicts with other aspects in the
target program, conflicts are solved by precedence declara-
tion in AspectJ and by static analysis using a call graph.

5. Implementation and Evaluation

We have implemented a call graph calculation and a pro-
gram slicing tool. In order to evaluate our tool, we have
conducted two experiments. In one experiment, we have
applied our tool to the AspectJ source code of design pat-
terns [13], and evaluated how program slicing works for the
aspect-oriented programs. In the other experiment, we have
evaluated how program slicing affects the debugging task.
We have measured the working time of a debugging task
using a program slice.

In Section 5.1, we describe the implementation overview
of our tool. We present the former experiment in Section 5.2
and the latter experiment in Section 5.3.
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5.1. Implementation Overview

Programmers repeatedly modify source code and run test
cases in their debugging process. Integrated Development
Environments provide tools which support debugging tasks.
Our tool should be used with other tools such as a debug-
ger, an incremental compiler, and a customized editor in the
IDE. For example, when programmers find a location where
the value of a variable is incorrect, they can then calculate a
slice based on the variable.

We have chosen Eclipse [6] for the platform of our tool.
Eclipse is an open source IDE, and programmers can write
a plug-in in Java to add new functionalities to the IDE. We
have implemented the tool as an Eclipse plug-in based on
Java and AspectJ development plug-ins. The size of our
plug-in is about 5,000 lines of code.

Eclipse plug-ins handle important events in the IDE, for
example, saving files and completion of compilations. We
have used such event handlers to implement the plug-in.
When compilation succeeds, our slice plug-in extracts static
information from a source code and constructs a call graph.
If the call graph contains a cyclic path, notification is shown
by a dialog. On the other hand, we have integrated our tool
to the editor provided by AspectJ plug-in. Our tool allows
programmers to specify a slice criterion on the source code
editor and shows a program slice by underlining on the edi-
tor.

In order to analyze AspectJ source code, our tool collects
the information from AspectJ Development Tools plug-in
[4]. On the other hand, we can apply a DC slicing tool
for Java byte-code [24] since the current version of AspectJ
compiler generates Java byte-code [2]. However, when we
use the tool for Java byte-code, we need to preserve a map-
ping from AspectJ source to Java byte-code. Preserving
such a mapping is difficult since pointcut information and
join point shadows are not expressed in Java byte-code. We
have chosen an approach to analyze AspectJ source code
instead of Java byte-code. Since we have implemented the
tool extracting information from the compiler, our tool does
not handle run-time weaving.

5.2. Experiment 1: Evaluation of Program
Slicing

We have conducted an experiment to evaluate how pro-
gram slicing works for aspect-oriented programs. We have
applied our tool to the AspectJ source code of several de-
sign patterns [13]. We have used five patterns in Table 1
since programmers can effectively implement these patterns
using AspectJ [12]. We describe the result of the slicing in
Section 5.2.1, and discuss analysis costs in Section 5.2.2.

Table 1. Target codes
Name Size (LOC)
ChainOfResponsibility 517
Observer 667
Singleton 375
Mediator 401
Strategy 465

5.2.1 Evaluation of Slicing Result

First, we construct a call graph based on the source code of
five design patterns. As a result, the call graph consists of
179 vertices and 240 edges, and a subgraph including a loop
is extracted from the graph. The only one loop included
by the subgraph is a recursive call of the method reciev-
eRequest defined by ChainOfResponsibilityProtocol aspect.
We can easily see that the loop is just a recursive call since
the loop consists of the method vertex and a recursive call
edge.

Next, we executes five programs of design patterns and
calculates program slices based on the variable which con-
tains the output of the program. Program slicing is effective
for tracking inter-module dependence relations. In this ex-
periment, a program slice is calculated based on a certain
variable in an aspect for each design pattern. In order to get
the same information as the slice, programmers must track
definitions of methods and advices manually, and this task
requires much time since programmers must track several
files which affect the variable. One design pattern is usually
defined as a set of aspects, an abstract defining the structure
of the pattern, and as concrete aspects declaring the actors of
the pattern. For example, an Observer pattern is defined as
one abstract aspect named ObserverProtocol, and two con-
crete aspects: ColorObserver and CoordinationObserver.
ObserverProtocol contains code on how Observer objects
and Observed objects interact. ColorObserver and Coordi-
nationObserver declare that Screen objects act as observers,
and that the color and the coordination of Point objects are
observed. Programmers must inspect two classes and three
aspects to track the location where the value of the variable
originates.

An advantage of program slicing is the visualization of
codes and dependence relations modified by aspects. Fig-
ure 6 shows a slice including an aspect replacing a method
call. Such a method replacement aspect is used in unit test-
ing and temporary implementation. Recognizing a change
of dependence relations by such aspects is difficult because
aspect definitions are usually separated from class defini-
tions. AspectJ Development Tools (AJDT) plug-in [4] pro-
vides an extended editor, which shows the locations where
the advice is executed. However, since AJDT cannot visual-
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class Sample {

  private int aField;

  public int foo() {
    int x = bar();
    ...  }

  protected int bar() { // never executed
    return 0;  }

  private int baz() {
    return aField;  }
}

aspect redirectMethodCall {
  int around(Sample sample):
    this(sample) && call(int Sample.bar()) {
    return sample.baz();  }
}

activate

call

Figure 6. A slice including an aspect replac-
ing a method call

Table 2. Time cost of dynamic analysis (sec-
onds)

Normal Execution with
Target Execution Dynamic Analysis
ChainOfResponsibility 3.76 3.93
Observer 0.32 0.37
Mediator 3.21 5.69
Singleton 0.14 0.32
Strategy 0.18 0.22

ize statements replaced by advices, programmers must care-
fully consider around advices replacing original join points.

5.2.2 Evaluation of Time and Space Requirements

Analysis cost for the program slicing consists of the follow-
ing costs: the cost of static dependency extraction in com-
pile time, the cost of dynamic dependency extraction in run
time and the cost of slice calculation for traversal a program
dependence graph.

Static analysis is implemented by a traversal of an ab-
stract syntax tree (AST), constructed by an AspectJ com-
piler. Although only a rough estimation, the traversal pro-
cess is proportional to the size of the AST, and AST size
is proportional to the size of the target program. The time
cost required to analyze 10,000 lines of code-implementing
design patterns is 14.7 seconds. The cost accounts for 17
percent of 85.5 seconds, the total compilation time.

The time cost of dynamic analysis is shown in Table 2.
The overhead of our tool for dynamic analysis is acceptable.
The time cost of slice calculation is proportional to the size
of a program dependence graph.

Table 3. Test cases of the program

Input Expression Output Value Output String
(* (+ 5 3) (+ 5 5)) 80 (* (+ 5 3) (+ 5 5))
(* (+ 5 4) (+ 5 4)) 81 (* (+ 5 4) )
(+ (+ 4 2) 5 (* 4 2)) 19 (+ (+ 4 2) 5 (* ))

*
5

+
4

1

2

1

2

(* (+ 5 4) (+ 5 4)) =

Figure 7. A graph representing an expression

Memory cost usually depends on the size of a target pro-
gram. Aspects also affect memory cost since aspects com-
plicate program dependence relations. For example, the
memory cost required to analyze the design patterns is about
20MB.

In order to test scalability, we have constructed a pro-
gram dependence graph of AspectJ compiler version 1.1.1
[2]. The size of the compiler is about 60,000 lines of code
(without unit tests). Since our tool requires about 200MB
memory to compile and to analyze, the scalability of the
tool is achievable by decomposing a system to the subsys-
tems. On the other hand, when a program slice becomes
larger and crosscutting many classes and aspects, a pro-
grammer cannot track a slice using a normal text editor.
Examining how a large program slice should be shown to
a user is a future work. We are going to investigate the
decomposition of a program slice into small pieces using
concept analysis [7].

5.3. Experiment 2: The Debugging Task

In order to evaluate how program slicing influences a de-
bugging task, we compare the working time of debugging
between students using a program slice, and students work-
ing without a program slice. Twelve graduate students of
computer science attended the experiment. They have had
experienced with Java but not with AspectJ. Therefore, we
prepared the preliminary tasks in order to allow students to
get used to Eclipse and AspectJ. We conducted the experi-
ment using the following steps: First, we explained to the
information science students about Java and Eclipse, and
gave them the task of debugging a small Java program (Task
1). Next, we explained about AspectJ and Aspect-Oriented
Programming, and gave the student the task of writing an
aspect (Task 2). Finally, we gave them the task of debug-
ging an AspectJ program (Task 3).

We prepared a small AspectJ program for Task 3. The
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Table 4. Time required for debugging task
(minutes)

Group Task 1 Task 2 Task 3
1. works without the slice 150 186 200

2. works with the slice 200 210 190

program processes an expression consisting of literals and
two kinds of operators: adders, and multipliers. An ex-
pression is defined by a graph whose nodes are terms
of the expression. An example of a graph representing
(∗ (+ 5 4) (+ 5 4)) is shown in Figure 7. The program
contains the following aspects:

Print Aspect constructs a string representation of a graph
and outputs the string when the program is finished.

Loop Detection Aspect observes a traversal of a graph to
detect whether or not the graph has a cyclic path.
When the aspect detects a loop, the aspect throws an
exception.

Caching Aspect caches a value of the nodes and prevents
re-evaluation of shared nodes.

Graph Destruction Aspect destructs a graph. When a
node is evaluated, the node is removed from the graph.

Task 3 included debugging a program which contained
a bug. We have prepared a bug caused by an aspect pre-
venting the behavior of another aspect. When the Caching
Aspect omits a re-evaluation of the nodes, the aspect omits
a process of the Print Aspect too. Sample inputs and out-
puts for the program are shown in Table 3. Since inputs are
internally represented as a graph, shared nodes are omitted
in the output.

We gave the students the correct output, and a short ex-
planation for each aspect. We randomly chose half of the
students, and gave them a program slice. The program slice
was calculated based on an output variable in the Print As-
pect. The program slice indicates that the output variable is
affected by the Caching Aspect and the Print Aspect, but is
not affected by the other two aspects.

We collected information on how the students modified
the program and on how long it took them to fix the bug.
We asked the students whether or not a program slice was
useful for debugging using a program slice.

Table 4 shows the average time the students took for the
tasks. Although students who used a program slice showed
a better performance time than the students who did not use
the slice, no statistically intentional difference exists.

Students who used a program slice reported that a pro-
gram slice was a good guideline for reading a program and

was useful for excluding source code not related to a bug
since a program slice visualizes all dependence relations in-
cluding indirect impact by aspects. However, students also
reported that they needed to inspect the entire program to
confirm whether or not a modification of an aspect impacts
other modules. Therefore, we conclude that combining pro-
gram slicing with impact analysis or other techniques to
support a bug-fixing task is important.

In summary, we cannot say that program slicing is quan-
titatively effective to bug-fixing of AOP. However, accord-
ing to the students’ opinions, it is very useful to localize
a fault in AOP. It is important to combine program slicing
with other techniques to support bug-fixing tasks, especially
for AOP, in the reduction of debugging time.

The conclusion of the experiment is limited since only
one group works with program slicing and another group
works without the technique. The result is affected by the
distinction of the programming ability of each group.

6. Conclusion

In this paper, we have proposed an application of pro-
gram slicing to support a debugging task for aspect-oriented
programs.

A key feature of Aspect-Oriented Programming is the
separation of crosscutting concerns. Programmers encapsu-
late an interaction between multiple objects into an aspect.
Since crosscutting code is localized to a module, AOP im-
proves maintainability and reusability.

An aspect modifies objects’ behavior without modifica-
tion of their code. If programmers change code without
knowledge about classes and related aspects, programmers
may inject a fault such as an accidental advice execution.
Such bugs are difficult to detect; therefore, we propose a
support using a call graph and program slicing. The call
graph and program slicing are already available for proce-
dural programs and object-oriented programs. We have ex-
tended the call graph by regarding an advice execution as
a kind of method call. We have also extended DC slicing
based on the same idea.

We have implemented a call graph construction and a
slice calculation tool as an Eclipse plug-in. We have con-
ducted two experiments to evaluate the tool. In one exper-
iment, we applied the tool to certain programs and showed
that program slicing visualizes changes of dependence re-
lations caused by aspects. In the other experiment, we had
students debug a program of AspectJ using a program slice.
As a result, program slicing effectively showed aspect de-
pendence relations to a developer. Program slicing was also
effective in localizing faults.

For future work, we extend our research on debugging
support using impact analysis. We will also apply a re-
flection analysis based on dynamic analysis [10]. Finally,

9



we will also examine how a large program slice should be
shown to a user.
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