
Title Towards Generating Templates of Method Body
Based on Method Name and Related Identifiers

Author(s) Onizuka, Yuya; Hayase, Yasuhiro; Kashiwabara,
Yuki et al.

Citation

Version Type AM

URL https://hdl.handle.net/11094/51560

rights

© 2013 ACM. This is the author's version of the
work. It is posted here for your personal use.
Not for redistribution. The definitive Version
of Record was published in AOAsia '13
Proceedings of the 8th international workshop on
Advanced modularization techniques, Pages 13-14,
2013-03-25,
http://dx.doi.org/10.1145/2451469.2451474.

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Towards Generating Templates of Method Body
Based on Method Name and Related Identifiers

Yuya Onizuka∗ Yasuhiro Hayase† Tetsuo Yamamoto‡

Yuki Kashiwabara∗ Takashi Ishio∗ Katsuro Inoue∗
∗Graduate School of Information Science and Technology, Osaka University{y-onizuk,k-yuki,ishio,inoue}@ist.osaka-u.ac.jp

†Faculty of Engineering, Information and Systems, University of Tsukubahayase@cs.tsukuba.ac.jp
‡College of Engineering, Department of Computer Science, Nihon Universitytetsuo@cs.ce.nihon-u.ac.jp

Abstract
In modern software development, developers have to select and
combine appropriate APIs from software libraries to implement
any features. This paper proposes an approach that takes as input
a method name which a developer is attempting to create, and
suggests APIs that are likely used as a template of method body.
By using the template as a reference and/or editing the template,
the developer can write the method body. Our approach generates
templates from association rules that associate APIs with identifiers
such as method names, class names, and field types/names included
in a large set of source files.

Categories and Subject DescriptorsD.2.6 [Software Engineer-
ing]: Programming Environments

Keywords API, Code completion, Association rule mining

1. Introduction
In modern software development, developers have to select and
combine appropriate APIs from software libraries to implement
features. However, learning APIs is difficult and time consuming
because of numerous APIs and their combinations.

Some approaches which suggest candidates of method body
from the context of the source code under editing are proposed
to develop software efficiently [2–4]. They suggest code snippets
by leveraging the context of the method body, therefore, they can
suggest better candidates than code completion of standard IDEs.
However, they cannot suggest appropriate candidates without a part
of a method body.

In this paper, we propose to suggest sets of APIs as templates of
a method to developers attempting to create a new method. The
approach suggests APIs which developers probably write in the
method body after they decide the method name. The idea which
suggests templates of a method body is implemented as one of the
code completions in Eclipse [1]. Eclipse suggests creating method
getFooandsetFooin a class which has fieldfoo, because developers
are likely to create a getter/setter to get the value or set a value

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c⃝ ACM [to be supplied]. . . $15.00

in a class declared a field. We generalize the idea for other kinds
of methods so that IDE can suggest templates of method body to
developers. APIs which developers are likely used in method body
are learned by association rule mining. We associate APIs in each
method with its method name and identifiers around the method
such as class names, field names and field types.

2. Approach
This paper proposes an approach which suggests templates of
method body. Developers complete the method body by using the
template as a reference and editing it. Our approach focuses on
relations between a method name and the method body to generate
templates of method name.

A method usually has a short and self-describing name, whose
verb and object respectively express the operation and its target
performed in the method. In some cases, a method name comprises
only a verb, whose object is implicitly indicated by identifiers
around the method, e.g. the class name or fields.

Ideally, it is expected that generated templates of method body
are complete source code, however, generating complete method
bodies to general methods is very difficult, since method bodies
have variable definitions, method calls, and complex control struc-
tures.

In this paper, a template of a method body is a set of methods
which are likely called in the method. Our approach helps devel-
opers to choose APIs from a lot of APIs; developers can look up
various documents that explain the usage of the APIs included in a
template.

Templates of method body are generated from association rules
which association rule mining find from a large set of source files.
Association rule mining use method names, methods called by the
methods, and identifiers around the methods such as class names
and field types/names. Method names are divided into verb and
object because the verb of a method name represents the behavior
of the method.

One example is a Data Access Object (DAO) class. Classes
using databases have connection fields and is defined a method
which executes SQL statements. The method is namedupdateUser-
Info and so forth and processed the following steps: 1) create a
SQL statement (the method name iscreateStatement), 2) execute
the SQL statement (executeUpdate), 3) close the SQL statement
(close). It expects that association rules found from source files us-
ing a database have a pattern which methods called by the method
arecreateStatement, executeUpdate, andclosewhen the field type
is Connectionand the verb of the method isupdate. Our approach
suggests a set of methods{createStatement, executeUpdate, close}

Method1 Method2 …

fieldType: Connection …

verb: update

method: createStatement

…

Connection

V:update/ O:UserInfo

createStatement

{fieldType: Connection, …}

=> {method: createStatement,

method: executeUpdate, …}

...

Connection

execute

update

Candidates

{method: createStatement, method: executeUpdate, …}

…

Source files

Identifiers related

to method body

Transaction data

Identifiers related

to method body

an Edited

source file

Step1. Learning knowledge by source files

Association rule DB

Step2. Code completion using association rules

Extract

Create transaction data

Extract

Association rule mining

Search

Suggest

Figure 1. AN OVERVIEW OF THE IMPLEMENTATION OF
OUR APPROACH

by using this pattern when a developer creates a new method the
verb of which isupdatein a class defined aConnectionfield.

3. Implementation
An overview of the implementation of our approach is shown in
Figure 1. The implementation consists of two steps: 1) learning
knowledge by source files, and 2) code completion using associa-
tion rule DB. Step 1 is performed in advance of Step 2.

Step 1 creates a database that contains support, confidence,
and association rules that each antecedent is a set of identifiers of
source files and each consequent is a set of methods called by a
method. In terms of association rule mining, a transaction is a set
of identifiers related to a method. For each method in source files (a
training data set), we extract the verb of the method name, the ob-
ject of the method name and related identifiers including the class
name, arguments of the method, fields accessed by the methods
and method names called in the method as shown in Figure 2. Each
name is associated with its origin; for example, the class name
“DAO” is represented as an item “class:DAO” in a transaction.
After all methods are translated into transactions, we execute asso-
ciation rule mining to extract association rules whose consequent
is a set of methods called in method bodies. For example, a rule
{verb:update, fieldType:Connection}⇒ {method:createStatement,
method:executeUpdate, method:close} is extracted from source
files. This rule indicates that a method likely calls a set of meth-
ods createStatement, executeUpdateand close if the verb of the
method isupdateand the method can access a field whose type is
Connection.

Step 2 suggests templates of method body as sets of method
calls to a developer just after input a method name. We extract
verbs, objects, and related identifiers from a source file edited by
a developer, and then look for association rules whose antecedents
are included in the source file. Finally, consequents of searched
rules are suggested as templates of method body to the developer.
The templates are sorted or narrowed down by support, confidence,
and so on. The developer chooses a template and inserts it in the
source file. The developer writes the method body by using the
template as a reference and/or editing the template.

public class DAO {

Connection conn;

public int updateUserInfo(String sql) {

Statement stmt = null;

int count = 0;

try {

stmt = this.conn.createStatement();

count = stmt.executeUpdate(sql);

} finally {

if (stmt != null)

stmt.close();

}

return count;

}

}

1) Class name

2) Verb & Object

of method name

3) Arguments

4) Access fields

5) Methods called

by a method

Example

V: update / O: UserInfo

Figure 2. VERB AND OBJECT OF METHOD NAME AND
IDENTIFIERS RELATED TO METHOD BODY

4. Current Status and Future Work
Currently, association rules are obtained from a small set of source
files, and we are evaluating the rules. We are going to analyze the
results and create association rule DB from a larger set of source
files. In parallel, we are implementing our approach as an eclipse
plugin.

We are planning two evaluation experiments. One experiment
evaluates the usefulness of suggested templates. In the experiment,
we compare templates of a method body generated from methods
in source files by our approach with the original method body to
see that they match. The other experiment asks subjective opinions.
Some developers worked on the tasks and answers questionnaire
about generated templates and usability of the tool.

Because our approach suggests templates based on knowledge
learned from a large set of source files, suggested templates are dif-
ferent when the set of source files is different. A method often has
more than one operation. In that case, the method name expresses
the only main operation. Therefore the knowledge is mixed with
APIs unrelated to the method name. It is conceivable that our ap-
proach is more effective because of the correspondence the method
name with the operation if cohesion in methods is enhanced by ap-
proach of aspect-oriented programming or something like that.

In the future, we are going to give developers more information
by employing other data structure instead of a set of APIs. For
example, a sequence of methods or control structures can suggest
an appropriate order of APIs in addition to an appropriate set of
APIs.

Acknowledgments
This research was supported by KAKENHI No.21700031,
No.21240002, and No.23680001.

References
[1] Eclipse. http://www.eclipse.org/.

[2] M. Bruch, M. Monperrus, and M. Mezini. Learning from examples
to improve code completion systems. InProceedings of the 7th joint
meeting of the European Software Engineering Conference and the
ACM Symposium on the Foundations of Software Engineering, 2009.

[3] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V. Nguyen,
J. Al-Kofahi, and T. N. Nguyen. Graph-based pattern-oriented, context-
sensitive source code completion. InProceedings of the 2012 Interna-
tional Conference on Software Engineering, pages 69–79, 2012.

[4] Y. Tetsuo, Y. Norihiro, and H. Yoshiki. Seamless souce code reuse
using source code corpus (in japanese).IPSJ Journal, 53(2):644–652,
feb 2012.

