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ABSTRACT
A large number of software products may be derived from an
original single product. Although software product line engi-
neering is advocated as an effective approach to maintaining
such a family of products, re-engineering existing products
requires developers to understand evolution history of the
products. It is challenging because developers have only
source code of products in typical cases. In this research, we
propose to extract a Product Evolution Tree that approxi-
mates evolution history from source code of products. Our
key idea is that two successive products are the most similar
pair of products in evolution history. We construct a Prod-
uct Evolution Tree as a minimum spanning tree whose cost
function is defined by the number of similar files between
products. As an experiment, we have extracted Product
Evolution Trees from 6 datasets of open source projects. The
result shows 53 to 92% of edges in the extracted trees are
consistent with the actual evolution history of the projects.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Experimentation

Keywords
software product line; software evolution; visualization

1. INTRODUCTION
Copying existing code fragments, source files, and the whole
of a project is a common practice to develop a new soft-
ware product [20]. For example, Linux kernel is forked into
many projects including not only Linux distributions but
also embedded software such as Android OS. Nonaka et al.
analyzed corrective maintenance data of industrial embed-
ded software products [17]. A part of the evolution history
of the software product family is shown in Figure 1. The
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Figure 1: A product family derived from a single
product [17].

horizontal axis represents the number of months from the
first release of the original product series (P01), the vertical
axis represents product series ID in a company, respectively.
In Figure 1, a circle corresponds to a product. Each dashed
edge indicates that the new product series is derived from
the original product. A solid edge connecting products indi-
cates that the products are released as different versions of
the same product series. Figure shows only 8 major prod-
uct series and their variations, while the company had 25
series of products. Each series of products has 2 to 42 ver-
sions. Although Software Product Line Engineering (SPLE)
is a famous approach to efficient maintenance of a software
product family, industry already maintains a large number
of derived software products without applying SPLE. Con-
struction of a software product line from existing products is
a very important problem and many re-engineering methods
have been proposed [2, 11, 26].

To construct a software product line, developers have to an-
alyze and compare software products to identify commonal-
ity and variability in the products. Since analyzing a large
number of software products is a hard task for developers,
Krueger suggested that developers should start their anal-
ysis from a small number of software products, instead of
all products at once [12]. Koschke et al. proposed an ex-
tension of reflexion method to construct a product line by
incrementally analyzing products [11]. To follow these rea-
sonable approaches, developers must choose representative
software products as a starting point. If an evolution history
of software products such as Figure 1 were available, devel-
opers could recognize the relationships among the products



and choose representatives for their analysis. For example,
developers could analyze the original product and the latest
release on each branch. The selection would enable devel-
opers to identify core features and product specific features
of the product family. However, such a history of products
is often not available for developers [13]. In the worst case,
developers have only source code of each product.

In this research, we propose to extract an approximated evo-
lution history of software products from their source code.
Our approach depends on only source code so that we can
analyze products without version numbers, names or release
dates. We define a Product Evolution Tree as a labeled tree
whose each node represents a product, each edge connects
similar products, and each label indicates similarity of prod-
ucts and direction of evolution, respectively. A Product
Evolution Tree is computed as a minimum spanning tree.
Its cost function is defined by the number of similar files
between products. Similarity between files is computed by
Yoshimura’s function, which is based on the longest common
subsequence of the files [25].

We have implemented our approach as a tool that takes
as input source code and visualizes a Product Evolution
Tree. Using the tool, we have conducted a case study with
6 datasets based on open-source projects. Whereas our ap-
proach is a simple algorithm, the result shows that 53 to
92% of edges (79% on average) are consistent with the ac-
tual evolution history.

Our contributions are summarized as follows:

• We have proposed a visualization technique of rela-
tionships among software products from their source
code.

• Our tool and datasets are publicly available [27], so
that other researchers can replicate and improve the
approach.

In Section 2, we describe related work. Section 3 details
our proposed approach. Section 4 shows the result of a case
study. We discuss about the results in Section 5. Finally in
Section 6, we describe conclusion and future work.

2. RELATED WORK

2.1 Product Analysis
To apply SPLE to existing similar software products, de-
velopers must analyze features in the products. Kastner et
al. proposed CIDE to simplify software product line devel-
opment [8]. CIDE requires a single software product and
decomposes it into features. Duszynski et al. proposed a
technique for analyzing multiple software system variants
[1]. They extracted system structure model and variability
model that represent commonality and variability of system
variants from source code. Their technique allows for de-
tailed goal-driven refinement of the analysis results.

To utilize these techniques for a large number of software
products, developers must choose one or more software prod-
ucts for their analysis. Our approach enables developers to
choose a starting point of their analysis by visualizing rela-
tionships among software products.

2.2 Software Categorization
Several tools have been proposed to automatically catego-
rize a large number of software based on their domains such
as compiler, database, editor, and so on. MUDABlue [9]
classifies software based on similarity of identifiers in source
code. MUDABlue employed latent semantic analysis which
extracts the contextual-usage meaning of words by statis-
tical computations. LACT [22] uses latent dirichlet alloca-
tion in which software can be viewed as a mixtures of topics.
LACT used identifiers and code comments, but excluded lit-
erals and programming language keywords, to improve cat-
egorization. CLAN [16] focused on API calls. Its basic idea
is that similar software uses the same set of APIs. While
all of these tools are able to detect similar or related appli-
cations from a large software set, our approach focuses on
very similar products derived from the same product, that
are likely categorized into the same category by these tools.

2.3 Software Evolution
Yamamoto et al. proposed SMAT tool that calculates simi-
larity of software systems by counting similar lines of source
code [24]. They identify corresponding source files between
two software systems using CCFinder [7], and then compute
differences between file pairs. They applied their tool to a
case study of software clustering, and extracted a dendro-
gram of BSD-UNIX Operation Systems. The dendrogram
reported which OSs are similar to each other.

Tenev et al. introduced bioinformatics concepts into soft-
ware variants analysis [21]. One of them is phylogenetic
trees, which visualizes the similarity relations. They con-
structed dendrogram and cladogram from six BSD Unix
family systems for example of phylogenetic trees.

Although their approaches and goals are similar to our idea,
our approach visualizes more concrete relationships among
products; which product was first released, which products
were forked from the release, and so on.

2.4 File-to-file similarity
In many research, two or more software systems are com-
pared with one another. When comparing software systems,
similarity between source files is a very important metric. To
find out the same or similar source code fragments, many
code clone detection tools have been proposed [7, 14]. Us-
ing large-scale code clone detection techniques, Hemel and
Koschke compared Linux kernel and its vendor variants [5].
They found vendor variants included various patches, but
the patches are rarely submitted to the upstream. Another
application of code clone detection is detecting file moves oc-
curred between released versions of a software system [13].

Yoshimura et al. visualized cloned files in industrial prod-
ucts [25]. They have used an edit distance function as a
source file similarity to find out cloned files whose contents
are almost the same. We have employed their similarity
function with an optimization and aggregated file similarity
to product similarity.

Inoue et al. [6] proposed a tool named Ichi Tracker to inves-
tigate a history of a code fragment with source code search
engines. It takes a code fragment as an input and extracts
related code from source code search engines. It visualizes



how related files are similar to the original code fragment
and when they are released. Using the visualization, devel-
opers can identify the origin of the source code fragment
or a more improved version of the code fragment. Our ap-
proach enables similar analysis on software products instead
of source files.

We have assumed that two successive products are very sim-
ilar to each other. This observation is shown by Godfrey
et al.[3]. They detected merging and splitting of functions
between two versions of a software system. Their analy-
sis shows that a small number of software entities such as
functions, classes or files are changed between two successive
versions. Lucia et al. reported that most of bug fixes are im-
plemented in a small number of lines of code [15]. Since these
analysis reported that two successive versions are very simi-
lar, we infer that the most similar pairs of products are likely
two successive versions. Although developers may modify a
substantial number of lines of code to release a new version,
the new version is likely more similar to the original version
than future products derived from the new version.

3. PRODUCT EVOLUTION TREE
Product Evolution Tree is a tree that approximates evolu-
tion history. Each node of a tree represents a software prod-
uct. Each edge indicates that a product is likely derived
from another product. A label of an edge explains the cost
of software changes between products and the direction of
derivation: which product is an ancestor and which product
is a successor. We construct a Product Evolution Tree from
source code of products through 3 steps as follows.

1. We calculate file-to-file similarity for all pairs of source
files of all products.

2. We construct a minimum-spanning tree of products.
The cost between two products is based on the number
of similar files between the products.

3. We put labels on edges based on the number of modi-
fied tokens between two products.

3.1 File Similarity Calculation
To calculate file similarity, we first normalize each of source
files into a sequence of tokens. In a normalized file, each
line has only a single token. We remove blanks from source
files to avoid an impact of coding style. We also remove
comments since they do not affect behavior of products. All
other tokens including keywords, macros and identifiers are
kept as is.

We calculate similarity for all pairs of files across different
products, since a file may be renamed in a different product
variant. To calculate similarity among source files, we follow
Yoshimura’s inter-file similarity analysis [25]. Given a pair
of files (a, b), their file similarity sim(a, b) is calculated using
the normalized sequences at and bt of the files as follows:

sim(a, b) =
LCS(at, bt)

LCS(at, bt) +ADD(at, bt) +DEL(at, bt)

where LCS(at, bt) is the number of tokens in the longest
common subsequence (LCS) between at and bt. A pair
of ADD(at, bt) and DEL(at, bt) represents an edit distance

from at to bt; DEL(at, bt) is the number of deleted tokens
which are unique to at, ADD(at, bt) is the number of added
tokens which are unique to bt, respectively. ADD and DEL
can be represented as follows.

ADD(at, bt) = LENGTH(bt)− LCS(at, bt)

DEL(at, bt) = LENGTH(at)− LCS(at, bt)

where LENGTH(s) is the number of tokens in s.

We have used a file similarity based on LCS, since we could
optimize the calculation as described in Section 3.4. The
following computation steps did not depend on the definition
of file similarity function; hence, other methods such as code
clone detection are also applicable to compute file similarity.

3.2 Construction of Minimum Spanning Tree
In this step, we construct a minimum spanning tree of prod-
ucts. To define a cost function for products, we count the
number of similar file pairs. When the file pair has a higher
similarity than a threshold, it is a similar file pair. We have
used similarity threshold th = 0.9 in this paper, which is ex-
perimentally determined. The number of all possible similar
file pairs Es and cost C between software products P1 and
P2 are defined as:

Es(P1, P2, th) = {(a, b) | a ∈ P1, b ∈ P2, sim(a, b) ≥ th}
C(P1, P2, th) = −|Es(P1, P2, th)|.

It should be noted that cost is a negative value since it should
be smaller if products have more similar file pairs.

After calculating cost, the result is an undirected weighted
graph G = (V,E). V denotes that software products and
E connects them with the cost function C. We construct a
minimum spanning tree S = (V,E′) of the graph G. E′ ⊂ E
is a set of edges which have the smallest total cost:

X

(Pi,Pj)∈E′

C(Pi, Pj , th).

We use Prim’s algorithm [18]. In Prim’s algorithm, an initial
vertex is picked up at first. The vertex is a tree comprising
a single vertex. Next, the algorithm lists up all edges con-
necting a vertex in the tree to a vertex outside of the tree,
picks up one of the edges with the lowest cost, and includes
the edge and its connected vertex in the tree. The process
is repeated until all vertices are included in the tree.

Prim’s algorithm allows any vertex as a starting point. In
addition, if two or more edges have the same lowest cost, one
of them can be arbitrary selected. In our implementation,
we select a vertex or an edge depending on the input order.

3.3 Calculation of Evolution Direction
After a minimum spanning tree is constructed, we put labels
on the edges. We hypothesize that source code is likely
added rather than deleted when software evolves to the next
version. To compute the relationship, we first define two
functions for two products P1 and P2 as follows:

ADDALL(P1, P2) =
X

(a,b)∈Es(P1,P2,th)

ADD(a, b)

DELALL(P1, P2) =
X

(a,b)∈Es(P1,P2,th)

DEL(a, b)



Both functions approximate the total number of modified
tokens in similar files between the products. We determine
a direction label for an edge between products using the
following conditions:

8

>

<

>

:

P1 → P2, ADDALL(P1, P2) > DELALL(P1, P2)

P1 = P2, ADDALL(P1, P2) = DELALL(P1, P2)

P1 ← P2, ADDALL(P1, P2) < DELALL(P1, P2)

It is easy to get the amount of the changed source code
because we have calculated how many tokens are added or
deleted from one source file to another in the process of file
similarity calculation.

3.4 Optimization of File Similarity
A naive computation of sim for N files requires to compute
LCS N(N−1)/2 times. To reduce the computation time, we
introduced an optimization that calculates sim value only if
it is necessary.

The LCS of two files comprises only tokens included in both
files. To estimate the length of LCS between files, we in-
troduce the term frequency tf (f, t) which represents how
many times term t appears in file f . For example, suppose
two files S1(AAABB) and S2(ABBBB), where A and B are
terms in the files. The term frequencies are tf (A,S1) = 3,
tf (B,S1) = 2, tf (A,S2) = 1 and tf (B,S2) = 4. Since the
LCS can include at most one A and two Bs shared by the
sequences, the maximum length of the LCS is 3. Indeed,
the actual LCS between S1 and S2 is ABB whose length is
3. Comparing S1(AAABB) with S3(BBBAB) for another
example, this pair also share one A and two Bs but there
are no LCS whose length is 3. AB, BA and BB are possible
LCS for them.

With term frequency, we can get maximum similarity

msim(a, b) =

P

t∈T min(tf (a, t), tf (b, t))
P

t∈T max(tf (a, t), tf (b, t))

of each file pair (a, b). T represents the set of terms appeared
in all source files. The value of sim(a, b) equals tomsim(a, b)
if all the common tokens appear in the same order in two se-
quences. If the order of tokens in a sequence is different from
another sequence, then sim(a, b) is smaller than msim(a, b).
A fomula msim(a, b) ≥ sim(a, b) is always true, hence we
need to compute sim(a, b) only ifmsim(a, b) ≥ th. Although
we have to scan a file to construct a term frequency vector,
the vector is used N −1 times. In addition, time complexity
of msim is O(|T |). It is much smaller than calculation of
the LCS.

4. CASE STUDY
We have implemented our approach as a tool and conducted
a case study. The goal of the case study is to evaluate how
accurately a Product Evolution Tree recovers actual evolu-
tion history.

4.1 Datasets
We have prepared 6 datasets using open source projects.
Each dataset comprises a set of products whose evolution
history is publicly available. Table 1 shows the lists of prod-
ucts in the datasets. Column “#” indicates the ID of the
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Figure 2: A family-tree of Dataset 6

dataset of each row. The other columns show the name of
the dataset, products included in the dataset, the number
of products, the total number of files and the total number
of lines of code. Due to the limited space, we have omitted
the intermediate version numbers in the table. For exam-
ple, “8.0.0 – 8.0.26” indicates that the dataset included 27
version from 8.0.0 to 8.0.26. All datasets and the results are
publicly available on our website [27].

In the datasets, we have used the following software.

PostgreSQL. It is a database management system. In the
evolution history of PostgreSQL, each major version
was released from the master branch after developing
beta and RC releases. After a major version had been
released, a STABLE branch was created for minor re-
leases and the master branch was used for developing
the next beta version. While each release archive con-
tains a large amount of files, we used only source files
under “src” directory in this case study.

FFmpeg and Libav. They are libraries and related pro-
grams for processing multimedia data. Libav is forked
from FFmpeg and is developed by a group of FFm-
peg developers. They are independently developed,
but similar changes have been applied to both source
code.

4.4BSD, FreeBSD, NetBSD and OpenBSD. These
operating systems are derived from 4.3BSD, but they
are now independent projects. The evolution history is
publicly available as a “family-tree.” Figure 2 shows a
part of the family-tree for the versions selected for our
dataset. According to the tree, NetBSD was originally
derived from 4.3BSD, but NetBSD-1.0 is derived from
4.4BSD Lite. FreeBSD-2.0 is also based on 4.4BSD
Lite. OpenBSD is forked from NetBSD. OpenBSD-
2.0 is its first official release. 4.4BSD Lite2 is the last
release of 4.4BSD and it affects other BSD operating
systems. In each version of distributed files, we used
source files under “src/sys” directory.



Table 1: Datasets
# Name Included versions/tags #product #file #LOC
1 Pgsql-major PostgreSQL: 7.0, 7.1, 7.2, 7.3, 7.4, 8.0.0, 8.1.0, 8.2.0, 8.3.0, 8.4.0, 13 8,533 4,163,127

9.0.0, 9.1.0, 9.2.0
2 Pgsql8-all PostgreSQL: 8.0BETA1 – 8.0BETA5, 8.0RC1 – 8.0RC5, 144 96,448 48,478,395

8.0.0 – 8.0.26, 8.1BETA1 – 8.1BETA4, 8.1RC1, 8.1.0 – 8.1.23,
8.2BETA1 – 8.2BETA3, 8.2RC1, 8.2.0 – 8.0.23,
8.3BETA1 – 8.3BETA4, 8.3RC1 – 8.3RC2, 8.3.0 – 8.3.21,
8.4BETA1 – 8.4BETA2, 8.4RC1 – 8.4RC2, 8.4.0 – 8.4.14,
8.5ALPHA1 – 8.5ALPHA3

3 Pgsql8-latest PostgreSQL: 8.0.20 – 8.0.26, 8.1.17 – 8.1.23, 8.2.17 – 8.2.23, 38 26,232 13,401,899
8.3.15 – 8.3.21, 8.4.8 – 8.4.14, 8.5ALPHA1 – 8.5ALPHA3

4 Pgsql8-annually PostgreSQL: 8.0.4, 8.0.9, 8.0.14, 8.0.18, 8.0.22, 8.0.26, 25 16,816 8,488,128
8.1.5, 8.1.10, 8.1.14, 8.1.18, 8.1.22, 8.2.5, 8.2.10, 8.2.14, 8.2.18, 8.2.22,
8.3.4, 8.3.8, 8.3.12 ,8.3.16, 8.3.21, 8.4.1, 8.4.5, 8.4.9, 8.4.14

5 FFmpeg FFmpeg(before fork): v0.5 – v0.5.3 16 9,872 3,952,273
FFmpeg(after fork): n0.5.5 – n0.5.10 LibAV: v0.5.4 – v0.5.9

6 *-BSD BSD: 4.4BSD Lite, 4.4BSD Lite2 FreeBSD: 2.0, 2.0.5, 2.1, 2.2, 2.3 16 16,204 6,050,462
NetBSD: 0.8, 0.9, 1.0, 1.1, 1.2, 1.2.1, 1.3 OpenBSD: 2.0, 2.1

Each dataset represents a particular situation of product
analysis as follows.

Dataset 1: Pgsql-major. This is a dataset whose evolu-
tion history is straight, i.e., it has no project fork. The
dataset contains 13 versions which are the first versions of
each major release. We found that all of these releases are
developed in the master branch. Hence, the resultant Prod-
uct Evolution Tree should form a straight line.

Dataset 2: Pgsql8-all. This is a dataset whose evolution
history is a tree of a single project. We created this dataset
to emulate a practical case; a large number of products are
derived from a single original product. This dataset con-
tains 6 branches: five STABLE branches for 8.0.X to 8.4.X
and the master branch developing three ALPHA releases for
8.5. It should be noted that these branches are developed
in parallel; for example, some products are released from
8.0.X branch after 8.1.0. The dataset contains 144 versions
in total.

Dataset 3: Pgsql8-latest. This is a dataset that includes
only recent products. If a product family has a long history,
older products may be obsolete to be included in a product
line. In addition, such older products may be no longer avail-
able for developers. The dataset is a subset of Dataset 2.
It contains 38 versions including 7 latest versions in each
of 5 STABLE branches and 3 releases in 8.5ALPHA series.
This dataset contains no older releases indicating how STA-
BLE branches have been created; therefore, it is difficult to
extract the relationship among branches.

Dataset 4: Pgsql8-annually. This is another dataset that
a full collection of products is not available. Dataset 4 con-
tains 25 versions which have been released around Septem-
ber from 2005 to 2012. Extracting the relationship among
branches is difficult for the dataset, since no major releases

are contained in the dataset.

Dataset 5: FFmpeg. This is a dataset whose project has
been forked to two projects. This dataset is created to eval-
uate whether our approach can recover the evolution history
of forked projects or not. The dataset contains FFmpeg 0.5
series from 0.5 to 0.5.3 before the fork and from 0.5.5 to
0.5.10 after the fork. 0.5.4 is not included since the tag has
not been available in the repository. In addition, Libav 0.5.4
to 0.5.9 are included in the dataset.

Dataset 6: BSD. This is a dataset whose project has been
forked to more than three projects. This dataset is created
to evaluate whether our approach can recover the complex
evolution history of the projects or not. The evolution his-
tory of BSD operating systems is the most complex in our
datasets. In addition, there are releases created by merging
source code from more than one products that are derived
from their single origin. Since our approach extracts only a
tree, our approach must miss such edges.

4.2 Results
Our tool takes as input source code in a dataset and out-
puts a Product Evolution Tree. For each edge in a Product
Evolution Tree, we have checked whether the edge connects
versions as of the actual evolution history or not, and then
checked the labeled direction for the matched edges.

The correctness of the edges and labels is shown in Ta-
ble 2. Column “Matched Edges” shows how many edges
are matched with the actual history without considering di-
rection. In other words, we only checked the shape of the
tree. Column “Matched Labels” shows how many correct
edges have correct direction. Column “Recall” indecates
proportion of correctly identified edges to edges in an ac-
tual evolution history. We did not calculate precision in this
experiment, since precision and recall are always the same
(Datasets 1–5) or higher value (Dataset 6). This is because
the number of edges in a Product Evolution Tree is the same



Table 2: Result
Dataset History Output Matched Edges Matched Labels Recall

1 † 12 12 12 (100%) 11 (91.7%) 91.7%
2 (Fig. 4) 143 143 136 (95.1%) 128 (94.1%) 89.5%

3 † 37 37 30 (81.1%) 30 (100%) 81.1%
4 (Fig. 5) 24 24 20 (83.3%) 20 (100%) 83.3%
5 (Fig. 6) 15 15 13 (86.7%) 11 (84.6%) 73.3%
6 (Fig. 7) 17 15 12 (70.6%) 9 (75.0%) 52.9%
†Figures are available on our website [27].

as or less than the number of edges in the actual evolution
history.

The result shows that 53 to 92% of edges are consistent
with the actual evolution history. This is very promising
result. One important concern is what kind of errors are in-
cluded in a Product Evolution Tree. Since developers do not
know the actual evolution history, a wrong edge may lead
developers to misunderstanding of the product family. To
analyze errors, we have categorized incorrect edges in Prod-
uct Evolution Trees into 5 patterns as follows. Patterns
are shown in Figure 3. In Figure 3, each left graph shows
an actual evolution history and each right graph shows an
extracted Product Evolution Tree. Thin edges are the con-
nections that exist in the actual history. Thick edges are
the errors; solid edges connect exact products but indicate
a wrong direction, dashed edges do not exist in the actual
history, respectively.

P1: Version Skip. This pattern is found in three succes-
sive versions; two edges v1 to v3 and v2 to v3 are de-
tected instead of a path from v1 to v3 via v2. Fig-
ure 3(a) shows an example. This pattern happens
when v2 and v3 have the same change cost from v1
or the change cost between v1 and v3 are very small.
For example, a small bug fix between v2 and v3 that
modifies a few lines of code added for v2 causes this
pattern.

P2: Misalignment of Branch. An edge connects two
branches but does not connect actually branched prod-
ucts. In Figure 3(b), there are two branches A and B.
While version 1 of branch B (B1) was actually forked
from version 1 of branch A (A1) in the evolution his-
tory, the origin of branch B was recognized as version 2
of branch A (A2). In this pattern, A2 is actually more
similar to B1 than A1, since both A2 and B1 include
the same changes from A1, such as bug fixes.

P3: Misdirection. An edge connects accurate products,
but its label shows the reverse direction as shown in
Figure 3(c). It happens when the size of source code
or the number of source files decreased by several ac-
tivities such as refactoring and deletion of dead code.

P4: Missing Merge. Our Product Evolution Tree cannot
detect a merge of two products derived from a single
product. In Figure 3(d), we can see that the Prod-
uct Evolution Tree detects branching from version A1
to version A2 and B1 but cannot detect merging from
version B2 to A4. When a software product forked into
some software products, they are usually very similar.
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Figure 3: Patterns of incorrect edges

Since the forked products are independently modified,
their difference would be increased. Our approach con-
nects similar products first, and a tree cannot have a
closed path. Therefore, edges indicating project fork
often appear in the tree but merges are hardly de-
tected. In this pattern, one edge is missing but no
wrong edges are output. If an actual evolution history
includes a merge (e.g. Dataset 6), 100% recall is not
achievable.

P5: Out of Place. This pattern is a falsely detected edge
which is not classified into previous patterns. There
are no relationship between the wrong edge and the
actual history.

In these patterns, P1, P2 and P3 connected related prod-
ucts. P1 could be corrected by analyzing 3 related products.



Table 3: The number of instances of incorrect edge
patterns

Dataset P1 P2 P3 P4 P5 Total
1 1 1
2 1 4 8 2 15
3 5 2 7
4 4 4
5 1 1 2 4
6 2 3 2 1 8

P2 is not easily corrected, but it still connects two relevant
branches. Therefore, developers might misunderstand only
information that when the branching occurred. P3 could be
corrected by manually comparing the edge direction with
other edges around the products, and investigating differ-
ence between source code of the connected products. There-
fore, these patterns are not so problematic errors. P4 is a
missing edge; it is not correctable. Detecting merges is our
future work. P5 is the most problematic error that connects
irrelevant products.

Table 3 shows the number of pattern instances of incorrect
edges. The table shows that a few problematic errors found
in the datasets, although P2 and P3 are often included in
the datasets.

4.3 Product Evolution Trees
In this section, we show the detail of each Product Evolution
Tree extracted from the datasets. We compare a Product
Evolution Tree with its actual history and then colored in-
correct edges as indicated in Figure 3.

Dataset 1: Pgsql-major. The form of the tree is perfectly
matched with the actual evolution history. But one label in-
dicated the reverse direction on the edge 9.1.0–9.2.0. Among
these releases, added source code is less than deleted source
code, since several identifiers have been renamed and some
refactoring has been performed. Even though the error ex-
ists, this Product Evolution Tree is still useful. For example,
we can identify the latest version and the oldest version.

Dataset 2: Pgsql8-all. An overview of extracted Product
Evolution Tree is shown in Figure 4. Since the tree is too
large to show in the paper, a sequence of correctly connected
versions is indicated by a single node. For example, the top-
left node in Figure 4 represents 14 versions; 8.0.0BETA1
to 8.0.0BETA5, 8.0.0RC1 to 8.0.0RC5, and 8.0.0 to 8.0.3.
In the figure, we annotated only incorrect edges and labels.
The full version of this figure is also available on our website.

The Product Evolution Tree for Dataset 2 recovered its ac-
tual evolution history with high recall. However, almost
all edges connecting branches are not matched. For exam-
ple, 8.2BETA1 is developed on the master branch as the
next version of 8.1.0. In the extracted tree, 8.2BETA1 is
indicated as the next version of 8.1.5. We examined git
repository and found that version 8.1.5 is released right af-
ter 8.2BETA1. The master branch developing 8.2BETA1
and STABLE branch for 8.1 received the same 225 com-
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Figure 4: A Product Evolution Tree for Dataset 2

mits that are submitted in the same date with the same
log message. During the same period (8.1.0 to 8.2BETA1),
the differences between two branches are only 28 commits
unique to the master branch. This fact means that the ac-
tual evolution history also does not always show functional
differences of products.

Although the Product Evolution Tree is not perfect, we can
find out 6 branches in the product set. For each branch,
we can pick up the latest versions: 8.0.26, 8.1.23, 8.2.23,
8.3.21, 8.4.14 and 8.5ALPHA3. There are several labels in
the branches indicated the reverse direction, but most edges
indicated the correct evolution in the branches. Validating
the direction of 143 edges of the tree requires much smaller
effort than comparing arbitrary pairs of 144 products (144×
143/2 = 10296 pairs).

Dataset 3: Pgsql8-latest. The Product Evolution Tree of
this dataset is almost the same as that of Dataset 2, except
for edges connecting branches. Two STABLE branches often
have the same changes, while only minor changes are unique
to one of the branches. Therefore, intermediate versions of
two branches are connected to each other (P2 instances).
Nevertheless, the Product Evolution Tree shows the initial
and latest versions of each branches, since there are a few
error edges other than between branches.

Dataset 4: Pgsql8-annually. Figure 5 shows the Prod-
uct Evolution Tree extracted from Dataset 4. Products
are arranged horizontally if they are released on the same
day. All edges and labels in the same branch are consistent
with the actual evolution history. On the other hand, edges
connecting between branches are mismatched. Since such
inter-branch edges have larger cost value than edges inside
a branch, we can identify the initial and latest versions of
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Figure 5: A Product Evolution Tree for Dataset 4

each branches in the Product Evolution Tree.

Dataset 5: FFmpeg. Figure 6 shows the Product Evolu-
tion Tree extracted from Dataset 5. The Product Evolution
Tree does not correctly indicate when Libav was branched
from FFmpeg project. FFmpeg 0.5.3 was branched into
Libav 0.5.4 and FFmpeg 0.5.5 in the actual history, but the
tree seems to indicate that FFmpeg 0.5.5 was derived from
Libav 0.5.5. In those versions, projects shared the same
changes, although they became independent projects.

Figure 6 also includes a wrong edge between FFmpeg 0.5
and 0.5.2. This edge is connected since files changed in 0.5.1
are changed again in 0.5.2, in other words, both versions
have the same number of files changed from FFmpeg 0.5.
This is the same phenomenon observed in Dataset 2.

The Product Evolution Tree shows Libav 0.5.5 is likely an
origin of three branches. On that point of view, develop-
ers may choose the root version Libav 0.5.5 and leaf nodes
FFmpeg 0.5, FFmpeg 0.5, FFmpeg 0.5.1, and Libav 0.5.9.
The tree is still effective since the selected versions contain
the actual original version and the latest versions. The tree
reduces the effort for comparing all 15 versions.

Dataset 6: BSD. Figure 7 shows the Product Evolution
Tree extracted from the dataset. Recall of this dataset was
the worst in the all datasets, since the dataset included 17
correct edges but a Product Evolution Tree could include at
most 15 edges.

The Product Evolution Tree included a merge relationship
for NetBSD-1.0. It is the next release of NetBSD-0.9 in-
cluding many source files from 4.4-BSD Lite. On the other
hand, an edge from 4.4BSD Lite2 to FreeBSD-3.0 is not de-
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Figure 6: A Product Evolution Tree for Dataset 5

tected because Product Evolution Tree does not allow closed
paths. In addition, the cost between two versions C(4.4BSD
Lite, FreeBSD-3.0, 0.9) = −11 indicated that all except for
11 files are different between two versions. The relationship
from 4.4BSD Lite2 to FreeBSD-3.0 in the family tree may
not be captured by the source code difference.

As an overall impression, NetBSD-1.0 and NetBSD-1.2 will
get attention because they have three edges. Leaf nodes
FreeBSD-3.0, NetBSD-0.8, NetBSD-1.3, and NetBSD-1.2.1
also seem important. The Product Evolution Tree suggests
that 4.4-BSD Lite and OpenBSD-2.1 are not a characteristic
release. It is hard to find out they are important releases in
this dataset.

5. DISCUSSION
5.1 Effectiveness of Product Evolution Tree
The result shows that 70 to 100% of edges without labels and
53 to 92% of edges with labels are consistent with the actual
evolution history. Almost all of the latest products of each
branch are represented as leaf nodes, except OpenBSD-2.1
in Dataset 6.

One of major error patterns in Product Evolution Trees is
P2. P2 is not a serious problem since edges connecting prod-
ucts between branches usually have larger cost than edges
in a branch. Therefore, developers could easily recognize
branches in a tree, even if their connections are not correct.

Another major error P3 is a counterexample for our hypoth-
esis that “source code is likely added”. We found two major
reasons by analyzing the source code where a P3 appeared.
The first reason is that refactoring such as class splitting and
merging have been applied. Techniques for detecting refac-



FreeBSD-3.0

FreeBSD-2.2

 -119(*P3)

FreeBSD-2.1

 -119

FreeBSD-2.0.5

 -390

FreeBSD-2.0

-231(*P3)

OpenBSD-2.1

OpenBSD-2.0

 -1000

NetBSD-1.2.1 NetBSD-1.3
-567(*P5)

NetBSD-1.2
-1147(*P2)

-1564

NetBSD-1.1

 -383

NetBSD-1.0

 -309

NetBSD-0.9

 -95

NetBSD-0.8

 -195

4.4-BSD lite2

-255(*P2)

4.4-BSD lite

-117(*P3) -141

Figure 7: A Product Evolution Tree for Dataset 6

toring [23] may be helpful to remove incorrect labels caused
by this reason. The second reason is non-essential changes
[10]. Non-essential changes such as deleting dead code affect
a large number of lines of code, while they are less important
than other modification tasks such as feature enhancement.
We can conjecture some cases that source code is decreased,
but P3 was at most 20% (3 of 15 in Dataset 6) of extracted
edges in our case study. Hence, our method for determining
the direction still worked effectively. It should be noted that
we did not use information of the release dates since they
are not always available. If release dates are available, all
evolution direction would be correctly extracted if edges are
correct.

Our approach always extracts n−1 edges for n product vari-
ants as guaranteed by the algorithm. This is much smaller
than n(n − 1)/2 comparison required if the relationships
among the products have been completely lost. Even if the
tree included wrong edges, most of the wrong edges connect
somewhat related versions. Therefore, the tree would reduce
the number of product pairs to be compared by developers.

A tree cannot have closed paths; as a consequence, we hardly
detect merging of software like Dataset 6. However, merging
is not so frequent compared with forking, as shown in Fig-
ure 1. Since we could detect many forking in the case study,
another analysis technique could be built to detect merging
in the tree.

Although our approach can be applicable to arbitrary source
code, intermediate versions are important clues to recover an
evolution history. In Dataset 4, although several incorrect
edges between branches (P2 instances) are included, other
edges are completely detected. This is because minor re-
leases in a single branch have small changes. In Dataset 1,
a large number of lines of code is changed between two ma-
jor releases; as a consequence, our approach extracted one
wrong direction. A full collection of products may also be a
cause of incorrect edges of P1 pattern, since two successive

products are too similar to each other. We believe this is
not a problem since developers can see similarity between
products by a cost label.

From the shape of the Product Evolution Tree, developers
can learn where is the starting point of the evolution and
where they branched. Value of the cost function also pro-
vides hints to understand an evolution history. If the cost of
an edge shows very small value than surrounding ones, there
is only a slight difference and we can avoid comparing them.
If a vertex has three edges and one of them has a higher cost
than others, the high cost edge may indicate branching and
others may indicate the mainline, respectively.

A Product Evolution Tree does not directly provide com-
monality and variability among products, but it will allow
developers to use several analysis techniques. For exam-
ple, Hashimoto et al. proposed to track change of source
code in an evolution history [4]. They searched code clones
in branches and mapping nodes of Abstract Syntax Tree
among versions. Using the technique, the origin of source
code can be estimated in the Product Evolution Tree. Ru-
bin et al. proposed to search product features using the
differences of source code [19]. Comparing the latest ver-
sions selected from a tree would be effective for developers
to search features in a particular version.

We should discuss about scalability. To analyze Dataset 2,
that is the largest dataset in this study, a machine equipped
with two Intel Xeon E5507 processors (2.27 GHz, 4 cores)
and 24GB RAM took about one day for analysis. We believe
that it is reasonable cost for developers since product line
analysis is unlikely an urgent task. In addition, file similar-
ity and term frequency vectors can be computed in parallel.
Furthermore, they are reusable for future analysis. For ex-
ample, if new products are added, we can incrementally re-
construct a new Product Evolution Tree by comparing only
new products and existing products.

5.2 Threats to Validity
Our assumption is that “two successive products are very
similar to each other”. On the other hand, developers may
modify large amount of code and products might not be very
similar to each other. The assumption is not always true but
satisfied between many versions in our datasets.

Our algorithm for constructing the Product Evolution Tree
is language-independent. However, all of the open source
projects we have used in the case study are written in C.
Source files in the datasets are well organized according to
their functions. As a result, the number of edited files re-
flects the number of edited features; in other words, the num-
ber of similar files correctly reflects the distance between ver-
sions. If files are not clearly separated, our approach could
be applied to such a program by dividing source code into
functional unit such as subroutine or procedure.

Datasets 1, 2, 3 and 4 contain only PostgreSQL. Since there
are some overlapped products, average accuracy of the re-
sults may be affected by source code of PostgreSQL than
other projects. This threat is easily removed by additional
experiments, since our tool needs only source code as input.



We have used a single threshold 0.9 in the case study, which
is determined by a small preliminary experiment. While it
works for 6 datasets, a different threshold may be better for
a different dataset.

6. CONCLUSIONS
Constructing SPLs from existing software products is be-
coming an important activity. In this paper, we proposed
an automatic extraction of a Product Evolution Tree to help
developers to understand evolution history of products. Our
approach depends on only source code of products and con-
nects similar software products based on the number of sim-
ilar files. We have applied our tool to 6 datasets including
several open source projects. As a result, 53 to 92% of edges
are correctly recovered. The result is promising, since we can
identify branches and the latest versions of products using a
Product Evolution Tree, even if the tree included incorrect
edges.

In future work, we must investigate whether the correctness
is accurate enough for developers to analyze software prod-
ucts or not. In addition, we would like to try automated
detection of software merge, so that we can extract a com-
plete evolution history for arbitrary projects.
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