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ABSTRACT
Visualizing collaborations of objects is important for devel-
opers testing and debugging an object-oriented program.
Many techniques and tools are proposed to visualize dy-
namic collaborations involved in an execution trace of a sys-
tem, however, some execution trace is too large to be transe-
formed into a single diagram. In this paper, we propose a
novel approach to efficiently detecting phases, or high-level
behavioral units of interest to developers, using a LRU cache
for observing a working set of objects. Our idea is based on
the nature of object-oriented programming; a phase starts
with preparing objects for the phase and ends with destroy-
ing unnecessary objects. Our technique uses a LRU cache
for objects to detect a phase transition if the cache is fre-
quently updated. We have applied our approach to two in-
dustrial applications and found that our approach detects
feature-level phases without the deep knowledge on target
applications.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Tracing

General Terms
Algorithm, Experimentation

Keywords
phase detection, dynamic analysis, execution trace, Java
program

1. INTRODUCTION
Visualizing collaborations of objects is important for devel-
opers testing and debugging an object-oriented program.
This is because understanding the behavior of an object-
oriented system is more difficult than understanding its struc-
ture [1, 27], and because collaborations of objects provide a
larger unit of understanding than classes [16]. Many tech-

niques and tools are proposed to visualize dynamic collabo-
rations involved in an execution trace [1, 5, 7, 13, 22, 24].

An important issue in this research area is how to handle a
huge amount of events included in an execution trace. One
approach is summarizing an execution trace [7, 14]. Another
is visualizing an overview of a trace using zoom-in/out func-
tionality [13] or a new viewer named Circular Bundle View
[4]. Shimba [22] and JIVE [5] provides query-based interface
for visualizing events of interest to developers.

We propose a phase detection approach to dividing a long
execution trace into several phases before such summariza-
tion and visualization. A phase relates to what the program
is doing at a high level, e.g. reading input, processing a
command, accessing a database, waiting for a connection,
or computing some set of values [15]. Our method identifies
a phase as a consecutive sequence of runtime events. Some
phase corresponds to a feature, which is a realized func-
tional requirement of a system [6, 18]. Some other phase
may represent a minor phase, or one of the tasks to achieve
a feature.

Detecting phases from an execution trace helps developers
focus on a small portion of the execution trace. For exam-
ple, a bug report such as “this program crashed during the
login phase” indicates a good clue for developers. Cornelis-
sen reported that filtering out set-up and tear-down phases
could improve the readability of a sequence diagram gener-
ated from an execution trace of a unit test [3]. Cornelissen’s
work is based on the naming convention and the behavioral
patterns of JUnit testing framework, therefore, it is hard to
apply other general applications.

We propose a novel approach to detecting phases involved
in execution traces. Our technique is based on the nature
of object-oriented programs; many objects are created to
achieve a task and most of the objects are destroyed after
the task [10, 25]. We employ a LRU cache for observing ob-
jects that are working for the current phase; if the cache is
frequently updated, we recognize that a new phase is begin-
ning and preparing objects for the new phase. Our goal is a
kind of feature location [6] in an execution trace. This is dif-
ferent from phase detection techniques in code optimization
and performance analysis area [9, 12, 15].

Our approach does not require the deep knowledge on a tar-
get system. As a case study, we have analyzed several use



case scenarios on an industrial system. We found that if we
divided an execution trace into 10 phases, 8 of 10 detected
phases are correct on average; they covers 93% of feature-
level phases and 48% of minor phases in features. The de-
tected phases are good clues for developers to investigate
the execution trace. We have also analyzed five programs
implementing the same specification developed in a training
program of software development. We found that the phases
detected from an implementation are similar to the phases
detected from another implementation. The result shows
our approach is insensitive to the implementation detail of
a system.

We integrated the approach into Amida, our sequence dia-
gram visualization tool [24]. Amida automatically detects
phases in an execution trace and visualizes each phase as a
sequence diagram. Amida also implements several rules to
detect loops and recursive calls in execution traces so that
a phase is visualized as a compact diagram.

The contributions of this paper are following:

• We propose a lightweight phase detection approach
using a cache algorithm. This approach divides an
execution trace into a sequence of phases. Our detec-
tion approach is based on the nature of object-oriented
programming; a phase creating and destroying a large
number of objects. Each of output phases corresponds
to a feature or one of tasks to achieve a feature.

• We have applied our approach to an industrial appli-
cation. We have recorded execution traces for four
use-case scenarios of the system. We found that if we
divided an execution trace into 10 phases, 8 of 10 de-
tected phases are correct on average; they covers 93%
of feature-level phases and 48% of minor phases de-
scribed in use-case scenarios. The detected phases are
good clues for developers to investigate the execution
trace.

• We also applied our approach to five programs imple-
menting the same specification developed in a train-
ing course of software development. We have executed
the one use-case on them and compared the resultant
phases in the execution traces. We found that the
phases detected from an implementation are similar
to the phases detected from another implementation.
The result shows our approach is insensitive to the im-
plementation detail of a system.

• We have implemented our analysis for Java programs
using JVMTI. The approach is integrated into Amida,
our sequence diagram visualization tool. Amida en-
ables developers to visualize the behavior of a feature.

The rest of this paper describes the detail of our phase detec-
tion approach. Section 2 describes the definition of phase.
Our phase detection algorithm is presented in Section 3.
Section 4 shows two case studies on industrial applications.
In Section 5, we describe the conclusion and future direction
of the research.

2. BACKGROUND

Visualization of Dynamic Behavior. Visualizing collab-
orations of objects is important for developers testing and
debugging an object-oriented program. In general, object-
oriented programs are difficult to maintain because of dy-
namic binding of method calls [27]. While collaborations of
objects provide a larger unit of understanding than classes
[16], reverse engineering and understanding the behavior of
an object-oriented system is more difficult than understand-
ing its structure [1].

To support understanding the dynamic behavior of a pro-
gram, many tools are proposed to visualize dynamic col-
laborations in a program [1, 5, 7, 13, 22, 24]. An important
issue in this research area is how to handle a huge amount of
events included in an execution trace. We categorize related
work into three approaches.

One approach is summarizing a whole execution trace. Hamou-
Lhadj proposed a utilityhood function to filtering out utility-
like method calls that are less important in general [7]. Reiss
proposes to compress an execution trace into a compact
representation [14]. Several visualization tools visualize re-
peated method calls in a compact style [1, 13, 24].

Another approach is visualizing an overview of a trace. Pauw
uses zoom-in/out functionality [13]. Cornelissen proposes a
new viewer named Circular Bundle View [4]. These views
allow developers to investigate a trace in a top-down style.

The third approach is visualizing only method calls of in-
terest to developers. DRT, a design recovery tool, supports
automatic selection of method calls related to a user action
in graphical user interface [2]. Shimba [22] and JIVE [5] pro-
vides query-based interface for visualizing events of interest
to developers. Sharp proposes an interactive exploration of
UML sequence diagram using both zooming and various fil-
tering facilities [19]. Briand developed a tool to visualize
only method calls related to Remote Method Invocation in
a distributed system [1].

We propose a novel phase detection technique to dividing a
long execution trace into several phases before such summa-
rization and visualization described above. Our technique
is involved in the third approach; it enables developers to
visualize and investigate only a small portion of an execu-
tion trace of interest to the developers. Our technique can
collaborate with the previous approaches for visualization,
for example, we have integrated the technique to Amida, our
sequence diagram visualization tool [24].

Phase Detection. Our phase is defined as a consecutive
sequence of runtime events. Some phase corresponds to a
feature, which is a realized functional requirement of a sys-
tem [6, 18]. Some other phase may represent a minor phase,
or one of the tasks to achieve a feature.

In this paper, a feature-level phase denotes a phase corre-
sponding to an execution of a feature. A minor phase de-
notes a phase that is one of the tasks to achieve a feature.
When we execute a program according to a use case sce-
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Figure 1: Caller/Callee Objects in a use-case sce-
nario of an industrial system. The execution trace
comprises five feature-level phases: login, three
steps to update a database record and logout.

nario that is a sequence of features, we get an execution
trace including the corresponding feature-level phases. Each
feature-level phase involves a sequence of minor phases. Al-
though a minor phase may involve its sub-phases, our main
goal is to extract feature-level phases and minor phases de-
scribed in use-case scenarios.

The phased behavior of a system is easily visualized with
a zoom-out view [13]. Figure 1 is an example trace of the
phased behavior in an industrial system we have used in the
case study. The x-axis of the figure represents a sequence
of events. The y-axis plots object IDs of method caller and
callee for each method call events. This figure clearly shows
that different objects work in the different phases. Develop-
ers can easily find phases in the view, however, it is difficult
to manually divide the trace into phases without the knowl-
edge of the system.

We propose an automatic phase detection technique using a
LRU cache for observing working objects. Our approach is
based on two basic hypotheses in object-oriented program-
ming:

• Many objects are created to achieve a task and most of
them are destroyed after the task [10, 25]. At the be-
ginning of each phase, new objects are created for the
new phase and some objects come from the previous
phase [11].

• The beginning and the end of a phase correspond to
a method call and a method return event, respectively.
For example, a login phase may start with main method
call and end with a return from processPassword.

We have chosen LRU cache rather than other algorithm since
LRU is effectively capture local objects working in a short
period [21].

Detecting phases is important to understand an execution
trace. Cornelissen reported that filtering out set-up and
tear-down phases could improve the readability of a sequence
diagram generated from an execution trace of a unit test [3].
Cornelissen’s work is based on the naming convention and
the behavioral patterns of JUnit testing framework, there-
fore, it is hard to apply other general applications.

@1 19 void LoginForm(5).<init>(){
@1 }
@1 20 boolean index_jsp(3).

_jspx_meth_html_text_0(Tag,PageContext){
@1 21 String LoginForm(5).getShimeiNo(){
@1 }
@1 }
@1 22 boolean index_jsp(3).

_jspx_meth_html_password_0(Tag,PageContext){
@1 23 String LoginForm(5).getPassword(){

:

@0 31 boolean java.util.ArrayList(492).add(java.lang.Object) {

Thread ID
Timestamp

Method Signature
Object ID

Figure 2: An example trace

Wang have proposed hierarchical dynamic slicing with an-
other definition of phase based on syntactic structure [26].
The syntax-based phase definition provides hierarchical phases
for developers to investiagete the detail of a fault using an
execution trace. However, the approach does not support
to find a phase corresponding to a feature described in a
use-case.

Our goal is a kind of feature location [6] while conventional
phase detection techniques proposed in program optimiza-
tion area also detect phases in the trace. These conven-
tional techniques for program optimization typically use a
fixed-length interval (e.g. 10 milliseconds [15]) since perfor-
mance optmization techniques are applied independently of
software features. Some optimization technique recognizes
a phase transition between two phases, that is an unstable
interval and hard to optimize [12]. Such a model is different
from our phase detection.

3. AUTOMATIC PHASE DETECTION
We propose a phase detection technique using a LRU cache
for recording objects that are working for the current phase;
if the cache is frequently updated, we recognize that a new
phase is beginning and preparing objects for the new phase.

Our detection method takes as input an execution trace E =
[e1, . . . , en] where ek corresponds to a method call event. ek

knows its caller object, callee object and the depth of the
call stack at the event. The method outputs phases as a
list of timestamps P = [t1, t2, ..., tp] where tk indicates the
beginning of each phase. For example, P = [1, 30, 50] for an
execution trace E indicates that the trace E contains three
phases [e1, . . . , e29], [e30, . . . , e49], [e50, . . . , en].

3.1 Recording Execution Trace
Our detection method takes as input an execution trace that
is a sequence of method call events. Each event has the
following attributes.

timestamp represents the sequential order of events.

calleeID denotes which object is called.



procedure DetectPhases(

in E = [e1, e2, · · · elast];

in c, w, m : integer; threshold : double;

out P : set of timestamp

(1) C = new LRUCache(c);P ← φ

(2) for t in [1 . . . last]

(3) updated[t] = update(C, et.caller, et.callee)

(4) if frequency(t, w) ≥ threshold

(5) P ← IdentifyPhaseHead(t, m)

(6) end if

(7) end for

function update(in C, callerID, calleeID): integer

1) b1 ← C.update(callerID) – b1, b2 = true if

2) b2 ← C.update(calleeID) – C did not contain the ID

3) if b1 ∨ b2 then return 1 else return 0

function IdentifyPhaseHead(in t, m) : integer

1) min = x = max(t − m + 1, 1)

2) while x ≤ t

3) if emin.callstack ≥ ex.callstack then min = x

4) inc(x)

5) end while

6) return min

Figure 3: Phase Detection Procedure

callerID denotes an object which calls a method.

threadID indicates a thread in which the event occurs.

callstack indicates the depth of the call stack for the thread.

These attributes can be retrieved from a sequence of method
call/return events. Figure 2 shows an example trace in tex-
tual format that is a part of the trace shown in Figure 1.
The example includes the end of initialization of forms and
the beginning of the login process.

For each method call, we record its object ID, method signa-
ture and thread ID. All threads share a common timestamp
generator in order to serialize all method call events. To ex-
tract all necessary information from a Java program, we are
using Amida profiler [24], an implementation of Java Virtual
Machine Profiler Interface (JVMTI).

3.2 Phase Detection Algorithm
Our phase detection algorithm is defined as the procedure
DetectPhases in Figure 3. The procedure takes as input an
execution trace E, parameters c, w, m and threshold. The
four parameters affect the granularity of detected phases.
An output P = [t1, t2, ..., tp] is a list of timestamps indicat-
ing phases in the trace.

The procedure works as follows:

Table 1: A LRU cache in our algorithm (presented
in Figure 3) updated by the example trace. The four
parameters are: c = 3, w = 2, m = 2 and threshold =
1.0.

t cache callstack updated freq phase

[1, 2, 4] 0 0 0
19 [1, 2, 5] 1 1 0.5
20 [2, 5, 3] 1 1 1.0 P ← 20
21 [2, 3, 5] 2 0 0.5
22 [2, 5, 3] 1 0 0
23 [2, 3, 5] 2 0 0

1. Observe the working set of objects using a Least-Recently-
Used (LRU) cache. The LRU cache C keeps a set of ob-
ject IDs. For each method call event, the cache C is up-
dated by update function that calls C.update(objID).

C.update checks whether C contains objID or not.
If C does not contain objID, C adds objID to the
contents, removes the least-recently-used object, and
returns true. If C contains the object ID, C.update
updates the timestamp for objID and returns false.

update function returns 1 if at least one of the caller
and callee objects is added to C. Otherwise, the func-
tion returns 0.

2. Detect a phase transition. We defined frequency of
the LRU cache as an indicator of a phase transition.

frequency(t, w) =
Σt

x=max(1,t−w+1)updated[x]

w

If the frequency(t, w) is higher than a given threshold
value, the procedure calls IdentifyPhaseHead function
to identify the beginning of a new phase.

3. Identify the head event of a phase. IdentifyPhaseHead
function goes back to a method call event that is likely
to trigger the new phase. The function identifies the
event who has the local-minimum depth of the call
stack (the latest one if tied) as the beginning of the
phase.

Table 1 shows how the example trace in Figure 2 update
a LRU cache. The column t indicates timestamp of each
events. The column cache represents object IDs contained
in the LRU cache. The column updated shows the return
value of the function update in the phase detection proce-
dure. The column freq indicates the value of the frequency
function described above. The column phase shows when
the output phase P is updated. In the example trace, the
event whose t = 20 results in the maximum update fre-
quency; it triggers IdentifyPhaseHead function. Identi-

fyPhaseHead function investigate the depth of the call stack
in recent 2 events (t = 19, 20) according to the parameter
m = 2, and select t = 20 as the head event of the phase.



Parameters. This algorithm has four parameters: threshold,
cache size c, window size w for calculating frequency and
phase search distance m that specifies how many events are
investigated as candidates of the beginning of the phase.

Cache size c specifies the size of the LRU cache C used
by DetectPhases. The minimum value is 1 and the
maximum value equals the number of objects in the
input execution trace, respectively.

A smaller cache is more sensitive to changes of a work-
ing set; it results in fine-grained (short) phases.

Window size w is used on computation of frequency(t, w).
The minimum value is 1 and the maximum value is the
size of the execution trace (last in the procedure De-

tectPhases), respectively.

A smaller window is more sensitive to changes of a
working set.

Frequency threshold threshold is compared with
frequency(t, w) to detect a phase transition. The min-
imum value is 0 and the maximum value is 1, respec-
tively.

A lower value is more sensitive to changes of a working
set.

Phase search distance m specifies how many events prior
to a phase transition point are investigated as candi-
dates of the beginning of the phase.

Computational Complexity. The computational complex-
ity is O(mn) where n is the size of an execution trace and
m is a parameter of the algorithm, respectively. This algo-
rithm needs memory for a cache whose size is specified by
the parameter c and a window whose size is max(m, w) to
keep the events. The algorithm is efficient since c, w and m
are much smaller than n.

Handling multithreaded programs. This algorithm can
handle a multi-threaded trace in two ways. The one is ap-
plying the algorithm for each thread. This is natural if devel-
opers would like to investigate a particular thread of control.
The other one is using a common LRU cache for all threads
and regarding the sum of the depth of all call stacks used in
the program as the depth of a virtual single call stack. In
the case study of this paper, we took the latter approach.

4. EXPERIMENT
To evaluate the effectiveness of our approach, we have com-
pared phases detected by our approach with phases man-
ually identified by developers. We have used four use-case
scenarios for an industrial system, and a use-case scenario
for five programs implementing the same specification. We
have also investigated how two parameters, cache size c and
window size w, affect the granularity of detected phases.

4.1 Settings
We have analyzed two Java applications as follows:

• Tool Management System is a web application devel-
oped by a software idustry. This system uses a back-
ground thread for managing server resources and three
threads for proceccing HTTP request. Its size is 37, 000
lines of code. The system uses JSP pages as user inter-
face; execution traces record all interaction among JSP
pages and business logic classes. We recorded four exe-
cution traces correspoinding to four use-case scenarios.

• Book Management System is a material for a train-
ing course of programming used in an industry. This
system is a stand alone application. This system is
also multi-threaded; a thread manages a database in
the background while a user operate the system. There
are five programs implementing the same specification.
We have executed the same scenario on each program.

Four scenarios for Tool Management System (T-1, T-2, T-3
and T-4) and a scenario for five implementation of Library
Management System (L-1 to L-5) are listed in Table 2. The
scenarios for Tool Management System involve several com-
mon features such as Login.

We have executed the scenario and recorded execution traces
from the systems with a JVMTI profiler [24]. We excluded
Java SDK library from the traces. It should be noted that
the execution of a feature in a trace may be not identical with
the execution of the same feature in another trace according
to their scenarios and implementation.

After the execution of the scenarios, we have askd develop-
ers of the systems to manually identify phases that represent
features in these execution traces. We also asked them to di-
vide a feature-level phase into minor phases that correspond
to tasks to achieve the feature．Table 3 shows the number of
method call events, objects, and manually identified phases
involved in the traces. We also show an example of minor
phases in an trace; the following is a list of 18 minor phases
to achieve 5 features involved in the trace T-1.

1. Login

(a) The system shows a login prompt.

(b) The system checks user name and password input
by a user (a manager).

(c) The system retrieves a list of available tools in the
company.

(d) The system shows a main interface.

2. Listing tools

(a) The system retrieves its management information.

(b) The system retrieves a list of requests from devel-
opers.

(c) The system retrieves a list of all tools.

(d) The system shows the lists to the user.

3. Maintenance view of a tool

(a) The system retrieves the detail of a tool specified
by the user.

(b) The system shows the detail.



Table 2: Use case sscanarios (feature-level phases) to record execution traces.

ID Scenario

T-1 Login → Listing tools → Maintenance view of a tool → Updating the tool information → Logout
T-2 Login → Listing tools → Maintenance view of a tool → Updating the tool information

→ Cancelling the edit → Logout
T-3 Login → Listing tools → Maintenance view of a tool → Logout
T-4 Login → Searching tools → Maintenance view of a tool → System Shutdown
L-1,2,3,4,5 Login → Showing mylist → Adding a new book → Registering a new book

→ Showing booklist → Searching books → Borrowing a book
→ Showing the detail of a book → Returning a book → Marking a book
→ Unmarking a book → Showing browwinglist → Logout → Login as a new user → Logout

Table 3: Execution traces and number of phases detected by developer in those traces.

System ID #events #objects #feature-level phases #minor phases

Tool Management System T-1 32416 546 5 18
T-2 30494 524 6 19
T-3 26603 438 4 14
T-4 15909 237 3 10

Library Management System L-1 3573 261 15 52
L-2 3371 272 15 51
L-3 3797 286 15 51
L-4 3862 300 15 51
L-5 4506 341 15 64

(c) The system also shows commands for maintenance.

4. Updating the tool information

(a) The system retrieves the detail information of the
tool.

(b) The system registers the updated detail informa-
tion to the database.

(c) The system shows the updated detail.

(d) The system shows commands for maintenance again.

5. Logout

(a) The system records that the user logged out.

(b) The system shows a logout message to the user.

(c) The system cleans up all allocated resources.

We have applied our method to detect phases with various
parameter settings and compared the detected phases with
the manually identified phases. We fixed two parameters:
threshold = 0.1 and m = 700 because these parameters are
less effective on the number of detected phases in all software
we have tried (including various industrial and open-source
software).

The other two parameters, cache size c and window size w,
affect the granularity of detected phases. To detect phases
from traces of Tool Management system, we varied cache size
c from 10 to the number of objects by 10. And we varied
window size w from 10 to 200 by 10 since a large window
(w > 200) did not affect the result. To detect phases from
traces of Library Management System, we varied cache size

c from 10 to 350 by 10 since the traces involves at most 350
objects. And we varied window size w from 10 to 300 by
10. Therefore, we have computed phases with 1200 settings
for each trace of Tool Management System, 1050 settings
for each trace of Library Management System. We took less
than five minutes to compute all conbination of parameter
settings and exectuion traces on a workstation whose CPU
is Xeon 3.0 GHz.

We have detected phases for each trace and collected the
number and location of output phases. We have compared
the detected phases with the manually identified phases. We
evaluated the result based on recall and precision calculated
as follows:

precision[%] =
|P ∩ Manual|

|P | , recall[%] =
|P ∩ Manual|
|Manual|

P is a set of output phases detected by our method, and
Manual is a set of phases manually identified by developers,
respectively.

4.2 Result
4.2.1 The Number of Output Phases
This section shows how two parameters, cache size c and
window size w, affect the granularity of detected phases.
Because of the limited space, here we show only the detailed
result of the trace T-1.

Figure 4 shows the number of detcted phases in the trace
T-1 for each parameter configuration. A smaller cache size
leads frequent cache update, therefore, our procedure out-
puts smaller (shorter) phases. A smaller window size also
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Figure 4: The number of detected phases in the
trace T-1 for each parameter setting.

outputs smaller phases since a small window size value re-
gards a small number of new objects as a phase transition.

Figure 5 shows the effect of a single parameter. The top
figure shows the result from various cache size c and the
fixed window size w = 50. A dot plotted at (x, y) indicates
that the xth method call in the trace is identified as a phase
transition when the cache size is y. Similarly, the bottom
figure shows the result from various window size w and the
fixed cache size c = 300.

A gray bar denotes a feature-level phase transition event
that is automatically detected by our method and manu-
ally specified by developers. A box denotes a minor phase
transition event that is also is detected by both our method
and developers. The other dots include false positives of our
method and phases that are not recognized by developers.

We would like to note that the result of our phase detection
is stable. If we kept one parameter as a constant value and
decreased another parameter, the change always divided a
phase to two sub-phases.

In general, a LRU cache is frequently updated at different
timestamp if parameters are changed. Nevertheless, our al-
gorithm identifies the same event as the phase head using
the depth of a call stack. We found that our approach be-
come unstable when a parameter is extremely small (e.g.
cache size c ≤ 20).

4.2.2 Recall and Precision
This section shows the recall and precision of our approach.
According to the limited space, here we show the detailed
result of the trace T-1 and the summary for all traces.

Figure 6 shows the average recall and precision for all pos-
sible parameter settings that result in the same number of
phases in the trace T-1. The x-axis represents the number
of phases detected by our approach. “Precision(All)” indi-
cates the average precision of all parameter settings that
result in the same number of output phases. Our approach
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Table 4: Average recall and precision for various pa-
rameter configuration that detects the same number
of phases.

Tool Management System
#phases Recall(Feature) Recall(All) Precision

5 0.56 0.39 0.93
10 0.90 0.48 0.80

Library Management System
#phases Recall(Feature) Recall(All) Precision

10 0.24 0.20 0.99
15 0.53 0.29 0.98
20 0.45 0.38 0.96

shows high precision when the number of output phases are
smaller. Parameter settings that result in precise phases
(precision 100%) are indicated by a gray region in Figure 4;
the number of output phases is equal to or less than 8 and
a parameter is not extremely small.

“Recall(Feature)” indicates how much feature-level phases
are detected. “Recall(All)” is calculated for minor phases.
Both increase with the number of output phases. However,
recall didn’t reach 100%: In this case, the maximum “Re-
call(Feature)” is 80%. Our method never detected the Lo-
gout phase with any parameter settings. This is because
the Logout phase comprises an extremely small number of
objects and method call events. In other case, we also found
that our approach is hard to detect a minor phase that is the
head of a feature-level phase if the minor phase is extremely
small, e.g. an initalization phase of the feature.

We summarized the result for all traces based on recall and
precision. Table 4 shows the average recall and precision
for all possible parameter configuration except for extremely
small parameters, that results in 5 or 10 phases from four
traces of Tool Management System, and result in 10, 15 or
20 phases from five traces of Library Management System.

If we got 5 phases with some parameters (arbitrary pair of
cache and window size) in one of the four execution traces
of Tool Management System, 93% of them are meaning-
ful for developers (7% are false positives); they covers 56%
of the features and 39% of the minor phases. 10 phases
involve 8 correct phases and 2 false positives on average.
This result shows that developers can apply our phase de-
tection approach without the knowledge on a target system
and parameter configuration. Although our approach does
not cover all of the feature-level and minor phases, the high
precision is important for developers to use the result to in-
vestigate the execution trace. Our approach detects a phase
that is not a feature-level phase, but such a phase is likely to
a minor phase that is still a meaningful unit for developers.

4.2.3 Comparing Different Scenarios
Here we compare the phases detected with the same param-
eter setting, cache size c = 100 and window size w = 50, in
two traces T-2 and T-3 from Tool Management System.

Login

Feature

Listing tools

Maintenance of a tool

T-2 T-3

Logout

Login

Listing tools

Maintenance of a tool

Updating 

the tool information

Cancel the edit

Logout

Feature

Figure 7: Phases of two traces from Tool Manage-
ment Systems with parameters c = 100 and w = 50.
A rectangle represents a detected phase, a horizonal
line represents a manually identified phase.

Figure 7 shows 7 phases in T-2 and 6 phases in T-3 we have
detected. In this case, we have no false positives; all detected
phases correspond to minor phases. A rectangle represents
a detected phase, a horizonal line represents a manually in-
dentified phase. For example, our method detected 3 phases
in the first feature-level phase “Login” ; the first one corre-
sponds one minor pahse“The system shows a login prompt”,
the second one corresponds two minor phases “The system
checks user name and password input by a use” and “The
system retrieves a list of available tools in the company”,
and the third one corresponds one minor phase “The system
shows a main interface”.

The two traces execute the same features but use different
methods and objects in the feature-level phases. Our ap-
proach detected the same features involved in the different
use-case scenarios.

4.2.4 Comparing Different Implementation
We have compared the phases detected with the same pa-
rameter setting in five traces of the five implementation of
Library Management System. Figure 8 shows the phases
detected with the paramters: cache size c = 150 and win-
dow size w = 150. Horizontal lines indicates the beginning of
feature-level phases manually identified by developers. Each
feature-level phase comprises 2 to 6 minor phases. A vertical
bar is one phase detected by our method. There are no false
positives in this case.

It should be noted that the internal structure of these pro-
grams are different from each other, nevertheless, our tech-
nique detected the similar phases. This result shows that
our approach is insensitive to the implementation detail of
a system. This stability is important property for develop-
ers who modify a program (e.g. in debugging process) since
it allows developers to compare traces before and after the
modification.

4.3 Discussion

Threats to validitiy. Our case study reflects the industrial
environment. We have used the industrial systems and use-
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Figure 8: Detected phases in five traces of Library
Management Systems with parameters c = 150 and
w = 150.

case scenarios written by the developers of the systems.
However, the target domain is limited to enterprise appli-
cation that interacts with databases. Both systems are im-
plemented as a multi-threaded program, however, the use-
case scenarios include no descriptions about the concurrent
user-interaction. Therefore, we need further investigation
of multi-threaded programs with concurrent interaction sce-
narios and other programs in different domains.

We have recorded execution traces excluding Java standard
library since phases are characterized by application-specific
objects rather than generic objects. This filtering may af-
fect the result, however, recording all objects is impractical
according to its runtime overhead.

Mapping features to phases. Our approach outputs only
a sequence of phases as a list of timestamps. Developers have
to manually map features in a use-case scenario to phases
in its execution trace. This is not so difficult but tedious

since the one scenario may generate various execution traces
because of different input and environment variable, for ex-
ample.

Therefore, we need a way to automatically assign appro-
priate names to phases. The problem is related to feature
location and traceability recovery. Koschke’s approach [8]
extracting feature-specific methods is a promising approach
to extracting phase-specific methods. Rountev’s approach
[17] extracting variable names for objects may be effective
to extract names of important objetcs representing a phase.

Automated mapping will help developers testing and debug-
ging a program since developers can recognize what they are
testing and what the program is doing in terms of features.

Tool Integration. We have integrated the approach into
Amida, our sequence diagram visualization tool [24]. Figure
9 is a screenshot of Amida visualizing a sequence diagram of
a phase “Maintenance view of a tool”. The diagram shows
only 40% of method call events in the whole trace. Although
we have no prior knowledge on the system, we could filter
out the other phases from a sequence diagram.

Our phase detection maybe effectively collaborate with other
visualization approaches such as Circular Bundle View [4],
feature interaction analysis [11, 18] and hierarchical dynamic
slicing [26]. Applying execution reduction [23] before our
phase detection is also a promising collaboration to analyze
a multi-threaded program.

5. CONCLUSIONS
We proposed a novel approach to efficiently detecting phases,
or high-level behavioral units of interest to developers, using
a LRU cache for observing a working set of objects. Our al-
gorithm enables developers to investigate a small portion of
an execution trace. The approach is lightweight and easy to
implement; the technique can collaborate with visualization
tools that handle a large execution trace.

We have applied our approach to industrial systems. We
found that our approach detects features and their subtasks
as phases without the deep knowledge on target applications
and parameter settings.

In future work, we would like to investigate a way to au-
tomatically map features in a scenario to phases in its ex-
ecution trace. We are also planning to investigate how the
algorithm work in concurrent systems other than enterprise
systems. While we are using a fixed-size LRU cache, we
are also interested in a cache adaptation approach that is
proposed to improve the performance of a system [20].
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Figure 9: A screenshot of Amida visualizing a phase “Maintenance view of a tool” extracted by our phase
detection algorithm.
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