
Title On the Effectiveness of Accuracy of Automated
Feature Location Technique

Author(s) Ishio, Takashi; Hayashi, Shinpei; Kazato,
Hiroshi et al.

Citation

Version Type AM

URL https://hdl.handle.net/11094/51564

rights

© 2013 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future
media, including reprinting/republishing this
material for advertising or promotional
purposes, creating new collective works, for
resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work
in other works.

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

On the Effectiveness of Accuracy of
Automated Feature Location Technique

Takashi Ishio∗, Shinpei Hayashi†, Hiroshi Kazato‡, Tsuyoshi Oshima§
∗Osaka University, Osaka 565–0871, Japan Email: ishio@ist.osaka-u.ac.jp

†Tokyo Institute of Technology, Tokyo 152–8552, Japan Email: hayashi@se.cs.titech.ac.jp
‡NTT DATA INTELLILINK CORPORATION, Tokyo 104–0052, Japan Email: kazatoh@intellilink.co.jp

§NTT Software Innovation Center, Tokyo 180–8585, Japan Email: oshima.tsuyoshi@lab.ntt.co.jp

Abstract—Automated feature location techniques have been
proposed to extract program elements that are likely to be
relevant to a given feature. A more accurate result is expected
to enable developers to perform more accurate feature location.
However, several experiments assessing traceability recovery have
shown that analysts cannot utilize an accurate traceability matrix
for their tasks. Because feature location deals with a certain type
of traceability links, it is an important question whether the same
phenomena are visible in feature location or not. To answer that
question, we have conducted a controlled experiment. We have
asked 20 subjects to locate features using lists of methods of
which the accuracy is controlled artificially. The result differs
from the traceability recovery experiments. Subjects given an
accurate list would be able to locate a feature more accurately.
However, subjects could not locate the complete implementation
of features in 83% of tasks. Results show that the accuracy of
automated feature location techniques is effective, but it might
be insufficient for perfect feature location.

Index Terms—feature location, impact analysis, program com-
prehension, human factor

I. Introduction

Feature location is a program understanding phase in soft-
ware maintenance. Afeaturerepresents a functionality that is
defined by requirements and which is accessible to developers
and users [1]. Locating the current implementation of a feature
in source code is important for developers to perform various
maintenance tasks such as enhancement, bug fixing, and
refactoring related to the feature. Mäder et al. reported that
developers who know source files related to requirements can
produce a software change more efficiently [2]. Therefore,
feature location in this paper denotes a phase to find code
snippets relevant to a feature to the greatest extent possible
before source code modification.

Although feature location is important, locating the com-
plete implementation of a feature is difficult for developers [3],
[4]. According to Wanget al. [3], given a feature, developers
use a keyword search tool to identify “seed” methods that are
likely to be relevant to the feature. For each seed method,
developers explore its source code and related methods to
validate whether the methods are actually relevant to the
feature or not. Although each step in the process seems simple,
developers must identify relevant methods before they can
ascertain the complete implementation of a feature. Further-
more, industrial developers are often asked to locate features

in an unfamiliar system using only its source code because an
enterprise application might outlive its development team.

To support developers locating a feature, various automated
feature location techniques have been proposed [1]. A typical
technique takes keywords or a description of a feature as
input and extracts a list of methods that are only relevant
to the feature. For example, Marcuset al. [5] proposed
an application of latent semantic indexing (LSI) to feature
location. Poshyvanyket al. [6] proposed the use of execution
traces of a target program to improve a ranking obtained
by LSI. Eaddyet al. [7] combined static analysis, dynamic
analysis and an information retrieval (IR) technique to extract a
better ranking. Developers can investigate source code using a
result of these techniques,e.g.the top 10 methods of a ranking.

A more accurate result of automated feature location tech-
niques is expected to enable developers to perform more
accurate feature location. However, a question remains as to
whether the accuracy of automated feature location techniques
actually contributes or not to the performance of developers.
This question arises from an observation reported by Cudde-
backet al. [8], Kong et al. [9] and Dekhtyaret al. [10]. They
asked analysts to do manual validation of a traceability matrix
between requirements and system tests. The results indicated
that, whereas analysts given a less-accurate traceability matrix
can identify many false positives and false negatives in the
matrix, analysts given an accurate traceability matrix tend to
decrease the overall accuracy of the matrix. If the same phe-
nomena are visible in feature location, then accurate automated
feature location results might be less effective for actual feature
location performed by developers.

To answer the question, we conducted an experiment with
20 subjects in three organizations. We asked the subjects to
locate a feature using a given list of methods by excluding
false positives from the list and by identifying false negatives
in the source code. To evaluate the influence of accuracy of
lists, we prepared a pair of tasks that specify the same feature
to be located but which provide different lists of methods. The
lists are derived artificially from the result of a textual search
using LSI, so that the lists have different accuracy, but have
the same length. The features and the result of LSI used in
this experiment are involved in the open dataset of the work
by Dit and Gethers [1], [11], although we have extended the

descriptions of features. Each subject used either an accurate
list or a less-accurate list for a feature.

Consequently, we obtained the following observations.

• Subjects given an accurate list located a feature more
accurately than subjects given a less-accurate list.

• Subjects missed one or more relevant methods in 83 of
100 tasks. Even if an accurate list covered the complete
implementation of a feature, several relevant methods
have been falsely recognized as false positives.

• Subjects improved precision of the final result by exclud-
ing false positives. However, the subjects did not improve
recall in several features.

Differently from the experiments on traceability recovery,
the result shows that developers can utilize results of auto-
mated feature location techniques. However, developers tend
to miss methods that are relevant to a feature if its description
is not clear sufficient for developers.

The contributions of this paper are summarized as follows.

• We have shown the manner in which accuracy of auto-
mated feature location techniques contribute to the accu-
racy of feature location tasks performed by developers.

• We have reported the manner in which we have prepared
feature location tasks from an existing benchmark. It is
useful for researchers to conduct a similar experiment
using the benchmark.

• We have made our dataset freely available so that other
researchers can replicate the experiment1.

The sections are organized as follows. Section II describes
related work and our research background. We state our
research questions in Section III. Section IV explains the
setting of our experiment. Section V shows the results of the
experiment. In Section VI, we discuss the observations and the
threats to the validity of our experiment. Section VII describes
conclusions and future work.

II. RelatedWork

In software maintenance, developers must understand the
unfamiliar source code of a target system. Koet al. [12]
reported that developers often use a keyword search tool to
identify source code relevant to their tasks. Wanget al. [3]
emphasized the process of manual feature location in software
maintenance. They also observed that developers often used a
keyword search tool to identify “seed” methods that are likely
to be relevant to features.

Several researchers reported that developers were unable
to identify the complete implementation of features. Wanget
al. [3] observed that each of recall and precision is less than
75% in their feature location tasks. Egyedet al. [4] conducted
an experiment of manual recovery of requirements-to-code
links. Compared with the correct links created by developers
of the programs, subjects recognized 95% of irrelevant pairs of
requirements and classes, whereas the subjects missed about
half of the relevant pairs. Lindvallet al. [13] conducted a
case study of manual impact analysis. The result shows that

1http://sel.ist.osaka-u.ac.jp/∼ishio/FL/

developers were able to predict only a half of classes to be
modified for the next maintenance release.

Various automated feature location techniques have been
proposed in the literature [1]. Some are comparable in recall
and precision to manual feature location. SNIAFL [14] shows
that its precision and recall are, respectively, 91% and 99%
for several small programs. CERBERUS [7] shows that its
precision and recall are, respectively, 75% and 73% in the
best configuration for a particular set of concerns. Getherset
al. [11] compared several impact analysis techniques in more
practical settings. The best analysis automatically identified
41–75% of methods modified for a feature request. Revelleet
al. [15] manually evaluated results of several automated fea-
ture location techniques. They reported that the best technique
identified 3 relevant methods among the top 10 methods.

Many researchers investigated whether developers can uti-
lize a result of automated techniques or not. Revelleet al. [15]
reported that the authors’ and several students’ validation
results agreed over 90% of the time for a certain feature.
The observation is promising but not generalizable because
it is a single case and the authors have identified only true
positives in the results rather than the complete implementation
of features. In traceability research, Cuddebacket al. [8]
investigated manual validation of the requirement traceability
matrix representing links between requirements and system
tests. They reported that analysts given an accurate traceability
matrix decreased the overall accuracy of the matrix. Konget
al. [9] analyzed the process of the traceability validation tasks.
Dekhtyar et al. [10] confirmed the observation by statistical
analysis. The analysis indicates that developers cannot utilize
accurate traceability links. Based on the results described
above, Cuddebacket al. [16] discussed a means of addressing
the inaccuracy of developers. Ghabiet al. [17] proposed
automated validation for traceability recovery.

In automated debugging research, Parninet al. [18] con-
ducted a controlled experiment to evaluate the usefulness
of automated debugging techniques. The experiment used
an artificially modified ranking derived from a result of an
automated technique. It showed that a ranking change did
not affect the performance of developers. Chatterjiet al. [19]
reported that developers were not able to use code clone
detection for bug fixing with no training in code clones. These
research efforts also indicated the importance of human study
to evaluate the actual usefulness of automated support for
developers.

In our experiment, we used LSI to extract a list of methods
relevant to a feature. LSI-based feature location was proposed
by Marcuset al. [5]. Poshyvanyket al. [6] combined dynamic
analysis with LSI to improve ranking. Binkleyet al. [20]
showed that identifier normalization is effective to improve
search results. The effectiveness of LSI was also confirmed
in fault localization. Beardet al. [21] reported that LSI can
recommend an appropriate starting point to locate a fault in
source code for 60 out of 63 bugs in a system. To keep our
experiment simple and easy to replicate, we have used a simple

TABLE I
Features, Tasks, and Their Accuracy

System Feature (Issue ID) # methods (Type) Task (Type) Precision Recall F-measure

jEdit

fJ0 (2122926) 1 J0 (example) 0.33 (1/3) 1.00 (1/1) 0.50

fJ1 (1747300) 13 (larger)
J1b (better) 1.00 (10/10) 0.77 (10/13) 0.87
J1w (worse) 0.40 (4/10) 0.31 (4/13) 0.35

fJ2 (2668434) 6 (smaller)
J2b (better) 0.60 (6/10) 1.00 (6/6) 0.75
J2w (worse) 0.30 (3/10) 0.50 (3/6) 0.38

fJ3 (1593464) 10 J3 (goldset) 1.00 (10/10) 1.00 (10/10) 1.00

muCommander

fM0 (311) 2 M0 (example) 0.33 (1/3) 0.50 (1/2) 0.40

fM1 (60) 32 (larger)
M1b (better) 1.00 (10/10) 0.31 (10/32) 0.48
M1w (worse) 0.80 (8/10) 0.25 (8/32) 0.38

fM2 (231) 6 (smaller)
M2b (better) 0.60 (6/10) 1.00 (6/6) 0.75
M2w (worse) 0.30 (3/10) 0.50 (3/6) 0.38

LSI approach that computes similarity among methods and the
description of a feature [11].

III. Research Questions

We have conducted a controlled experiment on feature
location using human subjects. We have defined a process
of feature location supported by an automated technique as
follows: given aninitial list of methods produced by an au-
tomated technique, a developervalidatesthe list by removing
irrelevant methods (false positives) from the list and by adding
missing relevant methods (false negatives) to the list. Ideally,
a validated list should include no irrelevant methods but all
methods relevant to a feature.

We formulated the following four research questions.

RQ1 Do better initial recall and precision engender better
performance in feature location by developers?

RQ2 Which option is more important for feature location,
initial recall or precision?

RQ3 How do developers spend time to validate a list of
methods?

RQ4 How does a validated list differ from its initial list?

We carefully set up feature locationtasksof several types;
each task is validation of an initial list of methods in a limited
time. To answer RQ1, we introduced two categories of tasks:
betterandworse. The initial lists of better tasks are accurate,
i.e., having better precision and recall values, than worse tasks.
We compared theF-measure of the validated lists between
those of better and worse tasks.

For a response to RQ2, we also introduced two categories
of tasks:precision-intensiveand recall-intensive. The initial
lists of precision-intensive tasks have high precision but low
recall; they are related to little false positives and many false
negatives. In contrast, the initial lists of recall-intensive tasks
have high recall but low precision. We comparedF-measures
of the validated lists between precision-intensive tasks and
recall-intensive tasks.

To answer RQ3, we have analyzed the activities of subjects.
Each subject is asked to input their judges in our Eclipse
plug-in. We have analyzed a series of judges with timestamps
to elucidate how they functioned and whether subjects had
sufficient time or not.

To answer RQ4, we have analyzed the manner in which
recall and precision are improved or degraded by validation
tasks.

IV. Experimental Setup

A. Features

The features for our study were prepared using an existing
change-history-based feature location benchmark [1]. This
benchmark is constructed using the information of changes in
revision control systems such as Subversion, and the related
tickets in issue tracking systems such as Trac or Bugzilla. The
benchmark provides a list of change requests including feature
requests and bug reports. Each change request is associated
with a list of methods modified to implement the change, or
a goldset. For objectivity, we have used the existing dataset.

The seven extracted features are shown in the left columns
of Table I. The symbol of a feature is used to identify the
feature in the remaining part of the paper. The Issue ID of a
feature indicates the identifier of the feature in the benchmark.

We have selected five features for the experiment from two
systems:muCommander and jEdit. We extracted alarger
feature and asmaller feature from each system to extract
precision-intensive and recall-intensive tasks.fJ1 and fM1 are
larger features, of which goldsets have more than 10 methods.
fJ2 and fM2 are smaller features, of which goldsets have fewer
than 10 methods. The featurefJ3 is extracted for checking the
cases in which subjects receive the true goldset having just 10
methods.

In addition to these five features, we have selected two
tiny features: fJ0 implemented in a single method andfM0

implemented in two methods. These features are used to
explain the process of feature location to subjects.

To use the benchmark for our experiment, we fixed two
problems in the benchmark as follows:

• Curation of goldsets. Some goldsets of the benchmark
include inappropriate methods. Because a goldset of a
feature is generated automatically from a change set of
source code in a revision history, it includes methods
that are irrelevant to the target feature if developers
commit multiple intentional changes at once,e.g., the
implementation of the feature together with a refactoring.
Additionally, if rename refactorings are performed after

muCommander Feature #231
Short Description
“Skip all” for errors that occur during a file transfer operation

Long Description
As suggested in the [http://www.mucommander.com/forums/
viewtopic.php?f=2&t=938 forums]: adding a “Skip all” button
when an error occurs in a multiple file move/ copy operation
would be a nice feature to have.

Feature Description
muCommander has a feature that copies/moves files selected by a
user. When a user tries to execute a copy, muCommander shows a
dialog to specify a destination directory. Pushing the Copy button
in the dialog starts a copy process. If an error occurred during the
copying of a file, then an error dialog shows a message and asks
the user to skip the file, retry to copy the file, or cancel the copy
process.
The new feature is “Skip All.” The dialog to specify a destination
directory has a new check box with the caption is “Skip errors.” If
a user checked the box, then muCommander automatically skips
a file if an error occurred, without showing a dialog. The error
message dialog also has a new button “Skip all.” If the button
is pushed, then muCommander shows no error dialog in further
errors, as “Skip errors” is checked.

Fig. 1. Descriptions of featurefM2.

implementing the feature, then some methods in the
goldset might no longer be found in the source code. We
have manually identified renamed methods and updated
such goldsets. It is noteworthy that the number of methods
in Table I reflects this manual refinement.

• Addition of extended descriptions. Some descriptions
in the benchmark do not describe the associated features
accurately. Because descriptions are submitted to an issue
tracking system by a requester of the feature, a gap sepa-
rates the description and the actually implemented feature.
So that subjects can correctly understand features from
their descriptions, we provided an extended description
for each feature in addition to the original description.
An example of the extended description is presented
as “Feature Description” in Figure 1. For all extended
descriptions, we used a single paragraph to describe the
basic behavior without the associated feature and another
paragraph to describe the target feature to be located. The
extended descriptions are based on the recorded changes
in the benchmark. We tried to explain all the recorded
changes although the original descriptions do not mention
some of them.

Each feature comprises the following elements: (1) a short
description in the benchmark, (2) a long description in the
benchmark, (3) an extended description, (4) a screenshot of
an execution, and (5) the goldset.

B. Tasks

From the extracted featurestasksare generated. A task is a
pair of a feature and an initial list of methods for the feature.
The goal of a task is to validate the initial list using source code
of a system and the descriptions of the feature. To normalize

Smaller feature

Larger feature

(Goldset)
size < 10

Better task

Worse task

(Goldset)
size > 10

Better task

Worse task

10

FP

FP

FP

Fig. 2. Generation ofbetter andworsetasks.

the effort of subjects, every task is associated with 10 methods,
except for example tasks.

We evaluate the performance of a task using precision,
recall, andF-measure for the initial list and the validated list.
Letting g, i and t be the size of a goldset, an initial list, and
true positives, respectively, then the initialF-measure is given
by the harmonic mean of precisiont/i and recallt/g:

F =
2 · precision· recall
precision+ recall

=
2t

g+ i
.

By eliminatingt using 2t = F · (g+ i), precision and recall can
be written in terms ofF, i andg.

precision =
F · (g+ i)

2i
=

F
2
·
{
1+

g
i

}
recall =

F · (g+ i)
2g

=
F
2
·
{

1+
i
g

}
In the experiment, we controlledF as an independent variable
and fixed i at 10. Then the tradeoff between precision and
recall is determined byg, where precision gets better for larger
features and recall does better for smaller ones.

We have generatedbetterandworsetasks for each feature.
The lists in better tasks include methods relevant to the features
(i.e., gold methods) to the greatest extent possible, whereas the
lists in worse tasks include several methods that are irrelevant
to the features (false positives). A notational example is shown
in Figure 2 to illustrate how a pair of tasks is generated from
the goldset of a feature. In the figure, a gray box and a white
box respectively represent a gold method and a false positive.
For smaller features having fewer than 10 gold methods,
generated better tasks have all the gold methods and some false
positives. In contrast, for larger features having more than 10
gold methods, generated better tasks have 10 gold methods.
The unused gold methods are regarded as false negatives.
Generated worse tasks have some gold methods and false
positives. We have injected false positives into worse tasks
until their F-measures become less than the thresholdFT . We
useFT = 0.40 to differentiate the number of false positives in
better and worse tasks clearly.

TABLE II
Task Assignment

Subject Organization 1st 2nd 3rd 4th 5th
1

Osaka University

J1b J2b M1w M2w J3
2 J2b J1w M1b M2w J3
3 J2w J1b M2b M1w J3
4 J1w J2w M1b M2b J3
5 M2b M1b J1w J2w J3
6 M1b M2w J2b J1w J3
7 M1w J2b J2w J1b J3
8 M2w M1w J2b J1b J3
9

Tokyo Institute of
Technology

J2b J1b M2w M1w J3
10 J1b J2w M1w M2b J3
11 J1w J2b M1b M2w J3
12 J2w J1w M1b M2b J3
13 M1b M2b J2w J1w J3
14 M2b M1w J2w J1b J3
15 M2w M1b J1w J2b J3
16 M1w M2w J2b J1b J3
17

NTT

J1b J2w M2b M1w J3
18 J2b J1w M2w M1b J3
19 M1b M2b J1w J2w J3
20 M2w M1w J1b J2b J3

The precision, recall andF-measure of the initial lists of
the generated tasks are shown in the right columns of Table I.
The tasks generated from larger features include a few false
positives but fail to capture many of gold methods. In contrast,
the tasks generated from smaller features cover almost all of
their goldsets, but include many false positives. Therefore, the
former and latter tasks are regarded respectively asprecision-
and recall-intensive.

We have used LSI to select gold methods and false positives
included in the initial lists. Instead of computing LSI result
by ourselves, we used the LSI result prepared by Getherset
al. [11], which is an extension of the benchmark for impact
analysis. In Gethers’s dataset, an LSI result for a feature
is a ranking of methods with contents similar to the long
description of the feature. We have selected an appropriate
number of gold methods and false positives from the top of
the ranking. For example,J1w includes a list of four gold
methods and six false positives. The gold methods have higher
similarity than the nine other relevant methods. The false
positives have higher similarity than other irrelevant methods.
The generated initial lists are sorted by their LSI ranking.

C. Subjects and Task Assignment

We recruited 20 subjects from three organizations of both
academia and industry. Subjects included 16 students of
software engineering and 4 industrial developers. Their Java
experience was widely distributed from zero to 16 years, with
a median of three years.

No subject knew the target systems. This situation is com-
mon in software maintenance tasks. Developers might have to
update legacy software developed by other teams.

Each subject examined the five assigned tasks in the order
presented in Table II. We carefully assigned the tasks for each
subject, satisfying the following constraints:

• Every subject examines the first and second tasks of the

Fig. 3. Screenshot ofFLPlayer.

same system followed by the third and fourth tasks of the
other system, and ends with the goldset task (J3).

• Every subject covers all of the five features.
• Every subject experiences all of the different types of

tasks: a better precision-intensive task, a worse precision-
intensive task, a better recall-intensive task, and a worse
recall-intensive task.

• Every task is examined by at least 10 subjects.

D. Environment

Subjects are given an Eclipse IDE installed with a special
view namedFLPlayer. We chose Eclipse as our environment
because of its publicity and familiarity to subjects.FLPlayer is
a view for validating a list of methods in Eclipse. A screenshot
of the view is presented in Figure 3. Subjects can see a list
of methods as a table in the view. When they double-click a
method in the view, a source code editor automatically opens
and moves to the definition of the method. After investigating
the source code, they answer whether the method isrelevant
or irrelevant to the feature, using the drop-down menu in the
second column of the view. For example, in the figure, at
least six methods are enumerated. Two of them are specified
as irrelevant. In addition, subjects can add a method that is
not listed in the view from the context menu of the method in
a source code editor.

For each task, every subject is given a printed document for
a task and Eclipse environment in whichFLPlayer is showing
the list of methods ordered by their LSI ranking. The document
included the descriptions of a feature, a screenshot, the same
list of methods in the same order as shown inFLPlayer,
and a quick reference guide of Eclipse andFLPlayer. The
subjects are not allowed to access other online materials such
as an issue tracking system. We did not provide the LSI
scores to subjects and used them just for the order of methods
because they might reveal which methods are injected as false
positives.

Eight laptop computers of the same model were used for
the experiment, each equipped with Core i5 processor (Intel
Corp.), 4 GB RAM, 256 GB SSD and a 12.1-inch LCD
monitor with WXGA (1280× 800) resolution. They execute
Eclipse 3.7.2 on Windows 7 (Microsoft Corp.) and JDK 1.7.0
without a network connection. Although each laptop has an
embedded pointing device, subjects were allowed to bring their
favorite devices.

E. Procedure

We operated the experiment three times: once for each or-
ganization. For the convenience of the subjects, each operation
is conducted at the location where they belong, using the same
instruments and procedure.

At the beginning of the operation, subjects were given
the following introduction in an hour, using a PowerPoint
presentation: (1) the purpose of the experiment and the goal of
feature location, (2) usage of Eclipse,e.g., showing hierarchies
of method calls and class inheritance relations, searching
references from/to a method, etc., (3) introduction to the
FLPlayer plug-in, (4) an exercise inmuCommander using
the taskM0, and (5) another exercise injEdit using the task
J0.

Ten minutes were given for each exercise. Then the answer
and the reason were explained. A method is relevant to a
feature if at least a single line of code in the method is
necessary to execute the feature, according to the definition
of goldsets in the benchmark. Although we initially arranged
the same configurations of the laptops for all subjects, they
were allowed to change them during the exercises to fit their
preferences. They were told that we close all editors in Eclipse
between sessions, but we do not change their preferences
settings.

Five sessions were conducted after the introduction. In each
session, the subjects performed a task in 30 min. At the end of
the session, they filled in a questionnaire to answer whether
they were able to understand the task, were given sufficient
time, and were confident with their answers. Between sessions,
they were asked to leave the room and have a break of about
10 minutes. We set up instruments for the next session during
that interval. After finishing all sessions, we asked the subjects
to fill in the questionnaire.

V. Results

This section presents a discussion of the results of our
experiment to answer the research questions formulated in
Section III. In this section,initial F-measureand validated
F-measurerespectively denoteF-measures of the initial lists
of tasks given to the subjects and of the resultant lists validated
by the subjects.

A. RQ1

In the experiment, each subject performed four tasks, two
of which start with better initial accuracy than the others.
We obtained 40 samples for each ofbetter and worse tasks.
Figure 4 is a box plot of validatedF-measure of better and

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Tasks

V
a

li
d

a
te

d
 F

−
m

e
a

s
u

re

M1 M2 J1 J2

Better

Worse

Fig. 4. Comparison of validatedF-measure betweenbetterandworsetasks.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Accuracy of Initial Lists

V
a

li
d

a
te

d
 F

−
m

e
a

s
u

re

Better Worse

Precision−intensive

Recall−intensive

Fig. 5. Comparison of validatedF-measure between precision-intensive and
recall-intensive tasks.

worse tasks. The task pairs are located on the horizontal axis,
where the white and gray boxes respectively correspond to
better and worse initialF-measure values. For all features,
we observed that manual validation of better tasks tends to
outperform worse ones.

To determine the performance of two kinds of tasks that
are significantly different, we performed pairedt-tests on
the validatedF-measure. The null hypothesisHb≤w

0 and the
alternative hypothesisHb>w

1 are formulated as described below.

• Hb≤w
0 : The average of validatedF-measure of better tasks

is equal to or less than that of worse tasks.
• Hb>w

1 : The average of the validatedF-measure of better
tasks is greater than that of worse tasks.

The p-value was 0.008876, which is sufficiently small to
reject Hb≤w

0 at the 1% significance level. We conclude that
a statistically significant difference exist in finalF-measure
between better and worse tasks. Subjects given a more accurate
list performed more accurate feature location.

It is noteworthy that the validatedF-measure is improved

Subject 3

8

11

9

10
1 2

34

6

75

12

13
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F
−
m
e
a
s
u
re

Subject 4

12345
6

7

8

11

9

10

12

Subject 5

1 2
6

8

11 5 3 4

10 9

Subject 7

8

9

10
12345

7 6

Subject 10

8

11 1234567

910

9

10
12

13
5

Subject 12

2 1

8

11 9

10
6

345

7

9

0 10 20 30

Elapsed (min)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F
−
m
e
a
s
u
re

Subject 13

8

9

10

11

12

13
1234567

0 10 20 30

Elapsed (min)

Subject 14

9

10

8
12

34567

0 10 20 30

Elapsed (min)

Subject 17

12
3456

7

8

9

10

11

0 10 20 30

Elapsed (min)

Subject 19

8

9

10
1 2

3

5 6

7 4

11

12

0 10 20 30

Elapsed (min)

Reject FP Reject TP Accept TP Accept FP Add FN Add TN

Fig. 6. Growth of accuracy during manual validation ofJ2w.

from the initial F-measure for all tasks except for taskM1b

and J3. The effect of validation is discussed in Section V-D.

B. RQ2

We split samples of better and worse tasks into two cat-
egories:recall-intensiveand precision-intensive. As a result,
20 samples were obtained for each combination of accuracy
and size of goldset. Figure 5 shows a box plot of validated
F-measure that compares the two categories. In both better
and worse tasks, we observed that tasks with recall-intensive
goldsets tend to outperform those with precision-intensive ones
in the validatedF-measure. It is noteworthy that our results
show that 12 participants completely identified a feature in one
or two tasks (17 tasks in total). All are recall-intensive tasks.

To determine whether the performance of tasks are signifi-
cantly different or not, we formulated the null hypothesisHp=r

0
and the alternative hypothesisHp<r

1 as shown below.
• Hp=r

0 : For the tasks with the same level of initialF-
measure, the median of validatedF-measure of precision-
intensive tasks is the same as that of recall-intensive ones.

• Hp<r
1 : For the tasks with the same level of initialF-

measure, the median of validatedF-measure of precision-
intensive tasks is less than that of recall-intensive ones.

We performed the Wilcoxon signed-rank test to the median
of validatedF-measure for the two categories of tasks. In both
tasks, thep-value was 9.537×10−07, which is sufficiently small
to rejectHp≥r

0 at the 1% significance level. We conclude that
a statistically significant difference exists in finalF-measure

between the categories. In other words, the initial recall is
more important than the initial precision.

C. RQ3

All subjects were able to classify all methods in initial lists
as either relevant or irrelevant in 30 min. We have analyzed
how subjects spent time for their tasks using the timestamps
of events recorded inFLPlayer. As a result, no significant
difference was found among subjects because of their different
backgrounds. No significant difference was found among tasks.
Most subjects finished their tasks in 20 min.

Figure 6 includes time plots showing evolution ofF-
measure values for each subject performing taskJ2w. The
numbers shown indicate the rank of methods in the initial list.
The added methods by subjects have numbers more than 10.
The goldset of this task consists of six methods. The initial
list of methods consists of three true positives and seven false
positives. Subjects must find three false positives in the source
code. Because the median value of the goldset size in the
dataset of Gethers [11] is six, we choseJ2w as a representative
task for locating feature enhancement requests. The following
six kinds of symbols are put on vertices corresponding to
operations of the subjects.
• △, ▽: rejection of false and true positives
• ⃝, ×: acceptance of true and false positives
• ⊕, +×: addition of false and true negatives
Although finalF-measure values varied among subjects, all

obtained finalF-measure values better than those of initial

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Precision

R
e

c
a

ll

M1b

M1w

M2b

M2w

J1b

J1w

J2b

J2w

J3

Better

Worse

Goldset

Fig. 7. Change in precision and recall.

ones (Finitial = 0.38) within 20 min. All of them found
at least two gold methods in the first 15 min. In addition,
seven subjects (Subjects 3, 4, 5, 10, 12, 13 and 17) selected
one or more false negatives. It is noteworthy that the⃝
and⊕ symbols tend to appear contiguously, which indicates
that when the subjects find one relevant method, they can
correctly distinguish true positives around the method, and
can sometimes even pick up false negatives.

Similarly, the△ symbols tend to appear contiguously in the
time plots. The subjects identified all seven false positives,
except Subject 5, who missed only one. It is noteworthy that
few ▽ symbols appear in the series, indicating that the subjects
can separate false positives from the list without losing true
positives.

A similar tendency is observed in the time plots of other
tasks, but we had to omit them from this paper because of
length limits.

D. RQ4

Figure 7 shows the degrees of improvement in precision
and recall for all treatments. Dashed, solid and dot-dash
lines respectively correspond to better, worse and goldset
tasks. It is readily apparent that most arrows are moving
rightward, for improving precision, remarkably in worse tasks.
This observation differs from the experiment conducted by
Cuddebacket al. [8], who confirmed a tendency that arrows
move to a diagonal line,precision= recall.

Precision was retained or improved in all tasks by most
subjects. The subjects created the precise (precision 1.00)
result in 68 of 100 tasks. In 82 tasks, precision is greater
than 0.8. The result indicates that subjects can exclude many
false positives from the initial lists.

However, recall has not been improved so much. For ex-
ample, false negatives ofM1b and M1w are not identified at

all except for a few subjects. This is true partly because the
feature is implemented by an abstract method and its many
concrete implementations. The abstract method is likely to be
sufficient to achieve the feature. The subjects did not identify
all concrete implementations.

In several tasks, many subjects exhibited decreased recall.
In M2b, several subjects falsely recognized one or two relevant
methods as irrelevant. Because each subject has chosen dif-
ferent methods as irrelevant, voting by several subjects can
eliminate these errors. However, we have observed that a
different understanding of a feature easily prevents developers
from recognizing some true positives as follows.

In J1b andJ3, many subjects falsely recognized a particular
group of relevant methods as false positives. The taskJ1b

asked developers to locate a feature that enabled users to
choose a shape of a marker shown in a window. Whereas
the previous implementation has a triangle marker, the new
feature supported new shapes such as a box and circle. The
feature is implemented as a new item to select a marker shape
in a preferences dialog and a new classShapedFoldPainter
for drawing new marker shapes. However, 7 of 10 subjects
recognized the methods in the new class as irrelevant, perhaps
because they understood that the feature simply modified the
preferences dialog.

In J3, the task described that the new feature enabled
users to choose file icons for a view from operating system
icons or default icons provided byjEdit. As a result, 13 of
20 subjects recognized severalgetDefaultIcon methods as
irrelevant because they were likely to have been basic behavior.
However, the methods are involved in the goldset because the
concept of “default icon” has been introduced for the feature.
In other words, the method names reflected the new feature,
whereas their source code implements the basic behavior.

In M1b and M1w, the original description included
an ambiguous phrase “the preferences dialog.” It
refers to class PreferenceDialog and its subclasses
GeneralPreferencesDialog and ThemeEditorDialog.
Also, 6 of 20 subjects falsely recognized a method of class
ThemeEditorDialog as a false positive because the dialog
class name differs from the other two classes.

VI. D iscussion

A. Accuracy of Automated Feature Location

We have shown that a more accurate list of methods enabled
subjects to perform more accurate feature location (RQ1).
That result emphasizes the importance of further research
efforts to improve the accuracy of automated feature location
techniques. Although a tradeoff exists between precision and
recall, developers manually improved precision rather than
recall (RQ2). As a consequence, a feature location technique
with higher recall is a more promising direction. In traceability
recovery experiments [8], [9], [10], no significant difference
was found between recall and precision. One possible reason
for this result is that subjects can understand features in detail
during their tasks by reading relevant methods in initial lists.
Because relevant methods are often connected by method call

relations, more relevant methods in an initial list might provide
a connected call graph that is easier to understand. How-
ever, system tests can be independently by natural language.
Therefore, validating a link in a traceability matrix might not
provide additional information about the manner in which
requirements and system tests are related mutually.

Higher recall might be achieved by a longer list of methods,
as evaluated in [11], [22]. In this experiment, developers
validated 50 methods during five sessions. In each session,
developers took about 20 min to validate 10 methods. If
automated feature location techniques generate a longer list of
methods, then both learning effects and fatigue might affect
the performance of developers. To utilize a longer list, an
additional support such as a keyword search for a list of
methods would be needed, as Parninet al. suggested for
automated debugging [18].

Although subjects located a complete implementation of a
feature in 17 of 100 tasks, many subjects falsely recognized
relevant methods as false positives. One reason is that a
target feature in a program is dependent on another feature
in the program. The goldsets included such methods in the
dependent feature because they are also modified to imple-
ment the target feature. However, subjects showed difficulty
determining whether such methods should be a part of a
feature or not. Allowing developers to categorize methods into
three categories as relevant, irrelevant, and marginal might be
effective to avoid the problem.

An insufficient description of a feature also prevents de-
velopers from accurate feature location. Each description of
a feature request recorded in an issue tracking system often
excludes the basic behavior of software without the feature
because the description is written by users or developers who
know other basic features of the software. To conduct our
experiment, we must manually extend the description of a
feature to enable subjects to distinguish the target feature from
basic features.

A clearer understandable description of a feature is im-
portant but challenging because a description might become
ambiguous if developers modified source code. For example,
one presumes a description that explicitly refers to classes
by their names,e.g.PreferencesDialog instead of a phrase
“the preferences dialog.” If a developer added a new subclass
of the class, the developer must inspect the description and
the feature implementation to ascertain whether the description
should be updated or not. This problem is similar tofragile
pointcut problem[23]. A pointcut is a predicate to identify
program elements in Aspect-Oriented Programming [24]. A
pointcut is fragile because a change in source code accidentally
affects a set of program elements selected by the pointcut. A
feature description might be more fragile because it is written
in natural language, whereas pointcut is a formal predicate.
As Mäderet al. [25] proposed for analysis of developers’ ac-
tivities affecting traceability links, some technique to maintain
consistency between feature description and source code might
be very useful.

Another means to improve recall is the use of interactive

feature location techniques such as [26], [27]. They can
recommend methods related to a method by which developers
focus so that developers can identify more false negatives in
source code. If the tools can provide an explanation of why
methods are recommended as relevant, then the tools might
be effective to avoid the accidental exclusion of true positives.

B. Threats to Validity

1) Internal Validity: The first threat to internal validity
is related to the feature location technique we used for the
experiment. To obtain lists of methods and to control their
accuracy artificially, we exploit the result of IR-based feature
location technique taken from the dataset of Gethers [11]. Be-
cause comparison of feature location techniques by precision
and recall is a common means of evaluation in the literature,
we expect that the IR-based technique can be replaced with
another as long as its result has comparable precision and
recall.

However, given a feature location technique for prioritizing
methods that are difficult for developers to find, then the result
might be inverted. For example, De Lucia [28] conducted
an experiment on labeling classes and pointed out that IR-
based techniques can find information that is difficult for
developers to find. Similar effects might occur in IR-based
feature location techniques. In fact, some feature location
techniques recommend relevant methods from an initial list,
e.g. [26], [27]. These techniques are consistent with the behav-
ior of the subjects observed in RQ3. They prevent developers
from missing false negatives. If these techniques are used in
the experiment, then manual validation might work better in
adding false positives rather than removing false negatives.

Another internal validity is concern about the feature loca-
tion tasks we designed. To avoid feature location tasks being
overly dependent on a system, we choose feature requests from
two systems. Additionally, we took two features from each
system: one feature has a larger goldset; the other has smaller
one, to avoid dependence to the size of the goldset. The task
we prepared showed better and worse results for each of the
four feature requests, and one task which gives the goldset
itself. The result of our experiment might be dependent on
those tasks. This threat can be decreased by adding more tasks
and by replicating the experiment because we also make the
dataset available online.

2) External Validity:As for the external validity, we believe
that the results of our experiment can be generalized for use
in other academic and industrial organizations. We recruited
subjects from two universities and an industrial company and
asked them to perform the same tasks. Because all of their
organizations are specialized in software engineering, a weak
threat exists by which the subjects might share some back-
ground in the discipline. We regard this threat as acceptable
because their spectrum of programming experience ranges
from a few years to 40 years.

We also believe that the result can be generalized to other
systems written in Java language. However, the result might

not be applicable in industry because the tasks are taken only
from open-sourced systems.

3) Construct Validity:The major threat related to construct
validity is that we usedF-measure to assess the accuracy of
both initial lists and validated lists. Although theF-measure
captured the total improvement of precision and recall, dif-
ferent precision and recall values might result in the same
F-measure. To avoid that problem, we analyzed precision and
recall separately in Section V-D. However, a threat remains. If
subjects often excluded a true positive from a list and included
a false negative in the list, then the recall value is not changed.
Such an effect is not readily apparent in the metric.

VII. Conclusion

As described in this paper, we have conducted a controlled
experiment of feature location tasks. We have prepared lists
of methods obtained using an automated technique, but their
accuracy is controlled artificially. We asked 20 subjects to
validate the lists manually. Consequently, the validated lists
were totally improved from the initial lists. Developers could
improve precision by recognizing false positives well, but they
could not improve recall. This is true because a different
understanding of a feature prevented the developers from
recognizing true positives.

Several avenues of future effort remain. Due to reducing
time effort for subjects, we kept the lists of methods small.
How large a list of methods developers can reject false pos-
itives from the list should be investigated. Another important
question is whether an incomplete feature location result is
also effective for maintenance tasks, as similar to the effect
of full requirements-to-code traceability reported by Mäderet
al. [2]. Because developers understand more about a feature
during their maintenance tasks, a partially located feature
might be sufficient for developers. We are also interested in
improving the feature location benchmark. We expect that the
curation of goldsets described in Section IV can be automated
to some extent by tracing changes on gold methods in the
version history.

Acknowledgment

We would like to thank all the subjects who participated
in this study. This work was supported by KAKENHI (Nos.
23680001 and 23700030).

References

[1] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: A taxonomy and survey,”J. Softw.: Evol. and Proc.,
vol. 25, no. 1, pp. 53–95, 2013.

[2] P. Mäder and A. Egyed, “Assessing the effect of requirements traceability
for software maintenance,” inProc. ICSM, 2012, pp. 171–180.

[3] J. Wang, X. Peng, Z. Xing, and W. Zhao, “An exploratory study
of feature location process: Distinct phases, recurring patterns, and
elementary actions,” inProc. ICSM, 2011, pp. 213–222.

[4] A. Egyed, F. Graf, and P. Grünbacher, “Effort and quality of recovering
requirements-to-code traces: Two exploratory experiments,” inProc. RE,
2010, pp. 221–230.

[5] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” inProc. WCRE,
2004, pp. 214–223.

[6] D. Poshyvanyk, Y.-G. Gúeh́eneuc, A. Marcus, G. Antoniol, and V. Ra-
jlich, “Feature location using probabilistic ranking of methods based on
execution scenarios and information retrieval,”IEEE TSE, vol. 33, no. 6,
pp. 420–432, 2007.

[7] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Gúeh́eneuc, “CERBERUS:
Tracing requirements to source code using information retrieval, dy-
namic analysis, and program analysis,” inProc. ICPC, 2008, pp. 53–62.

[8] D. Cuddeback, A. Dekhtyar, and J. H. Hayes, “Automated requirements
traceability: The study of human analysts,” inProc. RE, 2010, pp. 231–
240.

[9] W.-K. Kong, J. H. Hayes, A. Dekhtyar, and J. Holden, “How do we trace
requirements? an initial study of analyst behavior in trace validation
tasks,” inProc. CHASE, 2011, pp. 32–39.

[10] A. Dekhtyar, O. Dekhtyar, J. Holden, J. H. Hayes, D. Cuddeback, and
W.-K. Kong, “On human analyst performance in assisted requirements
tracing: Statistical analysis,” inProc. RE, 2011, pp. 111–120.

[11] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated impact
analysis for managing software changes,” inProc. ICSE, 2012, pp. 430–
440.

[12] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,”IEEE TSE, vol. 32, no. 12, pp.
971–987, 2006.

[13] M. Lindvall and K. Sandahl, “How well do experienced software
developers predict software change?”JSS, vol. 43, no. 1, pp. 19–27,
1998.

[14] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “SNIAFL: Towards
a static noninteractive approach to feature location,”ACM TOSEM,
vol. 15, no. 2, pp. 195–226, 2006.

[15] M. Revelle and D. Poshyvanyk, “An exploratory study on assessing
feature location techniques,” inProc. ICPC, 2009, pp. 218–222.

[16] D. Cuddeback, A. Dekhtyar, J. H. Hayes, J. Holden, and W.-K. Kong,
“Towards overcoming human analyst fallibility in the requirements
tracing process,” inProc. ICSE, 2011, pp. 860–863.

[17] A. Ghabi and A. Egyed, “Code patterns for automatically validating
requirements-to-code traces,” inProc. ASE, 2012, pp. 200–209.

[18] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” inProc. ISSTA, 2011, pp. 199–209.

[19] D. Chatterji, J. C. Carver, B. Massengill, J. Oslin, and N. A. Kraft,
“Measuring the efficacy of code clone information in a bug localization
task: An empirical study,” inProc. ESEM, 2011, pp. 20–29.

[20] D. Binkley, D. Lawrie, and C. Uehlinger, “Vocabulary normalization
improves IR-based concept location,” inProc. ICSM, 2012, pp. 588–
591.

[21] M. Beard, N. Kraft, L. Etzkorn, and S. Lukins, “Measuring the accuracy
of information retrieval based bug localization techniques,” inProc.
WCRE, 2011, pp. 124–128.

[22] A. D. Eisenberg and K. D. Volder, “Dynamic feature traces: Finding
features in unfamiliar code,” inProc. ICSM, 2005, pp. 337–346.

[23] M. S. Christian Koppen, “PCDiff: Attacking the fragile pointcut
problem,” in Proc. European Interactive Workshop on Aspects in
Software, 2004. [Online]. Available: http://pp.info.uni-karlsruhe.de/
uploads/publikationen/stoerzer04eiwas.pdf

[24] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J. Loingtier, and J. Irwin, “Aspect oriented programming,” inProc.
ECOOP, 1997, pp. 220–242.

[25] P. Mäder, O. Gotel, and I. Philippow, “Enabling automated traceability
maintenance by recognizing development activities applied to models,”
in Proc. ASE, 2008, pp. 49–58.

[26] M. P. Robillard, “Automatic generation of suggestions for program
investigation,” inProc. ESEC/FSE, 2005, pp. 11–20.

[27] M. Trifu, “Improving the dataflow-based concern identification ap-
proach,” inProc. CSMR, 2009, pp. 109–118.

[28] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Using IR methods for labeling source code artifacts: Is it worthwhile?”
in Proc. ICPC, 2012, pp. 193–202.

