
Title Calculating Performability Measures of
Responsive Systems

Author(s) Tsuchiya, Tatsuhiro; Chen, Chang; Kakuda,
Yoshiaki et al.

Citation ISSAT International conference : reliability and
quality in design. 1995, p. 226-230

Version Type VoR

URL https://hdl.handle.net/11094/51605

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Calculating Performability Measures of 
Responsive Systems 

Tatsuhiro Tsuchiya, Chang Chen, Yoshiaki Kakuda, and Tohru Kikuno 

Department of Information and Computer Sciences 
Faculty of Engineering Science, Osaka University 

1-3, Machikaneyama-cho, Toyonaka-shi, Osaka 560, Japan 
Phone: +81-6-850-6566, Fax: +81-6-850-6569 

E-mail: {t-tutiya.kakuda.kikuno}@ics.es.osaka-u.ac.jp 

Key Words: Responsive system, Multiprocessor system, Reconfiguration, Markov reward model 

Abstract 

Generally speaking in responsive systems, component pro­
cessors may be isolated or added dynamically due to their 
faults and repairs. Such an action to change system con­
figuration is called reconfiguration. 

A reconfiguration action incurs loss of performance due 
to deadline violations since the action may entail an over­
head for recovery. In order to exactly evaluate performa­
bility measures of such systems, this factor of reconfigura­
tion should be taken into account. In most of the previous 
approaches, however, the overhead is not explicitly consid­
ered. 

In this paper, we propose a framework for modeling 
and evaluating responsive systems which uses e..xtended 
Markov reward models. The proposed model can repre­
sent the loss caused by a reconfiguration action. Then we 
give an example of modeling and performability evalua­
tion. Finally based on condition for executing a reconfig­
mation action, we develop a good reconfiguration strategy 
to improve the performability of the system. 

1 Introduction 
For the most real-time applications such as factory au­
tomation systems, not only timing correctness but also 
fault-tolerance are indispensable features. Recently, along 
with development of such computer systems, the integra­
tion of both aspects has emerged as an important issue. 
Especially, for the purpose, th.e concept of responsive sys­
tems was introduced[l]. Responsive systems are defined 
as systems which integrate real-time systems and fault­
tolerant systems. In this paper we concentrate on real­
time multiprocessor systems whose component processors 
may be isolated out or added dynamically due to their 
faults and repairs. Such an action to change system con­
figuration is called reconfiguration. 

For dependability analysis of systems that are recon­
figured due to failures and repairs of their components, 

226 

Markov models have been usually used. Reconfiguration 
can have noticeable influence on not only dependability 
but also performance, since it depends on the system 
configuration such as the number of working processors. 
Meyer has introduced a framework, called performability, 
which incorporates system performance in the various con­
figurations into dependability modeling[5J. This approach 
results in a Markov reward model. Smith et al. have de­
fined a variety of performability measures based on it[8J. 

Muppala et al. has studied, for the first time, performa­
bility modeling of a reconfigurable real-time system[6J. 
However, this work does not consider the following na­
tures of reconfiguration action. The reconfiguration action 
entails interruptions in the system's operation for data as­

surance, reassignment of tasks, synchronization of proces­
sors, etc. Occasionally, it may be necessary to reboot the 
system. Thus reconfiguration action itself affects task ex­
ecution. 

In traditional fault-tolerant systems such that no timing 
constraint is required, however, the effects of reconfigura­
tion can be considered negligible since interruption caused 
by reconfiguration is very short with respect to the times 
the system being working stably. On the contrary, in real­
time systems, interruption delays the completion times of 
tasks and may result in missing deadlines. Hence for mod­
eling and analysis of real-time multiprocessor systems, the 
effects of reconfiguration have to be taken into considera­
tion. 

In the performability analysis[6J it is assumed that each 
task is completed in the same system configuration. On 
the other hand, the latest work studied by Meer et aI. 
shows a new modeling including such effects[3]. They a .. ':" 
sume that non-negligible reconfiguration delay exists. In­
creasing the number of processors does not always enhance 
dependability or performance in this situation, since it also 
increases the total failure rate and the number of times of 
reconfiguration. It is thus important to make a proper de­
cision whether to perform reconfiguration due to a repair 
or not. In [2, 3J the decision is made dynamically accord-



ing to the remaining mission time so as to optimize system 
performance. Such a flexible reconfiguration procedure is 
one of characteristic features of responsive systems. 

In this paper, unlike [2, 3), however, we discuss a system 
whose mission time is not defined and expected to run as 

3 Modeling of Failure-Repair Be­
havior 

A Markov reward model is obtained by associating reward 
rates with the states of the continuous-time Markov chain 

long as possible. Then we study the time when reconfig- which represen ts the failure-repair behavior of the system. 
uration is performed in response to changes of computa- The expected accumulated reward or its variants are used 
tional environment such as the task arrival rate and influ- as performability measures. 
ences of violating deadlines. We introduce a unified model Let A be the state space of the continuous-Markov chain 
which includes both failure-repair behavior and changes of and ri be the reward rate associated with state i. The ex­
the environment. On the unified model, we find the opti- pected accumulated reward until time t, E[Y(t)), is defined 
mal strategies for responsive systems with respect to these as 
two criteria. In addition, the trade-off between two strate-

E[Y(t)] = I: t riPi(t)dr 
iEA Jo gies is also discussed. 

The rest of the paper is organized as follows. In Section 
2, the task and system model we studied in this paper 
are described. In Section 3, the extended Markov reward 
model is briefly introduced, and a failure-repair behavior 
model is proposed using it. Section 4 discusses changes 
of the environment. In Section 5, we propose a unified 
model which can represent both the failure-repair behav­
ior and changes of the environment. In Section 6, we study 
perform ability evaluation using the proposed model. In 
addition, reconfiguration strategies that optimize two cri­
teria are considered. Section 7 summarizes the paper and 
explains future work. 

2 System and Task Model 

In this paper we consider a reconfigurable real-time multi­
processor system, which consists of n identical processors. 
We assume that the processors in the system are subject 
to failure, and that the other components except proces­
sors are failure free. If a processor fails, then the failed 
processor is isolated from the system sequentially. Once 
repair of a failed processor is completed, it will be possible 
to connect the processor to the system again for operation 
by performing reconfiguration. 

We assume that tasks arrive at the system according 
to a Poisson process. When a task arrives, it is queued 
until a processor becomes free. Then it is allocated to 
the processor on a first-come-first-served basis. 'When a 
free processor e..x:ists, the task is allocated to the processor 
and begin its execution immediately. Arriving tasks are 
required to be completed within deadline d. The execu­
tion times of the tasks are assumed to be e.."(ponentially 
distributed with rate p.. If the~e are i working processors, 
the system can be regarded as an MjMji queueing system. 
When the task arrival rate is beyond the total service rate 
of the system, ill, the system cannot contribute to task 
execution positively. We assume that tasks that arrive at 
the system in such a state are lost. 

In addition, we assume that a reconfiguration action 
entails interruption of operation. Then tasks that arrived 
in the midst of reconfiguration are also considered Jost. 

227 

where Pi(t) is the probability of being in state i at time t. 
Though Markov reward models are a useful tool, they 

cannot assess the effects of actions or phenomena that take 
zero or very short time. The reason for this is that the 
reward is accumulated according to the sojourn time in 
the current state. However, we wish to evaluate the effect 
of a reconfiguration action, which takes very short time 
compared to the intervals the system staying in a same 
system configuration. 

For this purpose, we use an extended Markov reward 
model introduced in [2], called Extended Markov Reward 
Model(EMRM:). In the graphical representation in Figure 
1, a normal state is drawn as a circle, while a new type 
of state is represented by a dot. Unlike normal states, no 
time is spent in the new states. The reward rate assigned 
to each of these states is accumulated instantly by passing 
through it. By using such states to represent reconfigura­
tion actions, we can assess their effects. 

Let A be a set of normal states and B be that of such 
special states in an EMRM. The expected accumulated 
reward until time t is thus obtained as follows. 

where Ej (t) is the expected number of visits to state j 
until time t. \IVe will use this measure as a criterion for 
evaluation of the reconfigurable real-time multiprocessor 
system. 

Figure 1 shows a failure-repair behavior of the multi­
processor system. In this figure, circles and dots represent 
states, and arrows represent transitions. The number at­
tached to each arrow indicates a rate with which its cor­
responding transition occurs. State NAn means that the 
system comprises n working processors, and it is the initial 
state. When a processor fails in state N Ai(l :::; i :::; n), a 
reconfiguration action takes place and the current state 
changes to N Ai-l through RAi-l immediately. State 
RAi-l(1 :::; i :::; n) represents reconfiguration due to a 
failure, while state N Ai(O :::; i :::; n - 1) represents that i 
processors are working and one failed processor is being 
repaired. In the model we assume that failed components 



Figure 1: Failure-repair behavior of the system 

share a single repair facility, and that it is occupied by only 
one failed processor until it is brought back to operation. 

As stated above, we are interested in timing control 
of reconfiguration for adding a repaired processor to the 
system. To express the possibility of making a deci­
sion of whether to perform it or not, we introduce state 
N Bi(O ::; i ~ n - 1) and a dotted arrow from N Bi to 
RH..;. Unlike NAt, NB; means that i processors are work­
ing properly and one failed processor has already been 
repaired but is not yet in operation. The decision of recon­
figuration corresponds to the transition represented by the 
dotted arrow. If the decision of reconfiguration is made for 
adding a repaired processor, then the transition occurs in­
stantly and the state changes, from N Bi to N Ai+l through 
RH..;. RR; represents reconfiguration action. The detailed 
procedure represented by dotted arrows will be explained 
in Section 5. 

The question how to assign a reward rate to each state is 
here. By a.ppropriate assignments, we can calculate several 
useful performabiiity measures from an EMRM. We may 
select two measures for evalu~tion of responsive systems 
and will discuss them with concrete reward assignments. 

4 Changes of Computational En­
vironment 

In most of previous works on dependability and/or per­
formability evaluation, it is assumed that the computa­
tional environment - which is characterized by one or 

228 

more elements, such as the task arrival rate, the effects of 
missing deadlines, etc - is constant. However [4] and (7) 
consider the changes of such an environment. In this pa­
per, we also wish to model such changes. Though here we 
~tudy only changes of the task arrival rate for ease of ex­
planation, this approach can be applied to other elements. 

As an example, we consider changes of computationa.l 
environment represented by the Markov model illustrated 
in Figure 2. In this figure, circles represent phases among 
the environment varies. Arrows represent transitions be­
tween two phases. The number attached each arrow is 
a rate with which the transition occurs. The task ar­
rivaJ rate changes depending on the current phase. Let 
Ai(i = 1,2,3) be an arrival rate that corresponds to phase 
i. In the next section, we discuss control of reconfiguration 
depending on the current environment. 

Figure 2: Changes of the environment 

5 Unified Model and Reconfigu­
ration Control 

In this section, we present a new model that unifies the 
failure-repair model shown in Figure 1 with the environ­
ment model shown in Figure 2. On the new model, fur­
thermore, we discuss control of reconfiguration. 

This new unified model is illustrated in Figure 3. Intu­
itively, it is th.e product of these two models. State N AiJ 
in the figure means that the system is in state N Ai in 
Figure 1 and the environment is in state j in Figure 2. 

A reconfiguration action itself incurs interruption of op­
eration and increasing the number of processors also rises 
the probability of a failure occurring. We are interested in 
controlling reconfiguration for adding a repaired processor 
depending on failures of processors and the computation 
environment. 

The key idea is as follows. It is obvious that the ef­
fects caused by performing reconfiguration depends on the 
current computational environment. Rence, when the en­
vironment is strict, namely, the task arrival rate is high, 
reconfiguration is deferred until the environment becomes 
slacker or the number of failed processors exceeds a certain 
prespecified number. 

N ow we define the control method of reconfiguratioll 
using a vector e = (81,82 ,83 ), Each OJ(j = 1,2,3) denotes 
a threshold value for performing reconfiguration in phase 
j, which represents the number of failure-free processors 
when the computation environment is in phase j. That is, 
for each (i) j) where i is less than 8 j, a dotted arrow from 



(-----------, ----------- -----------I t 
I 

I I 
I I 

I I 
I I I I 

\ ___________ , 1 ______ -----, 1 ___________ , 

Figure 3: Unified model 

N Bi,j to RR;,j is activated. In other words, when the 
current state reaches NBiJ such that (i,j) E {(i,j)li < 
OJ}, a transition to RR; ,j (which means a reconfiguration) 
occurs instantly. On the contrary, if being in state N Bi' J 
such that (i', j) E {( i, j) Ii ~ OJ}, no reconfiguration action 
for adding a processor is performed. 

6 Case Study 
In this section, we calculate concrete values of a few cri­
teria (that is, the number of tasks missing deadlines, av­
erage response time) and try to find an optimal reconfig­
uration strategy for each criterion. As an example, we 
take n = 10, 6 = 0.001 per hour, I = 0.1 per hour, 
0'1,2 = 0'2,1 = 0'2,3 = 0'3,2 = 0.1 per hour, p. = 7.0 per 
second, Al = 10 per second, A2 = 20 per second, A3 = 30 
per second and d = 1.0 second. In addition, we assume 
that a reconfiguration action (either for recovering from a 
failure or for adding a processor) involves 30 seconds' in­
terruption of operation on average. The system is assumed 
to be in state N AID,l at time O. 

6.1 Tasks missing deadlines 

Here we select the expected number of tasks missing dead­
lines as a criterion to be optimized. To calculate the value 
using the model shown in Figure 3, the reward rates are 
assigned as follows. To each of states N AiJ and N BiJ, 
which imply that the system is working stably, average 
number of tasks missing deadlines per time unit when the 
system is in the state is assigned as a state-dependent re­
wafd rate. The product of the arrival rate Aj and the 
probability of a task exceeding its deadline when the sys­
tem is in the state yields the reward rate. The probability, 
which is shown in Figure 4, can be obtained by using closed 
form solutions. 

When the system is in state N Ai,j or N BiJ and )..j < 
ip., arriving tasks are lost since the system is overloaded. 
Hence, as a reward rate, )..j is assigned to such states. 

229 

\ arrival rale: - 30.0 per lice 

\ --- 20.0 per sec: 

.1 

\ 
- 10.0 per lee: 

" ~c 0= 
","" 

-" .- ., =<0 .0' .t:> .. 
"c .10_ 
0 .. 
~., 

Q.'-
E \ 

J)()l 

.000' +. -....---,.-...,--.---r--...----,---,----,-.., 
o 10 

Figure 4: Probability of tasks missing deadline 

Next, reward rates of RAi,j, RBj,j and RR;,j in Figure 
3 correspond to the number of tasks that miss deadlines 
due to reconfiguration. Since we have assumed that each 
reconfiguration action takes 30 seconds, the reward rates 
of these states are (30 seconds) x Aj . 

Vi'e have investigated the relation between E[Y(t)] and 8 
by calculating E[Y(t)] for each e. As a result, 8= (7,9,9) 
is found optimal for sufficiently long time t. Figure 5 shows 
the time-averaged number of tasks missing deadlines as a 
function of time t. These results are for the optimal con­
trol (7,7.9) and (10,10,10). which means that a repaired 
processor is added in all cases. 

6.2 Trade-off between schedulability and 
response time 

In responsive systems) not only satisfying timing con­
straints but also providing quick responses may be 



--0-- (lO,lO.10) 

--- <7.7.9) 

~+---------------r-------------~ 
1000 

time I (!lou",) 

2000 

Figure 5: Time-averaged number of tasks missing dead­
lines 

strongly required. It is obvious that the reconfiguration 
strategy that minimizes average response time of exe­
cuted tasks is (10,10,10). On the other hand, the con­
trol method (7,7,9), which minimizes the number of tasks 
missing deadlines, provides longer response time than that 
of (10, 10,10). 

In order to investigate such a trade-off, we calculate av­
erage response time for each method as follows. The av­
erage response time of tasks that are executed until time 
t equals the quotient of the total time that these tasks 
stayed in the system divided by the total number of the 
tasks. The number of tasks that are executed until t can be 
calculated in the same way as that of tasks missing dead­
lines. After assigning the task arrival rate to a up state, 
namely, NAi,i(NBiJ) such that (i,j) E {(i,j)IAj < iJ.!} as 
a reward rate, the value of E[Y (t)J gives that number. On 
the other hand, to the total time we assign to each up 
state the product of the task arrival rate and the average 
response time in the state. Then the value of E[Y(t)] gives 
the total time. Average response time in each state can 
be calculated by using dosed form solutions. The results 
are depicted in Figure 6. 

7 Conclusion 

In this paper, we have proposed a baseline model for per­
formability evaluation of responsive multiprocessor sys­
tems, in which reconfiguration due to faults and repairs 
of processors has effect on task execution. Using the 
proposed model, we have shown how to derive a control 
method of reconfiguration that optimizes each performa­
bility measure. As future work, we plan to remove re­
strictions on both systems a.nd tasks and to develop their 
modeling. 

230 

.. 
'" 

0.14$ 

c: 0,,4. 
o 
<> ,; 

--0-- (10.10,10) 
__ (7.7.9) 

E 0.143 J"f=>-o--o-o-< ....... ...,....,....,:>-o-o--o-.,.....>--<:>-O-...,....,o-c>-e 

., 
~ 

c 

'" :- 0"142 
~ 

" co 
e 
~ 0.'''' .. 
O.l~O-!--------.--------~ 

o 1000 

lime I (hours) 

Figure 6: Average response time 

References 

2000 

[1] M. Malek, "Responsive systems (A challenge for the 
nineties)", Proc. 16th Symp. on Microprocessing and 
Microprogramming, Keynote Address, Amsterdam, 
The Netherlands, North-Holland, MicJ;oprocessing and 
Micro programming 30, Aug. 1990, pp.9-16. 

[2J H.de Meer, H.Mauser, "A modeling approach for dy­
namically reconfigurable systems", Proc. 2nd Interna­
tional Workshop on Responsive Computer Systems, 
Oct. 1992, pp.149-158. 

[3] H.de Meer, K.S.Trivedi, M.D.Cin, "Guarded repair of 
dependable systems", Theoretical Computer Science, 
Vo1.l28, No.1-2, Jun. 1994, pp.179-210. 

[4] R.G.Melhem, "Bi-Ievel reconfigurations of fault toler­
ance arrays in bi-modal computational environments" , 
Proc. FTCS-19, Jun. 1989, ppA88-195. 

[5] J.F .Meyer, "On evaluating the performability of 
degradable computing systems", IEEE Trans. Com­
puters, Vol.C-29, No.8, Aug. 1980, pp.720-731. 

[6] J.K.Muppala, S.P.V,'oolet, K.S.Trivedi, "Real-time­
systems performance in the presence of failures", 
COMPUTER Magazine, Vol. 24 , No.5, May 1991, 
pp.37-47. 

[7J K.G.Shin, C.M.Krishna, Y.H.Lee,"Optimal dynamic 
control of resources in a distributed system", IEEE 
Trans. Software Engineering, Vo1.l5, No.lO, Oct. 1989, 
pp.1l88-1l97. 

[8) R.M.Smith, K.S.Trivedi, A.V.Ramesh, "Performabil­
ity analysis: measures, an algorithm, and a case 
study", IEEE Trans. Computers, Vol.C-37, No.4, Apr. 
1988, ppA06-417. 




