
Title プログラム実行履歴からの簡潔なシーケンス図の生成
手法

Author(s) 谷口, 考治; 石尾, 隆; 神谷, 年洋 他

Citation コンピュータソフトウェア. 2007, 24(3), p. 153-
169

Version Type VoR

URL https://hdl.handle.net/11094/51611

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は日本ソフトウェア科学会に帰属します．本
著作物は著作権者である日本ソフトウェア科学会の許
可のもとに掲載するものです．ご利用に当たっては
「著作権法」に従うことをお願いいたします．

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

153

プログラム実行履歴からの簡潔なシーケンス図の

生成手法

谷口 考治　石尾 隆　神谷 年洋　楠本 真二　井上 克郎

オブジェクト指向プログラムの動作を理解するためには，生成されるオブジェクト群がどのようにメッセージ通信
を行うかを理解する必要がある．しかし，オブジェクトの動作は動的束縛などによって動的に決定されることが多
く，静的な情報であるソースコードからオブジェクトの動作を理解することは困難である．本研究では，Unified

Modeling Language (UML) のシーケンス図に着目する．プログラムの実行履歴を基にシーケンス図の作成を行う
ことで，プログラム実行中に生成される各オブジェクトがどのように動作するのかを視覚的に示す．一般に実行履歴
は膨大な量に上るため，作成されるシーケンス図は非常に大きくなる．この問題に対し，本研究では，実行履歴中か
ら繰り返しや再帰構造になっている部分を検出し，簡潔な表現に置き換えることで，提示する情報量を削減する手法
を提案する．

A software system developed by object-oriented programming operates by message exchanges among the

objects allocated by the system. To understand such system behavior we need to grasp how the objects

are communicating. However, it is difficult to understand the behavior of such system, since it has many

elements determined dynamically, and many objects are usually related to one functionality. We propose a

method of extracting a sequence diagram from an execution trace of a Java program in order to understand

the behavior of the program. Our method compresses a repetition included in the execution trace. The

compressed execution trace is shown as a sequence diagram. This paper presents four compression rules

designed for object-oriented program. The experiment illustrates how our rules effectively compress the

execution trace and extract a sequence diagram from the result.

1 はじめに

近年，ソフトウェア開発によく用いられるオブジェ

クト指向技術で作成されたプログラムでは，実行時

に動的に生成されるオブジェクトが相互にメッセージ

Generating Compact Sequence Diagram from Execu-

tion Traces.

Koji Taniguchi, Shinji Kusumoto and Katuro

Inoue, 大阪大学大学院情報科学研究科, Gradu-

ate School of Information Science and Technology,

Osaka University.

Takashi Ishio, 大阪大学大学院情報科学研究科, Graduate

School of Information Science and Technology, 日本
学術振興会特別研究員 (PD), Research Fellow of the

Japan Society for the Promotion of Science.

Toshihiro Kamiya, 独立行政法人産業技術総合研究所,

National Institute of Advanced Industrial Science

and Technology.

コンピュータソフトウェア, Vol.24,No.3 (2007), pp.153–169.

[論文] 2005 年 12 月 28 日受付.

を交換することによってシステム全体が動作する．ど

のオブジェクトがどのようなタイミングでメッセージ

通信を行うかは，実行時に動的に決定される．そのた

め，設計や実装作業においても常に，システムが生成

するオブジェクトの動的な振る舞いをイメージしなが

ら作業を進めなければならない．保守過程において，

プログラムの動作を理解する際も同様である．保守作

業者は，保守対象のプログラムの動作を理解しようと

するとき，プログラムの静的な記述であるソースコー

ドを見ながら，実行時に生成されるオブジェクト群の

動作をイメージして，理解していかなければならな

い．しかし，これは非常に困難な作業であり，動的束

縛などを伴う複雑なオブジェクト群の動作や関連性を

理解することは難しい [5] [14]．そのため，生成される

オブジェクト群の動的な振る舞いを視覚的に表現し，

プログラムの理解支援を行う手法が求められている

[8] [9]．

154 コンピュータソフトウェア

1:A 2:B 3:C

4:D

5:D

a()

b()

c()

<init>()

<init>()

d()

d()

図 1 シーケンス図

オブジェクトの動作を表現する方法として，UML

[13] のシーケンス図 (図 1) がある．シーケンス図と

は，時間軸に沿って，オブジェクトがどのような順序

でメッセージ通信を行うかを表現する図である．シー

ケンス図は通常，設計時に作成される．しかし，全て

のプログラムについてシーケンス図が作成されてい

る訳ではなく，また，作成されていたとしても，設計

時に作成された図と実際のプログラムの動作とでは，

異なっていることがある．そこで，我々は，プログラ

ムを解析し，その結果を基にシーケンス図を作成する

ことで，実際のプログラムの動作を図示する．この図

を用いることで，実際にプログラム中で作成される

オブジェクトがどのようにメッセージ通信を行うかを

理解することができる．また，設計段階で作成された

シーケンス図と，実装されたプログラムの振る舞いと

の違いを調べることや，特定のバグを再現させるテス

トケースのシーケンス図と，バグを再現させないシー

ケンス図を比較することで，本手法をデバッグ作業に

利用することなども想定している．

実行時のオブジェクト間の動作を正確に解析する

ために，プログラムの動的解析を行い，その結果とし

て得られた実行履歴を基に図の生成を行う．しかし，

一般的に，プログラムの実行履歴は膨大な量になる

[9] [10] [11]．そのままシーケンス図にしても大きな図

ができあがってしまい，理解するのは難しくなる [4]．

そのため，できる限り情報量を削減しなければならな

い [9] [11]．

そこで，我々は，実行履歴を圧縮し，全体の情報量

を削減する手法を提案する．具体的には，実行履歴中

からループや再帰構造によって発生する繰り返し構造

を検出し，それらを抽象化して簡潔な表現に置き換え

る操作を行う．我々は，圧縮手法として，オブジェク

ト指向プログラムの構造を考慮した 4 つの実行履歴

圧縮ルールを考案した．また，その結果を基にシーケ

ンス図を作成し，繰り返しになっている部分などを注

釈として図中に表現する表記法についての提案も行

う．これらの手法を用いることで，プログラム全体の

動作を表現する簡潔なシーケンス図の作成を行うこと

ができる．後述する適用実験では，数十万回のメソッ

ド呼び出しを含む実行履歴を，提案手法を用いること

で 14%から 0.8%程度まで圧縮することができた．

また，実行履歴の取得，提案する圧縮ルールの適

用，シーケンス図の作成，作成したシーケンス図の閲

覧，操作ができるツールの実装を行った．このツール

では，圧縮した箇所を任意に展開し，元の詳細な情報

を取り出せるようにしている．この機能を用いて，圧

縮した図から全体の流れの概要を理解し，さらに個別

に詳細な振る舞いを見たい箇所を展開して理解する

ことができる．

以降，2章では圧縮手法の詳細と，圧縮結果のシー

ケンス図への表記法について述べる．また，3章では

適用実験の結果を述べる．4章では提案手法に関する

考察を行う．5章では関連研究について，6章でまと

めと今後の課題について述べる．

2 実行履歴圧縮手法

本章では，本手法で使用する実行履歴とその圧縮手

法の詳細，および，圧縮結果を基にしたシーケンス図

の作成手法について述べる．

2. 1 実行履歴

本手法では，まず，対象とするプログラムを実行

し，実行中に発生するメソッド呼び出しに関する情報

を実行履歴として取得する．

実行履歴情報としては，個々のメソッド呼び出しに

ついて次のような情報を仮定している．

• 呼び出しを受けたオブジェクトのオブジェクト
ID

• 呼び出されたメソッドのメソッド名，引数の型，
返り値の型

• 呼び出されたメソッドを実装しているクラス名

Vol. 24 No. 3 July 2007 155

図 2 木構造と記法の例

• メソッドの開始，終了のタイミング
また，static メソッドの呼び出しの際には，オブジェ

クト IDを 0と考える．継承などによる多態性がある

場合には，動的束縛によって実際に呼び出されたメ

ソッドとそれを実装しているクラス名を記録している

ものとする．これらの情報から，実行時のメソッド呼

び出し構造を再現することができる．

以降，本稿において実行履歴中の情報を表現する

際には主にテキスト形式で表現したものを用いる (図

2の左図)．この表現中では，各行がメソッドの開始，

または終了を表し，メソッドの開始を表す行では，前

述した内容を「返り値の型 クラス名 (オブジェクト

ID). メソッド名 (引数の型)�」，という形式で記述

する．メソッドの終了を表す行には閉じ括弧「�」を

記述する．また，メソッド呼び出しの入れ子構造を字

下げを用いて表現する．

2. 2 圧縮アルゴリズムの設計方針

本研究は，実行時のメソッド呼び出し情報を，簡潔

な形式でシーケンス図上に表現することで，実行時の

動作を利用者が理解しやすくすることを目的として

いる．そのため，本研究における実行履歴の圧縮アル

ゴリズムは以下の条件を考慮して設計しなければな

らない．

1. シーケンス図上に，圧縮の適用結果が簡潔に図

示できる必要がある

最終的にシーケンス図上に表現することを目的

とした圧縮であるため，圧縮結果がシーケンス図

上に図示可能な形態をしている必要がある．ま

た，利用者はシーケンス図上に表示された圧縮結

果を見て対象プログラムの動作概要を理解する

ため，圧縮された箇所が図上で判別できること，

圧縮結果を人間が見て，理解できる構造になって

いることが必要である．

2. 圧縮の適用前の振る舞いの推測が容易である

シーケンス図上に表示された圧縮結果を見て圧

縮前の処理の構造が推測できなければならない．

例えば，繰り返し発生しているメソッド呼び出

しをループ構造として圧縮した場合，圧縮結果

に繰り返し回数等を記録し図上に表示しておく．

こうすることで，その部分が圧縮処理を受けて

おり，実際には同じメソッド呼び出しがその回数

だけ繰り返されているという構造が推測できる．

しかし，圧縮結果から圧縮前の状態を推測した

結果が誤っている場合，その部分の実行時動作を

誤って理解してしまうことになる．このようなこ

とを防ぐために，圧縮結果は紛らわしくない単純

な表現で図上に表現できるようにし，誤った理解

を与えないようにすることも重要である．

3. 特定の部分だけを局所的に選んで圧縮できる必

要がある

実行履歴の任意の一部分のみを圧縮する，また

は任意の一部分のみを圧縮しないというように，

局所的に圧縮状態を制御できることが望ましい．

こうすることで，詳細な情報を表示する箇所と，

概要情報として圧縮結果を表示する箇所に分け

て図上に表示することができる．具体的には，デ

バッグ実行中にブレークポイント等で停止した際

に，ブレークポイントに近い箇所は詳細を表示

し，遠い部分については圧縮した概要情報を表示

する，というような利用方法が考えられる．

4. 圧縮前の状態に戻せるようなアルゴリズムにす

る必要はない

圧縮を行うことで圧縮前の状態よりも情報量が

削減されるため，本手法の利用者は任意の部分に

対して，より詳細な圧縮前の実行系列を参照し

たくなることが考えられる．そのため，圧縮され

た箇所について，任意に元の情報を参照できる

ようにする必要がある．しかし，本手法による圧

縮は提示する情報を削減することが目的であり，

保存容量の削減が目的ではない．そこで，非可逆

156 コンピュータソフトウェア

な圧縮アルゴリズムであっても，圧縮前の状態も

保存しておき，必要に応じて表示する情報を入れ

替え圧縮前の情報を提示すればよい．条件 3 を

満たしていれば圧縮処理は局所的に圧縮状態と，

非圧縮状態を選択できるようになっているため，

局所的に元の情報を提示することが可能である．

よって，圧縮アルゴリズムとしては可逆性を考慮

する必要はない．

2. 3 圧縮アルゴリズム

　 2. 1節で述べた実行履歴中には，プログラム実行中

に発生するメソッド呼び出しが全て記録されているた

め，実行履歴は膨大な量に上ることが多い [10]．そこ

で我々はプログラムのループ構造や再帰構造に着目す

る．これらの構造は繰り返し実行することを目的とし

て作られているため，そこから発生するメソッド呼び

出しの実行履歴には同じようなメソッド呼び出しが繰

り返し出現していると考えられる．このようなメソッ

ド呼び出し構造を元のループ構造や再帰構造の形式

に戻し，シーケンス図上に表現することで，シーケン

ス図を簡略化することができる．

ループ構造や再帰構造はソースコード上で一般的

に用いられている形式であるため，メソッド呼び出し

系列をその構造を用いて表現することが可能である．

シーケンス図上であっても，ループや再帰呼び出しを

表す簡単な注釈を書き加えることで，その構造は容易

に図示することができる (条件 1)．また，ソフトウェ

ア開発者にとっては身近な形式であるため，その構造

の意味の理解や，実際の動作の推測が容易である (条

件 2)．ただし，メソッド呼び出し系列をループ構造

や再帰構造を用いて表現するといっても完全にソー

スコードと同様の形式にできるわけではない．なぜ

なら，ソースコード上の記述では，呼び出されたメ

ソッドの内部までは記述されないのに対して，シーケ

ンス図は，あるメソッド呼び出しの中から発生する全

てのメソッド呼び出しを含んだメソッド呼び出し構造

を表現するからである．そのため，繰り返し構造の圧

縮においては，単純にメソッド呼び出しが繰り返され

ている箇所を検出するのではなく，メソッド呼び出し

構造全体が繰り返されている箇所を検出し，その繰

り返し 1 回分のメソッド呼び出し構造を 1 つの単位

として圧縮しなければならない．そこで我々は，実行

履歴を，メソッド呼び出し構造を表現した木構造とし

て扱い，その中の任意の部分木を単位としてループ

や再帰構造を形成する．また，木構造として扱うこと

で，木全体ではなく一部の部分木に対しての圧縮処理

が可能となり，局所的な圧縮を行うことが可能である

(条件 3)．さらに，木構造であるため，実行履歴上の

「メソッドの開始」イベントと「メソッドの終了」イ

ベントの対応関係や順序関係を崩さないように圧縮

することが容易になるという利点もある．以上のこと

から，実行履歴上のメソッド呼び出し構造を木構造で

表現し，その中に含まれる繰り返しをループ構造や再

帰構造の形式を用いて表現することは 2. 2 節で述べ

た条件を満たしている．

以下，実行履歴のメソッド呼び出し構造を表現した

木構造について説明する．図 2は木構造の例である．

この木構造では，各メソッド呼び出しを節点とし，そ

れぞれの節点は，呼ばれたメソッドのシグネチャと呼

び出しを受けたオブジェクトの IDを持つ．また，あ

るメソッド呼び出しの内部で呼ばれるメソッド呼び

出しを，その節点の子として辺を引く．子節点の順序

は対応するメソッドが呼び出される順番である．例

えば，図 2 の左側のような実行履歴は，右側の木構

造に置き換えられる．次に，表 1 に示す記法を定義

する．図 2 において，実行履歴中の最初のメソッド

呼び出しである，オブジェクト ID1番のオブジェク

トに対するクラス Aのメソッド a() の呼び出しを表

す節点を x とする．x.method はクラス A のメソッ

ド a() を指し，x.object はオブジェクト ID1 番のオ

ブジェクトを指す．このとき，このメソッド a()の呼

び出しの中で発生するメソッド呼び出しは，メソッド

b()の呼び出しとメソッド c()の呼び出しの 2つであ

るから x.callNum は 2 である．また，t を xを根と

する木構造とすると，tの子である部分木は左からそ

れぞれ t[1]，t[2]で表される．また，t[1].root とは左

の部分木の根である節点を意味するため，クラス B

のメソッド b()の呼び出しを表す節点を指す．

我々は，繰り返し構造をループ構造の形式に圧縮す

る方法として R1 から R3の 3 つのルールを考案し，

Vol. 24 No. 3 July 2007 157

表 1 記法の定義

表記 意味

x,y 任意の節点

x.callNum 節点 xの子の数 (x.callNum ≥ 0)

x.method xがもつメソッド

x.object xがもつオブジェクト ID

t 任意の部分木

t.root 部分木 tの根である節点

t[i] t.rootの子である i番目の部分木

(1 ≤ i ≤ t.root.callNum)

L 部分木の列

L.size 部分木の列 Lに含まれる部分木の

個数

L[i] 部分木の列 Lに含まれる i番目の

部分木 (0 ≤ i ≤ L.size)

また，再帰構造の形式に圧縮する方法として R4を考

案した．

2. 3. 1 繰り返し圧縮ルール

本節では，繰り返し構造の圧縮を行う R1から R3

までの 3つのルールの説明を行う．まず，繰り返しの

構造を圧縮する各ルールに共通する基本的な流れを説

明し，次に，各ルールに固有の処理を順次説明する.

これらのルールに共通する流れは，実行履歴の木構

造に対して，後順走査で各節点に以下の処理を行って

いくことである．

節点 xについて，その子である節点を根と

する部分木の列から，「同一な構造」の部分

木が繰り返されている部分を発見し，その

繰り返し全体を表現するような部分木を作

成し，繰り返し全体とそれを置き換える．次

に，隣接した 2 つの部分木の列が繰り返さ

れている部分を検出し，繰り返し全体を表

現するような部分木の列に置き換える．こ

れを，繰り返し 1 回当りの部分木の個数が

x.callNum/2 より大きくなるまで繰り返し

ていく．置き換えられた部分木や部分木の列

には，繰り返しの回数も記憶しておく．

以上の流れを図で表したものが図 3 である．図中の

図 3 繰り返し構造の圧縮処理の流れ

t1, t2は xの子を根とする部分木を表しており，同じ

記号で表されているものは「同一な構造」と判定され

るものであるとする．t1, t2, t2, t1...と並んでいるの

は，xの子を根とする部分木がこのように並んでいる

という意味である．k は繰り返し 1 回当りの部分木

の個数を表す．太枠で囲まれている部分はその部分が

繰り返しの比較対象になっていることを表している．

k=1，つまり，1個単位の繰り返しの検出から処理を

進めていく．まず，左端の t1とその次の t2の比較が

行われる (1.1)．これは同じものではないので比較対

象を右へ 1 つずらす (1.2)．次の t2 同士は同一な構

造であると判定され，その次の t1は同一な構造では

ないから (1.3) t2が 2 個繰り返されているとしてこ

こを 1つ分に置き換える (1.4)．置き換え後，さらに

その右側の t1と t2の比較を行う (1.5)．このような

流れで処理を進めていき，右端の部分木までの比較

を終えると，k=1 の時の処理を終える．次に，k=2

にして 2個単位の比較を行っていく (2.1)．t1, t2 の

2個単位の並びが繰り返されているので，この部分を

1回分に置き換える (2.2)．右端まで比較を終えたの

で，k=2 の時の処理を終える．次に k=3 にすると，

x.callNum = 2であるから，k>x.callNum/2が成り

立つので，繰り返しを終え，節点 x についての処理

を終了する．

R1から R3の各ルールは，上記の処理を以下の点

で特殊化したものである.

• どのような部分木を「同一な構造」とみなすか
• 繰り返し全体の表現をどのように作成するか

158 コンピュータソフトウェア

• 繰り返しを検出した後，その次の比較に，繰り
返し中のどの部分木列を用いるか

以下では，各圧縮ルールの処理の詳細を説明する．

R1:完全な繰り返し

圧縮ルール R1では実行履歴中から，完全に同一

な構造が繰り返されている箇所を検出し，圧縮す

る．つまり，繰り返し圧縮処理中の同一性の判定

において，2つの木の構造が等しく，かつ，それ

ぞれの節点のメソッドとオブジェクトが等しいも

のを同一な構造と判定する．

同一性を判定する木構造を t1，t2 とし，R1 に

おける木構造の同一性を t1 ≡ t2 と表現すると，

t1 ≡ t2とは，t1.root.method = t2.root.method

かつ t1.root.object = t2.root.object であり，

t1.root.callNum = t2.root.callNum，t1[i] ≡
t2[i](∀i, 1 ≤ i ≤ t1.root.callNum) を満たすこ

とを表す．

また，同一性を判定する部分木列を L1，L2 と

し，R1における部分木列の同一性を L1 ≡ L2 と

表現すると，L1 ≡ L2 とは，L1.size = L2.size

であり，かつ L1[i] ≡ L2[i](∀i, 1 ≤ i ≤ L1.size)

が成り立つことを表す．

また，繰り返し全体の表現として，繰り返し 1回

目の部分木列をそのまま用いることとする．図 3

の (1.3)や (1.7)のように繰り返しを検出した場

合の次の部分木列との比較には，繰り返し中のい

ずれを用いてもよい (結果は変化しない)．この

ルールでは繰り返し回数を記録しておけば，元の

実行履歴の内容を損なうことなく圧縮できる．

R2:オブジェクトが異なる繰り返し

R2では実行履歴中から，オブジェクト IDのみ

が異なる構造が繰り返されている箇所を検出し，

圧縮する．つまり，同一な構造であるかどうかの

判定において，2 つの木の構造が等しく，かつ，

それぞれの節点のメソッドが等しいものを同一な

構造と判定する．

同一性を判定する木構造を t1，t2とし，R2におけ

る木構造の同一性を t1 = t2 と表現すると，t1 =

t2とは，t1.root.method = t2.root.methodであ

り，t1.root.callNum = t2.root.callNum，t1[i] =

void A.a()

object=1

boolean C.c()

object=2

繰り返し1回目

void A.a()

object=1

boolean C.c()

object=3

void A.a()

object=1

boolean C.c()

object=2,3

繰り返し2回目 繰り返し全体の代表

図 4 R2 における繰り返しの置き換え

t2[i](∀i, 1 ≤ i ≤ t1.root.callNum) を満たすこと

を表す．

また，同一性を判定する部分木列を L1，L2 と

し，R2における部分木列の同一性を L1 = L2 と

表現すると，L1 = L2 とは，L1.size = L2.size

であり，かつ L1[i] = L2[i](∀i, 1 ≤ i ≤ L1.size)

が成り立つことを表す．

このルールではオブジェクト IDは比較しない．

そして，繰り返し全体を表現する部分木列とし

ては，R1のように繰り返し 1回目の部分木列を

そのまま用いるのではなく，1回目の部分木列の

構造を基に，繰り返し中に出てくるオブジェク

ト IDを全て統合した部分木列を作成して用いる

(図 4)．繰り返しを検出した場合に次の部分木列

との比較には，R1と同様，繰り返し中のいずれ

を用いてもよい．

このルールは R1 よりも多くの対象を圧縮でき

る．ただし，圧縮結果として表現される呼び出し

構造は，同一クラスのオブジェクト群に対して

の呼び出しを表すことになり，呼び出されたオブ

ジェクトが特定できなくなるという点において，

元の実行履歴全体を正確に表現しなくなる．

R3:欠損構造を含む繰り返し

R3について説明をする前に，まず，メソッド呼

び出し構造の包含関係について定義する．なお，

以下の説明においては R2と同様に，部分木や部

分木列の比較には，各節点のメソッドのみを比較

することとし，オブジェクト IDについては考慮

しないこととする．また以下では，t1，t2 は木構

造，L1，L2 は部分木列を表す．

t1 ≥ t2 とは，t1.root.method=t2.root.method

かつ (t1[1], t1[2],... , t1[t1.root.callNum]) ≥
(t2[1]，t2[2], ... , t2[t2.root.callNum]) である

Vol. 24 No. 3 July 2007 159

ことを表す．

ここで，L1 ≥ L2 とは L2.size = 0 の場合，任

意の L1 に対して成立する．そうでない場合は，

L1.size ≥ L2.size であり，かつ p = L2.size と

すると L1 から p 個の部分木 L1[i1], L1[i2], ... ,

L1[ip], だけを順序は保存したまま (i1 < i2 < ...

< ip)取り出したとき L1[ix] ≥ L2[x](∀x, 1 ≤ x

≤ p) が成り立つような添え字列 i1, i2,..,ip が存

在することを表す．

最後に，t1 > t2とは t1 ≥ t2 であり，かつ t1 ≤ t2

ではないことである．t1 > t2 が成り立つこと

を，t1 が t2 を包含していると表現する．また，

t1 ≥ t2 の判定時にその部分木内の任意の階層の

部分木列の比較において，p個の要素として選ば

れなかった部分木が表すメソッド呼び出し構造

は，部分木 t2 中では欠損しているという (図 5)．

R3では実行履歴中から，呼び出し構造の一部に

欠損を含むような繰り返しを検出し，圧縮する．

つまり，図 3の同一性の判定において，繰り返し

を検出していない場合は，比較対象である長さ

kの 2つの部分木列を L1, L2 とおいた時に，L1

≥ L2 または L1 ≤ L2 である時同一であると判

定する．繰り返しを検出した後は，検出済みの繰

り返しの長さを r，繰り返しになっている部分木

列を L1, ..., Lr とし，次の比較対象の部分木列

を Lr+1 とすると，Li ≥ Lj(∀j, 1 ≤ j ≤ r)を満

たす Liについて，Lr+1 ≥ Li または Lr+1 ≤ Li

である時同一であるとする．

この繰り返し全体を表現する部分木列としては，

繰り返し中の最大の要素，つまり，繰り返しの回

数を rとすると，Li ≥ Lj(∀j, 1 ≤ j ≤ r)を満た

す Li を基にして，R2 の時と同様のオブジェク

ト ID の統合を行い，Li 以外の要素で欠損して

いる部分木に，欠損しているという情報を付加す

ることで作成する．

このルールは，繰り返し毎に呼び出し構造が異

なるような繰り返しをある程度圧縮することが

できるため，R2よりも多くの対象を圧縮できる．

しかし，繰り返し中の欠損部分の呼び出しは，メ

ソッドが呼び出されたのか否かが不明になるとい

図 5 欠損構造の例

表 2 R4 で用いる記法の定義

表記 意味

x = y xと yが同じ節点を指している

x.copy xと同じ IDと同じメソッド名を

持ち，子は持たない新たな節点

replace(x,y) 節点 xを親から切り離し，

その場所に節点 yを繋げる

x.tree xを根とする部分木

x.parent xの親である節点

T 節点の列

T.size 節点の列 Tに含まれる節点の個数

T[i] 節点の列 Tに含まれる i番目の

節点 (1 ≤ i ≤ T.size)

う点において，元の実行履歴の構造を正確には表

していないことになる．

2. 3. 2 再帰構造の圧縮ルール

本節では，再帰構造の圧縮ルールである R4につい

て述べる．ルールの詳細に入る前に，R4を説明する

ために，新たに表 2に示す記法を定義する．

R4:再帰構造

R4では実行履歴中の呼び出し構造において再帰

的に呼び出されているメソッドを検出し，圧縮す

る．ここではオブジェクト IDを考慮せず，同一

メソッドであれば再帰として扱うものとする．

処理の方針は，まず，再帰構造になっているメ

ソッドが呼び出されている部分で，木構造を分割

していく．そして，分割された各部分木から，他

の部分木全てについて，包含するかまたは同一な

構造を持つような集合を選ぶ．ここでいう包含，

同一な構造とは，R3の説明で定義した関係を用

いる．そして，その集合に含まれる部分木を組み

160 コンピュータソフトウェア

図 6 再帰構造の圧縮例

合わせて，木構造を再構成することで，再帰構造

の簡潔な表現を作成する．

以下，再帰構造の圧縮を行う部分木の根である節

点を x とし，圧縮処理の詳細を 4 段階に分けて

説明する．なお説明を簡単にするために，再帰構

造の圧縮処理の例を図 6 に示し，この図を参照

しながら，説明を行う．

1. 再帰的に呼ばれているメソッドを表す節点の

特定

メソッド呼び出しの順序に従って木構造を探索し，

葉である節点 yを見つける．そして，xから yへ

辿る経路上に存在する各節点の列Tを取る．T[1]

は x，T[T.size]は yである．次に，T[t].method

= T[r].method (∃ r, 1 ≤ t ≤ T.size - 1, t < r ≤
T.size) を満たし，T[t] が再帰呼び出しとして圧

縮処理を受けていないような，最小の tを見つけ

る．tがなければ次の葉へ進む．tが存在すれば，

T[t].method = T[r].method(t ≤ r ≤ T.size) を

満たす T[r]を全て見つける (T[t] を含む)．その

T[r]の列を T́ とする．つまり，T́ 中の各節点は，

T中に含まれる節点のうち，最初に現れる再帰

的に呼ばれるメソッドへの，メソッド呼び出しを

表す節点である．T́ の各要素は，対応する T中

の要素と同じ節点を指しているものとする．例え

ば，T={x, a1, b1, a2, b2, y} であり，a1.method

= a2.method，b1.method=b2.methodであると

すると，a1.methodと b1.method が再帰的に呼

び出されているが，t=2, r=4で T[2].method =

T[4].method が成り立つので，a1 と a2 が処理

対象となる．このとき，T́ = {a1, a2} であり，
T́ [1]=T[2], T́ [2]=T[4] となる．また，図 6 で言

えば，左端の葉に到達した時にメソッド A.a()が

3階層の再帰呼び出しになっているので，根から

そのまま T́ [1]=T[1]，T́ [2] = T[2]，T́ [3] = T[3]

となる．

2. 再帰呼び出しの節点の切り離し (copy への

置換)

次に，1 ≤ i ≤ T́ .size を満たす全ての i につい

て，T́ [i].copyを作成し，これらの列を Cとする．

(T́ [1].copy = C[1]). そして，T́ [i].parentが存在

するなら，replace(T́ [i],C[i])を行う．つまり，再

帰呼び出しを表す節点 T́ [i] をその親から切り離

して，代替の節点 C[i](C[i].object = T́ .object,

C[i].method = T́ [i].method) に置換する．ここ

で，T́ [1] が xであり，実行履歴の木構造全体の

根であった場合は parentが存在しない．その場

合は，C[1]には置換しない．なお，この処理は図

6 で言えば，上段の状態から切断と copyを行っ

た中段の状態へ移行する処理に相当する．

3.代表元となり得る節点の選別

次に，R3 の説明で定義した包含関係を用いて，

T́ の中から代表になる節点を選ぶ．ここで，部分

木 Aが部分木 B に包含されないことを，A ! <

Bと表す．また，部分木 Aと Bが等しいという

関係には，R2 で定義した関係 A=B を用いる.

また，等しくないことを A ! = B と記述する．

T́ [i].tree ! < T́ [j].tree (∀j,1 ≤ j ≤ T́ .size) かつ

T́ [i].tree != T́ [j].tree(∀j,1 ≤ j < i) を満たす T́ [i]

を全て見つけ，その数を m 個 (m≥1) とし，そ

Vol. 24 No. 3 July 2007 161

れぞれ T́ [i1], T́ [i2], ... , T́ [im] とする．これら

T́ [i1], T́ [i2], ... , T́ [im]を T́ の代表元と呼ぶ．こ

のとき，T́ 中の節点以下の部分木は，いずれか

の代表元以下の部分木に包含されるか等しいも

のになる．図 6で言えば，中段左の T́ [1].treeは，

T́ [1].tree ! < T́ [2]であり，T́ [1].tree ! < T́ [3] で

あるため代表元の 1つである．しかし，T́ [2].tree

= T́ [1].tree，T́ [3].tree < T́ [2].tree であるため，

中央の T́ [2].tree と右の T́ [3].tree は代表元には

ならない．

また，この比較の際に，R3の時と同様に，対応

する各オブジェクトの IDや欠損構造の情報を追

加していく．その後，T́ [i1], T́ [i2], ... , T́ [im]の

各節点と，C中の各節点C[i1 +1], C[i2 +1], ... ,

C[im + 1]について，今回，再帰呼び出しとして

圧縮処理を受けた節点に，それらが再帰呼び出し

として圧縮されたことを記録し，それら全てのオ

ブジェクト ID を統合する．例えば，図 6 では，

代表元が T́ [1]だけなのでm=1である．よって，

T́ [1]と C[2]に，再帰呼び出しの圧縮処理を受け

た記録をつける．図中ではこれを節点に “R”を

付けて表している．また，各節点はそれぞれ対応

する節点のオブジェクト IDが異なっている．さ

らに，T́ [3] では A.a() の呼び出しが欠損してい

るため，オブジェクト IDの統合と，欠損構造の

情報をつける．図中では欠損構造は辺に “?” を

付けて表現している．

4.代表元による木構造の構築 (copyとの再置換)

まず，C[1].parentがあれば，replace(C[1],T́ [i1])

を行う．つまり，節点 T́ [1]の親から再帰構造全体

が切り離されているなら，最初の代表元をそこに

繋ぐ．ここで T́ [1] が xであり，かつ実行履歴の

木構造全体の根である場合は，C[1].parent が存

在しない．この場合は，木構造全体を T́ [i1].tree

と置き換える．これは，xが実行履歴の木構造全

体の根であり，再帰呼び出しの一部だった場合は，

最初の代表元を新たな根とするということである．

次に，m ≥ 2ならば，全ての 2 ≤ j ≤ mについて，

jの小さい方から順に，replace(C[ij−1 +1],T́ [ij])

を行う．つまり，j-1番目の代表元以下の部分木

から，葉としてついている C[ij−1 + 1]を切り離

して，次の代表元をそこに繋いでいく．最後に，

もし，葉 y が T́ [im].tree に含まれていれば，y

についてもう一度 1 からの処理を行う．含まれ

ていなければ T́ [im].tree中に含まれる葉である，

C[im +1]について 1からの処理を行う．これは，

再帰構造の圧縮を受けた T 中の葉である y か，

あるいは yを含む部分木が切り離された結果，T

中の節点の 1つと置き換えられて新たに葉となっ

た C[im + 1]のどちらかについてもう一度同じ処

理をするということである．これによって，圧縮

による木構造の組み換えが起こっても，木構造の

順序的にその葉より前にある葉には既に到達済

みであり，後にある葉には到達していないという

状態を保つことができる．なお，図 6 のケース

では，まず，唯一の代表元である T́ [1] を新たな

根とする．そして，m=1であり，im=1であり，

葉 yが残っていない為，新たに葉となった C[2]

について，1から処理を行う．それ以降は，圧縮

済みの再帰呼び出ししか検出されずに，図 6 の

圧縮処理は終了する．

このルールは圧縮効果そのものよりも，再帰的な

呼び出し回数の深さの差を緩和することで，繰り

返し圧縮ルールの効果を高めることを目的とし

ている．

2. 4 シーケンス図生成への適用

2. 3 節で述べた手法で圧縮された実行履歴を基に，

シーケンス図の作成を行う．繰り返し回数等の，圧縮

結果を基にした情報を注釈として表現することで，よ

り分かりやすい図を作成する．

以下，実行履歴中で各圧縮ルールで圧縮された部分

について，どのようにしてシーケンス図として表現す

るかを述べる．

R1被圧縮部

R1によって圧縮された部分には，通常のシーケ

ンスの他にループ情報を表記する (図 7)．なお，

このループ情報は以降の R2, R3についても同様

の形式で表現する．

162 コンピュータソフトウェア

図 7 R1 適用部から作成される図

図 8 R2 適用部から作成される図

R2被圧縮部

R2によって圧縮された部分についても R1と同

様にループ情報の表記を行う．そして，この部分

には複数のオブジェクトを統合したオブジェクト

へのシーケンスが存在するため，図中の上部に

並ぶオブジェクト列の中に統合されたオブジェク

ト群を示すオブジェクトを追加し，それに対する

シーケンスを引く (図 8)．

R3被圧縮部

R3によって圧縮された部分にも，ループ情報の

表記と統合されたオブジェクトへのシーケンス

表現を行う．また，欠損構造と判定された箇所に

ついては，その呼び出しが行われる場合のシー

ケンスと，呼ばれずに素通りするシーケンスの 2

通りを描画する (図 9)．

R4被圧縮部

R4によって圧縮された部分は，統合されたオブ

ジェクトへのシーケンスを含む再帰呼び出しを

表す．そのため，再帰呼び出し構造全体を四角で

囲み，これを再帰呼び出し全体を表すブロックと

図 9 R3 適用部から作成される図

A(1) B(2)

a()

b()

a()
rec a()

rec a()

A(1).a(){

A(1).a(){

B(2).b(){

}

}

B(2).b(){

}

}

A(1).a(){

rec A(1).a(){

}

B(2).b(){

}

}

図 10 R4 適用部から作成される図

する．その内部で発生する，再帰的なメソッド呼

び出しは，外側のブロックと同一の名前を持つブ

ロックを内側に作成し，そのブロックへのシーケ

ンスを引くことで，再帰的な呼び出しを表現する

(図 10)．

3 適用実験

表 3に示した 4 つの Java プログラムと解析対象機

能に対して，本手法の適用実験を行った．

実験ではまず，各プログラムの各機能を実行し，

メソッド呼び出しの実行履歴を取得した．実行履

歴の取得には Java Virtual Machine Profiler Inter-

face(JVMPI) を利用して実装した実行履歴取得ツー

ルを用いた．利用した JVMのバージョンは 1.5.0 で

ある．ここで，java，javax，org，com, sunパッケー

ジ及びそれらのサブパッケージ以下のクラスのメソッ

ド呼び出しはライブラリとみなして実行履歴として

取得しなかった．これは，Javaのライブラリ部分の

Vol. 24 No. 3 July 2007 163

表 3 実験対象プログラム

プログラム名 説明 解析対象機能

jEdit テキストエディタ テキストファイルの読み込み，表示

Gemini コードクローン分析ツール コードクローンの検出，結果の表示

scheduler スケジュール管理ツール スケジュール記述

LogCompactor 本ツールの実行履歴圧縮部 実行履歴の読み込み．圧縮ルール R2の適用

表 4 圧縮結果

圧縮前 R4後 R1後 R2後 R3後 圧縮率 (%)

jEdit 192005 185517 139407 37291 27963 14.56

Gemini 208360 205483 57365 1954 1762 0.85

scheduler 4398 4398 3995 238 147 3.34

LogCompactor 11994 8874 8426 208 105 0.88

動作を実行履歴上から除くことで，ユーザプログラ

ム内の動作に限定した図を作成できるようにするた

めである．ただし，jEdit はそれ自身のクラス群が

org.gjt.sp.jedit パッケージ以下に置かれているため，

このパッケージについてはフィルタリングを行わな

かった.

次に，考案した 4つの圧縮ルールを R4，R1，R2，

R3 の順に実行履歴に適用し，圧縮効果を測定した．

この適用順序をとった理由は，R4の説明で前述した

とおり，先に再帰構造の圧縮を行い，再帰構造の階層

の深さの差をなくすことで，後に適用する繰り返し圧

縮ルールの効果が高くなることが期待できるからで

ある．これによって，最終的な圧縮効果が最も高くな

る．また，R1，R2，R3については，R1で圧縮可能

な部分は R2 と R3でも圧縮可能であり，R2で圧縮

可能な部分は R3でも圧縮可能である. そのため，最

終的な圧縮効果は R3のみを適用した場合と同じであ

るが，それぞれの効果を測定するために，この順番で

適用した.

最後に，圧縮結果からシーケンス図の生成を行っ

た．また，schedulerについて，設計時に作成された

シーケンス図と生成した図との比較実験も行った．

3. 1 圧縮結果

　それぞれの実行履歴の圧縮前と各ルール適用後の

メソッド呼び出し回数を表 4に示す．なお，表 4中の

圧縮率は次式で定義する．

圧縮率 =
全ルール適用後のメソッド呼び出し回数

圧縮前のメソッド呼び出し回数
×100(%)

この値が小さいほど圧縮効果が高いということになる．

まず，R4では圧縮効果よりも再帰構造の再帰呼び

出し回数の差を緩和することを目的としているため，

圧縮効果はあまり高くなかった．しかし，再帰呼び出

しを用いて実装されている部分が多い LogCompactor

の実行履歴では，20%程度まで圧縮することができた．

次に R1では，Gemini以外の実行履歴には完全に

一致する繰り返し部分が少ないためか，あまり圧縮効

果は得られなかった．Geminiの実行履歴には単純な

繰り返しが多かったため，高い効果を発揮し，25%程

度まで圧縮した．

R2は実験で用いた全ての実行履歴に対して高い圧

縮効果を示しており，非常に有効であることがわかっ

た．これは，オブジェクト指向言語で書かれたプログ

ラムが，そのループ内において，同じオブジェクトへ

の処理を繰り返すのではなく，いくつかのオブジェク

トの集合に対して，順に同じ処理を繰り返していく場

合が多いことや，ループ内で毎回一時的に生成され

るオブジェクトを利用すること等が原因だと考えら

れる．

164 コンピュータソフトウェア

図 11 生成したシーケンス図 (scheduler)

R2 を適用した時点で，内部で分岐が発生しない

ループ構造は圧縮されてしまっている．さらに R3を

適用してみると，圧縮前のメソッド呼び出し回数が少

ないものに対してはさらに 6 割程度までの圧縮が可

能であったが，多いものにはあまり効果がなかった．

この理由として，呼び出し回数が少ない実行履歴で

は，分岐が単純な欠損構造で表現できることが多いこ

とに対して，呼び出し回数が多い実行履歴は，呼び出

し階層が深く複雑な分岐構造になるため，R3では効

果が薄くなったと考えられる．

これら 4つのプログラムに対する圧縮率は 0.85 ∼
14.56%となった．Geminiや Logcompactorの実行履

歴の圧縮率は，それぞれ 0.85%，0.88%と良い結果

が出ている．LogCompactor の実行履歴は，元のメ

ソッド呼び出しが 11994 回であったものが，105 回

まで圧縮されており，情報の圧縮が十分に行われて

いると考えられる．また，Geminiの実行履歴は最終

的に 1762回とやや多めだが，元の 208360 回から考

えれば，情報として十分判読可能なサイズまで圧縮

できている．scheduler，jEditの実行履歴の圧縮率は

3.34%，14.56%であった．schedulerは圧縮後の実行

履歴を見ると，メソッドの呼び出し回数が 147 回と

十分少なく，また，全ての繰り返しについて圧縮が行

われていたことが分かった．

しかし，jEditの圧縮後の実行履歴には，繰り返し

部分が多く圧縮されずに残っていた．これらは，プロ

グラムのループ構造の中で実行時の条件によって複雑

に分岐する構造になっているため，提案手法では圧縮

できていなかった．このような構造には，静的解析か

ら分岐構造をあらかじめ解析しておくことで，さらな

る圧縮ができると考えている．

なお，最も圧縮処理に時間がかかったのは jEditの

実行履歴であった．この履歴に対して，CPU Pen-

tium4 3.2GHz，メモリ 2GB の環境で実行時間は 2

Vol. 24 No. 3 July 2007 165

:RegisterDialog calendardate:Calendardate scheduler:Scheduler :SchedulerList

newSchedule:FixedSchedule

fixedSchedule:FixedSchedule

1:date = getdate()

2: FixedSchedule(date, time, memo)

3: removeFixedSchedule(fixedSchedule)

4: removeFixedSchedule(fixedSchedule)

5: date = getdate()

6: getFixedSchedule(date)

7: remove(fixedSchedule)

8: <<destroy>>

9: addFixedSchedule(newSchedule)

10: addFixedSchedule(newSchedule)

11: date = getdate()

12: getFixedSchedule(date)

13: add(fixedSchedule)

図 12 設計段階のシーケンス図 (scheduler)

分程度であった．本手法は，1度圧縮処理を行ってし

まえば，以降はその結果を使ってシーケンス図を作成

すればよいので，この程度の時間であれば十分実用的

であると考える．

3. 2 シーケンス図の生成と設計時の図との比較

次に，圧縮結果からシーケンス図の作成を行った．

図 11は scheduler の圧縮後の実行履歴から生成され

たシーケンス図である．図中には圧縮された繰り返し

が表示されている．

また，作成された図が対象プログラムの実行時の動

作を正しく反映しているかを調べるために，設計時

に作成されたシーケンス図 (図 12)と，ツールから生

成したシーケンス中の該当部分の図との比較を行い，

それらの間の相違について調査を行った．対象とした

プログラムはスケジュール管理ツール schedulerであ

り，比較したシーケンス図中に記述されているのは，

スケジュールの削除を行う処理である．

両者のメソッド呼び出しの状況を比較した結果，全

体の処理の流れとしては，ほぼ同様の構造が描かれて

いることが分かった．しかし，その中で，設計時には

ないメソッド呼び出しやオブジェクトが，実行履歴か

ら生成した図には存在した．図 11中で囲まれている

部分が該当部分である．

これらについて，該当処理のソースコードを確認

したところ，スケジュールの削除処理の直後に，スケ

ジュールデータのキャッシュを削除する処理が実装時

に追加されていることが分かった．そして，生成した

図中にのみ現れたメソッド呼び出しやオブジェクト群

は，このキャッシュの削除処理に関連するものであっ

た．また，他の部分のソースコードも確認したとこ

ろ，このプログラムは全てのスケジュールデータが，

ある 1 つのインスタンスで一元的に管理される構造

になっていた．しかし，各日付を表すインスタンス毎

166 コンピュータソフトウェア

に，それらの日付に関連するスケジュールデータを

キャッシュしており，個別の日付に関するスケジュー

ルの取得処理などを高速化していることが分かった．

この例は，(設計時に考慮されていなかったなどの何

らかの理由により)設計時の図には存在しない処理が，

ソースコードで実装されている事例であり，保守作業

などを行う際には知っていなければならない内容であ

る. このように，本手法によって生成したシーケンス

図は設計時の図より，実際のプログラムの動作を正し

く表現している.

本手法では，実際のプログラムの実行時のオブジェ

クトの動作を図示し，動作理解に役立てることが目的

であるため，このように実装時に追加された処理が図

中に出現することは望ましい結果であり，本手法から

作成する図がより正確にプログラムの実行時動作を

表していることが確認できた．また，生成したシーケ

ンス図は各ルールによって圧縮され，簡潔な図になっ

ていたため，設計時の図と同様の処理を行っている箇

所を容易に特定することができた．

4 考察

4. 1 他のプログラミング言語への適用可能性

本手法で使用する実行履歴は，個々のメソッド呼び

出しについて，呼び出しを受けたオブジェクトのオブ

ジェクト IDと呼び出されたメソッドのメソッド名，

引数の型，返り値の型，そのメソッドを実装している

クラス名，メソッド呼び出しの終了記号を記録してい

るものである．これらの情報はオブジェクト指向言語

の一般的な概念のみを利用しているため，本手法はオ

ブジェクト指向言語全般に適用可能である．ただし，

それぞれの言語や実行系に合わせた実行履歴取得シ

ステムを用意する必要がある．

我々は現在までに，Java言語に対する実行履歴取

得ツールを作成しており，本稿の適用実験で用いてい

る実行履歴はこれによって取得したものである．こ

のツールは Java Virtual Machine Profiler Interface

を用いて実装している．このインタフェースを用いた

プロファイラを JavaVMの実行時にオプションとし

て指定することで，メソッド呼び出しなどの，実行時

に発生する特定のイベントについての情報を VMか

ら受け取ることができるようになっており，容易に実

行履歴が取得できる．

現在のところ，他の言語の実行履歴取得ツールは実

装していないが，ソースコード中にロギングコードを

埋め込んで情報を出力させるようなツールを作成す

ることで，同様の形式の実行履歴を取得することが可

能であると考えられる．

4. 2 マルチスレッドへの適応

現在の圧縮ルールは単一スレッドしか考慮してい

ない．そのため，マルチスレッドプログラムでは，ス

レッド毎のシーケンス図を表示している．しかし，複

数のスレッドが協調して動作するようなプログラムを

理解するには，それらの相互の関連性を考慮した圧縮

処理が必要になると考えられる．また UML のシー

ケンス図においても，単純な形態であれば複数のス

レッドを同一図上に表現することは可能であるが，同

じオブジェクトへのメソッド呼び出しが同時に発生し

た場合などは表現することができない．そのため，よ

り複雑なマルチスレッドの動作を図示できるような，

図の拡張が必要であると考える．このような，マルチ

スレッドプログラムへの手法の拡張は今後の課題で

ある．

4. 3 圧縮による情報の欠落

提案している 4 つの圧縮ルールでは，繰り返し構

造や再帰構造全体をまとめて抽象化した形に置き換え

ることで，図を小さくしている．ここで，繰り返しや

再帰に対して，呼び出しを受けるオブジェクト群のク

ラスや繰り返しの回数を概略情報とし，繰り返しや再

帰一回ごとに異なる呼び出し回数や個別のオブジェク

ト IDを詳細情報と位置づける．その上で，ユーザー

にまず概略情報を小さな図として示すことで，実行履

歴を概略から詳細へと，トップダウンに理解すること

を目指している．

本手法で作成したツールでは，作成したシーケンス

図中の特定の繰り返し部分を任意に展開し，部分的に

圧縮される前の情報も対話的に閲覧できる．この機能

を用いることで，圧縮された繰り返しや再帰構造の一

回ごとの実行状態を参照したい場合は，その部分を

Vol. 24 No. 3 July 2007 167

展開することで，より正確な情報を参照することが

できる．本手法は，1．繰り返しや再帰構造を圧縮す

ることによって，それら一回毎の正確な情報をある程

度犠牲にしつつ，全体の情報を表す表現に置き換え

を行い，圧縮した小さな図を作成する．2．ツールの

ユーザは圧縮された状態の図を用いて，プログラム

の実行時の動作の流れを見ていき，個別に注目した

い部分があれば，任意に展開して一回ごとの正確な

情報を参照する．このような流れで利用することで，

できる限り必要な情報の欠落を起こすことなく，理解

しやすい図を提供することができる．

4. 4 圧縮アルゴリズムの設計評価

提案手法が，2. 2節で述べた 4つの項目を満たして

いるかを考察する．

1. シーケンス図上に，圧縮の適用結果が簡潔に図

示できる必要がある

提案した各ルールは，シーケンス図上に繰り返し

構造，再帰構造，分岐構造を表す注釈を付加し，

繰り返しによって同一の処理を受けるオブジェク

トを統合することで，圧縮された状態をシーケン

ス図として表現することを可能にしている．通常

のシーケンス図の記述様式では表現できてはい

ないが，シーケンス図の構造を崩すような形式で

はないため，この程度であれば問題ないと考え

る．また，これらの構造はソースコード中でよく

利用される構造であるため，ソフトウェア開発者

にとっては身近な構造である．よって，本手法の

利用者にはこれらの構造の理解は容易であると

思われる．統合されたオブジェクト群が繰り返し

中でそれぞれ同じ処理を受けることも，理解は難

しくないと考える．なお，繰り返し構造と分岐構

造は UML2.0 では標準の形式を用いて記述可能

であるため，今後はその形式に合わせていく予定

である．

2. 圧縮の適用前の振る舞いの推測が容易である

各ルールにおける圧縮結果は繰り返し構造，再帰

構造，分岐構造と統合されたオブジェクトによっ

て表現されている．R2，R3，R4 の圧縮結果で

は，統合されたオブジェクトや分岐構造が登場す

る．これらは，4. 3節で述べたように，統合され

たオブジェクト群がどの順番でメソッド呼び出し

を受けるか，分岐構造になっているメソッド呼び

出しが何回目の繰り返しで発生するかという繰

り返し 1 回毎の正確な情報が推測できなくなっ

ている．しかし，R2，R3の圧縮結果として表示

されるループ構造や，R4の圧縮結果として表示

される再帰構造を見ることで，何回繰り返しが発

生し，どのオブジェクト群が繰り返し中でメソッ

ド呼び出しを受け，どのメソッドが繰り返し中で

呼ばれるかといった，処理の流れの概要を推測す

ることは可能である．適用実験においては，ス

ケジュール管理ツールの schedulerの圧縮結果に

は，12 回の繰り返しとして圧縮された処理があ

り，さらにその中で，28から 31回の繰り返しが

圧縮されている箇所があった．このことから，該

当箇所では，外側の繰り返しで月ごとの処理を，

内側の繰り返しで 1 日ごとの処理を行っている

様子が容易に推測できた．このようなレベルの

推測ができれば，十分実用的であると思われる．

また，これらの構造は単純であり，特に理解が難

しい構造ではないため，圧縮結果中の注釈表現の

意味を知っていれば，誤って理解することは少な

いと考えられる．

3. 特定の部分だけを局所的に選んで圧縮できる必

要がある

全ての圧縮ルールは木構造を圧縮対象としてい

るため，任意の部分木に適用するか適用しないか

を選択できるようになっており，局所的に圧縮，

非圧縮を選択することができる．

4. 圧縮前の状態に戻せるようなアルゴリズムにす

る必要はない

局所性が実現できているため，この項目について

は特に考察する必要は無い．

5 関連研究

シーケンス図とはオブジェクト間のメッセージ通信

の様子を時系列に沿って記述することができる図で

ある．しかし，静的解析からシーケンス図の生成を行

う手法では，いくつかのオブジェクトのまとまりであ

168 コンピュータソフトウェア

る，クラス間でのメッセージ交換を記述することが，

しばしば行われる．これは，静的解析から得られる情

報からでは，動的に生成されるオブジェクトを追跡す

ることが困難なためである．一部で，静的解析情報か

ら可能な範囲で，動的に生成されるオブジェクトの動

作を解析し，シーケンス図として表現する研究が行わ

れている [12]．具体的には，オブジェクトの生成と参

照の遷移を追跡し，ソースコード中の任意のメソッド

呼び出し文について，呼び出し元になるオブジェクト

と呼び出しを受けるオブジェクトを限定し，それら全

てについてシーケンス図を生成するという作業を行っ

ている．しかし，静的解析から判別できる動的な情報

には限界があるため，実行時に動的に決定される要素

については，完全には対応していない．

本手法と同じく，動的解析からシーケンス図を作成

するという研究も多く行われている [1] [4]．実行系列

をそのままシーケンス図として表現するというソフ

トウェアも幾つかある [2] [3]．また，デバッグ実行の

途中でその実行時に集めた履歴を元にシーケンス図

を表示し，デバッグ支援を行うツールもある [7]. しか

し，動的解析から得られる情報は膨大な量に上るた

め，有用なシーケンス図を生成するためには，膨大な

実行履歴の情報を削減する方法が必要である．これに

対しては，実行履歴から動的スライスの計算を行い，

指定されたスライス基準に関連するメッセージのみを

抽出して表現する研究 [4]や，アスペクト指向技術を

用いて必要な情報のみを実行時に取得し，シーケンス

図の作成を行っている研究 [1]がある．また，Richner

らは，ユーザが呼び出し元と呼び出し先のオブジェク

ト，メソッド名までを指定することで，実行履歴中か

らその条件を満たすメソッド呼び出しを抽出し，シー

ケンス図を作成している [11]．その他にも，オブジェ

クトをクラスで分類し，動的な情報からクラス単位の

シーケンス図を作成するツール [6]も存在する．これ

らの手法では，それぞれが想定する利用法において有

用ではある．例えばデバッグ作業などで，不正な状態

になっているオブジェクトに関連するメソッド呼び出

しのみを抽出し，そのオブジェクトへのメソッド呼び

出し履歴を図示することで，不正な状態になった原因

を発見しやすくするなどの利用法がある．しかし，条

件に合致する履歴のみを抜き出しているため，その条

件に合致しない情報が図上から全て消えてしまう．こ

のような図は，本手法が目指す，プログラム実行時の

流れや，特定の機能に実現するためにどのようなオブ

ジェクト群が動作するか，どのようなオブジェクト群

が協調して動作するのかを理解する作業を支援する，

という目的には不向きであると考える．

6 まとめ

オブジェクト指向プログラムの理解支援を目的と

して，動的解析情報から可読性の高いシーケンス図

を作成する手法を提案し，実装を行った．実行時の動

的解析から得られる情報は膨大な量に上るため，情

報を圧縮し抽象化して表現し直すことが必要である．

そこで，オブジェクト指向プログラムの構造を考慮し

た，4つの実行履歴圧縮ルールを考案した．また，提

案手法を実現するためのツールを作成し，いくつかの

Javaプログラムに対して適用実験を行った．その結

果，実行履歴を大幅に圧縮し，簡潔なシーケンス図を

作成することに成功した．

今後の課題としては，以下のようなものがある．

• 静的解析情報の併用．
ソースコードの制御構造を利用して，より高度な

圧縮を行う．

• マルチスレッドシーケンスの同一図中への表現．
複数のスレッドを同一のシーケンス図上で表現す

ることで，スレッド間の処理の関連性を図示し，

バグの原因の特定などに役立てることが出来る．

• UML2.0 [13]に準拠した図の作成を行う．

参 考 文 献

[1] Gschwind, T. and Oberleitner, J.: Improving

Dynamic Data Analysis with Aspect-Oriented Pro-

gramming, in European Conference on Software

Maintenance and Reengineering, 2003, pp. 259–268.

[2] Pauw, W. D., Jensen, E., Mitchell, N., Sevitsky,

G., Vlissides, J. and Yang, J.: Visualizing the Ex-

ecution of Java Programs, Lecture Notes in Com-

puter Science, Volume 2269, 2002, pp. 151–162.

[3] IBM: Rational Test RealTime. http://www-

306.ibm.com/software/awdtools/test/realtime/

[4] 小林隆志, 堅田敦也, 鹿内将志, 佐伯元司: プログラ
ムスライシングを用いた Java 実行系列からの部分シー

Vol. 24 No. 3 July 2007 169

ケンス生成手法, ソフトウェア工学の基礎ワークショッ
プ FOSE2004, ソフトウェア科学会, 2004, pp. 17–28.

[5] Lejter, M., Meyers, S. and Reiss, S. P.: Support

for Maintaining Object-Oriented Programs, IEEE

Transaction Software Engineerings, Vol. 18, No. 12

(1992), pp. 1045–1052.

[6] NASRA: j2u. http://www.nasra.fr/flash/

NASRA.html

[7] Oechsle, R. and Schmitt, T.: JAVAVIS:Auto-

matic Program Visualization with Object and Se-

quence Diagrams Using the Java Debug Interface

(JDI), Lecture Notes in Computer Science, Volume

2269, 2002, pp. 176–190.

[8] Pacione, M. J.: Software Visualisation for

Object-Oriented Program Comprehension, in Inter-

national Conference on Software Engineering, 2004,

pp. 63–65.

[9] Pauw, W. D., Lorenz, D., Vlissides, J. and Weg-

man, M.: Execution Patterns in Object-Oriented

Visualization, in Conference on Object-oriented

Technologies and Systems, 1998, pp. 219–234.

[10] Reiss, S. P. and Renieris, M.: Encoding program

executions, in International Conference on Software

Engineering, 2001, pp. 221–230.

[11] Richner, T. and Ducasse, S.: Using Dynamic

Information for the Iterative Recovery of Collabo-

rations and Roles, in International Conference on

Software Maintenance, 2002, pp. 34–43.

[12] Tonella, P. and Potrich, A.: Reverse Engineering

of the Interaction Diagrams from C++ Code, in In-

ternational Conference on Software Maintenance,

2003, pp. 159–168.

[13] Unified Modeling Language (UML) 2.0 specifi-

cation nearing completion.

[14] Wilde, N. and Huitt, R.: Maintenance Support

for Object-Oriented Programs, IEEE Transactions

on Software Engineering, Vol. 18, No. 12 (1992),

pp. 1038–1044.

