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Abstract

Broken Lefschetz fibrations are fibration structures analogous to Lefschetz fibrations in the
context of near-symplectic 4-manifolds. In the first part of this thesis, we discuss the clas-
sification of smooth 4-manifolds which admit genus-1 simplified broken Lefschetz fibrations.
We completely classify diffeomorphism types of total spaces of genus-1 simplified broken Lef-
schetz fibrations. This result is a generalization of Kas and Moishezon’s classification of
genus-1 Lefschetz fibrations over the sphere S2.

In the second part of this thesis, we discuss hyperelliptic directed broken Lefschetz fibra-
tions. We prove that the total space of a hyperelliptic directed broken Lefschetz fibration
has an involution which preserves any fiber provided that the genus of any connected com-
ponent of a regular fiber is greater than or equal to 2. We also generalize Matsumoto and
Endo’s local signature formulae for hyperelliptic Lefschetz fibrations to a signature formula

for hyperelliptic directed broken Lefschetz fibrations.
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Chapter 1

Introduction

Broken Lefschetz fibrations are fibration structures on smooth 4-manifolds which we can
regard as a generalization of Lefschetz fibrations. Donaldson [8] proved that symplectic 4-
manifolds admit Lefschetz pencils. Conversely, Gompf [12] showed that the total space of every
Lefschetz pencil admits a symplectic structure. In [1], Auroux, Donaldson and Katzarkov
generalized these results to that on 4-manifolds with a near-symplectic structure (i.e. a closed

2-form which is symplectic outside a union of circles where it vanishes transversely).

Simplified broken Lefschetz fibrations are broken Lefschetz fibrations over the 2-sphere S?
which satisfy several conditions on fibers and singularities. Baykur first introduced simplified
broken Lefschetz fibrations in [2]. In spite of the strict conditions in the definition of sim-
plified broken Lefschetz fibrations, it turns out that every closed oriented 4-manifold admits
a simplified broken Lefschetz fibration. More strongly, every smooth map from a closed ori-
ented 4-manifold to S? is homotopic to a simplified broken Lefschetz fibration (for details, see
[31]). We can take vanishing cycles of simplified broken Lefschetz fibrations as we take those
of Lefschetz fibrations. Vanishing cycles of a simplified broken Lefschetz fibration have rich
information on the fibration structure. For example, Baykur [2] gave a way to obtain a Kirby
diagram of the total space of a simplified broken Lefschetz fibration from vanishing cycles of
the fibration. Furthermore, the author prove in this thesis that vanishing cycles of a simplified
broken Lefschetz fibration determine an isomorphism class of the fibration (for details, see
Theorem 2.5.2). The main purpose of this thesis is the classification of genus-1 simplified
broken Lefschetz fibrations. We further generalize several results on Lefschetz fibrations to
that on simplified broken Lefschetz fibrations.

We first study genus-1 simplified broken Lefschetz fibrations in Chapter 3. Kas [19] and
Moishezon [26] classified diffeomorphism types of total spaces of non-trivial relatively minimal
genus-1 Lefschetz fibrations over S2. They proved that the total space of such a Lefschetz
fibration is diffeomorphic to an elliptic surface E(n) for some n > 1. Baykur and Kamada
[4] and the author [14] originated the classification of diffeomorphism types of total spaces
of genus-1 simplified broken Lefschetz fibrations. The author [14] classified diffeomorphism
types of total spaces of genus-1 simplified broken Lefschetz fibrations under the assumption
on the number of Lefschetz singularities. Behrens [5] also classified 4-manifolds admitting

genus-1 simple wrinkled fibrations. Since we can change genus-1 simple wrinkled fibrations
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into genus-1 simplified broken Lefschetz fibrations by application of unsink deformations, we
can regard the classification problem of genus-1 simple wrinkled fibrations as a part of the
classification of genus-1 simplified broken Lefschetz fibrations. In this thesis, we gave the
complete classification of diffeomorphism types of total spaces of genus-1 simplified broken
Lefschetz fibrations (see Theorem 3.0.1). This result includes all the results above and gives
the affirmative answer to Conjecture 5.3 in [14] and the negative answer to Problem 24 in [3].

We next study hyperelliptic simplified broken Lefschetz fibrations (and more generally,
hyperelliptic directed broken Lefschetz fibrations) in Chapter 4. In smooth category, a hyper-
elliptic Lefschetz fibration is defined as a Lefschetz fibration such that all the vanishing cycles
of the fibration are preserved by the hyperelliptic involution of the standard surface 3, for
a suitable choice of identification of a reference fiber with the surface ¥,. Siebert and Tian
[29] and Fuller [11] proved that the total space of a hyperelliptic Lefschetz fibration admits
an involution which preserves any fiber of the Lefschetz fibration. In this thesis, we define
hyperelliptic simplified broken Lefschetz fibrations in the same way as in the case of Lefschetz
fibrations and generalize Siebert, Tian and Fuller’s result on hyperelliptic Lefschetz fibrations
to that on hyperelliptic simplified broken Lefschetz fibrations. We prove that the total space
of a hyperelliptic simplified broken Lefschetz fibration admits an involution preserving any
fiber of the fibration provided that the genus of the fibration is greater than or equal to 3
(see (i) of Theorem 4.3.1). By using the involution, we also prove that the rational homology
class of the total space of a hyperelliptic simplified broken Lefschetz fibration of genus g > 3
represented by a regular fiber is not trivial (see (ii) of Theorem 4.3.1). The second statement
implies that we cannot drop the assumption on a genus from the first statement. Note that we
can generalize our results above to those on hyperelliptic directed broken Lefschetz fibrations
(see Theorem 4.3.8).

Matsumoto defined the local signature of a Lefschetz singular fiber and proved that the
signature of the total space of a Lefschetz fibration of genus-1 [23] and genus-2 [24] is equal to
the sum of the local signatures of the Lefschetz singular fibers of the Lefschetz fibration. Endo
[9] generalized Matsumoto’s signature formulae to a formula for the signatures of hyperelliptic
Lefschetz fibrations. In this thesis, we further generalize Matsumoto and Endo’s signature
formulae to a formula for the signatures of hyperelliptic directed broken Lefschetz fibrations
as follows: we define a certain rational valued homomorphism Ay . on the subgroup of the
hyperelliptic mapping class group which consists of mapping classes preserving ¢, where ¢ C
>4 is a simple closed curve preserved by the hyperelliptic involution. We prove that the
signature of the total space of a hyperelliptic directed broken Lefschetz fibration is equal to
the sum of the local signatures of the Lefschetz singular fibers of the fibration and the values
of the monodromies along the images of folds of the fibration under the homomorphisms

hg.dys---shg.a,,, where dy, ..., d,, are vanishing cycles of folds (see Theorem 4.5.1).

Acknowledgments: The author would like to thank his supervisor Ryushi Goto for his
constant encouragement during the completion of this thesis and helpful comments on the
draft of this thesis. The author also would like to express his gratitude to his previous
supervisor Hisaaki Endo for valuable discussions in the course of these works. The results in
Chapter 4 of the thesis are based on joint work with Masatoshi Sato.




Chapter 2

Broken Lefschetz fibrations and

vanishing cycles

In this chapter, we give the definition of broken Lefschetz fibrations and summarize the results

on monodromies and vanishing cycles of broken Lefschetz fibrations we need in this thesis.

2.1 Broken Lefschetz fibrations

Let X and B be connected, oriented, compact, smooth manifolds of dimension 4 and 2,
respectively, and f : X — B a smooth map. Assume that f satisfies the condition f~1(0B) =
0X. A critical point p € X of f is called an indefinite fold singularity if there exist real
coordinates (¢, z,y,2) of X around p and (s,w) of B around f(p) such that f is locally
described as follows:
(t,z,y,2) — (s,w) = (t, 22 + y? — 2?).

In this paper, we will refer to this singularity as a fold for simplicity. A critical point p € X
of f is called a Lefschetz singularity if there exist complex coordinates (z,w) of X around p
compatible with the orientation of X and £ of B around f(p) compatible with the orientation
of B such that f is locally described as follows:

(z,w) — & = zw.

Definition 2.1.1. A map f is called a broken Lefschetz fibration if f satisfies the following

conditions:
e the set Crit(f) C X of critical points of f consists of folds and Lefschetz singularities;
e the restriction f|Zf is a generic immersion, where Z¢ C X is the set of folds;
e the restriction flc, is injective, where Cy C X is the set of Lefschetz singularities of f.

A broken Lefschetz fibration f is called a Lefschetz fibration if the set of critical points of f
consists of Lefschetz singularities. All the regular fiber of a Lefschetz fibration are diffeomor-

phic to some genus-g surface 4. A Lefschetz fibration f has genus-g if the genus of a regular
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4 Section 2.1. Broken Lefschetz fibrations

fiber of f is equal to g. We will refer to broken Lefschetz fibrations and Lefschetz fibrations
as BLF's and LF's, respectively.

Definition 2.1.2. Two BLFs f; : X1 — By and fy : Xo — By are said to be equivalent if
there exist diffeomorphisms © : X; — X5 and 0 : By — By which make the following diagram

commute: o
X1 —_— XQ

W e

B, L Bs.
Let f : X — S? be a BLF over the 2-sphere. We assume the following conditions:
(a) the restriction of f to the set of singularities is injective;

(b) the image f(Z;) is a disjoint union of embedded circles parallel to the equator of S2.

We put f(Zy) = Z1 11 --- 1 Z,,, where Z; is a connected component of f(Zy). We take an
embedding v : [0,1] — S? so that v satisfies the following properties:

1. the image ([0, 1]) is contained in the complement of f(Cy);
2. v starts at the south pole p, € S? and connects the south pole to the north pole p,, € S?;

3. 7 intersects each component of f(Z¢) at a single point transversely.

We put {¢;} = Z; N «([0,1]) and ~(t;) = ¢;. We assume that qi,...,q, appear in this
order when we go along v from p, to p, (see Figure 2.1.1). The preimage f~1(v([0,1])) is

Figure 2.1.1: A path . The bold circles describe f(Zy).

a 3-manifold which is a cobordism between f~!(p,) and f~!(p,). By the definition of folds,
F71(y([0,t; + €])) is obtained from f~1(v([0,t; — €])) by either 1 or 2-handle attachment for
each i = 1,...,m. Thus, we obtain a handle decomposition of the cobordism f~*(v([0, 1])).

Definition 2.1.3. A BLF f is said to be directed if it satisfies the following conditions:
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1. f satisfies the conditions (a) and (b) above;
2. all the handles of the handle decomposition of f~1(y([0,1])) have index-1;

3. all Lefschetz singularities of f are in the preimage of the component of S?\ (Z;11- - -11Z,,)

which contains the point p,,.

In this paper, we will refer to a directed broken Lefschetz fibration as a DBLF.

Definition 2.1.4. A DBLF f : X — S2 is called a simplified broken Lefschetz fibration if the
set of folds of f is connected and that all the fibers of f are connected. In this paper, we will
refer to a simplified broken Lefschetz fibration as an SBLF.

Let f be an SBLF. The set Z; is either the empty set or an embedded circle in X. If
Zy is empty, then f is an LF over S2. If Z; is not empty, the image f(Zy) is an embedded
circle in S%. Thus, S? \ Intvf(Z) consists of two 2-disks Dy and Ds, where vf(Zy) is a
regular neighborhood of f(Z;). Furthermore, the genus of a regular fiber of the fibration
resf : f~1(D;) — Dj is higher than the genus of a regular fiber of the fibration resf :
f~YD3) — Dy by 1. we call f~1(Dy) (resp. f~1(D3)) the higher side (resp. lower side) of f
and f~Y(vf(Zy)) the round cobordism of f. By the definition, all the Lefschetz singularities
of f are in the higher side of f. We call the genus of a regular fiber in the higher side the
genus of f.

2.2 Monodromy representations of Lefschetz fibrations

Let f: X — B be a genus-g LF. We fix a regular value pg € B of f and an orientation-
preserving diffeomorphism g : f~!(pg) — E,. For a loop v : (I,0I) — (B\ f(Ct),po), the
pull-back v*f = {(t,x) € I x M | v(t) = f(x)} is isomorphic to the trivial X -bundle. We
take a trivialization W : v* f — I x ¥, so that the restriction \I/|{0}><29 coincides with 9. We
put U(t,z) = (t,:(2)). We denote by [1p1 045y '] the isotopy class of the map 3 01p; ! and by
M, the mapping class group of X, that is, the set of isotopy classes of orientation-preserving
diffeomorphisms. We define the map py : w1 (B \ f(Cy),po) — M, as follows:

pr((7]) = [b1 o9y ']

This map is well-defined and called a monodromy representation of f. The readers should

refer to [13] for details of monodromy representations of LFs.

Remark 2.2.1. In order to make monodromy representations of LFs homomorphisms, we
define a group structure of the mapping class group M, using the opposite multiplication to

the composition as maps, that is, we define the multiplication [f] - [g] as [g o f] for elements

[£1,l9] € M.

Definition 2.2.2. Let B; (i = 1,2) be a connected surface (possibly with boundary or
punctures), ¢; a point in B; and p; : m1(B;,¢;) — M, a representation. The representations

p1 and po are said to be equivalent if there exist an element ¢ € M, and an orientation
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preserving diffeomorphism b : (B1,q1) — (B2, ¢2) such that the following diagram commutes:
m (B, q1) —— M,
b l lCOHJ(W)
771(827QQ) L) Mga
where conj(y) is the inner automorphism of M, by the element ¢.

Note that a monodromy representation of an LF depends on various choices in construc-
tion. However, the equivalent class of a monodromy representation of an LF does not depend

on the choices.

Theorem 2.2.3 ([20], [24]). Let f; : X; — B; (i =1,2) be an LF with genus-g. We assume

that f1 satisfies one of the following conditions:
e the genus g of f1 is greater than 1;
e the base space By of f1 has non-empty boundary;
o the set Crit f1 of critical points of f1 is not empty.

Then f1 and fa are equivalent if and only if the corresponding monodromy representations pg,

and py, are equivalent.

2.3 Surgery homomorphisms

For a simple closed curve ¢ C X4, we define the subgroup Mg(c) of the mapping class group
My as follows:

My(e) = {[T] € My[T(c) = c}.

For an element ¢ € M,(c), we take a mapping class ®.() in the following way; we first take
a representative T' € ¢ so that T preserves the curve c setwise. The restriction T|gg\c is also
a diffeomorphism. We can extend T'[s \. to a self-diffeomorphism of S., where S, is obtained
by applying surgery to X, along c. We denote by ®.(¢) the isotopy class of this extended

diffeomorphism. The topology of S. is determined easily as follows:

Y1 (if ¢ is type 1),
LpOX,_p  (if cis type II;),

S, =

where c is said to be type I if ¢ is non-separating, and type II, if ¢ is separating curve which

bounds a genus-h surface (see Figure 2.3.1). Thus, we obtain:

Mg_q (if ¢ is type 1),
Mod(Se) = § My, x My, (if ¢ is type 11, and 2h # g),
(Mp, x Mp) x2Z/2Z (if ¢ is type II;, and 2h = g),
where Mod(S..) is the mapping class group of S,, and in the last case, a generator of Z /27 is

represented by a map which exchanges the components. We can prove the following lemma
by the argument quite similar to that in [5].
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| \<>/ &

Figure 2.3.1: type I and type I

Lemma 2.3.1. The map ®,: My(c) 2 ¢ — D.(p) € Mod(S,) is well-defined.

We call the homomorphism ®. : My(c) — Mod(S.) a surgery homomorphism along c.
To see the relation between surgery homomorphisms and monodromies, we consider a BLF

f: X — St x I over the annulus. We assume the following conditions:
o the set Crit(f) consists of one component of folds;
e the restriction f|cyie(s) is injective;
e the image f(Crit(f)) is equal to S* x {1}.

We take a point pg € S'. By the assumptions, we can obtain a Morse function res f :
f~t{po} x I) — I with one critical point. Suppose that the index of the critical point of this
Morse function in index 1. We denote by d C f~1(po, 1) a attaching circle of the 2-handle.
We fix an identification of f~!(pg, 1) with a disjoint union X4, I1---II1X,,. Suppose that d is
contained in ¥y, . The fiber f~!(py,0) consists of k components if d is non-separating, and k+1
components if d is separating. The fiber f~!(po,0) can be identified with Sy IX,, IT--- 11X,
using the fixed identification of f~!(pg,1). We take a simple loop v; C S* x I\ f(Crit(f))
based at (po,?) (¢ = 0, 1) which is parallel to the boundary. We denote by 1; the monodromy
along ;.

Theorem 2.3.2 (cf. [1] and [2]). The element 1)1 preserves the curve d and is mapped to g

by the following homomorphisms:
Pa x idp,, X -+ xidm,, + Mg, (d) x M — Mod(Se) x M,

where we put M = Mgy, x --- x My,.

2.4 Vanishing cycles of directed broken Lefschetz fibra-

tions

For a genus-g DBLF f : X — S? we put f(Cs) = {p1,...,m}. We take a path v C S? as
in Section 2.1. By the definition of DBLFs, we can obtain the preimage f~1(v([0,t; — ¢]))
from the preimage f~!(v([0,t; + €])) by attaching a 2-handle. We call an attaching circle
d; C f71(y(t; +€)) of the 2-handle a vanishing cycle of folds.

We take paths ~1,...,7; so that v; connects p,, to p; and that the paths ~,~1,...,7y are
mutually disjoint except on the point py. Suppose that the indices of the paths are given
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so that v,71,...,7; appear in this order when we go around py counterclockwise. As in the
case of folds, the paths v1,...,7v determine vanishing cycles of Lefschetz singularities (the
reader refer to [13], for example, for details of vanishing cycles of Lefschetz singularities). We
denote by ¢; C f~!(po) the vanishing cycle determined by ~;. We identify the fiber f~1(pg)
with ¥, and regard the vanishing cycles as simple closed curves in ¥,. Denote by D C S?
the connected component of S? \ vf(Z;) which contains the point p,. Since the restriction
flg=1(p,) is an LF, we can take a monodromy representation py : 71 (Dp \ f(Cs),po) — M.

Theorem 2.4.1 ([20], [24]). For each reference path ~y;, denote by a; a loop in D*\ f(Cy)
based at py by connecting pg with a small counterclockwise circle around p; using ~v;. Then

the monodromy py(a;) is equal to the right-handed Dehn twist t.,.

Since the product a1 - ----a; € m(Dp \ f(Cs),po) is represented by a loop parallel to the

boundary of Dy, we immediately obtain:

Corollary 2.4.2. The element t., - --- - t., is the monodromy of f along a loop parallel to
the boundary ODy. Moreover, this element is contained in the kernel of the composition

(bdlo---O(I)dm.

Proof. The first statement is obvious, while the second statement holds since the lowest genus

side of f does not contain any singularities. O

2.5 Hurwitz cycle systems of simplified broken Lefschetz

fibrations

Let f : X — S2? be a genus-g SBLF with non-empty folds. As explained in the previous

section, we can obtain vanishing cycles ¢ = dy,cq, ..., ¢; of folds and Lefschetz singularities of
f. We call a system of reference paths 7,71, ..., which give vanishing cycles ¢, cq,...,¢ a
Hurwitz path system and a sequence Wy = (¢;¢q,...,¢) a Hurwitz cycle system of f. There

are two types of modifications of Hurwitz cycle systems. The first one, which we will refer to

as an elementary transformation, is as follows:
(C5C1, s CinCig1s s Cn) —> (€1, ooy Cipts ey (Ci)s ey Cn)-

It is easy to see that this modification can be realized by replacing a Hurwitz path system
as described in the left side of Figure 2.5.1. The second modification, simultaneous action by
h € Mg, is as follows.

(¢ery. . yen) — (h(e);h(er),. .., hlcn)).

This modification corresponds to substitution of an identification of the reference fiber with
Y,. Two sequences (c¢;ci,...,¢) and (d;di,...,d;) of simple closed curves in ¥, are said
to be Hurwitz equivalent if one can be obtained from the other by successive application of
simultaneous actions, elementary transformations and their inverse. Note that for a given
SBLF f, any sequence W which is Hurwitz equivalent to W can be realized as a Hurwitz
cycle system of f by replacing reference paths and an identification f~'(pg) = 3,.
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/

Jit1
LA\ - Vn noo
Vit1\ /i 0l

Figure 2.5.1: Left: modification of a Hurwitz path system corresponding to an elementary

transformation. Right: another modification of a path system.

Remark 2.5.1. There is another modification of a Hurwitz cycle system which is described
as follows:

(¢;eryevoyen) — (tey (€);cay .o yeny 1)

It is easy to verify that this modification is induced by the modification of a Hurwitz path sys-
tem described in the right side of Figure 2.5.1. Furthermore, this modification can be realized
by simultaneous action by t.,, followed by successive application of inverse transformations of
elementary transformations. This modification will play a key role in the proof of the theorem
below.

Theorem 2.5.2. Let f; : X; — S? be an SBLF with genus g > 3 (i = 1,2). The fibrations f,
and fo are isomorphic if and only if the corresponding Hurwitz cycle systems Wy, and Wy,
are equivalent.

Remark 2.5.3. This theorem would not hold if the assumption on genera of fibrations are
dropped. Indeed, there exist infinitely many SBLFs with small genera which are mutually

not isomorphic but have the same Hurwitz cycle systems.

Proof of Theorem 2.5.2. We first prove the only if part. Suppose that f; and fs are isomor-
phic, and we fix diffeomorphisms ® : X; — X5 and ¢ : S? — S? satisfying the condition in
the definition. We take reference paths v,~1,...,7, of the fibration f; as explained above.
We denote by Wy, the corresponding Hurwitz cycle system of f; derived from these paths,
together with an identification ¢ : f; " (yo) — £, We can use the paths ¢(v), ¢(71), - - -, ©(n)
and a diffeomorphism ¢ o @' : 5 ((yo)) — , to obtain a Hurwitz cycle system Wy, of
the fibration fo. It is easy to verify that Wy, is equal to Wy,. Thus, all we need to prove is
a Hurwitz cycle system of f; derived from different reference paths v/,71,...,7/, is Hurwitz
equivalent to Wy,. By the argument similar to that in the solution of Exercise 8.2.7(c) in
[13], we can prove that the system 4,7}, ...,~,, can be changed into the system ~,v1,...,7n
up to isotopy by successive application of the two moves in Figure 2.5.1. This completes the
proof of the only if part.

We next prove the if part. By the assumption, we can take reference paths of f; and fs,
and identifications of reference fibers with the surface ¥, so that the corresponding Hurwitz
(h)

cycle systems Wy, and Wy, coincide. We decompose X; into the three parts Xi(r), X, and

X i(l), that is, the preimage of a regular neighborhood of f(Z), the highest side and the lowest

side of f;. The restriction f; is an LF. By Theorem 2.2.3, the fibrations f; |X(h) and f
1

‘th) ‘Xém

are isomorphic. In particular, we can take a fiber-preserving diffeomorphism ®; : Xl(h) —
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X;h). Since there are no singularities on the boundary of the highest side, we can take an
identification of the boundary 8X1(h) with the mapping torus T(0) = I xX,/(1,x) ~ (0, 0(x)),
where 0 : ¥, — 3, is a diffeomorphism. This identification, together with a diffeomorphism
®d;,, gives an identification of 8X2(h) with T'(8). We denote by ¢ C ¥, the vanishing cycle of
folds in Wy, (note that this cycle coincides with that in Wp,). By Corollary 2.4.2, the isotopy
class of 6 is contained in M,g(c).

we can assume that 6 preserves a regular neighborhood v(c). For each i = 1,2, we take
an identification of fi(Xi(T)) with the annulus I x D'/(1,t) ~ (0,t) so that the restriction
fi|6XZ(;L> : T(0) — I x {1}/ ~ becomes the projection, and that the image of indefinite folds is
equal to the circle I x {0}/ ~. The following lemma can be proved easily:

Lemma 2.5.4. We denote by Z; C X; the set of indefinite folds of f;. There exist a
sufficiently small number € > 0 and a diffeomorphism W; : I x D} x D%/(1,z,y1,y2) ~
(0, £2, 91, +y2) — v(Z;), where Dg 18 the d-dimensional ball with radius €, which make the
following diagram commute:

Ix D! x D2/ ~—2is (Z;)

|

I x[—¢e]/ ~ :
where 7 is defined as 7(t,z,y1,y2) = (t, =2 + 112 + y22).

For a positive number s < 2, we define a path ;5 : [0,s] = I x D'/ ~ as v(z) = (t,1—x).
A connected component of the set Sub(S', %) of circles in X, is simply connected if g > 2
(see Theorem 2.7.H of [17] for example). Thus, we can take a horizontal distribution H; of

fi

x,;\z; 0 that it satisfies the following conditions:

1. in the image of ¥;, H; is equal to the horizontal distribution derived from the product
metric of I x D} x D?/ ~,

2. the parallel transport PT:#il of H; along v;1—¢ maps {t} x v(c) to the following set:

-5
Tl'*l(g) N{(t,z,y1,90) € I x D x D?/ ~ | |z < %}7

3. the parallel transport PTJ?P
identifications.

is equal to the parallel transport PTJ:‘Z‘F under the

£
2

£
2

Using the distributions, we can define a diffeomorphism &, : X\" — X" as follows:

(ta,y) €v(Z)  (w=(tx,y) € w(Z) NI x DY x D/ ~),

r(w) = o (r) s (r)
PTI2(z) € Xy (=PI} (2) € Xy 2 €1 x(E,\v(e))/ ~).

It is easy to see that this map is fiber-preserving. In particular, the restriction &, : 0X {l) —
8X2(l) is a fiber-preserving diffeomorphism. Since the connected component of the group
Diff+(§]g,1) is contractible if g > 3, this restriction can be extended to a fiber-preserving
diffeomorphism @; : Xl(l) — Xl(2). Combing the three diffeomorphisms ®j, ®, and ®;, we can
obtain the desired map ®. This completes the proof of Theorem 2.5.2. O
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2.6 Kirby diagrams of broken Lefschetz fibrations

In this section, we will give a quick review of a handle decomposition of a total space of a
directed broken Lefschetz fibration which reflects its fibration structure. The readers should
refer to [2] for details of them.

Definition 2.6.1. Let X be a smooth 4-manifold and we put
le: =1x Dl X D3_i/<(1,$1,$27.’1¢3) ~ (0,i$1,.’1]2,i$3))(i = 172)

Let ¢ : I x 9D x D37/ ~— OM be an embedding. We call M Uy RF a 4-manifold obtained
by attaching a round i-handle and R; (resp. R;) (4-dimensional) untwisted (resp. twisted)

round i-handle.

Remark 2.6.2. Both untwisted and twisted round handles are diffeomorphic to S* x D3, but
these round handles have distinct attaching regions. The attaching region of an untwisted
round 4-handle is the trivial S*~! x D3 *-bundle over S!, while that of a twisted one is a
non-trivial $~! x D3~“-bundle over S*.

By the definition of round handles, we can regard 4-dimensional round ¢ handle attachment
as S'-family of 3-dimensional i-handle attachment. We call an attaching sphere of a i-handle

in this family an attaching sphere of a round handle.

Lemma 2.6.3 ([2]). Fori € {1,2}, round i-handle attachment is given by i-handle attachment
followed by (i + 1)-handle attachment whose attaching sphere goes over the belt sphere of the
i-handle geometrically twice, algebraically zero times if the round handle is untwisted and

twice if the round handle is twisted.

Proof. The handle RE can be decomposed into two parts [0, 1] x D' x D37% and [4,1] x
D% x D37%. Attachment of a round i-handle is equivalent to attachment of the former part
followed by attachment of the latter part. It is easy to see that the former (resp. the latter)

attachment can be regarded as 2-handle (resp. 3-handle) attachment. O

Let f: X — S? be a DBLF of genus-g. We use the same notations Zi,...,Z,, C S? as
in section 2.4 and denote by Z; C X the connected component of folds of f on Z;. We can
decompose S? into two disks Dy, D; and m annuli vZ,...,vZ,. Since Lemma 2.5.4 also

works for each component Z, we immediately obtain:

Lemma 2.6.4 ([2]). The manifold f~Y(Dy v Z,11---TlvZ;) can be obtained from f~'(Dy 11
vZy -1 wvZ;,_1) by attaching a round 2-handle. Moreover, an attaching circle the round
2-handle is along a vanishing cycle of Z When we regard this round 2-handle attachment
as 2-handle attachment followed by 3-handle attachment, the 2-handle is attached along a

vanishing cycle on whose framing is along the fiber.

Using Lemma 2.6.4, we can obtain a Kirby diagram of the total space of a DBLF. Several
examples of Kirby diagrams obtained in this way can be found in [2], for example. The
procedure of handle decomposition above also implies the following corollary, whose proof is
left to the reader.
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Corollary 2.6.5 (cf. [2]). Let ci,...,c; CXg and d;i C (- ((Zg)er)es * )esy (1 >1>m)
be simple closed curves. Suppose that the element t., - --- - t., is contained in the kernel of
the map @4 o---o®y, . Then, these exists a genus-g DBLF f : X — S? such that vanishing
cycles of f obtained as in section 2.4 coincides with cq,...,¢;,dy ... dp,.




Chapter 3

Classification of genus-1
simplified broken Lefschetz

fibrations

In this chapter, we classify total spaces of genus-1 simplified broken Lefschetz fibrations. We

prove the following theorem:

Theorem 3.0.1. The following 4-manifolds admits a relatively minimal genus-1 SBLF with
non-empty folds and I > 0 Lefschetz singularities:

o #ECP*#(1 —k)CP* (0> k>1—1);
° #%52 x S2. Note that this manifold appears only if | is even;
o S x S3HSHICP?, where S is an S2-bundle over S?;

o L#ICP?, where L is either of the manifolds L, or Ll (n > 2), which is defined by Pao
[27].

Conversely, every 4-manifold which admits a relatively minimal genus-1 SBLF with non-empty

folds is diffeomorphic to one of the manifolds above.

3.1 The mapping class group of the torus

We take elements o, 3 C Hy(T?;Z) so that the algebraic intersection « - 3 is 1. We define a
homomorphism ¥ : M; — SL(2,Z) so that a pair (7% (), T%(8)) is equal to (a, 8) - "U([T])
for every diffeomorphism T : T? — T?2. It is known that ¥ is an isomorphism. In the rest of
this section, we identify the group My with SL(2,Z) via this isomorphism.

Since a primitive element in H; (7T?;Z) uniquely determines the isotopy class of an oriented
loop in T?, we represent the isotopy class of a simple closed curve by its homology class
(after giving some orientation). With this understood, the Dehn twist along a primitive

13
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element v = pa + qf8 € Hy(T?;Z) makes sense and the corresponding linear representation is

determined by the Picard-Lefschetz formula as follows:

0 1 -1
In particular, we obtain t, = 11 and tg = 0o 1/ Denote these matrices by X;

and X, respectively. The group SL(2,Z) has the following finite presentation (see [22], for
example):
SL(2,Z) =< X1, Xo| (X1 X2)%, X1 Xo X1 Xy ' XX >

3.2 Chart descriptions of monodromy representations

Toward classification of total spaces of genus-1 SBLF's, we first prove that any genus-1 SBLF
has a Hurwitz cycle system which we can easily deal with. The goal of this section is to prove

the following theorem:

Theorem 3.2.1. Let f : X — S? be a relatively minimal genus-1 SBLF with non-empty

folds. A Hurwitz cycle system Wy is Hurwitz equivalent to the following sequence:
(a; ST (nyy. .. yns)),

where T(ny,...,ns) = (B+nia,...,0+nsa) and Sy = (o, ..., a) (r a’s are contained in this
sequence).

To prove this, we will introduce a graphical description of Hurwitz cycle systems.

Definition 3.2.2. A finite graph I' in D? (possibly being empty or having hoops that are

closed edges without vertices) is called a chart if " satisfies the following conditions:

(1) the degree of each vertex is equal to either 1, 6 or 12;

(2) each vertex in 9D? has degree-1;

(3) each edge in T is labeled 1 or 2 and is oriented;

(4) the edge from a degree-1 vertex in Int(D?) is oriented toward the vertex;

(5) the six edges from a degree-6 vertex are labeled alternately with 1 and 2. Moreover, three
consecutive edges are oriented toward the vertex and the other edges are oriented away
from it;

(6) the twelve edges from a degree-12 vertex are labeled alternately with 1 and 2 and all the
edges are oriented in the same way, oriented toward or away from the vertex (see Figure
3.2.1);

(7) an interior of each edge is contained in intD?;
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(8) let {v1,...,v,} be the set of vertices in 9D? and assume that the indices are given so that
v1,...,v, appear in this order when we go along 0D? counterclockwise. Denote by 7, the
label of the edge e; from v;. We put e, = +1 if e; is oriented toward v; and put e, = +1
otherwise. For some k, the sequence ((ix, k), - -, (in,en), (i1,€1), - -, (ik—1,€K—1)) can be

divided into the following subsequences:

(a) ((1,));
(b) ((i,e), (j,e), (i,e), (4,€), (i,€), (j,€)), where ({,5} = {1,2}) and e is either +1 or —1.

We call such a sequence a boundary sequence of I' and two subsequences above the unit

subsequences.
I ol tjijijijigij ijijijijigjigj
N, i % eee J
degree 1 degree 6 degree 12
in IntD?

Figure 3.2.1: vertices of a chart, where {7,5} = {1,2}.

An example of a chart is illustrated in Figure 3.2.2. The corresponding sequence mentioned
in the condition (8) of the definition is as follows:

((17 _1)7 (17 _1)7 (17 _1)7 (17 _1)7 (27 1)? (17 1)> (2’ 1)’ (17 1)’ (2’ 1)7 (1’ 1))

This sequence satisfies the condition (8).

For a chart T', we denote by V(T') the set of all the vertices of I, and by Sr the subset
of V(T') consisting of the degree-1 vertices in Int(D?). Let v be a vertex of I'. An edge e
from v is called an incoming edge of v if e is oriented toward v and an outgoing edge of v
if e is oriented away from v. A degree-1 or 12 vertex of a chart is positive (resp.negative)
if all the edges from the vertex is outgoing edge (resp. incoming edge) of the vertex. Note
that each degree-1 vertex in Int(D?) is negative by the definition of charts. Among the six
edges from a degree-6 vertex v, three consecutive edges are incoming edges of v and the other
edges are outgoing edges. We call the middle edge in the three incoming or outgoing edges a
middle edge and another edge a non-middle edge. An edge in a chart is called a (dy,d2)-edge
if its end points are a degree-d; vertex and a degree-ds vertex, where dy,ds € {1,6,12} and
d; < dp. An edge in a chart is called a (9,d)-edge if one of its end points is in dD? and the
other is degree-d vertex, where d € {1,6,12}, and we call an edge whose two end points are
in 0D? a (0,0)-edge. A (0,*)-edge is called a boundary edge, where * € {1,6,12,0}. Let
((i1,€1)y- -+, (in,€n)) be a boundary sequence of I'. A union of six vertices and edges which
correspond to a subsequence ((i,¢), (j,¢), (i,¢), (4, €), (i,€), (4, €)) is called a boundary comb of
r.




16 Section. 3.2. Chart descriptions of monodromy representations

—9§
?212
2
2
1 1

Figure 3.2.2: An example of a chart.

Let I' be a chart in D2. A path 7 : [0,1] — D? is said to be in general position with respect
to T if ([0, 1]) is away from any vertices of I and intersects edges of T" transversely. We put
n([0,1)) NT = {p1,...,pn}. Assume that pi,...,p, appear in this order when we go along 7
from 7(0) to n(1). We denote by k; € {1,2} a label of the edge of I" which goes through p; and
by e; the sign of the intersection between n and I' at p;. We call a word wr(n) = X,ii e X,iz
the intersection word of 1 with respect to I'. We regard this word as an element of SL(2,Z)
by identifying the letters X7, Xo with the matrices defined in section 3.1.

Definition 3.2.3. Let I' be a chart in D?. We take a point pg € D?\ V(I'). We define a
homomorphism
pr : mi(D?\ Sr,po) — SL(2,7)

in the following way: for an element & € 71 (D? \ Sr,po), we choose a representative pathy :
[0,1] — D?\Sr of € which is in general position with respect to I'. Then we put pr (&) = wr(n).
We call the homomorphism pr a monodromy representation associated with I'. We can prove

pr is well-defined by the same way as in the proof of Lemma 12 of [18].

Since the monodromy along the boundary of the highest side of a genus-1 SBLF preserves
a vanishing cycle of folds, we can assume that the monodromy is equal to +X7* for some
integer m after changing an identification of the reference fiber with 72. Thus, the following

lemma can be proved in the same way as in the proof of Theorem 15 of [18].

Lemma 3.2.4. For any genus-1 SBLF f : X — S2, there exists a chart T in D? such that the
monodromy representation of the highest side of f is equal to the monodromy representation
associated with T' up to equivalence.

We next introduce several moves of charts which do not change the associated monodromy
representations. The following lemma can be obtained in a similar way to the proof of Lemma
16 in [18].

Lemma 3.2.5. Let 'y and T'y be charts and E C D? a 2-disk. We assume that E contains
no degree-1 vertices of I'y and I's in Int(DQ), that T'y coincides with T'y outside of E and that
the complement D? \ E is path connected. Then, the monodromy representation associated
with T'y is equal to that associated with T'y.
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Definition 3.2.6. Suppose that two charts I'y and I's are in the situation of Lemma 3.2.5.
We say that I'y is obtained from I's by a CI-move in E. A typical Cl-move is described in

Figure 3.2.3, which is called a channel change.

Figure 3.2.3: a channel change

Lemma 3.2.7. Let 'y and Ty be charts and E C D? a 2-disk. We assume that T'y is different
from s in E as described in Figure 3.2.4, that I'1 coincides with I's outside of E and that the
complement D? \ E is path connected. Then, the monodromy representation associated with

I’y is equal to that associated with I's up to equivalence.

7 7. .J .
J i : ol j
J | o :’\\7 J ] 77/‘*

Figure 3.2.4: CII-moves

We omit a proof of Lemma 3.2.7 since it is quite similar to that of Lemma 18 of [18].

Definition 3.2.8. Suppose that two charts I'y and I'y are in the situation of Lemma 3.2.7.
We say that I'y is obtained from I'y by a CII-move in E.

By a C-move, we mean a Cl-move, a CII-move or an isotopic deformation in D?. Two
charts are said to be C-mowve equivalent if one can be obtained from the other by succes-
sive application of C-moves. Note that monodromy representations associated with C-move

equivalent charts are equivalent by Lemma 3.2.5 and Lemma 3.2.7.

Lemma 3.2.9. Let T be a chart. By successive application of C-moves, we can change I into

a chart which has no degree-12 vertices.

Proof. We choose a decomposition of the boundary sequence of I' into the unit subsequences.
Let v, and vy be consecutive vertices in 9D? which are not contained in the same boundary
comb. We denote by S the connected component of 9D?\ (9D? NT) between v; and vy.
We can move all the degree-12 vertices in I' into a region of dD? \ T’ containing S by using
CI-moves illustrated in Figure 12 of [18]. By the CI-move illustrated in Figure 3.2.5, we can

eliminate all the degree-12 vertices in I'. This completes the proof of Lemma 3.2.9. O
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ijijijijijig

28— i

Uy oD? V2 (%1 oD* V2

Figure 3.2.5: CI-move used to get rid of degree-12 vertices. The bold lines represent 9.D2.

Lemma 3.2.10. Let I' be a chart. By successive application of C-moves, we can change T’
into a chart T such that each (1,6)-edge e in T satisfies the following conditions:

(i) e is a middle edge;
(ii) the label of e is 2;

(iii) let K be the connected component of D*\T" whose closure contains e. The set K N9D?

18 not empty.

The idea of the proof of Lemma 3.2.10 is similar to that of the proof of Lemma 22 in [18].
However, the two proofs are slightly different because of the difference of the definition of
charts. Thus, we give the full proof below.

Proof. Let n(T") be the sum of the number of degree-6 vertices and the number of (1, 6)-edges
in I. The proof proceeds by induction on n(T).

If n(I") = 0, the conclusion of Lemma 3.2.10 holds since I' has no (1, 6)-edges. We assume
that n(T") > 0 and there exists a (1, 6)-edge which does not satisfy at least one of the conditions
(i), (i) or (i) of Lemma 3.2.10.

Case.1: Suppose that I' has a non-middle (1,6)-edge. Let v be a degree-6 vertex which is an
end point of a (1,6)-edge. We can apply a CII-move around v and eliminate this vertex. The
number n(T") decreases and the conclusion holds by the induction hypothesis.

Case.2: Suppose that I' has a middle (1,6)-edge e whose label is 1. Let vg and v; the end
points of e whose degrees are 1 and 6, respectively. We denote by K the connected component
of D? \ T whose closure contains vg, v; and e. We take a sequence fi,..., f, of edges of I'
with signs as in the proof of Lemma 22 of [18]. For each f;, we take a letter w(f;) = X,
where k is equal to the label of the edge f; and ¢ is equal to the sign of f;. Note that both
f1 and f,, are equal to e and the sign of f; is negative, while the sign of f,, is positive, since
the vertex vy is negative.

Case.2.1: There exists a consecutive pair f; and f;11 such that two edges share a vertex and
(w(fi), w(fis1)) = (X7 X570
Case.2.2: There exists a consecutive pair f; and f;;1 such that two edges share a vertex and
(w(fi), w(fit1)) = (X2, X1).

Case.2.3: The set K NOD? is empty.
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If one of the above three cases occurs, then the conclusion holds by the same argument as
that in Lemma 22 of [18].

Case.2.4: Suppose that K N9D? is not empty. Then one of the edges f1,..., f is a boundary
edge. By Cases 2.1 and 2.2, we can assume that (w(f;),w(fi+1)) is not equal to either of the
subsequences (X7 ', X;') and (X5, X1) if f; and f;,; share a vertex. Let f; be a boundary
edge with the smallest index. By the assumption above, w(fy) is equal to either X Lor
Xo. If w(fy) = X;*', we can decrease the number of (1,6)-edges by applying C-moves
illustrated in Figure 3.2.6. Thus, the conclusion holds by the induction hypothesis. Suppose

“ee € e (&
. .
B AN NANRY

.

—— TN o >
A isotopy F N i channel 5
Y ) .
Y defomation > >
oD~ oD oD

Figure 3.2.6: The bold line in the figure describes 9D?.

that w(fx) = X2. One of fri1,..., fm is a boundary edge but not a (9, 1)-edge. Let f; be
such an edge with the smallest index.

Case.2.4.1: Suppose that w(f;) = X;. Then we can decrease the number of (1,6)-edges
by applying C-moves illustrated in Figure3.2.7 and the conclusion holds by the induction
hypothesis.

1 J1oN \\\ - f 1
£ :.f isotopy f i ‘X f channel \ \‘u\/:
,-i i,l EY ... I fi: 4
o 9D° *** defomation e J%\— -+ change e u .
D oD oD

Figure 3.2.7:

Case. 2.4.2: Suppose that w(f;) = X5. We fix a decomposition of the boundary sequence of
I" into the unit subsequences. It is easy to see that a boundary comb which contains fj is
distinct from a boundary comb which contains f;. Thus, we can apply C-moves as shown in
Figure 3.2.8 and the conclusion holds by induction.

Case.2.4.3: Suppose that w(f;) = X{l. If both fx and f; were contained in a same boundary
comb, there would be at least one (9,1)-edge between f; and f;. However, all the degree-1
edges are negative. This contradiction says that a boundary comb that contains f is distinct
from a boundary comb that contains f;. Thus, we can apply C-moves similar to that we used
in Case.2.4.2 and the conclusion holds by induction hypothesis.

Case.2.4.4: Suppose that w(f;) = Xfl. If each f141,..., fm were not a boundary edge, then
(w(f1), ..., w(fm)) would be equal to (X;*, X2, X; ', Xo,...). This contradicts w(f,,) = X.
Thus, at least one of fi11,..., fin is a boundary edge. Let fi be such an edge with the smallest
index. The word w(fi) is equal to either X; ' or Xo. If w(fy) = X7 *, the conclusion holds
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! . E— . Ty . E—
e channel

change

Figure 3.2.8: We first apply CI-move between the two boundary comb which contain f; and
f1, respectively, and we obtain a new 1-labeled (9, 9)-edge. Then we move vy near this edge

by isotopy deformation and apply a channel change.

by the above argument. If w(fx) = X5, one of four cases above occurs for fr,. When one of
the former three cases occurs, the conclusion holds by the same argument. When Case.2.4.4
occurs for fi/, we can take fr again as we take fr. We can repeat the above argument and
the conclusion holds since m is finite.

Case.3: Suppose that I' has a middle (1, 6)-edge whose label is 2 which does not satisfy the
condition (%4) in Lemma 3.2.10. We define K as we defined in Case.2. By the assumption,
K NoOD? is empty. Thus, we can prove the conclusion by the same argument as that in Cases
2.1, 2.2 and 2.3.

Combining the conclusions of Cases.1, 2 and 3, we complete the proof of Lemma 3.2.10. O

Proof of Theorem 3.2.1. By Lemma 3.2.4, we can take a chart " such that the associated
monodromy representation pr is equal to the monodromy representation of the higher side of
f up to inner automorphisms of SL(2,Z). We first remove all the degree-12 vertices in ' by
applying Lemma 3.2.9. By applying Lemma 3.2.10, we change the chart I into a chart such
that all the (1,6)-edges satisfy conditions (%), (i) and (%) in Lemma 3.2.10. In the process
of the proof of Lemma 3.2.10, the number of degree-12 vertices does not increase. Thus, the
chart obtained by the above process has no degree-12 vertices. Let {v1,...,v;,} be the set
of degree-1 vertices of I' in 9D?. We choose the indices of v; so that vq,...,v,, appear in
this order when we go along dD? counterclockwise. We further assume that v; and v,, are
not contained in the same boundary comb. We denote by e; a boundary edge whose end
point is v;. We put Sr = {p1,...,pn}. Let K; be a connected component of D?\ T" whose
closure contains p;. By the assumption on T, each p; is an end point of either (1,6)-edge or
(0, 1)-edge. For each p; which is an end point of (1, 6)-edge, we choose a connected component
E; of K;N0D?. We denote the two points of OF; by vy, and vy, 11, where k; € {1,...,m}
and v,,41 = vi. Let V be a sufficiently small collar neighborhood of dD? in D? and py
a point in V N K, where K is a connected component of D? \ T" whose closure contains a
connected component of 9D?\ {v1,...,v,,} between v, and v;. We take embedded paths A;

(i=1,...,n) in D? starting from pq as follows:
(a) if i # 7, then A; N A; = {po};

(b) if p; is an end point of a (9, 1)-edge e;, then A; starts from py, travels in V' across the
edges e1,...,e;_1, goes into K; and ends at p;;
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(c) if p; is an end point of a (1,6)-edge, then A; starts from po, travels in V across the edges

€1,...,€ek,—1, goes into K; and ends at p;.

For example, the paths Aj,..., A, are as shown in Figure3.2.9 for the charts described in
Figure3.2.2. Let a; be an element of 71 (D?\ Sr, pg) which is represented by a curve obtained

'/—4
2 2
Dy 12
2
p
1 1 ¢ Pq
A
2 14, 1
N
N ~—
/
kl\‘\é‘/

Figure 3.2.9: Examples of paths Ay,..., A, determined by the condition (a) and the con-
structions (b) and (c).

by connecting counterclockwise circle around p; to the base point py by using A;. It is sufficient
to prove that each pr(a;) is equal to either X; or X; "X X7, where n is an integer.

Case.1: Suppose that p; is an end point of (1, 6)-edge and ey, is not contained in a boundary
comb. Then the intersection word of A4; is equal to Xj'. Thus, pr(a;) is equal to X if the
label of the (1,6)-edge is 1 and X7 XX, " if the label of the (1,6)-edge is 2.

Case.2: Suppose that p; is an end point of (9, 1)-edge and the edge is not contained in a
boundary comb. Then the intersection word of A; is equal to X{* and the conclusion holds.
Case.3: Suppose that p; is an end point of (1,6)-edge and ey, is contained in a boundary
comb. Let ¢; and e;4+6 be two edges at the end of the boundary comb which contains ey, .
Then one of 24 cases illustrated in Figure3.2.10 occurs.

The intersection word of a path which starts from pg, travels in V' across the edges

€1,...,e—1, ends near the boundary comb is equal to X7, where n is an integer. Since
the label of the (1,6)-edge which contains p; as an end point is 2, pr(a;) is calculated as
follows:
XX, Xt (6 (1), (2), (22) or (23) occurs),
B XXX (6f (5), (6), (10), (11), (13) or (14) occurs),
oria:) = XX X7 (it (7), (12), (17), (18), (19) or (24) occurs),
X (otherwise).

For each case, the conclusion holds.
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Figure 3.2.10: 24 cases about e, and the boundary comb containing ey,.
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Case.4: Suppose that p; is an end point of (0, 1)-edge e; and e; is contained in a boundary
comb. Let e; and e; ¢ be two edges at the end of the boundary comb which contains e;. Since
the degree-1 vertex p; is negative, one of 12 cases illustrated in Figure3.2.11 occurs. We
assume that the intersection word of a path which starts from pg, travels in V' across the
edges e1,...,e_1, ends near the boundary comb is equal to X{*, where n is an integer. By
using the relation X; Xo X1 X5 ' X' X5t = (X1X2)% = E, pr(a;) is calculated as follows:

X (if (1), (4), (9) or (12) occurs),
(@) XX, X (if (2) or (5) occurs),
pria;) =
XXX (if (3), (6), (7) or (10) occurs),
(

XXX (otherwise).
For each cases, the conclusion holds.

(1) (2) . o o e (3) .

Divovovi b b
e&i{{{iel% ezi{ifiiem ezii{iiiel%
121212 121212 121212

@ . ... ® L ©,

M N O
eziii{fiezw 61{{{{%}@% eziiiii{elw

121212 121212 121212

o ... ® ©)

Divovovoi
61]! i i i i f€z+(5 64 T i i i {614—6 €zi i E i f ielw

212121 212121 212121
(10) . . (1) . .. (12) ., . .. -
. Ny

iii{iiez% iiii%iezw @iiiii{@w
212121 212121 212121

Figure 3.2.11: 12 cases about e; and the boundary comb containing e;.

Combining the conclusions we obtain in Cases.1, 2, 3 and 4, we complete the proof of
Theorem 3.2.1. O
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3.3 Examples of genus-1 simplified broken Lefschetz fi-

brations
For a sequence W = (c;cy, ..., ¢,) of simple closed curves in T2, we denote by w(W) a product
te, - -+ - te, of Dehn twists. By Corollary 2.6.5, if a sequence W = (¢;¢q, .. ., ¢,) satisfies the

condition w(W) € Ker(®,.), there exists a genus-1 SBLF f : X — 52 such that a Hurwitz cycle
system of f coincides with the sequence W. Furthermore, the condition w(W) € Ker(®,) is
equivalent to the condition ., - - - - - te, € Mi(c) (or the condition t.w(W)t;1 = w(W)) since
the mapping class group of 52 is trivial. In this section, we give some examples of sequences of
simple closed curves in 72 which satisfy the condition above and determine what 4-manifolds

may admit genus-1 SBLFs whose Hurwitz cycle systems coincide with these examples.

Proposition 3.3.1. We define sequences S, and T of simple closed curves as follows:

Sy =(a;0,...,a) (r+1 a’s are contained),

T, = (o; 8+ miay, ..., B+ nsa),
where ng = 2s — 3, ng = —2s+3 andn; = 2s —6+4(1 —1) (i = 2,...,s —1). Then
taw(Sp)ta-1 = w(S,) and tow(Ty)t,' = w(Ty). In particular, these sequences are Hurwitz

systems of some genus-1 SBLF.

Proof. Tt is obvious that w(S,) is equal to X;" and in particular the statement for w(.S,)
holds. We prove w(T,) = (—1)**'X;5*"® by induction on s. Since (X;X3)> = —F and
X1X2X1 = X2X1X2, we obtain:

XoX 12X X2 = Xo X1 (Xo X1 X2) X
= -—F.

Thus, w(T3) and w(T3) are computed as follows:

w(Ty) = (X7 ' Xo X)) (X1 X XT1)
= X (XX 2 X)Xt
= X; ' (—x )X
.

w(Ts) = (X Xo X1 %) Xo (X3 X0 X7%)
= X3 X0 X (X2 X0 X1 2) X, X X3
= XXX (- X)X Xo X3
= XX X1 X5 )X Xo X3
= XX X X)) X X X8
= XM (X X2 X)X 3
= X;°.

By the definition of T, w(T}) is represented by w(Ts—_2) as follows:

w(Ts) :(X1—28+3X2X125—3)(X1—23+6X2X123—6)(X1—2s+7X2—1X123—7)w(Ts_2)
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(X12577X271X172s+7)(X12576X2X1725+6)(X12573X2X1725+3)
=X XX 2 (X1 Xo X)Xy L X2 Tw(Ty )
XETTXTH X X0 X)) X 2 X X258
:X;2s+3(X2X12X2>X12576w<T872>X12576(X2X12X2)Xf25+3
=X (X)X Tt w(Temo) XP° 70 (=X 2) X2
=X Pw(Ts_2)X;°.

Thus the conclusion holds by the induction hypothesis. This completes the proof of Propo-
sition 3.3.1. O

Theorem 3.3.2. Let f : X — S? be a genus-1 SBLF. Suppose that Wy is equal to S,.. Then
X is diffeomorphic to one of the following 4-manifolds:

(1) #rCP?;
(2) L#rCP?;
(3) S' x S34S#rCP?,

where S is either of the manifolds S% x S? and S?>xS? and L is either of the manifolds Ly,
and L, (for somen > 2).

Before proving Theorem 3.3.2, we review the definition and some properties of L, and
L!,. For more details, see [27]. Let Ny and N; be 4-manifolds diffeomorphic to D? x T2
The boundaries of Ny and Ny are 9D? x T?. Let (¢, z,y) be a coordinate of R®. We identify
OD? x T? with R3/Z3. The group GL(3,7Z) naturally acts on R? and this action descends to
an action on the lattice Z3. Thus, GL(3,Z) acts on dD? x T?. For an element A of GL(3,Z),
we denote by fa a self-diffeomorphism of 9D? x T? defined as follows:

fA([tvxvy]) = [(t,x,y)tA].

We define elements A, and A}, of GL(3,Z) as follows:

0 1 1 0 1 1
A,=10 n n—-1|,A, =0 n n-1
1 n 0 1 n—1 0

We denote by S. and S; circles with coordinates = and y, respectively, and take an embedded
ball D? in D? x S;. The manifold D? x S} is contained in (D* x S;) x S} = D* x T? = N.
We define L,, and L}, as follows:

L, =8%xD*Uq (No \ (Int D* x ")) Uy, Ny,

LI, = 5* x D* Uig (No \ (Int D* x ")) Uy,, Ny,

where we identify S™~! with 9D™.

Remark 3.3.3. The original definitions of L,, and L!, are different from the definition given
above. However, both two definitions are equivalent (c.f. Lemma V.7 in [27]). Note that




26 Section. 3.3. Examples of genus-1 simplified broken Lefschetz fibrations

Auroux, Donaldson and Katzarkov also mentioned these manifolds in Example 1 of section
8.2 of [1], although they did not state that the manifolds they gave in [1] are the manifolds
L, and L!,. Indeed, Ny (resp. Np \ (intB3 x S'), D? x S?) in our paper corresponds to X_
(resp. W, X4) in [1].

We next take handle decompositions of L,, and L/,. Since N; is D? x T?, we can draw
a Kirby diagram of N; as in the left side of Figure 3.3.1. The coordinate (¢,x,y) is also

described as in Figure 3.3.1. The manifold B3 x S! has a handle decomposition consisting of

()
( v A ( A
t) — U3‘h

-\
N N

Figure 3.3.1: The left diagram is a Kirby diagram of N7, while the right one is a diagram
of (Np \ (intB3 x S1)) Uys,, N1, which is also a diagram of (No \ (int B3 x S1)) Ug,, Ni. t
represents the coordinate of D?, while x and y represent the coordinates of T2.

a 0-handle and a 1-handle. Thus, we can decompose Ny \ (intB? x S1) as follows:
No \ (intB® x S') = 9Ny x I U (2-handle) U (3-handle).

Let C71 C 0Ny be an attaching circle of the 2-handle. By the construction of the decomposition,
we obtain:
C1 = {[t,0,0] € ONy|t € [0,1]}.

Since fa, ([t,0,0]) = far ([t,0,0]) = [0,0,¢], an attaching circle of the 2-handle is in a regular
fiber and along y-axis in the diagram of Ny. Since fa, ([t,0,¢]) = fa: ([t,0,¢]) = [, (n—1)e, 1]
for sufficiently small € > 0, the framing of the 2-handle is along a regular fiber. Thus, we can
draw Kirby diagrams of (N \ (intB? x §1))Ug, Ny and (No\ (intB? x S'))Uy,, Ny as shown
in the right side of Figure 3.3.1. We can decompose D? x S? as follows: !

D? x §% = 9D? x S? x I U (2-handle) U (4-handle).

Let Cy C 9Ny be the image under h of the attaching circle of the 2-handle of D? x S2. After

moving Cs by isotopy in Ny, we obtain:
Cy = {[0,¢,d] € ONy|t € [0,1]},

where § > 0 is sufficiently small. The framing of the 2-handle is {[0,¢,'] € ONy|t € [0,1]},
where §’ > ¢ is sufficiently small. Since fa, ([0,¢,6]) = [t+3, nt+ (n—1)d, nt], we can describe
the attaching circle of the 2-handle of D? x S2 contained in L,, and the knot representing the
framing of the 2-handle in the diagram described in Figure 3.3.1. Eventually, we can draw a
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. g-= JU3'h U3'h

"~ o "~ o
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Figure 3.3.2: Left: A Kirby diagram of L, for n > 0. Right: A Kirby diagram of L,, for
n < 0.

Figure 3.3.3: Left: A Kirby diagram of L/, for n > 0. Right: A Kirby diagram of L! for
n < 0.

Kirby diagram of L,, as shown in Figure 3.3.2. Similarly, we can draw a Kirby diagram of L],
as shown in Figure 3.3.3. By the diagrams of L,, and L/, described in Figure 3.3.2 and Figure
3.3.3, both L,, and L/ admit genus-1 SBLFs without Lefschetz singularities. We can easily
prove by Kirby calculus that L_,, (resp. L’ ) is diffeomorphic to L,, (resp. L.).

Proof of Theorem 3.3.2. The higher side of f is obtained by attaching r 2-handles to a trivial
T? bundle over D2. Each attaching circle of the 2-handle is in a regular fiber and isotopic to a
simple closed curve a. Since w(W;) = X", a 2-handle of a round 2-handle is attached along
« in a regular fiber of the boundary of the higher side. We obtain X by attaching a 2-handle
and a 4-handle to the 4-manifold obtained by successive handle attachment to D? x T?2. If
the attaching circle of the 2-handle of D? x S? goes through the 1-handle that the 2-handle
of the round handle goes through, we can slide the 2-handle of D? x S? to the 2-handle of
the round handle so that the 2-handle of D? x S? does not go through the 1-handle. Thus, a
Kirby diagram of X is one of the diagrams in Figure 3.3.4, where n and [ are integers. It is
obvious that the two 4-manifolds illustrated in Figure 3.3.4 are diffeomorphic to each other.
We denote by X,,; the 4-manifold illustrated in Figure 3.3.4. Note that [ framed knot in
Figure 3.3.4 represents a 2-handle of D? x S? and the attachment of the lower side depends
only on the parity of [. In particular, X,,; and X, ; are diffeomorphic if [ =’ (mod 2).
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g Ush { ~ )U 3-h
N 4-h Nl +h

Figure 3.3.4: A Kirby diagram of a genus-1 SBLF with Hurwitz cycle system S,.. Framings
of r 2-handles parallel to the 2-handle of the round 2-handle are all —1.

We change a Kirby diagram of X,,; as shown in Figure 3.3.5. We first slide r 2-handles
representing Lefschetz singularities to the 2-handle of the round 2-handle. We next slide the
2-handle of D? x T? to the 2-handle of the round 2-handle and move this 2-handle so that
the attaching circle of the 2-handle does not go through 1-handles.

Figure 3.3.5: A Kirby diagram of X, ;.

The diagram of X consists of  2-handles with (—1)-framing, a 1-handle and the Hopf

link such that the two components have 0 and [-framing, respectively. Thus, we obtain:
Xog = S* x S3#S#rCP?,

where S is equal to S? x S? if [ is even and S?x.S? if [ is odd.

The diagram of X; ; has two canceling pairs of handles. By canceling these pairs, we can
change the diagram of X;; into the diagram which has only r 2-handles with (—1)-framing.
Thus, we obtain:

X = #r@.
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We can change the diagrams of L, and L/, illustrated in Figure 3.3.2 and 3.3.3 as shown
in Figure 3.3.6. The upper three diagrams in Figure 3.3.6 describe L,,, where n > 0. We first

0

U 3-h

4-h

U 3-h

4-h

Figure 3.3.6: The upper three diagrams describe L,,, while the lower three diagrams describe
L.

slide 2-handle of D? x S? to the 2-handle of Ny. Then we slide the 2-handle of D? x T2 to
the 2-handle of Ny and eliminate a canceling pair. The lower three diagrams in Figure 3.3.6
describe L/, where n > 0. We can apply the same move as above to the far left diagram and

we obtain the far right diagram. Eventually, we obtain:
X, = L#rCP?,
where L is either L,, or L],. This completes the proof of Theorem 3.3.2. U

Theorem 3.3.4. Let f : X — 5% be a genus-1 SBLF. Suppose that Wy = Ts. Then X is
diffeomorphic to S#(s — 2)(CIP’2, where S is either of the manifolds S? x S? and S%xS2.

Proof. We prove the statement by induction on s. Let X be a total space of genus-1 SBLF
f with Wy = T,. We first look at the manifold X,. We can draw a Kirby diagram of X,
as shown in Figure 3.3.7. We slide the 2-handles representing Lefschetz singularities and the
2-handle of D? x T? to the 2-handle of the round handle. Then we eliminate the obvious
canceling pair and slide the (—2)-framed knot and the {-framed knot to the O-framed knot.
We can change the [-framed knot and the O-framed meridian of this into the Hopf link by
using the O-framed meridian. We can obtain the last diagram of Figure 3.3.7 by canceling
two pairs of handles. Eventually, we can prove that X, is diffeomorphic to S? x S? if m is
even or S?xS? if m is odd.

Suppose that s is greater than or equal to 3. f has the configuration of reference paths
and the corresponding vanishing cycles as described in the far left of Figure 3.3.8. Since two
vanishing cycles of folds determined by the dashed arcs in the far left of Figure 3.3.8 intersect
at a single point transversely, we can apply fold merge to f as described in the figure. We
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B+ (2s —3)a @ < @

| —> - —e
B+ (2s —6)a”,

\(,f?ﬁ+(25—8)a ..

Figure 3.3.8: Left: configuration of reference paths. Right: configuration of the image of
singularities after applying several homotopies. Four dots in this picture are the image of

Lefschetz singularities.

can further apply unsink to f and the configuration of the image of singularities of f are
changed as in Figure 3.3.8. It is easy to verify that we can apply wrinkle on the preimage
of a disk which contains the circular image of folds and the three Lefschetz critical values in
the circle. By application of wrinkle, the folds and three cusps are changed into an achiral
Lefschetz singularity with null-homotopic vanishing cycle (the reader should refer to [21] or
[6] for details of several homotopies in the above argument). Eventually, we can obtain a
genus-1 SBLF f': X’ — 2 so that X is diffeomorphic to X’#CP?. Furthermore, a Hurwitz

cycle system of f’ is as follows:
(; 84+ (28— Ta, S+ (2s —10)ar, S+ (25 — 1), ..., B+ (=25 + 6), B+ (—2s + 3)a).

This sequence is Hurwitz equivalent to the sequence Ts_;. Thus, the conclusion holds by

induction hypothesis and this completes the proof of Theorem 3.3.4. O

We can obtain the following corollary by the same argument as in the proof of Theorem
3.3.4:
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Corollary 3.3.5. Let f : X — S? be a genus-1 SBLF with non-empty folds. Suppose that

Wy is Hurwitz equivalent to the following sequence:

(a;ﬁ75_3aacla"'acl)7

where c¢; is an element in H1(T?;Z). Then there exists a genus-1 SBLF f': X' — S% which

satisfies the following conditions;
1. Wy is Hurwitz equivalent to (o; B — 4o ¢, ..., 1),

2. X is diffeomorphic to X'#CP?.

3.4 Further properties of Hurwitz cycle systems

We define matrices A and B in SL(2,Z) as follows:

-1 1 2
A= 0 , B= .
1 1 -1 -1
Both X and X are represented by A and B as follows:

X, = ABA, X, = BA?.

Since X3 and X generate the group SL(2,Z), the matrices A and B also generate SL(2,Z).
Let a, b, z1 and x2 be elements of PSL(2,7Z) = SL(2,Z)/{xE} represented by A, B, X; and
Xo, respectively, where we denote by E the unit matrix. Then PSL(2,Z) has the following

finite presentation (see [22]):
PSL(2,Z) =< a,bla® b* > .

In particular, PSL(2,7Z) is isomorphic to the free product Z/3*Z/2. The sequence (w1, . . ., Wy, )
of elements of PSL(2,7) is called reduced if the set {w;, w;41} is equal to either of the sets
{a,b} and {a?,b} for each i € {1,...,n —1}.

Lemma 3.4.1 ([22]). For every element g of PSL(2,Z), there exists a reduced sequence
(wi,...,wy) of PSL(2,Z) such that g =wy - -+ - wy. Moreover, such a sequence is unique.

Let W = (a;¢1,...,¢) be a Hurwitz cycle system of some genus-1 SBLF. By Theorem
3.2.1, we can assume that W is equal to (a; S;T'(n1,...,ns)). The element tg4y,,q is equal to
X{ " X X", The product w(W) =t. ----- t., is represented by X; and X, as follows:

w(W) = XTX] M X X2 Xy X[ Xy X0

By Corollary 2.4.2, w(W) preserves the curve a. In particular, w(W) is equal to ¢’ (tots)3’ for
some integers i, j € Z. Since (tot5)> is equal to (—F)7, we can obtain the following relation
in PSL(2,Z):

— Ng—1—N
Tox N Ty o T My = 2,

where k is some integer.
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Lemma 3.4.2. Suppose that each n; —n;41 is not equal to either 1, 2 or 3. Then xox™ "2 -

Sm -1 s gy s equal to bS or a?ba?bS, where S = wy - -+ - wy, and (wy,...,wg) is a

reduced sequence such that wi = a or a?.

Proof. We prove this statement by induction on s.
We first look at the case s = 2. xox1™ " "2x4 is calculated as follows:

ba? - a(ba?)"* "2~ 1ba - ba? (if ny —ng > 4),

Ty My = 2.2 1,2 pa2 (i
ba® - a*(ba)~ " *t"2"1pa? - ba*  (if ny —ng <0),

a?ba?(ba?)™ "2 3baba?®  (if ny — ny > 4),
(ba) =1 H"2pha2ba? (if ny —ng <0).
Thus, the statement holds.
We then look at the general case. By the induction hypothesis, we obtain:

Tow™ B . 2™ sy = bS or a?ba’bs,

where S is the product of a reduced sequence starting from a or a2. We denote by S’ the
words above. We can calculate zox1™ "2 as follows:

ba? - a(ba®)"1 "2~ 1ba (if ny —ng > 4),

ba? - a?(ba) "™ 2= 1pa?  (if ny —ny < 0),

1’2$1n17n2
a’ba®(ba?)™~"2"4paba  (if ny — ny > 4),

(ba)~mMtn2pg? (if ny — ng <0),

Thus, we obtain:

ni—ngz . Ng_1—"Ns

L2771 g T2

a?ba?(ba?)™ ~"2~*ba2babS (if ny —ne >4 and S’ =bS5),
a%ba®(ba?)™ "2~ 4ba%baa®ba®bS (if ny — ngy > 4 and S’ = a%ba?bS),
(ba)~™*"2pa?pS (if n1 —ng <0 and S’ =bS5),
(ba)~™1+"2pa2a?ba?bS (if n1 —ng <0 and S’ = a®ba®bs),

a’ba®(ba?)™ "2 "4ba%babS (if ny — nay >4 and S’ = bS),
a?ba?(ba?)™~"2=4pabS (if n1 —ng >4 and S’ = a®ba®bSs),
(ba) =™ "2ba®bS (if ny — ny < 0 and S = bS),
(ba) =™+ "2phababS (if n1 —no <0 and S’ = a®ba®bs).

This completes the proof of Lemma 3.4.2. O

Corollary 3.4.3. Assume s is greater than 1. There exists an integeri € {1,...,s —1} such

that n; — n;y1 is equal to either 1, 2 or 3.

Proof. Suppose that n; — n;y1 is not equal to either 1, 2 or 3 for any ¢ € {1,...,s — 1}.
By Lemma 3.4.2, w(W) is not trivial. The element x% is equal to a(ba?)*~lba if k > 1 or
a?(ba)~k*1. This contradicts the condition w(W) = z¥ for some k. O
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3.5 Classification

Proof of Theorem 3.0.1. We first prove that each 4-manifold in the statement of Theorem
3.0.1 admits a genus-1 SBLF. We proved that the manifolds S, #rCP?, St x S3#S#rCP?
and L#r@ admit genus-1 SBLF's in the proof of Theorem 3.3.2. By Corollary 2.6.5, there
exists a genus-1 SBLF f : X(I,k) — S? with Hurwitz cycle system (a;S;__1Tx+1) for any
1>3andk € [1,]—1]. It is easy to verify that X (I, k) is diffeomorphic to #kCP*#(1 — k’)@
Thus, it is sufficient to construct a genus-1 SBLF on #kS? x S2. A diagram in Figure 3.5.1
represents the total space of a genus-1 SBLF f;. : X, — S? whose Hurwitz cycle system is
equal to (a; kTy). It is easy to prove that the manifold M is diffeomorphic to #kS? x S2.

1
1
(0)
<-——_> . ‘r\_\. . <.——,
(0]
| )
[--) JUB'h
4-h

Figure 3.5.1: A Kirby diagram of Xj. All the 2-handles derived from Lefschetz singularities
have (—1)-framing.

The details are left to the readers.

We next prove that the total space of a genus-1 SBLF f is diffeomorphic to one of the
manifolds in the statement of Theorem 3.0.1. Denote by [ the number of Lefschetz singularities
of f. We will prove the statement by induction on [. The statement for the case [ = 0 has
already been proved in the proof of Theorem 3.3.2. We assume [ > 0 and Wy is equal to
(o; ST (N1, ..y ng)).

We first consider the case X is not simply connected. In this case, it is easy to verify that
s = 0 and therefore, there exists a genus-1 SBLF f : X’ — S? without Lefschetz singularities

such that X is diffeomorphic to X’'#rCP2. Thus, we can deduce the conclusion from induction
hypothesis.

We next consider the case X is simply connected. If r is not equal to 0, we can reduce the
number of Lefschetz singularities by blowing down X and the conclusion holds by induction
hypothesis. Assume that r is equal to 0 and s = [. By Lemma 3.4.2, there exists a number
i€ {l,...,1—1} such that n; — n;41 is equal to either 1,2 or 3. If n; — n;y; is equal to 1,

then Wy is Hurwitz equivalent to the following sequence:
(a; SlT(nl +1,...,n1+1,n5,n42. .., nl))

since the sequence T'(n;,n;4+1) is Hurwitz equivalent to S17(n;). Thus, the conclusion holds

by induction hypothesis. If n; — n;41 is equal to 2, then Wy is Hurwitz equivalent to the
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following sequence:
(a; T(TLZ, TLZ'Jrl)T(TLl — 4, ey N1 — 4, an e ,nl))

since the composition tg4y,atg+n,. 1o is equal to (tatg)3t,*. By the argument similar to that
in the proof of Lemma 6.13 in [16], we can prove that there exists a genus-1 SBLF f’ : X’ — S?
such that X is diffeomorphic to X'#S, where S is an S2-bundle over S2. Thus, the conclusion
holds by induction hypothesis. If n; — n;y; is equal to 3, then W is Hurwitz equivalent to
(a; T(0,—3)W), where W is some sequence which consists of [ —2 simple closed curves. We can
apply Corollary 3.3.5 to this fibration and the conclusion holds by the induction hypothesis.
This completes the proof of Theorem 3.0.1. O




Chapter 4

Hyperelliptic broken Lefschetz

fibrations

4.1 Preliminaries

4.1.1 Hyperelliptic mapping class groups

Let ¥, be a closed oriented surface of genus g > 1. Denote by ¢ : ¥, — X, an involu-

tion described in Figure 4.1.1. Let C(:) denote the centralizer of ¢ in the diffeomorphism

d
oD @5366
;

Figure 4.1.1: the hyperelliptic involution on the surface X,.

group Diff { ¥, and endow C(v) C Diff | ¥, with the relative topology. The inclusion homo-
morphism C(¢) — Diff | ¥, induces a natural homomorphism 7oC(¢) — M, between their

path-connected components.
Theorem 4.1.1 (Birman-Hilden [7]). When g > 2, the homomorphism
WQC(L) — Mg
18 1njective.
Denote the image of this homomorphism by H, for ¢ > 1. This group is called the
hyperelliptic mapping class group. In fact, they showed the above result in more general
settings later. See [7] for details.

In the following, we review some properties of the hyperelliptic mapping class group. Let
S be a 2-disk or a 2-sphere. For a positive integer n and distinct points {p;}?; in Int.S,

35
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Denote by Diff | (S, S, {p1,p2, -+ ,pn}) the group defined by

Dlﬂ+(5, 35, {pl,pQ;"' 7pn})
={T € Diff{ §|T|ps = idos, T({p1,p2," - +Pn}) = {P1, P2, . Pn}}-

Denote by M{ or Mg, its mapping class group when S = 52 or S = D?, respectively. Let
D; be a disk in Int .S which includes p; and p;;1 but is disjoint from all p; for j # 4,7+ 1, and
denote by v(9D;) a neighborhood of the boundary dD; in D;. Choose a diffeomorphism T; €
Diff ; (S, 0S5, {p1,p2, -+ ,pn}) such that T;|p, interchanges the points p; and p;+1, T;|x —mt D,
is the identity map, and 77 is isotopic to the Dehn twist along dD; (see Birman-Hilden p.87-
88 for details). The mapping class group Mg and MG ; is generated by {o}7=}, where o, is
the mapping class represented by the diffeomorphism 7.

Identifying the quotient space ¥,/ (1,) with S?, let p1,...,p2g4+2 C S? be the branched
points of the quotient map ¥, — X,/ (). By the definition, any diffeomorphism T in
C(tg) satisfies Tig(z) = 14T (x) for z € ¥,. Hence, there exists a unique diffeomorphism
T € Diff; S? such that the diagram

Sy —— %,

S
sz T, g
commutes. Moreover, it satisfies T({p1,p2,- -+ s p2g+2}) = {P1,P2,**+ s P2g+2} C S%. By the
above diagram, we can define
Py Hy — M
by Py([T]) = [T].
Theorem 4.1.2 (Birman-Hilden [7]). Let g > 1. the sequence

1 (1) ys e

2g+2
: MPET —— 1

18 exact.

2g+2

They showed the homomorphism P, : H; — My?"" maps the Dehn twist ¢, to o; in [7].

Furthermore, they proved:

Proposition 4.1.3. Let g > 1. The group H; is generated by {tc,, - ,tc,,,,}, where ¢; is a

simple closed curve in X, described in Figure 4.1.2.

Figure 4.1.2: simple closed curves ¢y, -, C2g41
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4.1.2 Hyperelliptic fibrations

A Lefschetz fibration is said to be hyperelliptic if we can take an identification of the fiber of a
base point with the closed oriented surface so that the image of the monodromy representation
of the fibration is contained in the hyperelliptic mapping class group. Thus, it is natural to
generalize this definition to directed (and especially simplified) BLFs as follows: Let f : M —
S? be a DBLF. We use the same notations as those we use in Sections 2.1 and 2.4. We put
T =« (%) (i=1,...,m—1)and r,, = p,. We can regard the vanishing cycle d; we took
in Section 2.4 a simple closed curve in f~1(r;). Once we fix an identification of f~1(r,,) with
Yy I---1IX,, , we obtain an involution ¢; on f ~1(r;) induced by the hyperelliptic involution
on f~1(ry) since we can identify f=1(r;_1) \ {two points} with f=1(r;) \ d; by using a. f
is said to be hyperelliptic if it satisfies the following conditions for a suitable identification of
f ) with By, IT--- 1T 8, :

e the image of the monodromy representation of the Lefschetz fibration res f : f~1(Dy,) —
Dy, is contained in the group Hg;

e d; is preserved by the involution ¢; up to isotopy.
In this paper, we will call a hyperelliptic SBLF HSBLF for short.

Remark 4.1.4. Every SBLF whose genus is less than or equal to 2 is hyperelliptic since
Hy = M, and all simple closed curves in 3, are preserved by ¢ if g < 2.

4.1.3 Meyer’s signature cocycle and the local signature

It is known that, for an HLF f : X — ¥ over a closed oriented surface 3, the signature
Sign X is described as the sum of invariants of the singular fiber germs in X. We review this
invariant.

Let ¢, be elements in the mapping class group M,. We denote by E, , a X,-bundle

over a pair of pants S — II?_; Int D? whose monodromies along « and 3 in Figure 4.1.3 are

o and v, respectively.

Figure 4.1.3: paths a and 3

Theorem 4.1.5 (Meyer [25]). Define a 2-cochain 74 : Mg x Mg — Z of the mapping class
group by T4(p,) = —Sign E,, . Then, 74 is a 2-cocycle, and the order of its homology class

s as follows.
1. The order of [11] € H*(M1;Z) is 3,

2. The order of [r2] € H*(Ma;Z) is 5,
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3. When g >3, [14] # 0 € H*(My; Q).
Proposition 4.1.6 (Endo [9]). If we restrict 7, to Hg, the order of [15] € H*(Hy;Z) is 2g+1.

Since 7, represents a trivial homology class in H*(H,4; Q), there exists a cobounding func-
tion ¢4 : Hy — Q of it. Furthermore, since Hy(H,; Q) is trivial, this cobounding function ¢,
is unique.

Lemma 4.1.7 (Endo [9]). Let f : X — X be a X4-bundle over a compact oriented surface
Y. Assume that the image of the monodromy representation w1 (X, po) — My is in Hy if we
choose a suitable identification f~1(po) = X,. Let {05371 denote the boundary components

of ¥, and give orientations coming from X. Then, we have

l
Sign X = = ¢(¢h)),

j=1
where ; € Hgy is the monodromy along 0;.

Using this function, he generalized the local signature of LFs of genus 1 [23] and of genus
2 [24] constructed by Matsumoto. Let f : X — ¥ be an HLF of genus g over a closed oriented
surface ¥, and pq,---,p; the image of the set of Lefschetz singularities under f. For the
Lefschetz singular fiber f~!(p;), define a rational number o1.(f~*(p;)) by

Uloc(f_1<pj)) = _(bg((pj) + Sign(f_ly(pj))a

where ¢; € M4 is the monodromy along dv(p;). He computed the values for Lefschetz singular
fibers as follows:

Lemma 4.1.8 (Endo [9]). We call a Lefschetz singular fiber is type 1 or type 11, if the

vanishing cycle is type 1 or type 11;,, respectively. Then we have

4h(g —h
UIOC(IIh) = ;gg—kl) — ].

g+1

JIOC(I) = _2g T 17

Furthermore, Endo gave the following formula for signatures of HLF's.

Theorem 4.1.9 (Endo [9]). Let f: X — X be an HLF as above. Then we have

l

Sign X = 010c(f 7 (ps))-

4.2 A subgroup #,(c)

Let ¢ be an essential simple closed curve in the surface ¥, which is preserved by the involution
v € Diff ;. ¥, as a set. Let H,(c) denote the subgroup of the hyperelliptic mapping class group
defined by Hy(c) := HyNMg(c). As introduced in Theorem 4.1.1, the hyperelliptic mapping
class group H, is isomorphic to the group consisting of the path-connected components of
C(¢). Hence, the group Hy(c) consists of the mapping classes which can be represented by
both of elements in the centralizer C(¢) and elements in Diff  (3,,c). Let #;(c) denote the
subgroup of moC(¢) defined by H;(c) := {[T] € moC () |T(c) = c}. In this section, we will
prove the following lemma.
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Lemma 4.2.1. Assume that g is greater than or equal to 1. The natural map moC(1) — Hq in
Theorem 4.1.1 restricts to a surjective map between the groups Hj(c) and H,(c). Furthermore,

this restriction is an isomorphism if g > 2.

To prove the lemma, It is enough to show that the homomorphism maps H;(c) onto H,(c).
Let [T] be a mapping class in H,(c). We can choose a representative T' : ¥, — 3, in the
centralizer C'(¢). Since it is isotopic to some diffeomorphism on 3, which preserves the curve
¢, the curve T'(¢) is isotopic to c.

We call an isotopy Lo : X4 X [0,1] — X, is symmetric if Lo(x,t) € C(¢) for any ¢ € [0,1].

In the following, we will construct a symmetric isotopy L : ¥4 x [0, 1] — 3, satisfying
L(x,0) =T, and L(c,1) = c C X,.

It indicates that L(*, 1) represents an element in H;(c), and [L(x,1)] = [T] € moC(¢). Hence,
we see that the homomorphism 3 (c) — H,(c) is surjective.
To construct the symmetric isotopy L : ¥4 x [0,1] — £, we need a proposition, so called

the bigon criterion.

Proposition 4.2.2 (Farb-Margalit Proposition 1.7 [10]). Let S be a compact surface. The
geometric intersection number of two transverse simple closed curves in S is minimal if and

only if they do not form a bigon.

We may assume that the curves ¢ and T'(¢) are transverse by changing the diffeomorphism
T in terms of some symmetric isotopy. Since ¢ and T'(¢) are isotopic, the minimal intersection
number of them is 0. Hence, there exist bigons such that each of their boundaries is the union
of an arc of ¢ and an arc of T'(¢). Choose an innermost bigon A among them.

Let « be the arc ¢ N @A and S the arc T(c) N JA, respectively. Since A is a bigon, the
endpoints of them coincide. Denote them by {z1,z2} C OA.

Lemma 4.2.3.
Int AN (T(c)Uc) =10

Proof. If the set Int A N ¢ is non-empty, there exists an arc of ¢ in A which forms an bigon
with the arc 5. Since the bigon A is innermost, it is a contradiction. We can also show that
Int ANT(c) =0 in the same way. O

Note that the bigon ¢(A) is also innermost. By Lemma 4.2.3, we have A N (A) =
OA N Ou(A).

Lemma 4.2.4.
OANIL(A) C {z1, 22}

Proof. Since o = 98 = a N f = {1, 22}, it suffices to show that Inta N du(A) = Int SN
Au(A) = 0. Since a NT(c) = {x1,x2}, we have Inta N +(B) = 0. Next, we will show that
Int o N Inte(a) = B. We assume Int a N Int () # @. Since c is simple and contains o and
t(e), o and ¢(«) must coincide. In particular, we have da = Ji(a). So S U 1(f) forms a
simple closed curve, and this curve is null-homotopic because both of the arcs 8 and () are
homotopic to a = () relative to their boundaries. Since T'(¢) is simple and contains S and
t(B), T(c) and B U ¢(B) must coincide. This contradicts that T'(c) is essential. In the same
way, we can show that Int 8N du(A) = 0. O
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Let 3 denote the fixed point set of the involution ¢ on ¥,.
Lemma 4.2.5. If ¢ is non-separating, the set ¢ Ny consists of 2 points, and
cnN¥y =T(c)NXy.

If ¢ is separating,
cNXy =T(c)NX, = 0.

Proof. Endow the curves ¢ and T'(¢) with arbitrary orientations.

First, consider the case when c is a non-separating simple closed curve. In this case, the
curve T'(c) is also non-separating. They represent nontrivial homology classes in H;(3,; Z).
Since the involution ¢ acts on Hy(X4;Z) by —1, it changes the orientations of ¢ and T'(c).
Hence, both of the sets ¢ N X} and T'(c) N X} consist of 2 points.

We will show that T'(c) N X} = ¢N X}, Since ¢ and T'(c) are isotopic, the Dehn twists ¢,
and tp(.) represent the same element in H,. The mapping classes ¥([t.]) and ¥([tr(,]) in
MZ9F2 permute the branched points p(cn ¥) and p(T'(c) N %Y), respectively. Hence, the sets
p(cNX?) and p(T(c) N Xy) coincide. It shows that ¢ Xy = T'(c) N XY,

Next, let ¢ be a separating simple closed curve. Since ¢ preserves the orientations of the
subsurfaces bounded by ¢ or T'(¢), it also preserves the orientation of ¢ and T'(c). In general, if
an involution acts on a circle preserving its orientation, it does not have a fixed point. Hence,
we have cNX) =T(c)N X, = 0. O

Proof of Lemma 4.2.1. Let ¢ be a non-separating curve. By Lemma 4.2.5, the geometric
intersection number of ¢ and T'(c) is at least 2. Hence, there is an innermost bigon A. By
Lemma 4.2.4, the cardinality (A N¢(A)) is equal to 0, 1, or 2 as shown in Figure 4.2.1.

Figure 4.2.1: Left: (A N¢(A)) = 0. Center: §(ANt(A)) = 1. Right: §(ANe(A)) =2. The
bold curves describe the curves T'(c).

Firstly, assume that (A N ¢(A)) = 0. In this case, there is a symmetric isotopy Lp :
Yy x [0,1] — X, such that L;(*,0) is the identity, and L;(%,1) collapses the bigon A as in
Figure 4.2.2. Therefore, we can decrease the geometric intersection number of ¢ and T'(c) by
4 by replacing the diffeomorphism T by Lj (x,1)T.

Secondly, assume that (A N¢(A)) = 1. In this case, we also have a symmetric isotopy
Ly : ¥4 x [0,1] — X, which decreases the geometric intersection number by 2 as in Figure
4.2.3. Note that AN ¢(A) is a branched point, and Ls(x,t) fixes it for any ¢ € [0, 1].
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Figure 4.2.2: An isotopy L.

Figure 4.2.3: An isotopy Lo.

After replacing the diffeomorphism 7" in these two cases, the branch points {1, 22} remains
in ¢NT(c). Hence, if we repeat to replace T, the case when §(A N ¢(A)) = 2 will definitely

occur. In this case, there is a symmetric isotopy Ls : ¥4 x [0,1] — X, such that

L3(*,0) is the identity map,
L3(ﬂa 1) =,

as in Figure 4.2.4. It indicates that Lg(x,1)T preserves the curve c¢. By combining these
isotopies, we have obtained a desired symmetric isotopy.

Figure 4.2.4: An isotopy Ls.

Next, let ¢ be a separating curve. If the geometric intersection number of ¢ and T'(c) is 0,
the curves ¢ and T'(¢) bound an annulus A. Since ¢ acts on A without fixed points, A/ (¢) is
also an annulus. Hence, we can make a symmetric isotopy which moves T'(¢) to c.

Assume that the geometric intersection number is not 0. Since we have cN¥} = T'(c)N¥} =
(), the cardinality (A N¢(A)) # 1. By Lemma 4.2.4, we have (A N¢(A)) = 0 or 2. By the
same argument as in the case when ¢ is non-separating, we can collapse the bigons A and
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t(A). O

4.3 An involution on hyperelliptic broken Lefschetz fi-

brations

In this section, we prove the following theorem:

Theorem 4.3.1. Let f : X — 52 be a genus-g hyperelliptic simplified broken Lefschetz

fibration. We assume that g is greater than or equal to 3.

(i) Let s be the number of Lefschetz singularities of f whose vanishing cycles are separating.
Then there exists an involution
w:M—-M

such that the fized point set of w is the union of (possibly unorientable) surfaces and s

isolated points. Moreover, w can be extended to an involution
@ : X#sCP? — X#sCP?

so that X#SC]P’Q/E is diffeomorphic to S#2sCP?, where S is S?*-bundle over S?, and
that the quotient map

/@ : X#5CP? — X#sCP? /@ =2 S#2sCP?
1s a double branched covering.

(i1) A regular fiber F of the fibration f represents a non-trivial rational homology class of
X, that is, [F] # 0 in Ha(X; Q).

Proof of (i) in Theorem 4.5.1. Let f: X — S? be genus-g > 3 HSBLF, ¢; C &, (i =1,...,1)
a vanishing cycle of a Lefschetz singularity of f and ¢ C X, a vanishing cycle of indefinite
folds of f. We assume that ci,...,c, and c are preserved by the involution ¢ : X, — X ;. By

the argument in Section 2.6, we can decompose X as follows:
X=D*xY,u(h31l---TTh2)UR*UD? x 5, 4,

where h? = D?x D? is the 2-handle attached along the simple closed curve {p;}xc; € dD?x g
and R? is a round 2-handle. We first prove existence of an involution w by using the above

decomposition.
Step 1: We define an involution w; on D? x ¥, as follows:
wi=idx:¢: D?*x¥;, — D?*x%,
w w
(zz)  — (2ux)).

In the following steps, we will define an involution on each component in the above decom-

position of X which is compatible with the involution ws.
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Step 2: We next define an involution ws; on the 2-handle h? attached along {q;} x ¢; C
0D? x ¥,. We will abuse the notation by denoting the attaching circle {¢;} x ¢; by ¢;.
We take a tubular neighborhood ve; in {¢;} x ¥, and an identification

ve =2 S x [—1,1]

so that ¢; corresponds to the circle S' x {0} under the identification. We assume that the
standard orientation of S* x [—1,1] coincides with that of {¢;} x ¥ ;. We take a sufficiently
small neighborhood I, of ¢; in dD? as follows:

I, = {gi - exp(v/—10) € OD?|0 € [—e1,e1]},

where €1 > 0 is a sufliciently small number. We further identify the neighborhood I,, with
the unit interval [—1, 1] by using the following map:

-1,1] — I,
w w

s — g - exp(v/—1eys).
We regard I, x [—1,1] as the subset of C by the following embedding:

I, x[-1,1] — {z€C||Rez| <1,|Imz| <1}
w w

(S,t) L — S +t\/j1.

We put J = {z € C||Rez| < 1,[Imz| < 1}. The orientation of dD? x ¥, is opposite to the
natural orientation of J x S'. Thus, the attaching map of the 2-handle h? is described as
follows:
pi: OD?*xD?* — JxS'CoD*x¥,
w w

(w1> wy) > (52w2w1, w1)7

where €2 > 0 is a sufficiently small number. Note that the map ¢; is orientation-preserving if

we give the natural orientation of 9D? x D2.

Case 2.1: If ¢; is non-separating, we can take a tubular neighborhood ve; =2 S x [—1,1] so

that the involution w; acts on ve; as follows:

Wilpe, : ST x[-1,1] — St x[-1,1]
w w
(2,1) — (z,—t).

Since the involution w; : D? x ¥, — D? x ¥, preserves the first component, w; acts on

I, xve; & J x St as follows:

W1|J><51: Jx S — JxS§!
w w

(21722) — (2772)
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We define an involution wy ; on the 2-handle hf as follows:

we;: D?*xD? — D?x D?
w w

(wi,ws) — (w1, wW3).
Then the following diagram commutes:
dD? x D* 25 9D? x D?
soll lw
Jx 8t s JxSL
Thus, we can define an involution wy; Uws; on the manifold D? x ¥, Uy, h?.

Case 2.2: If ¢; is separating, we can take a tubular neighborhood ve; & St x [—1,1] so that

the involution w; acts on v¢; as follows:

w1|l/ci : Stx [_1,1] — Stx [—1,1]
W W
(Z»t) — (7Zat)'

Then w; acts on I, x ve; 2 J x St as follows:

w1|J><51: Jx 8 — J x St
w w
(Zl,ZQ) — (21,—22).

We define an involution wy ; on the 2-handle h? as follows:

wa i - D?2xD? — D? x D?
w \

(’wl,ﬂ)g) — (—wl,—wg).

Then the following diagram commutes:

2

dD? x D? —*' 9D? x D?
o |#
Jx 8t s JxSh
Thus, we can define an involution w; Uws ; on the manifold D? x X, U, h?.

Combining Case 2.1 and Case 2.2, we can define the involution @3 on the 4-manifold
X, =D*xX,U(hi1l--- 1 h2) as follows:

(1)2 =w U (UJQ’l J---u (.dgyn).

Before giving an involution on the round 2-handle, we look at the ¥ ,-bundle structure of 0.X,.
The projection 7, : X, — 0D? of this bundle is described as follows:

e for an element (z,z) € 9D? x ¥, \ (Il Int ;(0D? x D?)), m, is defined as follows:

Th(z,x) = 2,
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e for an element (wy,wp) € D? x dD? C Oh?, ), is defined as follows:

7h (w1, we) = ¢; - exp(vV—1ere2(Re wy Rewy — Im wy Im wy).

Indeed, the map 7, is well-defined. To see this, we only need to verify the following equation:
qi - exp(vV—1e1ea(Rew; Rews — Imw; Imws)) = p1 0 i (wy, ws),

where (w1, ws) € D? x 9D* C 0h? and p; : J x St — I,, is the projection. p; o ¢;(w1,ws) is
calculated as follows:

P10 @i(wr,wa) = p1(e2wowy, wy)
=4qi- eXp(\/jlq Re (eqwawy))
=q;- eXp(\/TI&:leQ(Re w1 Rews — Im wy Im wy))

This implies that the definition of 7, above makes sense.

Lemma 4.3.2. The involution &y preserves the fibers of my. Moreover, there exists a lift V

d
of the vector field @exp(\/—lﬁ by the map w, which is compatible with the involution W,
that is,

Gau(V) = V.

Proof of Lemma 4.3.2. 1t is easy to verify that @y preserves the fibers of 7, by direct calcu-
lation. The details of this are left to the readers.

To prove existence of a lift V', we construct V explicitly. We define a vector field V; on
0D?* x £, \ (Lp;(0D? x D?) as follows:

d
Vi(exp(vV—16o),z) = dgexp(v—w)‘a , Tlexp(y/=100).2) (OD? x Bg),
=Y
for a point (exp(v/—16y),z) € D?*x X, \ (L Int ;(0D? x D?). The vector field V; is described
in J x St as follows:

19

V1(8+t\/—1,z) - %
1

€ Tiyyry=t,5)(J x S1).

We also define a vector field Va2 on D? x D? C Oh? as follows:

%(wlywz)zw(ma—y 5>+1—g(wl|2)(m28_ 8>’

159 Yo 75—
£1€2 |w1\2 O0x2 0ya £1€2 Oxy oy

where w; = z; + y;4/—1 and g : [0,1] — [0, 1] is a monotone increasing smooth function which

satisfies the following conditions:
e o(t)=0forte [0,1];

o o(t)y=1forte [%,1].
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For (w1, w3) € 9D? x D?, dp;(Va(wy,ws)) is calculated as follows:

dipi(Va (w1, w2))

1 15) 0
— . PR —_— - P — 1
de; ( (x 2 ay)) (o | = 1)

1 d 0 1 d 0
=——x1ap; | 7— | — —— i\ 5
E1&2 14 6:62 E1€2 ey 8y2

L (0 9y L (9 0
T\ Mas T ) T e\ T es T
_ 1 2 2y 0
_81 (xl +y1 )88
=Vi(pi(wr, w2)).

Hence, we can define a vector field V = V; U V5 on the manifold 0X},,. Moreover, it can be

d
shown that Vi and V5 is a lift of the vector field @exp(\/—w) by the map 7. Thus, the
d
vector field V is a lift of @exp(\/—w). We can show that the vector field V' is compatible

with the involution ws by direct calculation. This completes the proof of Lemma 4.3.2. O

We choose a base point go € 9D? \ (I11,,) and define a map Oy : f~1(qo) = f~(qo) as

follows:
Ov(z) = cy o (2m),

where cy ; is the integral curve of the vector field V' constructed in Lemma 4.3.2 which satisfies
cy2(0) = . We identify f~!(go) with the surface X, via the projection onto the second
component. Then the map Oy is contained in the centralizer C(:) C Diffy X, since the
vector field V' is compatible with wy. The isotopy class represented by ©y is the monodromy
of the boundary of X}. In particular, this class is contained in the group H4(c). By Lemma
4.2.1, there exists an isotopy H; : ¥, — X, satisfying the following conditions:

e Hy=Oy;
e H, preserves the curve c as a set;
e for each level ¢, Hy is in the centralizer C(¢).
We obtain the following isomorphism of 3,-bundles:
0Xp, =[0,1] x X4/((1,2) ~ (0, Hi(2))).

We identify the above X 4-bundles via the isomorphism. Under this identification, the involu-

tion @y acts on 0X;, as follows:
o (t, ) = (¢, 1(x)),
where (¢,x) is an element in [0,1] x ,/((1,z) ~ (0, H1(x))) = 0X},.

Step 3: In this step, we define an involution ws on the round 2-handle R?. Since ¢ is non-

separating and c is preserved by ¢, ¢ contains two fixed points of the involution ¢. We denote
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these points by vy and vy. We can take a tubular neighborhood ve & S' x [—1,1] in ¥, so

that the involution ¢ acts on vc¢ as follows:
1(z,t) = (7, —1).

By perturbing the map H;, we can assume that H; preserves the neighborhood ve. Since the
genus of the fibration f is not equal to 1, the attaching region of the round 2-handle R? is

[0,1] x ve/((1,2) ~ (0, Hi(z))).

Case 3.1: If H; preserves the orientation of ¢ and two points v; and wve, then the round
handle R? is untwisted and the restriction H 1|ve is described as follows:

Hy(z,t) = (2,1),

where (z,t) € S x[—1,1] & ve. Moreover, the attaching map of the round handle is described
as follows:

o: [0,]]x0D*x D'/ ~ — [0,1] x S* x [-1,1]/ ~
w w
(s,2,t) — (s,2,1),
where [0,1] x 9D? x D' is the attaching region of R? and [0,1] x S* x [-1,1] 2 [0,1] x vc is
the subset of 90X},. We define an involution ws on the round handle as follows:
ws: [0,1]]xD*x D'/~ — [0,1] x D?* x D'/ ~
w w
(s,2,t) — (s,z,—1),

Then the following diagram commutes:

[0,1] x 9D? x D' —*2— [0,1] x 9D? x D*

% lw
0,1] x ST x [-1,1] —2— [0,1] x S x [-1,1].
Therefore, we obtain an involution &5 = & Uws on X U X, = X, U R2.

Case 3.2: If Hy preserves the orientation of ¢ but does not preserve two points v; and v,

then the round handle R? is untwisted and the restriction Hy|,. is described as follows:
Hy(z,t) = (—2,t),
The attaching map of the round handle is described as follows:

p: [0,1]x9dD?*x D'/~ — [0,1] x S* x [-1,1]/ ~
w w
(s,2,t) —  (s,exp(my/—18)z, ).

We define an involution ws on the round handle as follows:

ws: [0,]]xD?*x D'/~ — [0,1] x D* x D'/ ~
W w
(s,2,t) —  (s,exp(—2my/—1s5)z, —1),
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Then we can define an involution @3 = @y Uws on X;, U X, = X, U R? by the same reason as
in Case 3.1.

Case 3.3: If H; does not preserve the orientation of ¢ but preserves two points v; and wvs,

then the round handle R? is twisted and the restriction Hi|,. is described as follows:
Hl(z7 t) = (zv _t)7

where (z,t) € S x[—1,1] & ve. Moreover, the attaching map of the round handle is described
as follows:

p: [0,1]x0D?*x D'/~ — [0,1] x St x [-1,1]/ ~
w w
(s,2,t) — (s,2,t).
We define an involution ws on the round handle as follows:
wz: [0,1]xD?®x D'/~ — [0,1] x D*x D'/~
w w
(S,Z,t) — (5727 _t)a

Then we can define an involution @5 = @2 Uws on X; U X, = X, U R2.

Case 3.4: If H; preserves neither the orientation of ¢ nor two points v; and wvo, then the

round handle R? is twisted and the restriction Hy|,. is described as follows:
Hi(z,t) = (-7, -1),

where (z,t) € S x[~1,1] = ve. Moreover, the attaching map of the round handle is described
as follows:
p: [0,1]x0D?*x D'/~ — [0,1] x S* x [-1,1]/ ~
w w
(s,2,t) —  (s,exp(myv/—18)z,1).
We define an involution ws on the round handle as follows:
ws: [0,]]xD?*x D'/~ — [0,1] x D* x D'/ ~
W w
(s,2,t) —  (s,exp(—2my/—1s5)z, —1),

Then we can define an involution @5 = @2 Uws on X; U X, = X, U R2.

Eventually, we obtain the involution w3 on X} U X, in any cases. We next look at ¥,_-
bundle structure of 9(X}, UX,). The projection m, : 9(X}, UX,) — [0,1]/{0,1} of this bundle
is described as follows:

m(s,2) =5 ((s,2) € ([0,1] x Bg/(L,2) ~ (0, Hy(2))) \ ([0, 1] x ve/ ~));
m(s,2,t) =s ((s,2,t) € [0,1] x D* x 9D").
Indeed, it is easy to show that 7, is well-defined.

Lemma 4.3.3. The involution &3 preserves the fibers of m,. Moreover, there exists a lift V

of the vector field % on [0,1]/{0,1} by the map m, which is compatible with the involution
5.
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Proof of Lemma 4.3.3. 1t is obvious that the involution w3 preserves the fibers of m,.. We
construct V as we do in Lemma 4.3.2. We define a vector field V; on ([0,1]x %4/ ~)\ ([0,1] x

ve/ ~) as follows:

~ d
Vi(s,z) = —.
1(52) ds

We first consider the case H; preserves the points vy and ve. In this case, we define a

vector field VQ on the round handle R? as follows:

- d
V2(87zvt) = %7
2 1 2 . . . d d
where (s, 2,t) € [0,1] x D* x D' C OR*. Tt is easy to verify the equality dy Rt
s s

Hence, we can define vector field V=V, UV, on d(Xp UX,.). It is obvious that V is a lift of

d -
the vector field 75 o8 [0,1]/{0,1} by 7, and is compatible with the involution @s.
s
We next consider the case H; does not preserve the points v; and vs. In this case, we

define a vector field Vs on R? as follows:

where (s, z 4+ yv/—1,t) € [0,1] x D? x dD* C dR?. The differential do(Va(s, z + v/—1y,1)) is
calculated as follows:

ng(f/Q(S,l‘—F Vv _lyat))
b0
N\ as T Yo ”ay

= (ds + w(—xsinms — y cos WS)% + 7(x cos s — ysin ws)dy)

d . d . d d
+ 7y (cos 7'('8% + sin ﬂ-sdy) — T (— Sin FS% -+ cos ﬂ'sdy)
_d
T ds
=Vi(p(s,z + /=1y, t)).

Hence, we can define a vector field V =V,UV, on O(XpUX,). It is obvious that V is a lift of

d -
the vector field 7 o8 [0,1]/{0,1} by m,.. To verify that V is compatible with the involution
@3, we need to prove that the following equation holds for any points = € 9(X;, U X,.):

dass(V(x)) = V(@s(x)).

If 2 is contained in [0,1] x ¥4/ ~ \([0,1] x vc/ ~), the above equation can be proved easily.
If £ = (5,2 4+ v/—1y,t) € [0,1] x D? x dD' C AR?, then dis(V (z)) is calculated as follows:

dios(V ()
0

. d 0
—dwg(% Ty~ m:a—y)

d 0 0
= (ds + 27(—x sin27s — y cos 27r8)£ + 27(—x cos 2ms + y sin 27rs)ay)
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+ cos 2T i—si1127r 2 — —sin 2 g—co*Qﬁ 2
Y 5833 Say T Tl'Sax S Say

= + w(—xsin27s — y cos 27r5)(,% + w(—x cos2ms 4 y sin 27s) (%
=V (@3(x)).
Thus, V is compatible with the involution @3. This completes the proof of Lemma 4.3.3. O
We define the map Oy : 7, 1(0) — 7,7 (0) as follows:

Op: m 1(0) — 7 H0)
w w

T — c(/’z(l),

where cy; . is the integral curve of V starting at x. We identify the fiber 7,-1(0) with the

T
surface ¥,_1. The map Oy, is contained in the centralizer C'(¢) since V is compatible with

@3. Moreover, Oy, is isotopic to the identity map. By Theorem 4.1.1, we can take an isotopy

H, : Y4—1 — Xg—1 which satisfies the following conditions:
o Hy= Oy
e M, is the identity map;
e M, is contained in the centralizer C(1).

Note that such an isotopy may not be taken if the condition g > 3 is dropped. Indeed, the
map mC(¢t) — M induced by the inclusion is not injective.

By using the isotopy Hy, we obtain the following isomorphism of Y g—1-bundle:
O(XpUX,)=[0,1] x Xg_1/(1,2) ~ (0,2).
The involution @s acts on [0,1] x X,_1/(1,2) ~ (0,2) via the above isomorphism as follows:
Ws(s,x) = (s,0(x)).
Step 4: We define an involution w, on D? x Y41 as follows:

wa(z,x) = (2, 1(x)),

where (z,2) € D? x $,_1. Let ® : [0,1] x ¥,_1/ ~— 0D? x £,_; be the attaching map of
the lower side. Since the genus of the fibration f is greater than 2, we can assume that ® is
given by ®(s,z) = (exp(2mv/—1s),x). In particular, the following diagram commutes:

[0,1] X g1/ ~ —225 [0,1] x Sy_y/ ~

o Js

OD?x %, 1 —2= 0D?x¥, ;.

Hence, we obtain an involution w = @3 Uwy on X.
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We next look at the fixed point set of w. The involution w is equal to id x ¢ on D? x .
Thus, we obtain:
X“uU D2 X Eg = D2 X {Ul, . 7U29+2},

where v1,...,v2442 € X, are the fixed points of ¢. Note that X* U D? x Y, has the natural
orientation derived from the orientation of D?.
The involution w acts on the 2-handle h? = D? x D? as follows:

(wr, wz) (¢;:non-separating),
w(wl 9 ’lUQ) - )
(—w1, —wsa) (c¢;:separating),

where (w1, ws) € D? x D2. Thus, the fixed point set h? is equal to (D?NR) x (D?NR) if ¢; is
non-separating, and is equal to {(0,0)} if ¢; is separating. Furthermore, if ¢; is non-separating,
we can give an orientation to (D? NR) x (D? N R) which is compatible with the orientation
of D? x {v1,...,v2442}. Hence, the fixed point set X, is the union of the oriented surfaces
and the s points, where s is the number of Lefschetz singularities of f whose vanishing cycle
is separating.

The involution w acts on the round 2-handle R? in the following way:

e if H; preserves the two points v and ve, then w(s, z,t) is equal to (s,Z, —t) for (s, z,t) €
R?=[0,1] x D* x D'/ ~;

e if H; does not preserve the two points v; and vq, then w(s, z,t) is equal to (s, exp (—2mv/—18)Z, —t)
for (s,2,t) € R* =1[0,1] x D?* x D'/ ~.

The fixed point set R?“ is equal to [0,1] x (D? NR) x {0}/ ~ if H; preserves the two points
v1 and v, and Ry* is equal to the following set otherwise:

{(s,2,0) € R* | z = rexp (—mv/—1s),r € [-1,1]}.

In particular, the fixed point set R%“ is equal to the annulus or the M&bius band. As explained
in the previous paragraph, we can give an orientation of the 2-dimensional part of X, in
the canonical way. It is easy to see that any orientation of R%“ is not compatible with this
canonical orientation of X,“. In particular, even if R2“ is the annulus, the 2-dimensional
part of the fixed point set (X U X,.)¥ may not be orientable. Indeed, this part is orientable if
and only if R%“ is the annulus, and there is a connected component in X;,* whose boundary
contains only one component of 9R?".

The involution w is equal to id x ¢ on D? x Y4—1. Thus, the fixed point set (D? x Y1) is
equal to D? X {01,...,024}, where {01,..., a4} is the set of the fixed points of . Eventually,
X% is the union of the closed surfaces and the s points. The 2-dimensional part of X% is
orientable if and only if that of (X, U X,)“ is orientable. This completes the proof of the
statement in Theorem 4.3.1 on the fixed point set of w.

We next extend the involution w to the manifold X#sCP?. We assume that the curves
Chkys- - -, Ck, are separating. We construct the manifold X #sCP? by blowing up X s times at
(0,0) € hy (i=1,...,s). We can obtain a natural decomposition of X #5CP? as follows:

2 2 ki,....ks 2 7 7 2 2
D?>x £, U (R210 -1 I A2) U (hy, I+ Iy, ) UR?UD? x B,_4,
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where hy,, = {((w1,ws),[I1 : ls]) € D? x D? x CP* | wily — waly = 0} = hki#w. We define

an involution @ on X #sCP? as follows:

©(2) = w(z) (z € X#sCP?\ (hy, 1+ I Ay, ),
(w1, w2), [l1 2 12]) = ((—w1, —wa), [l : 12]) (((wr,w2), [l I]) € ha,).

It is obvious that @ is an extension of w. The fixed point set of @ is the union of the 2-
dimensional part of X“ and s 2-spheres.

We next prove that X #sCP? /@ is diffeomorphic to S #28@, where S is an S%-bundle
over S2. Since ¥, /¢ is diffeomorphic to S?, it is easy to see that D? x X, /w is diffeomorphic
to D? x S2. Thus, the manifold X#sCP? is obtained by attaching hifw (j # k1,...,ks),
hi, /@, R?/@ and D? x ¥, /& = D? x §2 to D? x §2.

Lemma 4.3.4. Suppose that ¢; is non-separating. Then,
(D? x %, Uy, h?)/w = D* x 2.

Proof of Lemma 4.3.4. If we identify h? = D? x D? with D*, then @ is equal to the covering
transformation of the double covering D* — D* branched at the unknotted 2-disk in D*.
In particular, we obtain h?/w is diffeomorphic to D*. Moreover, the attaching region of
h? corresponds to the 3-disk in dD* under the diffeomorphism. Denote by @; : h?/w —
0D? x ¥,/w the embedding induced by ¢;. We obtain:

(D? x £y U, h2)/@ = (D? x £y/B) Up; b /@
=~ D? x §?yD*
=~ D? x §2.
This completes the proof of Lemma 4.3.4. O
Lemma 4.3.5. For eachi € {1,...,s}, (D? x Sy Uy, h3)/w = D? x S2#2CP>,

Proof of Lemma 4.3.5. By eliminating the corner of D? x D?  we identify ﬁ%t with the fol-

lowing manifold:
H = {((wl,wg), [ll : 12]) S D4 X (C]Pl | wily — woly = 0}

Under this identification, the attaching region of ﬁi corresponds to the tubular neighborhood
of the circle {((wy,0),[1:0]) € OH | |wi| = 1} in OH. Let py : H — CP' be the projection
onto the second component. The map p» is the D2-bundle over the 2-sphere with Euler
number —1. We define Dy, Dy € CP!, and local trivializations ¢, and 1, of py as follows:

Dy ={[l : I] € CP" | |l1| > [I2]},
Dy ={[l1 : I5] € CP" | la| > |11 ]},

Y1: D?xD? — py ' (D1)
w w
w
(’Lthg) — 72(17101)7[13101} )

\/1+|wl|2
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Yo: D?*xD? — Py (D2)
w w
(’LU17U)2) — #(whl)?[wh”
1+ |w1|

Denote p, ' (Dy) and p; *(Dz) by Hy and Ho, respectively. We identify H; and Ho with D? x

D? by the above trivializations. The manifold H can be identified with D? x D? Uy D? x D2,
1

where ¥ = 1/){1 ot : (w1, ws) —> (—,wiws). Under the identification, the attaching region
w1

of H corresponds to 9D? x D?> C 0H;.
We define H = Hy Ug, Ha, where H; = D? x D? (i = 1,2) and ¥ : 9D? x D* — 9D? x D?
is a diffeomorphism defined as follows:

\i/(wl,wg) = (wi’ w12w2).
1

We can define P : H — H as follows:

’LU1,U)22 1 w1, W2 1)
Plwr, wy) = ( )G{I (( ) € Hi)
(w17w22) € Hy ((’U}1,w2) S Hg).

The map P is a double branched covering branched at the 0-section of H as a D2-bundle.
Moreover, @ is the non-trivial covering transformation of P. Thus, we obtain H /& is diffeo-
morphic to H.

Since the attaching region of H is mapped by P to D? x 9D? C dH;, we can regard H,
and Hy as 2-handles. Thus, (D? x $, U,, lﬁi)/w is obtained by attaching the 2-handles H,
and H, to D? x S2. To prove the statement, we look at the attaching maps of Hy and H,.

We take an identification veg, = J x S! as we take in Step 2 of the construction of w.
The attaching map ¢, of the 2-handle h% satisfies g, (w1, ws) = (eqwowq, wq). Since the
manifold H is obtained by eliminating the corner of Bi, the attaching map of H; is described

as follows:
&: 9H, D> D?*x90D?* — J x St
w w

(wi,w2) +— (€2w22w1,w2).

For an element (z1,2) € J x S, the image @W(z1, 22) is equal to (z1,—22). Thus, the
manifold J x St /@ is diffeomorphic to J x S! and the quotient map /@ : J x St — Jx St /w =
J x S' satisfies the equality /@ (21, 22) = (21, 222). The attaching map ® : D? x D? — J x S!
of H; satisfies the equality <i>(w17w2) = (eqwown,wq). It is easy to see that the attaching
circle of H; is equal to the circle ¢k, /w. Moreover, the framing of ® is —1 relative to the
framing along {*} x S? C D% x S2.

By the definition of ¥, the attaching circle of Hy is equal to the belt circle of Hy, which is
isotopic to the meridian of the attaching circle of H,. In particular, there exists the natural
framing of the attaching circle of Hy which is represented by the meridian of the attaching
circle of H; parallel to the attaching circle of Hy. Since the Euler number of H as a D2-
bundle is equal to —2, the framing of the attaching map ¥ is equal to —2 relative to the

natural framing. Therefore, we can draw a Kirby diagram of (D? x X, Uy, h} )/@ as shown
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in Figure 4.3.1. It is obvious that this manifold is diffeomorphic to D? x S$2#2CP? and this
completes the proof of Lemma 4.3.5. O

008

Figure 4.3.1: the (—1)-framed knot describes H;, while the (—2)-framed knot describes Hy.

By applying the arguments in Lemma 4.3.4 and 4.3.5 successively, we can prove that
X, #sCP? /@ is diffeomorphic to D? x S2#2sCP?.

Lemma 4.3.6. ((X, U XT)#SW)/E ~ D? x §24#25CP.

Proof of Lemma 4.3.6. We can decompose R? into two components as follows:
2 1 2 1 1 2 1
R = 0,5 x D*x DU 5,1 x D* x D*.
Denote [0, 3] x D? x D' and [§,1] x D? x D* by R; and Ry, respectively. It is easy to see
that R;/w is diffeomorphic to D* and R; is the double covering of D* = R;/w branched at
the unknotted 2-disk.
The attaching region of R; is equal to [0, 3] x 9D? x D!. The quotient [0, ] x 9D? x D' /w
is a 3-ball in OD* =2 OR;. Thus, we obtain:

(XhURy)/w= X} /WUR, /@
~ D2 x §2#2sCP?4D*
~ D? x §24:25CP>.

The attaching region of R is equal to [%, 1} x 0D? x D*U {%, 1} x D% x D'. The quotient
[3,1] x 0D? x D'/w is a 3-ball Dy in 0D* = §R,, while {3,1} x D? x D!/w is a disjoint
union of two 3-balls Dy II Dy in OD*. Both of the intersections Dy N Dy and Doy N Dy are
2-disks in ODy. Eventually, the attaching region of Ry is a 3-ball in D*. Thus, we can prove
(X1 U Ry U Ry)/w is diffeomorphic to D? x S24#2sCP?. This completes the proof of Lemma

4.3.6. O

It is easy to see that D? x ¥, /@ is diffeomorphic to D? x S?, and is attached to
(X1 U X,)/w so that the following diagram commutes:

(XhUXT)/w:) Stx 82 — 9D?xS? c D? ng,l/w

l |

St — 0D?,
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where the upper horizontal arrow in the diagram represents the attaching map, the lower
horizontal arrow represents the identity map, and vertical arrows represent the projection
onto the first component (in other word, the attaching map is a bundle map as a S?-bundle

over S1). In particular, we obtain:
X#sCP? Jw = S#2sCP?.

It is obvious that the quotient map /@ : X #sCP? — S#2sCP? is a double branched covering.
This completes the proof of the statement (i) in Theorem 4.3.1. O

Proof of (ii) in Theorem 4.3.1. Let Fj, C X be a regular fiber in the higher side of f. It is
easy to see that F}, represents the same rational homology class of X as that represented by
F. Let w: X — X be the involution constructed in the proof of (i) in Theorem 4.3.1. If f
has no indefinite fold singularities, then the 2-dimensional part of the fixed point set X“ of
the involution w is an orientable surface and the algebraic intersection number between this
part and F}, is equal to 2g + 2, especially is non-zero. Thus, the statement (ii) in Theorem
4.3.1 holds.

Suppose that f has indefinite fold singularities. We first prove that Fj represents a non-
trivial rational homology class of X}, U X,.. To prove this, we construct an element S in the
group Hy(Xp, U X,,d(Xp, U X,.); Q) such that [F},]-S # 0. Let S be the intersection between
the 2-dimensional part of X“ and X}, which is the union of compact oriented surfaces. We

use the notations Hi, ¢, vy, vo and R? as we used in the proof of (i) in Theorem 4.3.1.

Case 1: If the map H; preserves the orientation of ¢ and two points v; and vs, then R? is
untwisted and S N R? = {(s,+1,0) € R? | s € [0,1]} is a disjoint union of two circles. We
define four annuli A1, A5, A3 and A4 as follows:

={(s,t,0) € R* | s € [0,1],¢ € [0,1]},

={(s,t,0) € R* | s € [0,1],¢ € [-1,0]},

={(s,0,t) € R* | s € [0,1],t € [0,1]},
A4 _{(s,o t)ye R* | s €[0,1],t € [-1,0]}.

The union S = SUA; UA;UA3UA, represents the homology class of the pair (XpUX,, 0(XpU
X)) after giving suitable orientations to the annuli A;, Ay, A3 and A4. We denote this class
by S. It is easy to verify that the intersection number S - [F},] is equal to 2g + 2, especially is

non-zero.

Case 2: If the map H; preserves the orientation of ¢ but does not preserve two points v; and
vy, then R? is untwisted and S N R? = {(s, = exp (—mv/—1s),0) € R? | s € [0,1]} is a circle.
We define three annuli A5, Ag and A; as follows:

As ={(s,texp (—mv/—15),0) € R* | s € [0,1],¢ € [0,1]}
U{(s, —texp (—mv/—15),0) € R* | s € [0,1],t € [0,1]},

Ag ={(s,0,t) € R* | s € [0,1],t € [0,1]},

A7 ={(5,0,t) € R* | s € [0,1],¢ € [-1,0]}.
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The union S = SUA5UAgUA7 represents the homology class of the pair (XpUX,, 0(XpUuX,))
after giving suitable orientations to the annuli A5, Ag and A7;. We denote this class by S. It
is easy to verify that the intersection number S - [F}] is equal to 2g 4 2, especially is non-zero.

Case 3: If the map H; does not preserve the orientation of ¢ but preserves two points v; and
vy, then R? is twisted and S N R? = {(s,41,0) € R?| s € [0,1]} is a disjoint union of two
circles. We define three annuli Ag, Ag and Aig as follows:

Ag ={(s,t,0) € R* | s € [0,1],t € [0,1]},
Ag ={(s,t,0) € R* | s € [0,1],t € [-1,0]},
Ao ={(5,0,t) € R* | s €[0,1],¢ € [0,1]}

U{(s,0,t) € R* | s € [0,1],¢ € [-1,0]}.

The union S = SUAgUAgUA1( represents the homology class of the pair (X,UX,, d(X,UX,.))
after giving suitable orientations to the annuli Ag, Ag and A;9. We denote this class by S. It

is easy to verify that the intersection number S - [F},] is equal to 2g 4 2, especially is non-zero.
Case 4: If the map H; preserves neither the orientation of ¢ nor two points vy and vy, then
R? is twisted and S N R? = {(s, = exp (—my/—1s),0) € R? | s € [0,1]} is a circle. We define

two annuli A;; and A;o as follows:

Ay ={(s,texp (—mv/—1s),0) € R? | s € [0,1],¢ € [0,1]}
U{(s,—texp (—mv/—1s),0) € R* | s € [0,1],t € [0,1]},
A1y ={(5,0,t) € R* | s € [0,1],¢ € [0,1]},
U{(s,0,t) € R* | s € [0,1],¢ € [-1,0]}.

The union S = SU A1 U A represents the homology class of the pair (XpUX,,0(XpUX,))
after giving suitable orientations to the annuli A;; and A;2. We denote this class by S. It is
easy to verify that the intersection number S - [F}] is equal to 2g + 2, especially is non-zero.
Eventually, we can construct the element S satisfying the desired condition in any cases.
Thus, we complete to prove [Fy] is not trivial in Ho(Xp U X,; Q).
We are now ready to prove the statement (ii) in Theorem 4.3.1. There exists the following

exact sequence which is the part of the Meyer-Vietoris exact sequence:
Hy(S" x $,_1;Q) 2225 H,y(X), U X,;Q) & Hy(D? x £,_1;Q) 272 Hy(M; Q).

Suppose that (j1 — j2)([Fr],0) = [Fy] = 0. There exists an element p € Ha(S' x £,_1; Q)
which satisfies the equality (i1 @ i2)(1) = ([F1],0). By a Kiinneth formula, we obtain the

following isomorphism:
Hy(S' x 2y-1;Q) = Hy(2y-1;Q) @ (H1(Zy-1;Q) ® H1(SHQ)) .

Since the map iz : Ha(S' x X,_1;Q) — Ha(D? x £,_1;Q) = Ho(X,-1; Q) is regarded as the
projection onto the first component via the above isomorphism, The element p is contained
in H(3y-1;Q) ® H1(5; Q). The involution w acts on the component Hz(X,_1;Q) trivially
and on the component Hy(X,_1;Q) ® H;(S*; Q) by multiplying —1. Thus, we obtain:

wi(p) = —p.
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The composition i1 o w, is equal to w, o1 since #; is induced by the inclusion map. Thus, we
obtain:

[Fi] = w. ()
— w. i (p)
— iy 0w ()

=10 (—p) = —[Fnl.

This means that 2[F,] = 0 in Ha(Xy U X,;Q). This contradicts [Fj] # 0. Therefore, we
obtain [Fj,] # 0 in Ho(M;Q) and this completes the proof of the statement. O

Remark 4.3.7. By the argument similar to that in the proof of Theorem 4.3.1, we can
generalize Theorem 4.3.1 to DBLFs as follows:

Theorem 4.3.8. Let f: X — S? be an HDBLF. Suppose that the genus of every connected
component of fiber of f is greater than or equal to 2.

(i) Let s1 be the number of Lefschetz singularities of f whose vanishing cycles are separating.
We define so as follows:

sy = maz{s € N | f~'(x) has s components. x € S?}.

Then, there exists an involution
w: X=X

such that the fized point set of w is the union of (possibly non-orientable) surfaces and

s1 isolated points. Moreover, the involution w can be extended to an involution
@ X#5,CP? — X#5,CP?

such that X#31CIP>2/w is diffeomorphic to #s,5#2s,CP?, where S is S?-bundle over
52, and the quotient map

/@ : X#51CP? — X#5,CP? /@ = #5,S#25, CP?
is the double branched covering.

(ii) Let F € X be a reqular fiber of f. Then F represents a non-trivial rational homology
class of X.

We leave the details of the proof of Theorem 4.3.8 to the readers.

4.4 A generating set of #,(c)

In this section, we investigate the abelianization and a generating set of the group H,(c).
In the last paragraphs of Subsection 4.4.1 and Subsection 4.4.2, we will prove the following
proposition:
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Proposition 4.4.1. Assume that g is greater than or equal to 1.
1. Let c be a non-separating simple closed curve of type I in Figure 2.3.1. The group H4(c)
is generated by
{tc17 e 7t52g—1 ) tc2g+1 ) Lg}'

2. Let 1 < h < g—1, and c a separating simple closed curve of type 11, in Figure 2.5.1.
The group Hy(c°™) is generated by

{tC1 ) t02v T ’tCZh ) t02h+27 tC2h+3’ T 7t02g+1 }

4.4.1 When c is non-separating

First, consider the case when c is type 1. For simplicity, we choose ¢ as in Figure 2.3.1. Let
v € ¥4/ (tg) be the projection of the curve ¢ by p: £, — X,/ (¢4). Identifying £,/ (¢4) with
$2, define a group Mg?(y) by

M (y) = {[T] € Mg"* | T(7) = ).
For a diffeomorphism T € C(t4), we have a diffeomorphism

T € Diﬁ+(527pl7p25 o ap2g+1;p2_q+2)

defined by pT = Tp as in Section 4.1.1. Moreover, if T € C(i,) preserves c setwise, T
also preserves the path v setwise. Hence, the image P,(#;(c)) is contained in M ().
Conversely, if T € Diff  (S%,p1,p2, -+, D2g+1,P2g+2) Preserves the path + setwise, there is a
diffeomorphism T € C(i,) such that T'(c) = ¢ and pI' = Tp. Thus, we have Py(H5(c)) =
Mgg (7). Consider the exact sequence obtained by restricting the homomorphism Py, : H; —
MGI*? in Theorem 4.1.2 to HZ(c).

Lemma 4.4.2. For g > 1, the exact sequence

1 —— Z/2Z —— H;(c) L M%g(v) — 1

splits. In particular, we have Hj(c) = Z/27 x M (7).

Proof. Define a map A : H;(c) — Z/2Z by M) = 0 if p.[c] =[] € H1(¥y;Z), and A(p) = 1
if p.lc] = —[c] € Hi(X4;Z). Then, A is a homomorphism, and satisfies A([¢4]) = 1 € Z/2Z.

Thus, it induces a splitting of the exact sequence. O

Let s : 9D? — 9D? denote the half-rotation of the circle. Let Mgf’half denote the group
which consists of the path-connected components of {T' € Diff { (D?, p1,p2, -+ ,p2g) | T|op2 =
sor idgpe2}.

Lemma 4.4.3. Assume that g is greater than or equal to 1. The group /\/lgg(fy) is isomorphic
2
to MO,ghalf'

Proof. Let ./\/lgg (7°™) be a subgroup of Mgg (7) consists of mapping classes which preserve
the orientation of the path . First, we prove the isomorphism

M (377) = M.

Let Diff 1 (S%, {p1,--- ,p2g+2}, [7]) be the group which consists of orientation-preserving
diffeomorphisms T : S? — S? satisfying the following conditions:
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o T({p1, - ,D2g+2}) = {P1, - s P2g+2};
e there exists a closed neighborhood v(7y) of v where T'[,(,) is the identity map.

Let T be a representative of a mapping class in ./\/l(z)g (v°). Using the isotopy extension
theorem, we can change T into a diffeomorphism satisfying the conditions above by some

isotopy. Moreover, we can also prove that

M2g(70ri> = o Diﬂ+(527 {p17 e 7p29+2}7 [’Y])a

using the isotopy extension theorem. Similarly, we denote by
Diff (S — Int D?,p1, - -+ , pag, [0D?])

a group of orientation-preserving diffeomorphisms 7' : $? — Int D? — S? — Int D? such that
there exists a closed neighborhood v(9D?) on which T|,(op2) is the identity map. We can
also show that

MY 22 7o Diff . (% — Int D2, py, -+ , pag, [0D?)).
Separate the circle dD? into two arcs a : [0,1] — dD? and B : [0,1] — 9D? such that
a(0) = B(0) and (1) = B(1). If we identify a(t) and B(t) in S? — Int D?, the quotient space
is diffeomorphic to S2. Choose an identification L of the (2g + 3)-tuples

(SQ — Int DQ/(O[(t) ~ 5(t)),]31» e ,pQQ,Oé(O),OZ(].))
g(szvpla T ap293p2g+17p2g+2)-

Since a diffeomorphism T' € Diff | (S? — Int D?) satisfying T|,op2) = idy(sp2) induces a
diffeomorphism 7' of S — Int D?/(a(t) ~ B(t)), we have the isomorphism M%) = M2 (7o)
defined by [T] ~ [LTL™1].

Next, we prove M7 () & Mgf]half. Choose a diffeomorphism r € Diff ; (S? — Int D?) such
that ra(t) = B(1 —t) and r({p1,--- ,p2g}) = {P1,--- ,P2g}. It induces a diffeomorphism 7 €
Diff; 5% such that 7({p1, -, p2g}) = {p1, -, p2g}, T(P2g+1) = P2g+2, and 7(p2gs2) = pag1.
Consider the group consisting of diffeomorphisms T of S? such that T'({pi, - s D2gt2)) =
{p1,--- ,p2gs2}, and T,y is equal to 7|, or id,(,) for some closed neighborhood v(v)
instead of Diff 4 (S2,{p1, - ,p2g+2},[7]). In the same way, consider the group consisting of
diffeomorphisms T of S? — Int D? such that T({p1,--- ,p2g}) = {p1, -+ ,p2g}, and T, op2)

is equal to 7|, (pp2) or id,(9p2) instead of the group
Diff | (S? — Int D%, py, - - - , pag, [0D?]).

Then, we have the isomorphism between their path-connected components, similarly. Thus,
we have M9 (y) = M9 . O

We can define a homomorphism Mgf’half — (s) by mapping [T] to T'|gp2, where (s) is the
cyclic group of order 2 generated by s. Then, the kernel is the subgroup M(Q)f]r

Lemma 4.4.4. For g > 1, the exact sequence
L —— MG —— Mgl —— 2/22 —— 1

splits.
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Proof. We may assume pq,--- ,pag are arranged in the disk as in Figure 4.4.1. Consider an

involution p € Diff 4 (D?, py,- -, pay) which rotates the disk 180 degrees and interchanges the

points p; and pgy4,; for i =1,--- ,g. Define a homomorphism j : Z/2Z — Mgghalf by j(1) = p.

Figure 4.4.1: py,--- ,pag in D?

This induces the splitting of the above exact sequence. U

Lemma 4.4.5. Let g > 1, and ¢ a non-separating simple closed curve such that v4(c) = c.

Then, we have
Hi(H(e):Z) = Z&® (Z/27)°.

Proof. By Lemma 4.4.2 and Lemma 4.4.4, we have
H\(H3(e); Z) = T/22 & Hy(MZ ()5 2), Hy(M2%,,05Z) = Hy (M35 ) © Z/2L.

We showed M9 () M(thalf in Lemma 4.4.3, and it is known that H (M3 ; Z) is isomorphic
to Z (see, for example, Section 9.1.3 and 9.2 of [10]). Hence, we have Hy(H(c);Z) = Z @
(Z.)27.)*. O

Consider the case when g = 1. As is well-known, the group H; coincides with M;. Hence,
Hi(c) also coincides with Mj(c). If ¢ = ¢3 in Figure 4.1.2, the group Mj(c) is described as

Mi(c) = { (; Z) € SL(2;Z)

By mapping [T] € M1(c) to € € Z/27, we have a split exact sequence

€€ {il}mez}.

1 Z M (c) 7.)27. 1.

Thus, we have Hy(Hi(c);Z) = Z & Z/2Z. Combining Lemma 4.4.5, Lemma 4.2.1, and the
case when g = 1 as above, we have:

Lemma 4.4.6. Let ¢ be a non-separating simple closed curve such that v4(c) = c¢. Then, we
have
Z® (Z)22)*  when g > 2,

Hi(Hy(c); Z) =
! Z&7/27  wheng=1.

Proof of Proposition 4.4.1 (i). Let o € Mg,ghalf denote the half twist along 9D?. By the exact
sequence in Lemma 4.4.4, the group Mg?half is generated by {01, - ,024—1,0}. By Theorem
2 of [7], we have Py(t.,) = 0; for i =1,--- ,2g and Py(t
Lemma 4.4.2, the group H,(c) is generated by ¢, fori =1,2,--- ,2g —1,2g+ 1 and ¢,. O

c2g41) = 0. By the exact sequence in




Chapter 4. Hyperelliptic broken Lefschetz fibrations 61

4.4.2 When c is separating

Next, consider the case when c is type II;,. For simplicity, we choose ¢ as in Figure 2.3.1.

As we will see in Section 4.5.1, when the vanishing cycle of Z; in the hyperelliptic directed
BLF is separating, the image of the monodromy representation along JyA; is contained in
H,4(c°™). Hence, we only consider the group H,(c°) in this section instead of Hy(c). Of
course, if g # 2h, we have H,(c) = H,4(c°™) since any diffeomorphism of ¥, which preserves
¢ setwise acts trivially on 7o (X4 — ¢).

First, consider the case when h = 0, g. For any diffeomorphism 7" of ¥, we can change T'
so that it preserves ¢ setwise by some isotopy. Thus, we have H, (com) = Hy.

In the following, we only consider the case 1 < h < g—1. Choose a disk D in ¥, — U?ﬁ 1Ci
so that t,(D) = D, where ¢; is the simple closed curve in Figure 4.1.2. Denote by %, 1 the
subsurface ¥, — Int D, and by ¢41 the restriction of ¢4 to ¥, ;. The mapping class group
Mg of ¥y is defined by My, = moDiff  (X4,1,0%,,1), where Diff (¥,1,0%,1) is the
diffeomorphism group of ¥, ;1 with C'°* topology which fixes the boundary pointwise.

We identify the subsurfaces of ¥, bounded by ¢ with X 1 and ¥,_p 1 so that ¢4|s, , = ta1
and tglp, , , = tg—n1. For Ty € Diff (X4,1,0%,1) and Ty € Diff (X, 41,05, p1), the
diffeomorphism 77 U T, € Diff | 3, preserves the curve c. Hence, we can define a map

v Mh,l X Mgfh’l — Mg(cori)

by W([T1],[T»]) = [T1 U Tz]. This is a well-defined homomorphism.
Define a subgroup Hg 1 of My 1 by Hy1 = {[T] € My |Lg’1Tng} = T}. Apparently, the
image W(Hp,1 X Hg—p,1) is contained in the subgroup Hy(c) C My(c™).

Lemma 4.4.7. Let g > 2. When 1 < h < g—1, the sequence

1 Z Hpa X Hgon1 —— Hg(c™) —— 1
18 exact.

Proof. By Theorem 3.18 in [10], we have

1 Z Mg x My p1 —o— My(c) — 1.

The kernel of ¥ is generated by (tagl,tgzlz), and it is contained in Hjy 1 X Hg—p 1. Thus, we
only need to prove U(Hp 1 X Hgp,1) = Hq(c™).

Let ¢ be a mapping class in Hy(c). By Lemma 4.2.1, we can choose a representative
T e Diff | ¥ of ¢ satistying Tty = ¢,T and T'(c) = ¢. Using some isotopy, we may assume 7’|,
is the identity map. Then, T'|s, , and T'|s,_, , represent mapping classes in H 1 and Hyp 1,
respectively. Since ([T, ], [T]s,_,.]) = [T], we obtain U(Hp 1 x Hg_p1) = Hg(c). O

We define a group C(4,1) as follows:
C(Lg’l) = {T € Diﬁ+(2g71, 82971) | Lg,lTLg_& = T}

We have the homomorphism Py 1 : mo(C/(¢g1)) — Mgf’fl defined by [T] ~ [T] in the same way
as Py : Hy — MZ9F2 in Subsection 4.1.1. Since any isotopy of Diff (D2, dD?, {p1,--- ,pag+1})
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can be lifted to an isotopy of C(t4,1), Ker(Py,1) is represented by the deck transformation
tg,1 or ids, ;. Since C(tg,1) does not contain ¢4 1, the kernel of the homomorphism P, ; is
trivial. Furthermore, Py1 : m0C/(tg,1) — M4t is an isomorphism since MZ%"" is generated
by {04}, and Py, (t.,) = o; fori =1,--- ,2g.

Lemma 4.4.8. For g > 1, the natural homomorphism moC(ig,1) = Hg1 is an isomorphism.

Proof. By the definition of H, 1, the natural homomorphism 7 (C(t4,1)) — Hg,1 is surjective.
Hence, it suffices to show the injectivity.

Embed ¥, in X441 so that tg41]s,, = tg,1. For a diffeomorphism 7' of ¥, 1, we can
extend T to a diffeomorphism T of Yg+1 by the identity map on X441 \ X41. Thus, we have
homomorphisms 7o(C(t4.1)) — 70(Cltgr1)) and Hyy — Hgy1 defined by [T] — [T]. By
gluing a disk with three marked points to D2, we can also define a homomorphism M(fo' 1
M§g+4 in the same way. By Theorem 3.18 in [10], the latter homomorphism is injective.

If we consider (Xg41 \ Int ¥, 1)/ (tg+1) as a disk with three marked points, we have a

commutative diagram

2g+1 , Pg1
M —— m0Clg1) —— Hga

l l l

2g+4 , Pgt1
./\/log —— mC(tg41) — Hgya-

The left side shows that mC(t4,1) = moC(tg41) is injective. By Theorem 4.1.1, the right side

shows that moC(tg,1) = Hg,1 is also injective. O

Lemma 4.4.9. Let g >2 and 1 < h < g—1. Let ¢ be a separating simple closed curve which

bounds subsurfaces of genus h and g — h and satisfies 14(c) = c. Then, we have
Hy(Hy(¢™);Z) = Z & Z/dL,
where d = ged(4h(2h + 1),4(g — h)(29 — 2h + 1)).

Proof. Since Hp,1 = Mgﬁ“, we have Hy(Hp,1;Z) = Z. By the chain relation (see, for

example, Proposition 4.12 in [10]), the mapping class (t, - - - te,, )22 € Hj1 coincides with

the Dehn twist tsx;, , along the boundary. In the same way, we have (tey - beaig—n) )4(57_}‘)+2 =

tBZg,hJ S Hg—h,l'
The kernel of the homomorphism Hj, 1 X Hg—p1 — Hy(c®) is the cyclic group generated
by (tc’?Eh,,ntgzlg,h .). Hence, we have
Hy(Hy(c"); Z)
~Z@Z)/{((4h(2h+1),—4(g — h)(2g9 — 2h + 1)))
=7 & 7L/ dZ.
O

Proof of Proposition 4.4.1 (ii). As explained in the paragraph before Lemma 4.4.8, H,1 is
generated by ., ,lc,,. Thus, Hy(c) is generated by the following set by Lemma 4.4.7:

{te, |i=1,2,...,2h,2h +2,2h +3,...,29 + 2}.

This completes the proof of Proposition 4.4.1 (ii). O
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4.5 Localization of the signature

In this section, we generalize Theorem 4.1.9 for a signature formula for HDBLFs. To give the

statement of the generalization precisely, we first introduce a homomorphism

hg.e s Hg(c) = Q,

which we will define in Subsection 4.5.3. We will also calculate the value of generators of
H,(c) given in Proposition 4.4.1 (see Proposition 4.5.6).

Let f : X — S? be an HDBLF. We use the same notations as those we use in Sections 2.1
and 2.4. The boundary dvZ; has two components. We denote by OpvZ; the component of
OvZ; whose preimage contains vanishing cycles of folds (the right side of Z; in Figure 2.1.1).
There is a unique component of f~1(9,vZ;) which contains vanishing cycles of folds. Let g;
be the genus of a fiber in this component and we identify the fiber with X,,. We can regard
d; with a simple closed curve in ¥4,. Denote by ; the restriction of a monodromy of f along
OnvZ; to the component ¥,. By the definition of HDBLF's, this element in contained in the
group Hg,(d;). The purpose of this section is to prove the following theorem:

Theorem 4.5.1. Let f : X — S? be an HDBLF as above. Then, we have

Sign X = Z hg, 4, (@i) + Z Tloc(f p]

=1

4.5.1 Signatures of round cobordisms

We use the same notation as in Sections 2.1 and 2.4. . Let f: X — 52 be an DBLF. Lemma
2.6.4 implies that the manifold f~!(vZ;) can be obtained by attaching a round 2-handle to a
surface bundle over an annulus. Moreover, when the vanishing cycle d; is a separating curve,
the monodromy ¢ is in M, (d$*'). This is because, if ¢ changes the orientation of d;, the
monodromy along 0,vZ; permutes the component of the fiber. Inductively, the monodromy
along d,vZ; permutes the component of the fiber. However, since f~1(D;) is a trivial surface
bundle over a disk, the image of this monodromy under the map ®4, must be trivial.

For a mapping class ¢ € M(c) represented by T € Diff , 3, satisfying T'(c) = ¢, define a
mapping torus V,, by V,, = X, x [0,1]/((0, T(z)) ~ (1,z)). We can identify f~(d,vZ;) with
V,, for some ¢ € My, (d;). Let R =1 x D? x D'/ ~ be a round 2-handle which is untwisted
if  preserves the orientation of d; and is twisted otherwise. Choose an embedding

j:Ix0D?*x D'/ ~—V,
such that j(0,0D?,0) = ¢ x {0} C V,, and p; 0 j(t,x,s) = t, By Lemma 2.6.4, we can obtain
the following diffeomorphism:
FHwzi) = (Vy x [0,1]) Uj R.
Note that the isotopy class of the attaching map j : I x dD? x D*/ ~— V, x {0} is unique if

the genus g is greater than or equal to 2. Eventually, we obtain:

Lemma 4.5.2.
Sign f~'(vZ;) = Sign((V,, x [0,1]) U; R).
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4.5.2 Wall’s non-additivity formula

In [28], Sato defined a class function m : M, — QP'. We review this function, and calculate
the signature of the compact 4-manifold (V,, x [0,1]) U; R in Section 4.5.1.

For a mapping class ¢ = [T] € M o, let V) = ¥, 2x[0,1]/(0,T(x)) ~ (1, ) be its mapping
torus. Choose points z; and x3 in each boundary component of ¥ 2, and define a continuous
map by l; : S* — V] by li(t) = (t,x;) for i = 1,2. Let d; and d; be the two boundary
components of £, 5. Denote by e1, ea, e3, and e4 the homology classes [l1], [l2], [01 x {0}], and
[02 x {0}], respectively. Then, for some p, g € Q, the set {e1 +e2,p(e3—e4)+gey } forms a basis
of Ker(H1(0V,;;Q) — Hi(V};Q)). The element [p: q] € QP! is unique, and we can define a
function m : M, 5 — QP! by m(¢p) = [p: ¢]. Since it satisfies m(pts, tg;) = m(p), it induces
the class function on M, (c"). For simplicity, we also denote it by m : M, (') — QP'.

Define a map s : My(c) = Z by s(¢) = Sign((V,, x [0,1]) UR). We can write the signature
5(ip) with the function m : My (c*') — QP' as follows:

Lemma 4.5.3. Let ¢ € My(c). Then, we have

sign(m(y)), if ¢: non-separating, p preserves the orientation of c,

s(p) = .
0, otherwise.

Proof. We apply Wall’s nonadditivity Formula to the pasting of the round 2-handle. First,
we review his formula. Let X_, Xy, and X be compact 3-manifolds, and let Y_ and Y, be

compact 4-manifolds such that
6X7 :8X+ =6X+ :Z7 QY, :)(,LJ)(O7 8Y+ :X+UXO.

We denote by Y and X the compact 4-manifold Y = Y_UY, and the space X = X_UXoUX,
respectively. Suppose that Y is oriented inducing orientations of Y_ and Y. Orient the other

manifolds so that

0.[Y-] = [Xo] — [X_],
0:1Y4] = [X4] = [Xol,
Ou[X_] = 0.[X 1] = 0:[Xo] = [Z].

We define vector spaces V, A, B, and C' as follows:

V = H1(Z;Q),

A =XKer(H,(Z;Q) = Hi(X_;Q)),
B =Ker(H1(Z;Q) — H1(X0;Q)),
C =Ker(H1(Z;Q) —» Hi1(X1;Q)).

On the vector space W = BN(C+ A)/((BNC)+ (BN A)), Wall defined a symmetric bilinear
map U : W x W — Q as follows. Let I : Hi(Z;Q) x H1(Z;Q) — Q denote the intersection
form, and b, € BN (C + A). Since b/ € BN (C' + A), there exist ¢’ € C and o’ € A such that
a +b 4+ ¢ =0. Then, define a map ¥ : W x W — Q by ¥'([p], [t']) = I(b,c). He showed
that this map is well-defined and symmetric. Denote by Sign(V; B, C, A) the signature of this

symmetric bilinear form. His signature formula is:
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Theorem 4.5.4 (Wall [30]).
SignY = SignY_ + Sign Y, — Sign(V; B, C, A).
Next, we apply his formula to our settings. We should let Y_ and Y, denote the manifolds
Y_.=R=1xD?*xD'/~ and Y} =V, x[0,1],
respectively. The rest of the manifolds are

OY_ = (I x 0D? x D'/ ~)U (I x D* x 9D/ ~),
OY, = (V x {1} T (V, x {0}),
Xo=Ix0D?>x D'/ ~, X_=I1xD?x9D'/~,
X;p = (Vo x {1H I (V, x {0} —Int j(Xy)), Z=1x09D?*xdD'/ ~.

Consider the case when T,y = id. Choose a point z in 0D?. Define continuous maps
fi + St — St x 9D? x D! by fi(t) = (t,z,(—1)%) for i = 1,2. The set consisting of the
homology classes e; = [0D? x {—1}], ea = [0D? x {1}], e3 = [f1], and ey = [f2] in H1(Z;Q)
forms a basis.

When c¢ is separating, we have A = C = Qe; ® Qes. Hence, we obtain W = (BN (C +
A))/((BNC)+ (BN A))=0. When c is non-separating, Sign(V,, x [0,1] U R) is calculated in
Lemma 3.4 of [28].

Consider the case when T does not preserve the orientation of ¢. In this case, the curve ¢
is non-separating. Define a continuous map f: S' — I x dD? x D'/ ~ by

1
(2t,x,-1,) when 0 <t < 2

ft)= 1
(2t —1,z,1,) Whenigtgl.

The set of homology classes consisting of e; = [0D? x {—1}] and ey = [f] in H1(Z;Q) forms
a basis. In this case, A = B = Qe;. Hence, we have W = 0. O

4.5.3 The homomorphism h, .

Let ¢ be a simple closed curve in X,. Since the neighborhood v(c) of ¢ is diffeomorphic to
dD? x [—1,1], we obtain a manifold L(c) = Xy x [0, 1]U, ) (D? x [~1,1]) by gluing D* x [-1,1]
along v(c). This is diffeomorphic to a fiber of the projection (V,, x [0, 1])UR — S*. We denote
V, = (V,, x [0,1]) U R in the following.

Let ¢ and ¢ be mapping classes in My(c). For example, by gluing the L(c)-bundles
V., x [0,1] and Vj, x [0, 1] on an annulus, we obtain a L(c)-bundle over §? —TI%_, Int D? whose

fiberwise boundary is E, 4 II —FEg(,) () and the whole boundary is
(B II _E<1>(<p)7<1>(¢)) UoE, yl1-0Es () ) (VI =V, 11 _V(w/l)‘l)'
Hence, we have

Sign E,,y — Sign g ()0 () — Sign Vi, — Sign V, — Sign V-1 = 0.




66 Section. 4.5. Localization of the signature

If we rewrite it by Meyer’s signature cocycle and the function s : Mg(c) — Z, we have
—75(p, ) + ©* 741 (¢, 1) — d5(p,9) = 0 € C*(M,(c); Z) (c:type 1),
~Tg(p, %) + @ (h X Ty—n) (9, 9) — 35(p, ¥) = 0 € C*(My(c™); Z) (c:type 1)

If we restrict the Meyer cocycles to H,, we have 7, = 6¢y € C%*(Hy;Q), and 741 = §¢y—1 €
C?*(Hgy—1;Q). Thus, we have proved:

Lemma 4.5.5. When c is type I, define a function hg . : Hg(c) = Q by
hg,c(9) = 5(#) + dg(p) = @ dg-1(e0)-
When c is type 11, define hy . : Hqg(c®) — Q by
hg,e(®) = s() + dg(p) — ©*(n X dg—1n)()-
Then, both of these maps are homomorphisms.

The values of generators of H,(c) given in Proposition 4.4.1 under the map hy . is calcu-

lated as follows:
Proposition 4.5.6. Suppose that the genus g is greater than or equal to 1.

1. Let ¢ be a non-separating simple closed curve of type 1 in Figure 2.3.1. The values of

the homomorphism hg . : He(c) — Q are

hg’c(bg) =0,
1
hg.c(te,) = —m fori=1---,29—1,
g
hg70(t029+1) = _29 + 1

2. Let 0 < h < g, and ¢ a separating simple closed curve of type Iy, in Figure 2.3.1. When
1 <h<g—1, the values of the homomorphism hy . : Hy(c®) = Q are

g+1 h+1 ,
hy o(te.) = . =1,.--,2h,
g.e(te;) 21 ami1 17
g+1 g—h+1
hgclte,) = —

When h = 0, g, the homomorphism hg . is the zero map.

fori=2h+2,---2g.

Proof. First, consider the case when the vanishing cycle c is type I in Figure 2.3.1. Since hg,.

is a homomorphism, we have hg .(¢4) = 0. The mapping classes t., for i =1,2,--- ,2g—1 are
mutually conjugate in Hy(c). Therefore, we have hg o(t.,) = --- = hg c(te,, ,). By the chain
relation, we have (f¢, -+ - te,, )% = t%zgﬂ. Thus, we obtain hg c(te,,,,) = 9(29 — 1)hgc(te,)-

Hence, it suffices to show that hg .(o2g+1) = —g/(29 + 1).
In Lemma 3.3 of [9], Endo showed that ¢4(tc,,,,) = (9 +1)/(2g +1). Since ®(t,,,,) =
1€ My_1, we have ®*¢,_1(tc,,,,) = 0. By Lemma 4.5.3, we have

5(tey,y,) = signm(te,, ) = sign([1: —1]) = —1.

Thus, we obtain hy (tc,,,,) = —9/(29 + 1).

Next, consider the case when the vanishing cycle ¢ is type II; in Figure 2.3.1. When
1 < h < g—1, this follows from Lemma 3.3 of [9] since s(t;,) = 0. When h =0, g, hy . is the
zero map since H'(H,4(c); Q) = H'(H,4; Q) = 0. O
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4.5.4 A local signature formula

In this subsection, we prove Theorem 4.5.1.

Proof of Theorem 4.5.1. We prepare the hyperelliptic mapping class group of the non-connected
surface f~1(r;), where the monodromy of it along 9, vZ; lies. Identify f~!(r;) with some stan-
dard surface S; = ¥, (1) - - - 11X, (1,), where n;(1),--- ,n;(k;) are non-negative integers. We
may assume that the action on f~!(r;) induced by tg in Subsection 4.1.2 coincides with
L1y -+ M ey, (1,), and the vanishing cycle d; lies in ;1) (n4(1) = g;). Define groups H.s,
and ’Hsi(di) by Hsi = Hni(l) X 'Hni(ki) and ’Hsi(di) = Hm(l)(di) X 7'[ i(2) X "'Hni(ki)a
respectively. By the definition HDBLFs, the monodromy ¢,, along 8h1/Zm is contained in
Hs, (dm). As stated in Section 4.5.1, the monodromy @,,_1 of f=(r,,_1) along OpvZ,, 1
is the image of ¢,, € Hg,, (dmn) under @4 : Hs, (dm) — Hs,, ,. By Theorem 2.3.2, it
is contained in Hg, ,(dm—1). Define a natural homomorphism ®g, : Hg,(d;) = Hs,_, by
Og, (r1,22,+ yx,) = (Pg, (21), 22, ,xk,), for ¢ = 1,--- ,m. Inductively, the monodromy
@; along OpvZ; is contained in Hg, (d;), and Pi1 = Pg, (&4).
By the Novikov additivity, we have

Sign X = Z Sign f~*(vZ;) + Sign f~1(D;) + Sign f~1(Dy)
=1
l

Z Sign f~! ) + Sign f~H(Dy, — H Int v(p,))

j=1

+ ZSignf‘l(V(pj))-
j=1
Define the Meyer function ¢g, : Hs, — Q by ¢g,(v1, - ,k,) = Zle ¢s;(xj). We take a
loop a; around the image p; € Dy, as in Theorem 2.4.1 Let ¢; € H, denote the monodromy
along the loop a;.
We denote by M; the component of f~1(d,vZ;) which contains vanishing cycles of 7. By
Lemma 4.1.7 and Lemma 4.5.3, we have

m l l
Sign X :ZS(QDZ')-F - Z ;) +ZSignfil(V(Pj))7

i=1
where (; is the monodromy of M; along d,vZ;. Since f~1(D;) is a trivial bundle, we have
()50 =1€ HSO' Since (I)Si ((,51) = ()5,'_1 € HSi,1(di—l)a we have

m

> (95, (i) — 5,05, (8i) = bg(Pm)-

i=1

Since the Meyer function has the property ¢,(p=1) = —dg(p) (see [9]) for any ¢ € H,, we
obtain

Sign X = Z s(¢i) + ¢s,(¢i) — ©5,05._, (1))
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l
+Z —¢g(¢5) + Sign f~ "(w(p 5)))-

By the definition of ®g,, we have

¢Si (.1?1, T 71‘/%) - ¢gi,1¢si—l(x1’ U 7"1’7%71)

by, (21) — @Y By, (1), (d;:nonseparating),
bg,(x1) — @} (dn X dg,—n)(w1), (di bounds subsurfaces of genus h).

Thus, we have
Sign X = Zhg“ (i +Zaloc PJ

This completes the proof of Theorem 4.5.1. O

4.5.5 Examples of calculation of signatures
Let cy1,...,ca941 C X4 be simple closed curves described in Figure 4.1.2.

Example 4.5.7. As shown in the proof of Theorem 1.4 in [15], there exists an SBLF f,, :
Xg.n — S? which has the following Hurwitz cycle system:

(02g+1; (0297 <003 C2,C1,C1,C2y ... 7029)2n)-

By the definition of f ,, it is hyperelliptic. We denote by p1,...,pggn € 52 the critical values
of fgn. By using the formula in Theorem 4.5.1, the signature of X, , can be calculated as
follows:

8gn
Sign Xg,n = Z O—IOC(fg_,’rll(p’b')) + h((tw : t62t?:1t e 't62g)2n)
=1

—g—1 —4n
= 8gn - 2 1 1 + h(tczgﬂ)
—8g%n — 8gn —
_ 9 nTogn (—4n) - J
29 +1 29 +1
= —4gn.

It is easy to see that X, is simply connected and that the Euler characteristic of X, is

8gn—4g+6. As shown in [15], X, ,, is spin if and only if both of the integers g and n are even.

ogn
Thus, by Freedman’s theorem, X ,, is homeomorphic to #%E(Q)#(% —2g+2)8% x §? if

both g and n are even and #(2gn — 2g + 2)CP?#(6gn — 2g + 2 CP? otherwise.
g g g g g

Example 4.5.8. As shown in the proof of Theorem 1.4 in [15], there exists an SBLF fg,n :
X g.n — S which has the following Hurwitz cycle system:

(02g+1; (CQQa c..,02,C1,C1,C2, ..., 629)2n7 (Clv e ’02972)2(29—1)TL).

By the definition of fq,n, it is hyperelliptic. We denote by p1,...,Pgg2n—agntan € 52 the
critical values of fg,w By using the formula in Theorem 4.5.1, the signature of )N(gyn can be
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calculated as follows:

8g2n—4gn+4n

Sign X, ,, = Z Toc(fyn (i)

1=1
+ h((tCZg T t62t612t62 T thg)2" : (tcl e t62g72)2(2g_1)n)
—9—1 _
=(8¢°n — 4gn + 4n) - 5021 +2n- h(tcj7+1 “Lg)

+2(29 — 1)n - h(te, - tey, )
—8¢%n + 4¢°n — 4gn — 8g*n + 4gn — 4n —g
= — an -
29 +1 29+1

1
2(29 — 1)n(2g — 2) - ———
+2(29 — 1)n(29 — 2) 171

= —4g°n.

It is easy to see that X g.n is simply connected, and that the Euler characteristic of Xgm is
8g°n — 4gn + 4n — 4g + 6. As shown in [15], Xg)n is spin if and only if g is even. Thus, we

can easily determine the homeomorphism type of X g,n as in Example 4.5.7.
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