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1. Introduction

The Dirichlet problem for the complex Monge-Ampére equation on a
strongly pseudo-convex domain of C" was studied and solved by Bedford-
Taylor [3]. The same problem for the Monge-Ampére equation on a negative-
ly curved Kihler manifold has been recently proposed and solved by T. Asaba
[2]. The main purpose of this paper is to solve the equation by using a method
of the stochastic control presented by B. Gaveau [6].

Let M be an n-dimensional simply connected Kahler manifold with metric
2 whose sectional curvature K satisfies

—pP<K<<—-a

on M for some positive constants b and 4. , denotes the associated Kahler
form. We denote by M(co) the Eberlein-O’Neill’s ideal boundary of M and
we always consider the cone topology on M=M UM(co) (see [4] for these
notions). T. Asaba formulated the Monge-Ampére equation on M in the fol-
lowing manner:

We write PSH(D) for the family of locally bounded plurisubharmonic
functions defined on a complex manifold D. When uPSH(D), the current
(dd‘u)"=ddu -+ Ndd°u of type-(n, n) is defined as a positive Radon measure

n-copies
on D. Therefore, for given functions f € C(M) and @& C(M(0)), the complex
Monge-Ampére equation

uePSH(M) 0 C()
(1) (dd°u)" = falin!  on M
Uy = @

can be considered. T. Asaba found a unique solution of (1) by imposing the
following condition on f: there exist two positive constants g, and C, such that
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(2) 0<F<Cpetor .

Here and in the sequel r stands for the distance function from a fixed point of
M. Following a similar line to the proof performed by B. Gaveau [6], in which
a stochastic proof of the existence of the Monge-Ampére equation on a strongly
pseudo-convex domain of C” was presented, we will prove not only the existence
of the solution of (1) but also its uniqueness (§ 3, Thoerem B). Actually T.
Asaba assumed condition (2) for a specific value of x,. In what follows, we
assume the condition (2) on f holding for some x>0 and C,>0.

In accordance with the first part of B. Gaveau [6], a certain transience
behavior of the sample path of the conformal martingales on M need to be
studied. It was conjectured by H. Wu [13] that M is biholomorphic to a bound-
ed domain of C” (cf. Y.T. Siu [11] and R.E. Greene [7]). If this would be
true, then the conformal martingales of the type considered by B. Gaveau [6]
must hit the boundary of M. In fact, we shall prove in Section 2 that the
almost all sample paths of every non-degenerate conformal martingale converge
to points of the ideal boundary M{(c0). We use the method of J.J. Prat [10],
in which the sample paths’ property was proven for the Brownian motion on
Riemannian manifolds with negative curvature bounded away from zero.

The basic estimates obtained in Section 2 will be further utilized after
Section 3 in resolving the Monge-Ampére equation stochastically.

The author expresses his thanks to T. Asaba for private discussions.

2. Basic estimates for non-degenerate conformal martingales

We first define the notion of the conformal martingales on M.

DErINITION.  Let (Q, &, P) be a probability space with a filtration (& ),z
An M-valued continuous stochastic process (Z;)o<;<¢ defined up to a stopping
time >0 is said to be a conformal martingale, if

(i) there exists peM such that Z,=p a.s.

(i) there exists a sequence of stopping times (7,);.: such that T,<,
lim T,=¢ and (f(Ziar,))izo is @ C-valued bounded (&)-martingale for every
holomorphic function f on M (we need note that M is a Stein manifold and
so M possessess enough holomorphic functions).

Noting the trivialty of the bundle of unitary frames, we choose smooth
vector fields X, -++, X, of type-(1, 0) on M so that g(X,, Xz)=3,s on M. For
a smooth function f defined on M, we write Lf for the Levi-form of f. The
notion of conformal martingale is related to the Levi-form in the following
way':

Proposition 1. For each conformal martingale (Z)o<i<z on M, there is a
non-negative hermitian matrix valued (F ;)-adapted process (3, 5(t))osi<¢ Such that
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it is increasing (in the sense that s<t=>3, 5(S) =>4 5(t) as hermitian matrices a.s.)
and that, for each real valued function f € C¥(M)

n t
AZ)fZ)— 3, | L Xer Xp)zd S0 sl5)
is a local martingale.

Proof. Take countable local complex charts (U;; 21, -*+, 2%);=1.2.. of M and
closed sets V;C U; such that {V;}7.; covers M. Since M is a Stein manifold,
we may assume that 2}, .-+, 27 are the restrictions to U; of certain holomorphic
functions on M for every i=1, 2,3, --. Define a sequence of stopping times
o and random variables 7, successively as follows:

gy = 0
i, = inf {1; Z,€V;}
oy = inf {t>0; Z,& U, }

o= inf {i>o‘1¢_1; thE Ufle—l}
n=Iinf {i; Z, €V}

By virtue of Ito’s formula, we obtain

i) ~fZire) = 51" 2fl0(Z)as(2)
+3 (" ofes*z)as*z)

Tk

+ 3.0 Efprotz)ae(2), #2),

where 2°=2%, , a=1,2, ., n, k=1,2,3, ---. Define a hermitian matrix valued

process o(t) by gnl} a%(1)(8/82"| ) =X, ,, a=1, 2, -+, n and set
Saplt) =, 33 o260eb0)<(2), (2,

then this can be well defined, independently of the choice of local coordinates,
and further

[ LAy Xp)2,d50506)

‘/\G‘k_ 1

FZipa)—F(Zirg, ) — 3

@,B=1
is a martingale. Since lim o,={, the proof is completed. q.e.d.
k=00

For our investigation, it is enough to consider exclusively conformal
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martingales (Z,),<;<¢ for which the following stopping times 7, (=0, 1, 2, 3, -++)
are finite almost surely:

To = O
7, = inf {t>0; dist(Z,, Z,) = 1}
Ty = inf {t>7,; dist(Z,, Z,,) = 1}

We call such properiy “admissible” and in what follows 7, means the above
stopping time. Here, we present a basic estimate of the same type as in
D. Sullivan [12].

Proposition 2. For any u<(0, a), there exists a constant C,E(0, 1) such
that

Elexp(—pr(Zo, WISCE[exp(—pr(Z,)],  k=0,1,2,3, -,
for every admissible conformal martingale (Z,)o<,<¢-

Proof. A Jacobi field estimate—the Hessian comparison theorem pre-
sented in [8; Theorem A] implies

L exp(—pr)=(u(pn—a)/2) exp (ur)g in the sense [8] .
By applying Proposition 1 to the function exp (— ur), we then have
Elexp (—pr(Z,,, )] = Elexp(—pr(Z.,))]
+EL3S, |1 Lexp (—un)(Xa, X3)2d S sl
< Efexp (—pur(Z,)]
+(u(u—a)2)BL |
k=0,1,2, .

While, taking conditional expectation, we have

exp(—pr(Z))d(trace g 5(5))] »

Tk

E[ g::ﬂexp (—ur(Z2))d(trace Sy 5(5))]

= SMP(ZT,,edn)E[ S::+* exp (— pr(Z,))d(trace X,5(5)) | Z,, = 7]
= SMP(ZT,,Ed 7) exp (—pu(r(n)+1))E[ S:’:”d(trace S s ()1 Z,, = 7],

which is not less than exp (—p)C3'E[exp(—pr(Z,,)] by virtue of Lemma 1
stated below. Hence we arrive at the desired estimate with C;=14((u(p—a)/

2))C5* exp (— u). qe.d.
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In the above proof, we have used the next lemma, which also will be utilized
in § 4.

Lemma 1. There exists a positive constant C, depending only on a and b
such that

Ci'<E[ S"de(trace a5 Z,, = 19]=C,
Tk

holds P(Z, Edn)-a.s. k=0, 1, 2, 3, ---, for every admissible conformal martingale Z,.

Proof. For f €C}(M), we know from Proposition 1 that

Th+1

Ef(Zoy ) ~f(Ze) = 35| LK X3) d05(9)| Zey = 7] =0
P(Z, dn)as, k=0,1,23,--.

Taking a countably dense subset of C3(M) and by the approximation procedure
we know that the exceptional 5-set in the above statement can be taken in-
dependently of feCj(M). Choose f=f™(p)eC}(M) which coincides with
dist(p, 7)? on a neighborhood of {p; dist(p, »)<1}. Then it turns out that

1=E[ 3 STMLf(X,,, X5)2,d3up(8)|Z,, = 5]  P(Z,Edn)-as.

@,B=1J71

Again by the Hessian comparison theorem, we find that there exists a constant
C, depending only on the curvature bounds a and b such that

Cg<LfM=Cz'g  on {p;dist(p, N} =1,
so we have
C:'<E| STHld(trace Sz NZ,, = 7]=C,
Tk
P(Z. Edy)-as. q.e.d.

The next theorem is an immediate consequence of Proposition 2 combined
with the geometrical method employed by D. Sullivan [12] and ].J. Prat [10].

Theorem A. For every admissible conformal martingale (Z,),<:<¢, the fol-
lowing are true :

(1) The limit lim Z; exists in M(o0) a.s.
tt¢
(ii) F any EeM(c0), €>0 and neighborhood V CM(oo) of &, there exists a

neighborhood U CM of & relative to the cone topology such that
P(limZ,eV)=1—¢,
t4¢

whenever Z, strats from a point of U. U does not depend on the choice of (Z;)ogs<¢-
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3. The stochastic solution of the Monge-Ampére equation—the
statement of the main theorem

Let K, be the family of all admissible conformal martingales Z=(Z,)os:<¢(z)
on M such that Z starts from p& M and the associate process (24, 5(2))osi<¢(2 in
Proposition 1 possesses a density (4, 5(2))osi<z(z) With respect to the Lebesgue
measure dt with det 4, 5(t)=1 for t=0 a.s. For Z €K, set

w(p, 2) = B[—C) [ prz)drtoZeo)],

where C(n)=n/8(n!)¥*. By virtue of Lemma 2 in the next section, we know
that, if Z=(Z,) is the conformal diffusion generated by the Kahler mertic g on
M, then w(p, Z) is exactly the solution of the Dirichlet problem with boundary
condition on the sphere at infinity:

{ Aguf2 = C(m)f*»
U| () = @

for the Laplace-Beltrami operator A, related to g. Now, we can describe the
solution of the Monge-Ampére equation (1), using the above stochastic nota-
tions.

Theorem B. The function
(3) u(p) = inf w(p, Z), peM
ZEK,
is the unique solution of the Monge- Ampére equation (1).

In the following sections, we shall prove this theorem. The proof will be
performed by the stochastic control method due to B. Gaveau [6].

4. Continuity of the stochastic solution

In this section, we shall prove the continuity of the function u defined by
3)-

Proposition 3. « can be extended to a continuous function on M and
#| sty =9

We have to prepare several lemmas for the proof.

Lemma 2. For each Z €K,, there exist positive constants v and Cj de-
pending only on the constants p,, C, in (2) and the curvature bounds such that

B[V zyman=cyep(—wr(p)).

0



CompLEX MONGE-AMPERE EQUATION 313

Proof. By the assumption (2) imposed on f, for »=<p, we know

§(2)

L[ )y

0

$(2)
<GEL|," exp (—(Z)m)a]

< Co S E[ | exp (—ur(Z)m)a]

Tk

Tk
where 7,=0, 7, =inf {t>0; dist (Z,, Zy)=1}, **+, Ty, =inf {t>7; dist(Z,,Z,,) =
1},---. We may assume that » is so small that »/n is less than a. Because

E[ST”“exp(—w(z,)/n)dt] éE[ka+1eXp(——vr(Z,)/n)d(trace Sas(®)], we have
Tk Tk

E[S " exp (—vr(Zy)n)dt] Sexp(a)C, E[exp (—vr(Z,,)[n)], in view of the proof
of Pr:)position 2. Further by virtue of the basic estimate (Proposition 2) we
know ’

1 Efexp (—vr(Z,,)n]<(1— )™ exp (—vr(p)fn) .

The desired inequality holds for Cy=exp (a)C,Cy(1—C). q.e.d.

Combining this with the result on the weak convergence of the hitting dis-
tribution in Theorem A (ii), we know that for arbitrary £€M(o0) and any
&>0, there exists a neighborhood U of & such that

(4) pEU=|w(p, Z)—p(8)| <,
when Z €K,. Furthermore, we can show the following lemma.

Lemma 3. For any €>0, there exist a positive large constant R and a
small constant oy, such that, if

Pp&EDg = {nE€M; r(n)<R}
and dist(p, q)<%,, then

la(p, 2)—w(g, Z')| <€,
for any Z€K, and Z'€K,.

Proof. For any £€>0, there exist some points &, «+, £,&M(c0) and open
sets U;DE; such that

p€U; and Z€K,
= |w(p, Z)—p(&)] <€[2
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for all i=1, 2, -+, n and M(o0)C U U;. Take a closed neighborhood U}c U; of
i=1
&; so that M(e0)C UU/. Then, there exists R>0 satisfying M\D,c U U/.
i=1 =1

Therefore for sufficiently small, 7, we know that

dist (p, 9)<%o, p&E Dy
=|w(p, Z)—w(g, Z')|
=|w(p, Z)—pE) |+ | p(E)—w(g, Z)|
<&2+¢&)2=¢,

whenever Z €K, and Z'€K,, by choosing ¢ so that pe U. q.e.d.

Because the holomorphic tangent bundle is holomorphically trivial,
there exists a frame of holomorphic vector fields Y, -, Y,. Let ®,(p)=

Exp(Re Ej} 2Y,)(p), for peM and 2=(2, --+,2") in C". This transformation

on M was considered in T. Asaba [2] and proven to enjoy the next property:

For any R>0, there exists A,={z=C"; ;V‘_l,lz"lz<6} such that ®,(p) is a
smooth mapping from A;X D, to M satisfying the following properties (i), (ii)
and (iii).

(i) For each z€A;, @, gives a biholomorphic mapping from the domain
Dy to @,(Dp).
(if) <D, is the identity transformation on Dy.

(iii) For pE Dy, ®.(p) defines a diffeomorphism from A; to some neigh-
borhood of p.

Using this transformation &, we can prove the continuity of the stochastic
solution .

Lemma 4. For any €>0 and R>0, there exists >0 such that for each

Z €K, and q enjoying pE Dy and dist(p, q)<7, we can always find Z' €K, so
that

lw(p, Z)—w(g, Z')| <€ .

Proof. To begin, replace R by a sufficiently large one and choose v, so
that the implication in Lemma 3 holds for &/2 instead of €. Fix Z€K,. We
then consider the holomorphic local transformation @ and the Kihler diffusion
B,(n) on M starting from »& M, independent of Z and measurable in ¢, 2 and w.

Let
®,(Z), i<t

(5) Z9:0) —
Bt—-r(q)z(Zf)) ’ t>r,
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where T=inf{t>0; Z,& D,}.
We next perform the time change by letting ZP=®=Z2:®) up to the ex-

plosion time of Z%®=(Z9:®),.,, where 7,=inf {s>0; Ss (det A, 5(x))/"du=1t},
0

(Aa,5(t))iz0 being the density of the increasing process associated with Z®«®)=
(Z$:®),54 according to Proposition 1.
On the other hand, taking conditional expectation, we have

w(p, 2) = W[—Cln) | f"(Z)ie]
+ [, Elew [Opmzyiet pZew) 12, = n\PEZ.sdr).
If we set W,—=Z,,, and let
wln, W) = E[~C(n) [ i )de+ 912212, = o]
for We=(W )oss<z(z)-r, then
w(p, W) = E[~C) || prozpan+ | w(a, WyPZiedn).

Similarly, letting o be the first exit time from ®,(Dy) of Z%®), we set W P®)=
2%, 0=t<t(Z%®)—c and then, for Wo:® =W $:®)

L 2:(p

w(n, W®) = E[—C(n) g ))fl’ﬂ(W;Pz(p))dt

0
+P(W &P ducany) | 220 = ] .
Then
w(®(p), Z%®) = E[—C(n) S "fl/n( 29:®)df)
0

/ (D)) P( 7220 /
6, R 1)

Therefore, after all we have that
w(p, 2)—w(@(p), 2%®) = E[—C(n)( | fruz)ae— pimiZs-oany
—l—gang{w(n, W)—w(D,(n), W*P)}P(Z,€d7).
From Lemma 2, there exists § >0 such that the absolute value of the second

term of the right hand side is less than &/2 for every s A,;. While the con-
tinuity of f/* shows that the first term of the right hand side is less than &/2 in



316 H. KaNEkO

the abo absolute value, whenever € A;.

Because, for sufficiently small ¢, the y-neighborhood of each p& Dy is
contained in the image of A; by the mapping ®.(p), for g=®,(p), Z'=2%® is
the required conformal martingale in our lemma. q.e.d.

Proof of Proposition 3. The last inequality in Lemma 4 implies w(p, Z)=
u(q)—€. Taking the infimum over Z €K, we can conclude that u(p)=u(q)—¢,
whenever p, gD, and dist(p, g)<y. Exchanging the role of p and g, we see
that » is a continuous function on M. Recalling the estimate (4) noted after
Lemma 2, we know that £l_’n; u(p)=op(&) for each E€M(o0). This completes

the proof. q.e.d.

5. The Bellman principle

The purpose of this section is to establish the Bellman principle in order
to localize the stochastic expression of the function u defined by (3).

Proposition 4. For every bounded domain D of M and p=D, we obtain

. Tp(2)
u(p) = inf E[—C) | fr(Z)at+-uZepen)],
€K, 0
where o(Z)=inf{t>0; Z,& D}.

Proof. Fix £>0 and take R so that D;DD. For each ¢€9D there exist
8>0 and Z€ K, such that, for xEA,,

|w(®@,(q), Z°@)—u(q)| >¢€,

where Z%:@ is the conformal martingale defined by (5). Therefore, we can
select several points gy, **+, ¢,E0D and their neighborhoods A(g,), -*+, A(g,) so

that 6Dc_l_"J A(g;) (disjoint union), the image of ®.(g;) contains A(g;) and

|0(@,(q:), Z2°:42)—u(g;) | <€,

whenever Z®:@ is in A(g;), i=1, 2, *+, n.
For each Z€ K, we set

Z,, if t<7,(Z)
ZZD:S%J(Z) if t>TD(Z)’ ZTD(Z)EA(Q;) and
@z(qi) = ZTD(Z)) 1:: 1, 2’ e,

Z¥ =

where we take Z%:¢? and Z to be independent. Then Z*=(Z¥)K,. By the
same method of B. Gaveau [6; pp. 400-403], we can prove that
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u(p)—<E[—Cln) | "2 )dt+u(Z.,)]
¢ 1/n
<E[—Co | 2+ )]
Since £>0 is arbitrary, the proof is completed. q.e.d.

6. Proof of the main theorem
Finaly, we shall finish the proof of the main theorem by showing the next
two propositions.

Proposition 5. u is a plurisubharmonic function and (dd“u)"=fw}[n! on M.

Proposition 6. If u, is a solution of (1), then

. ¢
w(p) = inf E[—C(n) | Pr(Z)dr-+p(Z0)]
€K, 0
In particular, (1) has a unique solution.

Proof of Proposition 5. Iet p be an arbitrary point of M. Choose a complex
local coordinate system (D, 2%, -++, 2") around p such that Jr=(2", --+, 2") defines
a biholomorphic mapping from D to the complex unit ball B={(2, -+, 2")=C";

é‘, |2*|2<1}. For the push forward function U(2)=(yrsu)(2)=u(¥"(2)),

U(z) = jnf B[—C() ™ (ralf det (D)7 (Z)dt+ UZryi)]

where g.7=g(0/0%, 8/027)) and K, is the family of all C"-valued conformal
martingales Z which start from 2&€B such that a;;(t) =d<2'(Z), 2/(Z,))|dt
satisfy det(a;7(¢))=1, t=0 a.s.
Consider the following Monge-Ampére equation
vePSH(B)N C(B)
(6) (dd*0)" = Vry(f det(g:7))dV

Vo= Ulss,

where dV stands for the Lebesgue measure on C". Because of the strongly
pseudo-convexity of B, we see that Theorem 4 and Remark of B. Gaveau [6;
pp- 402-403] ensure the following stochastic description of the solution v, of

(6):
vo(®) = jnf E[~C(n) | " (ol der(g:)) "(Z) s
+ U(Z-rB(Z))] ’ 2EB.
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Hence, we know that v,=U on B and u(p)=+rxvy(p)EPSH(D) and that
(dd‘u)"=fawh/n! on D. q.e.d.

Proof of Proposition 6. To begin, take the countable family of charts
(Us;; =i, +++, 2%) i1 appeared in the proof of Proposition 1, we may assume that
each ;= (z,, -+, 2%) gives a biholomorphic mapping between U; and the unit
ball BcC”. By virtue of Theorem 4 of B. Gaveau [6], for any >0, there
exists a Z® &K, such that

E[—C) | fz)ir+ufZ N <usp)+€12,

where o, is the stopping time for Z® defined in the proof of Proposition 1.
For each ¢g€0U; there exists §>>0 and Z €K, such that

w(D(q), Z°9)<uy(g)+€/22,

whenever 2 A;. Using the same argument as in the proof of Proposition 4,
we can construct Z®& K, which satisfies

1 2
Z (t/{a- == (l/icrl
and

E[—C) |2tz D Suip)+e/2+8/2,

where o, is defined for Z® in the same way as above. Repeating this procedure,
we obtain a sequence (Z®);.,CK, so that Z ‘,’j\‘,l: =Z R, _ o t20. as. and that

E[—C(x) S;”'f"«Z.s“)dt+uo<za';>)1éu«p)@ &2,
where o is defined for Z® as above.

Define Z,==Z", if t<<o;. Then we can easily check that Z=(Z,)€K, and
that lim ¢,=¢(Z). Hence, we know
k»oo

E[-C( [\f )i+ oz Sulp) e
Letting £—0, we can conclude that
w(p),inf E[—C(n) | fm(Z)dt+p(Z2)] .
On the other hand, we can inductively obtain, for each Z €K,
w(P)SE[—C | PrZ)dt+u(Z,)),  k=1,2,3,

and so we have the opposite inequality, by letting k—>oco. q.e.d.
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