

Title	A stochastic resolution of a complex Monge-Ampère equation on a negatively curved Kähler manifold
Author(s)	Kaneko, Hiroshi
Citation	Osaka Journal of Mathematics. 1987, 24(2), p. 307-319
Version Type	VoR
URL	https://doi.org/10.18910/5165
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kaneko, H.
 Osaka J. Math.
 24 (1987), 307-319

A STOCHASTIC RESOLUTION OF A COMPLEX MONGE-AMPÈRE EQUATION ON A NEGATIVELY CURVED KÄHLER MANIFOLD

HIROSHI KANEKO

(Received December 4, 1985)

1. Introduction

The Dirichlet problem for the complex Monge-Ampère equation on a strongly pseudo-convex domain of C^n was studied and solved by Bedford-Taylor [3]. The same problem for the Monge-Ampère equation on a negatively curved Kähler manifold has been recently proposed and solved by T. Asaba [2]. The main purpose of this paper is to solve the equation by using a method of the stochastic control presented by B. Gaveau [6].

Let M be an n -dimensional simply connected Kähler manifold with metric g whose sectional curvature K satisfies

$$-b^2 \leq K \leq -a^2$$

on M for some positive constants b and a . ω_0 denotes the associated Kähler form. We denote by $M(\infty)$ the Eberlein-O'Neill's ideal boundary of M and we always consider the cone topology on $\bar{M} = M \cup M(\infty)$ (see [4] for these notions). T. Asaba formulated the Monge-Ampère equation on M in the following manner:

We write $\text{PSH}(D)$ for the family of locally bounded plurisubharmonic functions defined on a complex manifold D . When $u \in \text{PSH}(D)$, the current $\underbrace{(dd^c u)^n}_{n\text{-copies}} = dd^c u \wedge \cdots \wedge dd^c u$ of type- (n, n) is defined as a positive Radon measure

on D . Therefore, for given functions $f \in C(M)$ and $\varphi \in C(M(\infty))$, the complex Monge-Ampère equation

$$(1) \quad \begin{cases} u \in \text{PSH}(M) \cap C(\bar{M}) \\ (dd^c u)^n = f \omega_0^n / n! \quad \text{on } M \\ u|_{M(\infty)} = \varphi \end{cases}$$

can be considered. T. Asaba found a unique solution of (1) by imposing the following condition on f : there exist two positive constants μ_0 and C_0 such that

$$(2) \quad 0 \leq f \leq C_0 e^{-\mu_0 r}.$$

Here and in the sequel r stands for the distance function from a fixed point of M . Following a similar line to the proof performed by B. Gaveau [6], in which a stochastic proof of the existence of the Monge-Ampère equation on a strongly pseudo-convex domain of \mathbf{C}^n was presented, we will prove not only the existence of the solution of (1) but also its uniqueness (§ 3, Thoerem B). Actually T. Asaba assumed condition (2) for a specific value of μ_0 . In what follows, we assume the condition (2) on f holding for some $\mu_0 > 0$ and $C_0 > 0$.

In accordance with the first part of B. Gaveau [6], a certain transience behavior of the sample path of the conformal martingales on M need to be studied. It was conjectured by H. Wu [13] that M is biholomorphic to a bounded domain of \mathbf{C}^n (cf. Y.T. Siu [11] and R.E. Greene [7]). If this would be true, then the conformal martingales of the type considered by B. Gaveau [6] must hit the boundary of M . In fact, we shall prove in Section 2 that the almost all sample paths of every non-degenerate conformal martingale converge to points of the ideal boundary $M(\infty)$. We use the method of J.J. Prat [10], in which the sample paths' property was proven for the Brownian motion on Riemannian manifolds with negative curvature bounded away from zero.

The basic estimates obtained in Section 2 will be further utilized after Section 3 in resolving the Monge-Ampère equation stochastically.

The author expresses his thanks to T. Asaba for private discussions.

2. Basic estimates for non-degenerate conformal martingales

We first define the notion of the conformal martingales on M .

DEFINITION. Let (Ω, \mathcal{F}, P) be a probability space with a filtration $(\mathcal{F}_t)_{t \geq 0}$. An M -valued continuous stochastic process $(Z_t)_{0 \leq t < \zeta}$ defined up to a stopping time $\zeta > 0$ is said to be a conformal martingale, if

- (i) there exists $p \in M$ such that $Z_0 = p$ a.s.
- (ii) there exists a sequence of stopping times $(T_n)_{n=1}^\infty$ such that $T_n < \zeta$, $\lim T_n = \zeta$ and $(f(Z_{t \wedge T_n}))_{t \geq 0}$ is a \mathbf{C} -valued bounded (\mathcal{F}_t) -martingale for every holomorphic function f on M (we need note that M is a Stein manifold and so M possess enough holomorphic functions).

Noting the triviality of the bundle of unitary frames, we choose smooth vector fields X_1, \dots, X_n of type-(1, 0) on M so that $g(X_\alpha, X_\beta) = \delta_{\alpha, \beta}$ on M . For a smooth function f defined on M , we write Lf for the Levi-form of f . The notion of conformal martingale is related to the Levi-form in the following way:

Proposition 1. *For each conformal martingale $(Z_t)_{0 \leq t < \zeta}$ on M , there is a non-negative hermitian matrix valued (\mathcal{F}_t) -adapted process $(\sum_{\alpha, \beta}(t))_{0 \leq t < \zeta}$ such that*

it is increasing (in the sense that $s \leq t \Rightarrow \sum_{\alpha, \beta}(s) \leq \sum_{\alpha, \beta}(t)$ as hermitian matrices a.s.) and that, for each real valued function $f \in C^2(M)$

$$f(Z_t) - f(Z_0) - \sum_{\alpha, \beta=1}^n \int_0^t Lf(X_\alpha, X_\beta)_{Z_s} d\sum_{\alpha, \beta}(s)$$

is a local martingale.

Proof. Take countable local complex charts $(U_i; z_i^1, \dots, z_i^n)_{i=1,2,\dots}$ of M and closed sets $V_i \subset U_i$ such that $\{V_i\}_{i=1}^\infty$ covers M . Since M is a Stein manifold, we may assume that z_i^1, \dots, z_i^n are the restrictions to U_i of certain holomorphic functions on M for every $i=1, 2, 3, \dots$. Define a sequence of stopping times σ_k and random variables i_k successively as follows:

$$\begin{aligned} \sigma_0 &= 0 \\ i_0 &= \inf \{i; Z_0 \in V_i\} \\ \sigma_1 &= \inf \{t > 0; Z_t \notin U_{i_0}\} \\ &\dots \\ \sigma_k &= \inf \{t > \sigma_{k-1}; Z_t \notin U_{i_{k-1}}\} \\ i_k &= \inf \{i; Z_{\sigma_k} \in V_i\} \\ &\dots \end{aligned}$$

By virtue of Ito's formula, we obtain

$$\begin{aligned} f(Z_{t \wedge \sigma_k}) - f(Z_{t \wedge \sigma_{k-1}}) &= \sum_{\beta=1}^n \int_{t \wedge \sigma_{k-1}}^{t \wedge \sigma_k} \partial f / \partial z^\beta(Z_s) dz^\beta(Z_s) \\ &+ \sum_{\alpha=1}^n \int_{t \wedge \sigma_{k-1}}^{t \wedge \sigma_k} \partial f / \partial \bar{z}^\alpha(Z_s) d\bar{z}^\alpha(Z_s) \\ &+ \sum_{\alpha, \beta=1}^n \int_{t \wedge \sigma_{k-1}}^{t \wedge \sigma_k} \partial^2 f / \partial z^\alpha \partial z^\beta(Z_s) d\langle z^\alpha(Z_s), z^\beta(Z_s) \rangle, \end{aligned}$$

where $z^\alpha = z_{i_{k-1}}^\alpha$, $\alpha=1, 2, \dots, n$, $k=1, 2, 3, \dots$. Define a hermitian matrix valued process $\sigma(t)$ by $\sum_{\kappa=1}^n \sigma_\kappa^\alpha(t) (\partial / \partial z^\kappa|_{Z_t}) = X_\alpha|_{Z_t}$, $\alpha=1, 2, \dots, n$ and set

$$\sum_{\alpha, \beta} \sigma_\kappa^\alpha(t) \sigma_\lambda^\beta(t) d\langle z^\kappa(Z_s), z^\lambda(Z_s) \rangle,$$

then this can be well defined, independently of the choice of local coordinates, and further

$$f(Z_{t \wedge \sigma_k}) - f(Z_{t \wedge \sigma_{k-1}}) - \sum_{\alpha, \beta=1}^n \int_{t \wedge \sigma_{k-1}}^{t \wedge \sigma_k} Lf(X_\alpha, X_\beta)_{Z_s} d\sum_{\alpha, \beta}(s)$$

is a martingale. Since $\lim_{k \rightarrow \infty} \sigma_k = \zeta$, the proof is completed. q.e.d.

For our investigation, it is enough to consider exclusively conformal

martingales $(Z_t)_{0 \leq t < \zeta}$ for which the following stopping times τ_k ($k=0, 1, 2, 3, \dots$) are finite almost surely:

$$\begin{aligned}\tau_0 &= 0 \\ \tau_1 &= \inf \{t > 0; \text{dist}(Z_t, Z_0) = 1\} \\ &\dots \\ \tau_{k+1} &= \inf \{t > \tau_k; \text{dist}(Z_t, Z_{\tau_k}) = 1\}\end{aligned}$$

We call such property “admissible” and in what follows τ_k means the above stopping time. Here, we present a basic estimate of the same type as in D. Sullivan [12].

Proposition 2. *For any $\mu \in (0, a)$, there exists a constant $C_1 \in (0, 1)$ such that*

$$E[\exp(-\mu r(Z_{\tau_{k+1}}))] \leq C_1 E[\exp(-\mu r(Z_{\tau_k}))], \quad k = 0, 1, 2, 3, \dots,$$

for every admissible conformal martingale $(Z_t)_{0 \leq t < \zeta}$.

Proof. A Jacobi field estimate—the Hessian comparison theorem presented in [8; Theorem A] implies

$$L \exp(-\mu r) \leq (\mu(\mu-a)/2) \exp(\mu r) g \quad \text{in the sense [8].}$$

By applying Proposition 1 to the function $\exp(-\mu r)$, we then have

$$\begin{aligned}E[\exp(-\mu r(Z_{\tau_{k+1}}))] &= E[\exp(-\mu r(Z_{\tau_k}))] \\ &+ E\left[\sum_{\alpha, \beta=1}^n \int_{\tau_k}^{\tau_{k+1}} L \exp(-\mu r)(X_\alpha, X_\beta)_{Z_s} d\sum_{\alpha, \beta}(s)\right] \\ &\leq E[\exp(-\mu r(Z_{\tau_k}))] \\ &+ (\mu(\mu-a)/2) E\left[\int_{\tau_k}^{\tau_{k+1}} \exp(-\mu r(Z_s)) d(\text{trace } \sum_{\alpha, \beta}(s))\right], \\ &\quad k = 0, 1, 2, \dots.\end{aligned}$$

While, taking conditional expectation, we have

$$\begin{aligned}E\left[\int_{\tau_k}^{\tau_{k+1}} \exp(-\mu r(Z_s)) d(\text{trace } \sum_{\alpha, \beta}(s))\right] \\ &= \int_M P(Z_{\tau_k} \in d\eta) E\left[\int_{\tau_k}^{\tau_{k+1}} \exp(-\mu r(Z_s)) d(\text{trace } \sum_{\alpha, \beta}(s)) \mid Z_{\tau_k} = \eta\right] \\ &\geq \int_M P(Z_{\tau_k} \in d\eta) \exp(-\mu(r(\eta)+1)) E\left[\int_{\tau_k}^{\tau_{k+1}} d(\text{trace } \sum_{\alpha, \beta}(s)) \mid Z_{\tau_k} = \eta\right],\end{aligned}$$

which is not less than $\exp(-\mu) C_2^{-1} E[\exp(-\mu r(Z_{\tau_k})]$ by virtue of Lemma 1 stated below. Hence we arrive at the desired estimate with $C_1 = 1 + ((\mu(\mu-a)/2)) C_2^{-1} \exp(-\mu)$. q.e.d.

In the above proof, we have used the next lemma, which also will be utilized in § 4.

Lemma 1. *There exists a positive constant C_2 depending only on a and b such that*

$$C_2^{-1} \leq E \left[\int_{\tau_k}^{\tau_{k+1}} d(\text{trace } \Sigma_{\alpha, \bar{\beta}}(s)) | Z_{\tau_k} = \eta \right] \leq C_2$$

holds $P(Z_{\tau_k} \in d\eta)$ -a.s. $k = 0, 1, 2, 3, \dots$, for every admissible conformal martingale Z_t .

Proof. For $f \in C_b^2(M)$, we know from Proposition 1 that

$$E[f(Z_{\tau_{k+1}}) - f(Z_{\tau_k}) - \sum_{\alpha, \beta=1}^n \int_{\tau_k}^{\tau_{k+1}} Lf(X_\alpha, X_\beta)_{Z_s} d\Sigma_{\alpha, \bar{\beta}}(s) | Z_{\tau_k} = \eta] = 0$$

$$P(Z_{\tau_k} \in d\eta) \text{-a.s.}, k = 0, 1, 2, 3, \dots$$

Taking a countably dense subset of $C_b^2(M)$ and by the approximation procedure we know that the exceptional η -set in the above statement can be taken independently of $f \in C_b^2(M)$. Choose $f = f^{(n)}(p) \in C_b^2(M)$ which coincides with $\text{dist}(p, \eta)^2$ on a neighborhood of $\{p; \text{dist}(p, \eta) \leq 1\}$. Then it turns out that

$$1 = E \left[\sum_{\alpha, \beta=1}^n \int_{\tau_k}^{\tau_{k+1}} Lf(X_\alpha, X_\beta)_{Z_s} d\Sigma_{\alpha, \bar{\beta}}(s) | Z_{\tau_k} = \eta \right] \quad P(Z_{\tau_k} \in d\eta) \text{-a.s.}$$

Again by the Hessian comparison theorem, we find that there exists a constant C_2 depending only on the curvature bounds a and b such that

$$C_2 g \leq Lf^{(n)} \leq C_2^{-1} g \quad \text{on } \{p; \text{dist}(p, \eta)\} \leq 1,$$

so we have

$$C_2^{-1} \leq E \left[\int_{\tau_k}^{\tau_{k+1}} d(\text{trace } \Sigma_{\alpha, \bar{\beta}}(s)) | Z_{\tau_k} = \eta \right] \leq C_2$$

$$P(Z_{\tau_k} \in d\eta) \text{-a.s.} \quad \text{q.e.d.}$$

The next theorem is an immediate consequence of Proposition 2 combined with the geometrical method employed by D. Sullivan [12] and J.J. Prat [10].

Theorem A. *For every admissible conformal martingale $(Z_t)_{0 \leq t < \zeta}$, the following are true :*

- (i) *The limit $\lim_{t \uparrow \zeta} Z_t$ exists in $M(\infty)$ a.s.*
- (ii) *For any $\xi \in M(\infty)$, $\varepsilon > 0$ and neighborhood $V \subset M(\infty)$ of ξ , there exists a neighborhood $U \subset \bar{M}$ of ξ relative to the cone topology such that*

$$P \left(\lim_{t \uparrow \zeta} Z_t \in V \right) \geq 1 - \varepsilon,$$

whenever Z_t starts from a point of U . U does not depend on the choice of $(Z_t)_{0 \leq t < \zeta}$.

3. The stochastic solution of the Monge-Ampère equation—the statement of the main theorem

Let K_p be the family of all admissible conformal martingales $Z=(Z_t)_{0 \leq t < \zeta(Z)}$ on M such that Z starts from $p \in M$ and the associate process $(\sum_{\alpha, \beta}(t))_{0 \leq t < \zeta(Z)}$ in Proposition 1 possesses a density $(A_{\alpha, \beta}(t))_{0 \leq t < \zeta(Z)}$ with respect to the Lebesgue measure dt with $\det A_{\alpha, \beta}(t) \geq 1$ for $t \geq 0$ a.s. For $Z \in K_p$, set

$$w(p, Z) = E[-C(n) \int_0^{\zeta(Z)} f^{1/n}(Z_t) dt + \varphi(Z_{\zeta(Z)})],$$

where $C(n) = n/8(n!)^{1/n}$. By virtue of Lemma 2 in the next section, we know that, if $Z=(Z_t)$ is the conformal diffusion generated by the Kahler metric g on M , then $w(p, Z)$ is exactly the solution of the Dirichlet problem with boundary condition on the sphere at infinity:

$$\begin{cases} \Delta_g u/2 = C(n)f^{1/n} \\ u|_{M(\infty)} = \varphi \end{cases}$$

for the Laplace-Beltrami operator Δ_g related to g . Now, we can describe the solution of the Monge-Ampère equation (1), using the above stochastic notations.

Theorem B. The function

$$(3) \quad u(p) = \inf_{Z \in K_p} w(p, Z), \quad p \in M$$

is the unique solution of the Monge-Ampère equation (1).

In the following sections, we shall prove this theorem. The proof will be performed by the stochastic control method due to B. Gaveau [6].

4. Continuity of the stochastic solution

In this section, we shall prove the continuity of the function u defined by (3).

Proposition 3. u can be extended to a continuous function on \bar{M} and $u|_{M(\infty)} = \varphi$.

We have to prepare several lemmas for the proof.

Lemma 2. For each $Z \in K_p$, there exist positive constants ν and C_3 depending only on the constants μ_0, C_0 in (2) and the curvature bounds such that

$$E \left[\int_0^{\zeta(Z)} f(Z_t)^{1/n} dt \right] \leq C_2 \exp(-\nu r(p)).$$

Proof. By the assumption (2) imposed on f , for $\nu \leq \mu_0$, we know

$$\begin{aligned} & E \left[\int_0^{\zeta(Z)} f(Z_t)^{1/n} dt \right] \\ & \leq C_0 E \left[\int_0^{\zeta(Z)} \exp(-\nu r(Z_t)/n) dt \right] \\ & \leq C_0 \sum_{k=0}^{\infty} E \left[\int_{\tau_k}^{\tau_{k+1}} \exp(-\nu r(Z_t)/n) dt \right], \end{aligned}$$

where $\tau_0 = 0$, $\tau_1 = \inf \{t > 0; \text{dist}(Z_t, Z_0) = 1\}$, \dots , $\tau_{k+1} = \inf \{t > \tau_k; \text{dist}(Z_t, Z_{\tau_k}) = 1\}$, \dots . We may assume that ν is so small that ν/n is less than a . Because $E \left[\int_{\tau_k}^{\tau_{k+1}} \exp(-\nu r(Z_t)/n) dt \right] \leq E \left[\int_{\tau_k}^{\tau_{k+1}} \exp(-\nu r(Z_t)/n) d(\text{trace } \sum_{\alpha, \beta}(t)) \right]$, we have $E \left[\int_{\tau_k}^{\tau_{k+1}} \exp(-\nu r(Z_t)/n) dt \right] \leq \exp(a) C_2 E[\exp(-\nu r(Z_{\tau_k})/n)]$, in view of the proof of Proposition 2. Further by virtue of the basic estimate (Proposition 2) we know

$$\sum_{k=0}^{\infty} E[\exp(-\nu r(Z_{\tau_k})/n)] \leq (1 - C_1)^{-1} \exp(-\nu r(p)/n).$$

The desired inequality holds for $C_3 = \exp(a) C_0 C_2 (1 - C_1)$. q.e.d.

Combining this with the result on the weak convergence of the hitting distribution in Theorem A (ii), we know that for arbitrary $\xi \in M(\infty)$ and any $\varepsilon > 0$, there exists a neighborhood U of ξ such that

$$(4) \quad p \in U \Rightarrow |w(p, Z) - \varphi(\xi)| < \varepsilon,$$

when $Z \in K_p$. Furthermore, we can show the following lemma.

Lemma 3. *For any $\varepsilon > 0$, there exist a positive large constant R and a small constant γ_0 such that, if*

$$p \in D_R = \{\eta \in M; r(\eta) < R\}$$

and $\text{dist}(p, q) < \gamma_0$, then

$$|w(p, Z) - w(q, Z')| < \varepsilon,$$

for any $Z \in K_p$ and $Z' \in K_q$.

Proof. For any $\varepsilon > 0$, there exist some points $\xi_1, \dots, \xi_n \in M(\infty)$ and open sets $U_i \ni \xi_i$ such that

$$\begin{aligned} & p \in U_i \text{ and } Z \in K_p \\ & \Rightarrow |w(p, Z) - \varphi(\xi_i)| < \varepsilon/2 \end{aligned}$$

for all $i=1, 2, \dots, n$ and $M(\infty) \subset \bigcup_{i=1}^n U_i$. Take a closed neighborhood $U'_i \subset U_i$ of ξ_i so that $M(\infty) \subset \bigcup_{i=1}^n U'_i$. Then, there exists $R > 0$ satisfying $M \setminus D_R \subset \bigcup_{i=1}^n U'_i$. Therefore for sufficiently small, γ_0 we know that

$$\begin{aligned} \text{dist}(p, q) &< \gamma_0, p \in D_R \\ \Rightarrow |w(p, Z) - w(q, Z')| & \\ \leq |w(p, Z) - \varphi(\xi_i)| + |\varphi(\xi_i) - w(q, Z')| & \\ < \varepsilon/2 + \varepsilon/2 = \varepsilon, & \end{aligned}$$

whenever $Z \in K_p$ and $Z' \in K_q$, by choosing i so that $p \in U'_i$.

q.e.d.

Because the holomorphic tangent bundle is holomorphically trivial, there exists a frame of holomorphic vector fields Y_1, \dots, Y_n . Let $\Phi_z(p) = \text{Exp}(\text{Re} \sum_{i=1}^n z^i Y_i)(p)$, for $p \in M$ and $z = (z^1, \dots, z^n)$ in C^n . This transformation on M was considered in T. Asaba [2] and proven to enjoy the next property:

For any $R > 0$, there exists $\Delta_\delta = \{z \in C^n; \sum_{i=1}^n |z^i|^2 < \delta\}$ such that $\Phi_z(p)$ is a smooth mapping from $\Delta_\delta \times D_R$ to M satisfying the following properties (i), (ii) and (iii).

(i) For each $z \in \Delta_\delta$, Φ_z gives a biholomorphic mapping from the domain D_R to $\Phi_z(D_R)$.

(ii) Φ_0 is the identity transformation on D_R .

(iii) For $p \in D_R$, $\Phi_z(p)$ defines a diffeomorphism from Δ_δ to some neighborhood of p .

Using this transformation Φ , we can prove the continuity of the stochastic solution u .

Lemma 4. *For any $\varepsilon > 0$ and $R > 0$, there exists $\gamma > 0$ such that for each $Z \in K_p$ and q enjoying $p \in D_R$ and $\text{dist}(p, q) < \gamma$, we can always find $Z' \in K_q$ so that*

$$|w(p, Z) - w(q, Z')| < \varepsilon.$$

Proof. To begin, replace R by a sufficiently large one and choose γ_0 so that the implication in Lemma 3 holds for $\varepsilon/2$ instead of ε . Fix $Z \in K_p$. We then consider the holomorphic local transformation Φ and the Kähler diffusion $B_t(\eta)$ on M starting from $\eta \in M$, independent of Z and measurable in t , z and ω . Let

$$(5) \quad Z_t^{\Phi_z(p)} = \begin{cases} \Phi_z(Z_t), & t \leq \tau \\ B_{t-\tau}(\Phi_z(Z_\tau)), & t > \tau, \end{cases}$$

where $\tau = \inf\{t > 0; Z_t \notin D_R\}$.

We next perform the time change by letting $\hat{Z}_t^{\Phi_z(p)} = Z_{\tau_t}^{\Phi_z(p)}$, up to the explosion time of $\hat{Z}^{\Phi_z(p)} = (\hat{Z}_t^{\Phi_z(p)})_{t \geq 0}$, where $\tau_t = \inf\{s > 0; \int_0^s (\det A_{\alpha, \beta}(u))^{1/n} du \geq t\}$, $(A_{\alpha, \beta}(t))_{t \geq 0}$ being the density of the increasing process associated with $Z^{\Phi_z(p)} = (Z_t^{\Phi_z(p)})_{t \geq 0}$ according to Proposition 1.

On the other hand, taking conditional expectation, we have

$$\begin{aligned} w(p, Z) &= W[-C(n) \int_0^\tau f^{1/n}(Z_t) dt] \\ &+ \int_{\partial D_R} E[C(n) \int_\tau^{\zeta(Z)} f^{1/n}(Z_t) dt + \varphi(Z_{\zeta(Z)}) | Z_\tau = \eta] P(Z_\tau \in d\eta). \end{aligned}$$

If we set $W_t = Z_{t+\tau}$ and let

$$w(\eta, W) = E[-C(n) \int_0^{\zeta(Z)-\tau} f^{1/n}(W_t) dt + \varphi(Z_{\zeta(Z)}) | Z_\tau = \eta]$$

for $W = (W_t)_{0 \leq t < \zeta(Z)-\tau}$, then

$$w(p, W) = E[-C(n) \int_0^\tau f^{1/n}(Z_t) dt] + \int_{\partial D_R} w(\eta, W) P(Z_\tau \in d\eta).$$

Similarly, letting σ be the first exit time from $\Phi_z(D_R)$ of $\hat{Z}^{\Phi_z(p)}$, we set $W_t^{\Phi_z(p)} = \hat{Z}_{t+\sigma}^{\Phi_z(p)}$, $0 \leq t < \zeta(\hat{Z}^{\Phi_z(p)}) - \sigma$ and then, for $W^{\Phi_z(p)} = (W_t^{\Phi_z(p)})_{t \geq 0}$,

$$\begin{aligned} w(\eta, W^{\Phi_z(p)}) &= E[-C(n) \int_0^{\zeta(W^{\Phi_z(p)})} f^{1/n}(W_t^{\Phi_z(p)}) dt \\ &+ \varphi(W_{\zeta(W^{\Phi_z(p)})}^{\Phi_z(p)}) | \hat{Z}_{\sigma}^{\Phi_z(p)} = \eta]. \end{aligned}$$

Then

$$\begin{aligned} w(\Phi_z(p), \hat{Z}^{\Phi_z(p)}) &= E[-C(n) \int_0^\sigma f^{1/n}(\hat{Z}_t^{\Phi_z(p)}) dt] \\ &+ \int_{\partial \Phi_z(D_R)} w(\eta', W^{\Phi_z(p)}) P(\hat{Z}_{\sigma}^{\Phi_z(p)} \in d\eta') \end{aligned}$$

Therefore, after all we have that

$$\begin{aligned} w(p, Z) - w(\Phi_z(p), Z^{\Phi_z(p)}) &= E[-C(n) (\int_0^\tau f^{1/n}(Z_t) dt - \int_0^\sigma f^{1/n}(\hat{Z}_t^{\Phi_z(p)}) dt)] \\ &+ \int_{\partial D_R} \{w(\eta, W) - w(\Phi_z(\eta), W^{\Phi_z(p)})\} P(Z_\tau \in d\eta). \end{aligned}$$

From Lemma 2, there exists $\delta > 0$ such that the absolute value of the second term of the right hand side is less than $\varepsilon/2$ for every $z \in \Delta_\delta$. While the continuity of $f^{1/n}$ shows that the first term of the right hand side is less than $\varepsilon/2$ in

the above absolute value, whenever $z \in \Delta_\delta$.

Because, for sufficiently small γ , the γ -neighborhood of each $p \in D_R$ is contained in the image of Δ_δ by the mapping $\Phi_z(p)$, for $q = \Phi_z(p)$, $Z' = \hat{Z}^{\Phi_z(p)}$ is the required conformal martingale in our lemma. q.e.d.

Proof of Proposition 3. The last inequality in Lemma 4 implies $w(p, Z) \geq u(q) - \varepsilon$. Taking the infimum over $Z \in K_p$, we can conclude that $u(p) \geq u(q) - \varepsilon$, whenever $p, q \in D_R$ and $\text{dist}(p, q) < \gamma$. Exchanging the role of p and q , we see that u is a continuous function on M . Recalling the estimate (4) noted after Lemma 2, we know that $\lim_{p \rightarrow \xi} u(p) = \varphi(\xi)$ for each $\xi \in M(\infty)$. This completes the proof. q.e.d.

5. The Bellman principle

The purpose of this section is to establish the Bellman principle in order to localize the stochastic expression of the function u defined by (3).

Proposition 4. *For every bounded domain D of M and $p \in D$, we obtain*

$$u(p) = \inf_{z \in K_p} E[-C(n) \int_0^{\tau_D(z)} f^{1/n}(Z_t) dt + u(Z_{\tau_D(z)})],$$

where $\tau_D(Z) = \inf\{t > 0; Z_t \notin D\}$.

Proof. Fix $\varepsilon > 0$ and take R so that $D_R \supset \bar{D}$. For each $q \in \partial D$ there exist $\delta > 0$ and $Z \in K_q$ such that, for $z \in \Delta_\delta$,

$$|w(\Phi_z(q), \hat{Z}^{\Phi_z(q)}) - u(q)| > \varepsilon,$$

where $Z^{\Phi_z(q)}$ is the conformal martingale defined by (5). Therefore, we can select several points $q_1, \dots, q_n \in \partial D$ and their neighborhoods $\Delta(q_1), \dots, \Delta(q_n)$ so that $\partial D \subset \bigcup_{i=1}^n \Delta(q_i)$ (disjoint union), the image of $\Phi_z(q_i)$ contains $\Delta(q_i)$ and

$$|w(\Phi_z(q_i), \hat{Z}^{\Phi_z(q_i)}) - u(q_i)| < \varepsilon,$$

whenever $Z^{\Phi_z(q_i)}$ is in $\Delta(q_i)$, $i = 1, 2, \dots, n$.

For each $Z \in K_p$, we set

$$Z_t^* = \begin{cases} Z_t, & \text{if } t \leq \tau_D(Z) \\ \hat{Z}_{t-\tau_D(Z)}^{\Phi_z(q_i)} & \text{if } t > \tau_D(Z), Z_{\tau_D(Z)} \in \Delta(q_i) \text{ and} \\ & \Phi_z(q_i) = Z_{\tau_D(Z)}, i = 1, 2, \dots, n, \end{cases}$$

where we take $Z^{\Phi_z(q_i)}$ and Z to be independent. Then $Z^* = (Z_t^*) \in K_p$. By the same method of B. Gaveau [6; pp. 400–403], we can prove that

$$\begin{aligned} u(p) - \varepsilon &\leq E[-C(n) \int_0^{\tau_D} f^{1/n}(Z_t) dt + u(Z_{\tau_D})] \\ &\leq E[-C(n) \int_0^{\zeta(z)} f^{1/n}(Z_t) dt + \varphi(Z_{\zeta(z)})]. \end{aligned}$$

Since $\varepsilon > 0$ is arbitrary, the proof is completed. q.e.d.

6. Proof of the main theorem

Finally, we shall finish the proof of the main theorem by showing the next two propositions.

Proposition 5. *u is a plurisubharmonic function and $(dd^c u)^n = f \omega_0^n / n!$ on M .*

Proposition 6. *If u_0 is a solution of (1), then*

$$u_0(p) = \inf_{z \in K_p} E[-C(n) \int_0^{\zeta} f^{1/n}(Z_t) dt + \varphi(Z_{\zeta})].$$

In particular, (1) has a unique solution.

Proof of Proposition 5. Let p be an arbitrary point of M . Choose a complex local coordinate system (D, z^1, \dots, z^n) around p such that $\psi = (z^1, \dots, z^n)$ defines a biholomorphic mapping from D to the complex unit ball $B = \{(z^1, \dots, z^n) \in \mathbf{C}^n; \sum_{i=1}^n |z^i|^2 < 1\}$. For the push forward function $U(z) = (\psi_* u)(z) = u(\psi^{-1}(z))$,

$$U(z) = \inf_{z \in K_z} E[-C(n) \int_0^{\tau_B(z)} (\psi_*(f \det(g)))_{i\bar{j}}^{1/n}(Z_t) dt + U(Z_{\tau_B(z)})],$$

where $g_{i\bar{j}} = g(\partial/\partial z^i, \partial/\partial z^j)$ and K_z is the family of all \mathbf{C}^n -valued conformal martingales Z which start from $z \in B$ such that $a_{i\bar{j}}(t) = d\langle z^i(Z_t), z^j(Z_t) \rangle / dt$ satisfy $\det(a_{i\bar{j}}(t)) \geq 1$, $t \geq 0$ a.s.

Consider the following Monge-Ampère equation

$$(6) \quad \begin{cases} v \in PSH(B) \cap C(\bar{B}) \\ (dd^c v)^n = \psi_*(f \det(g_{i\bar{j}})) dV \\ v|_{\partial B} = U|_{\partial B}, \end{cases}$$

where dV stands for the Lebesgue measure on \mathbf{C}^n . Because of the strongly pseudo-convexity of B , we see that Theorem 4 and Remark of B. Gaveau [6; pp. 402–403] ensure the following stochastic description of the solution v_0 of (6):

$$\begin{aligned} v_0(z) &= \inf_{z \in K_z} E[-C(n) \int_0^{\tau_B(z)} (\psi_*(f \det(g_{i\bar{j}})))^{1/n}(Z_t) dt \\ &\quad + U(Z_{\tau_B(z)})], \quad z \in B. \end{aligned}$$

Hence, we know that $v_0=U$ on B and $u(p)=\psi_*v_0(p)\in PSH(D)$ and that $(dd^c u)^n=f\omega_0^n/n!$ on D . q.e.d.

Proof of Proposition 6. To begin, take the countable family of charts $(U_i; z_i^1, \dots, z_i^n)_{i=1}^\infty$ appeared in the proof of Proposition 1, we may assume that each $\psi_i=(z_i^1, \dots, z_i^n)$ gives a biholomorphic mapping between U_i and the unit ball $B\subset C^n$. By virtue of Theorem 4 of B. Gaveau [6], for any $\varepsilon>0$, there exists a $Z^{(1)}\in K_p$ such that

$$E[-C(n) \int_0^{\sigma_1} f^{1/n}(Z_t) dt + u_0(Z_{\sigma_1}^{(1)})] \leq u_0(p) + \varepsilon/2,$$

where σ_1 is the stopping time for $Z^{(1)}$ defined in the proof of Proposition 1. For each $q\in\partial U_i$ there exists $\delta>0$ and $Z\in K_q$ such that

$$w(\Phi_z(q), \hat{Z}^{\Phi_z(q)}) < u_0(q) + \varepsilon/2^2,$$

whenever $z\in\Delta_\delta$. Using the same argument as in the proof of Proposition 4, we can construct $Z^{(2)}\in K_p$ which satisfies

$$Z_{t\wedge\sigma_1}^{(1)} = Z_{t\wedge\sigma_1}^{(2)}$$

and

$$E[-C(n) \int_0^{\sigma_2} f^{1/n}(Z_t^{(2)}) dt + u_0(Z_{\sigma_2}^{(2)})] \leq u_0(p) + \varepsilon/2 + \varepsilon/2^2,$$

where σ_2 is defined for $Z^{(2)}$ in the same way as above. Repeating this procedure, we obtain a sequence $(Z^{(k)})_{k=1}^\infty\subset K_p$ so that $Z_{t\wedge\sigma_{k-1}}^{(k-1)} = Z_{t\wedge\sigma_{k-1}}^{(k)}$, $t\geq 0$. a.s. and that

$$E[-C(n) \int_0^{\sigma_k} f^{1/n}(Z_t^{(k)}) dt + u_0(Z_{\sigma_k}^{(k)})] \leq u_0(p) + \sum_{i=1}^k \varepsilon/2^i,$$

where σ_k is defined for $Z^{(k)}$ as above.

Define $Z_t=Z_t^{(k)}$, if $t<\sigma_k$. Then we can easily check that $Z=(Z_t)\in K_p$ and that $\lim_{k\rightarrow\infty} \sigma_k = \zeta(Z)$. Hence, we know

$$E[-C(n) \int_0^\zeta f^{1/n}(Z_t) dt + \varphi(Z_\zeta)] \leq u_0(p) + \varepsilon.$$

Letting $\varepsilon\rightarrow 0$, we can conclude that

$$u_0(p) \geq \inf_{z\in K_p} E[-C(n) \int_0^\zeta f^{1/n}(Z_t) dt + \varphi(Z_\zeta)].$$

On the other hand, we can inductively obtain, for each $Z\in K_p$,

$$u_0(p) \leq E[-C(n) \int_0^{\sigma_k} f^{1/n}(Z_t) dt + u_0(Z_{\sigma_k})], \quad k = 1, 2, 3, \dots,$$

and so we have the opposite inequality, by letting $k\rightarrow\infty$. q.e.d.

References

- [1] M.T. Anderson: *The Dirichlet problem at infinity for negatively curved manifolds*, J. Differential Geom. **18** (1983), 701–722.
- [2] T. Asaba: *Asymptotic Dirichlet problem for a complex Monge-Ampère operator*, Osaka J. Math. **23** (1986), 815–821.
- [3] E. Bedford and B.A. Taylor: *The Dirichlet problem for a complex Monge-Ampère equation*, Invent. Math. **37** (1976), 1–44.
- [4] P. Eberlein and B. O’Neill: *Visibility manifolds*, Pacific J. Math. **46** (1973), 45–109.
- [5] M. Fukushima: *A stochastic approach to the minimum principle for the complex Monge-Ampère operator*, Proc. of Symp. on Stochastic processes and its applications at Nagoya, Lecture Notes in Math., Springer.
- [6] B. Gaveau: *Méthodes de contrôle optimal en analyse complexe 1. Résolution d’équation de Monge-Ampère*, J. Funct. Anal. **25** (1977), 391–411.
- [7] R.E. Greene: Function theory of noncompact Kähler manifolds of nonpositive curvature, Seminar on Differential Geometry, ed. by S.T. Yau, Ann. of Math. Studies 102, Princeton Univ. Press, 1982.
- [8] R. Greene and H. Wu: Function theory on manifolds which possesses a pole, Lecture Notes in Math. No. 699, Springer.
- [9] M. Okada: *Espace de Dirichlet généraux en analyse complexe*, J. Funct. Anal. **46** (1982), 395–410.
- [10] J.J. Prat: *Etude asymptotique et convergence angulaire du mouvement brownien sur une variété à courbure négative*, C.R. Acad. Sci. Paris **280**, Ser. A (1975), 1539–1542.
- [11] Y.T. Siu: *Pseudoconvexity and the problem of Levi*, Bull. Amer. Math. Soc. **84** (1978), 481–512.
- [12] D. Sullivan: *The Dirichlet problem at infinity for manifolds of negative curvature*, J. Differential Geom. **18** (1983), 701–722.
- [13] H. Wu: *Normal families of holomorphic mappings*, Acta Math. **119** (1967), 193–233.

Department of Mathematical Science
 College of Engineering
 University of Osaka Prefecture
 Mozu-umemachi, Sakai-city
 Osaka 591, Japan

