
Title
A Novel Dynamically Programmable Arithmetic
Array (DPAA) Processor for Digital Signal
Processing

Author(s) Tan, Boon-Keat; Yoshimura, Ryuji; Matsuoka,
Toshimasa et al.

Citation IEICE Transactions on Fundamentals of
Electronics. 2001, E84-A(3), p. 741-747

Version Type VoR

URL https://hdl.handle.net/11094/51657

rights copyright©2001 IEICE

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.3 MARCH 2001
741

PAPER Special Section of Selected Papers from the 13th Workshop on Circuits and Systems in Karuizawa

A Novel Dynamically Programmable Arithmetic Array

(DPAA) Processor for Digital Signal Processing∗

Boon-Keat TAN†a), Ryuji YOSHIMURA†, Nonmembers, Toshimasa MATSUOKA†,
and Kenji TANIGUCHI†, Regular Members

SUMMARY A new architecture-based Dynamically Pro-
grammable Arithmetic Array processor (DPAA) is proposed for
general purpose Digital Signal Processing applications. Paral-
lelism and pipelining are achieved by using DPAA, which con-
sists of various basic arithmetic blocks connected through a code-
division multiple access bus interface. The proposed architecture
poses 100% interconnection flexibility because connections are
done virtually through code matching instead of physical wire
connections. Compared to conventional multiplexing architec-
tures, the proposed interconnection topology consumes less chip
area and thus, more arithmetic blocks can be incorporated. A
16-bit prototype chip incorporating 10 multipliers and 40 other
arithmetic blocks had been implemented into a 4.5mm × 4.5mm
chip with 0.6µm CMOS process. DPAA also features its simple
programmability, as numerical formula can be used to config-
ure the processor without programming languages or specialized
CAD tools.
key words: DPAA, DSP, parallel processing, interconnection

topology, routing exibility

1. Introduction

With the advance of process technology, the perfor-
mance of microprocessor has improved drastically over
the past decades. Therefore, software-based micropro-
cessors especially those based in RISC architecture,
have emerged as popular solution for digital signal pro-
cessing applications. RISC processors utilize pipelining
as much as possible in order to parallelize tasks and to
use the existing hardware resources efficiently. How-
ever, RISC are often inadequate to meet the require-
ments because constructing Digital Signal Processing
(DSP) applications into long pipeline is difficult [1].
Architectures consisting of two cores, a microprocessor
and a DSP core had been proposed [2] but the idea
is not cost effective as hardware resources are often
doubled. Therefore, RISC architectures, which com-
bined DSP functionality and general-purpose architec-
ture into a single core, had been introduced [1].

Highly specialized processors for DSP applications
of today are not based on the RISC design philoso-
phy. Instead, clusters of dedicated data paths, hard-

Manuscript received June 28, 2000.
Manuscript revised September 20, 2000.

†The authors are with the Faculty of Engineering, Osaka
University, Suita-shi, 565-0871 Japan.
a) E-mail: tan@eie.eng.osaka-u.ac.jp
∗This paper was presented at The 13th Workshop on

Circuits and Systems in Karuizawa, April 24-25, 2000.

wired to closely match the algorithmic data flow, are
used. Such architectures typically contain multiple and
concurrently operating data-path pipelines. Reconfig-
urable or programmable architectures with coarse gran-
ularity are incorporated such as rALU and EXU [3]–[5].
Although data-driven structure often uses complicated
control sequences, rALU supports automatic mapping
of arithmetic and allows programming from a high level
language.

Reconfigurable structures with fine granularity
such as FPGA, which has improved significantly in the
1990s, became an alternative solution for DSP. How-
ever, algorithms had to be expressed in hardware de-
scription language, then compiled and mapped by spec-
ified CAD tools. In addition, due to the difficulty in
obtaining 100% routing flexibility, interconnection and
chip utilization of FPGA is up to 70% and out of the
utilized area, more than 50% of chip area is used for
interconnections [6], [7].

The overall goal in designing this new architec-
ture (DPAA) was to provide high parallelism, high
pipelining ability and high area efficiency with simple
programming interface. Consequently, DPAA features
multiple and concurrently operating pipelines as those
in data-path structures, but instead of data-driven,
Harvard Architecture is used. Compared to such data-
driven architecture [3], [4], DPAA supports more paral-
lel tasks and is more superior in terms of area efficiency
which is the weak point in most reconfigurable archi-
tectures. This is achieved due to its completely flexi-
ble interconnection interface for all processing. DPAA
may also be used for any Custom Computing Machines
(CCM) or any kind of adaptable computer system as
well as a universal accelerator co-processor.

The architecture of DPAA is introduced in Sect. 2.
An implementation of a prototype chip based on the
proposed architecture is discussed in Sect. 3. Section 5
explains the programming aspect of DPAA and imple-
mentation of an adaptive equalizer using DPAA is pre-
sented as an example in Sect. 6 in order to give a better
understanding of the proposed architecture. Advan-
tages of DPAA are summarized in Sect. 4. The final
section presents the future work for DPAA and con-
cludes the paper.

742
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.3 MARCH 2001

Fig. 1 Architecture and composition of DPAA.

Fig. 2 Block diagram of bus interface.

2. Architecture

Figure 1 depicts the basic architecture of DPAA. Ide-
ally, DPAA consists of a controller/sequencer and pre-
compiled arithmetic logic elements (LE). In the pro-
posed work, each logic element is designed to carry out
a fixed arithmetic function. The LE can also consist of
memory storage. All LEs are connected to a multiple
access bus through a specialized interface proposed by
one of our co-authors [8]. Multiplexing is implemented
through the bus interface.

2.1 Bus Interface

As shown in Fig. 2, the bus interface consists of a trans-
mitter and one or two receivers depending on the num-
ber of input/output of the logic elements. Circuit de-
tails of the interface are described in [8]. Therefore,
only the structural and behavioral aspects of the inter-
face will be dealt with in this paper. As shown in Fig. 3,
the output of the logic element is modulated by Pseudo
Noise (PN) sequence code. The modulated signal is
then output to the multiple access bus through charge
pumping circuit. At the receivers, the signals from the
multiple access bus will be demodulated through mixers
before being input to low pass filter where integration is
being carried out. If the sequence code used during de-

Fig. 3 PN sequence code generator.

Fig. 4 Timing chart of bus interface.

modulation matches the code used in modulation, the
signals will be received and control signals “VALID”
will turn HIGH indicating that the codes match.

The PN sequence code used in the proposed DPAA
is 127 bit. The code generator is implemented by a 7-
bit Linear Feedback Shift Registers (LFSR) as shown in
Fig. 3. Hence, each bus interface blocks requires a 7-bit
setup information [9] which is stored in a memory cache
as shown in Fig. 2. For simplicity, all memory caches in
the first generation DPAA are connected through sev-
eral serial buses. The setup information will be loaded
from the sequencer through these serial buses.

Figure 4 depicts the relation between the system
clock and the bus interface clock. The code generator
functions at a clock cycle 128 times the system clock,
127-cycle (t2) for code generation and an extra cycle
(t1) to reload the setup information. The bus inter-
face proposed by our co-author works at 200MHz with
0.6µm CMOS technology.

Figure 5 shows simulation results of the bus inter-
face with 3 transmitters and 3 receivers. The waveform
of the bus is also included. The multiple access bus
exhibits a noise-like signal with small voltage swing.
Peak to peak voltage swing for each signal transmitted
on the bus is 20mV. Receivers R1, R2 are connected
to transmitters T1, T2 while receiver R3’s connection
is changed dynamically as the PN sequence code at R3
is changed every 2-bit cycles. Data received at R3 from
each transmitter is shaded as shown in Fig. 5. In ad-
dition, simulation results verified that with 127-bit PN
sequence code, up to 65 concurrent transmissions are
supported by the proposed interface.

Our measurement results confirmed that the bit
error rate of the bus interface is less than 10−8. The
bit error rate had been measured using 10 pairs of
transmitters and receivers. The actual bit error rate

TAN et al.: A NOVEL DPAA PROCESSOR FOR DIGITAL SIGNAL PROCESSING
743

Fig. 5 Simulation results.

Table 1 Chip area: 16-bit ALU & components.

Delay Function 7,600µm2

Subtractor 18,100µm2

Multiplier 60,000µm2

Multiplexer (5input,1output) 15,400µm2

ALU (adder,subtractor,delay, multiplier) 80,000µm2

All Components are clock driven except multiplexer

of the multiple bus interface should be lower because
the spread spectrum sequence code is noise-tolerant.

2.2 Logic Elements

Giving priority to the aspect of reconfigurability makes
the designing of logic elements a difficult task, as de-
signing precise functionality for general-purpose archi-
tecture is almost impossible. Programmable ALU is
popular in most reconfigurable architecture. In con-
trast, DPAA consists of fixed arithmetic components
such as adders, multipliers, subtractors and shifters.
We choose to incorporate one arithmetic function into
each LE in order to achieve better chip utilization.

For instance, Table 1 shows chip area required in
implementing a 16-bit ALU and chip area required in
implementing all of its function separately. Chip uti-
lization in a programmable ALU is 30–85% because
only one of its function will be used. Separating all
functions enables simultaneous use of all functions and
thus parallelism can be exploit. Using a fixed calculat-
ing block as a LE also has the advantage of reducing the
complexity of programmability. As each LE is assigned

Fig. 6 Micrograph of prototype chip with 16-bit arithmetic
logic. Fabricated with 0.6µm CMOS Process, Chip Size: 4.5mm
× 4.5mm, Performance 5.67MOPs.

to a unique PN sequence code, the program required
for the DPAA consists of PN sequence codes for re-
ceivers at each LE. In addition, 100% chip utilization is
possible because all of the LEs can work concurrently.

The number and combinations of LEs will be de-
termined by the scale and types of applications. If the
field of application is known, the ratio and combination
of each LE can be computed by determining statisti-
cally how frequently each arithmetic function will be
used while taking into consideration each popular algo-
rithm. For instance, digital filters such as FIR require
about the same number of adders and multiplier. Thus,
the ratio of multipliers and adders should be approxi-
mately equal to one for the chip of digital filters.

3. VLSI Implementation

Figure 6 shows the micrograph of prototype chip of
DPAA without the proposed controller or sequencer.
The Lookup Table (LUT) in the bus interface is config-
ured externally through serial buses. The prototype
chip has 4 inputs and 4 outputs. The chip is fab-
ricated by using a 0.6µm CMOS, triple metal, dou-
ble poly-silicon process and the chip size is 4.5mm ×
4.5mm. The 16-bit processing elements are designated
to function in serial so that good area utilization can
be achieved.

Overall, the chip consists of 16 adders, 10 multipli-
ers, 8 shifters, 8 subtractors and 8 delay blocks. Over-
flow is supported in adders, multipliers and shifters.
Although the function of each arithmetic logic element
is fixed, all adders, subtractors and multipliers can be
converted into a delay block/register by setting one of
the subtractor/adder’s input to zero (addition of zero)

744
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.3 MARCH 2001

or by setting one of the multiplier’s input to one (mul-
tiplication of one). Composition of the processing ele-
ments is not optimized to any application because the
prototype chip is meant for feasibility checking purpose.

The performance of the prototype chip is
5.67MOPs because of the bus interface at research level
used. The speed of the interface clock frequency can be
increased from the current 200MHz to GIGA hertz or-
der by using circuit techniques such as MOS Current
Mode Logic (MCML) [10]. However, The performance
can be increased 2-times or 4-times even with 200MHz-
bus interface’s clock rate by choosing the shorter PN
sequence code and multiplexing of the multiple access
bus.

4. Advantages of DPAA

1. High Chip Density
Compared to conventional architecture, DPAA has
higher chip density. Interconnection between logic
elements usually consumes large silicon area but
this is not true for DPAA as all connection is done
using a single bus. For instance, the total chip area
in the prototype chip for interconnection interface
is 1,900,000µm2 in DPAA. However, implement-
ing the interface using switch matrix circuit re-
quires 2,800,000µm2. The number given excludes
the area needed for wiring. The wiring area for the
proposed multiple-access interface is negligible be-
cause all LEs are connected via a multiple access
bus. However, wiring area for conventional switch
matrix is large because it consists of more than 250
connections. In addition, unlike the proposed in-
terface, buffers are required in the switch matrix
approach.

2. Complete Routing Flexibility
In addition to multiple access ability of the bus
interface, the utilization of modulation/demodula-
tion as connectivity also enables 100% routing flex-
ibility because connections are done through code
matching. Broadcasting of a datum is possible.
Unlike conventional reconfigurable architectures,
the connection topology in DPAA has no electrical
or timing effect on the circuit. Therefore, physical
arrangement and the topology of LE in DPAA can
be optimized in order to achieve high chip utiliza-
tion.

3. Dynamical Programmability
Control signal (i.e. setup information) of the mul-
tiple bus interface is referred indirectly during a
small portion of a clock time. Therefore, even
when a data is being processed, transition of con-
trol signal has no effect on the interconnection of
the logic elements. Hence, reloading of control sig-
nal is non-intrusive. However, the same does not
apply on as switching circuits as shown in Fig. 7.
Generally, a switching circuit is controlled directly

Fig. 7 Comparison between current bus interface and
switching circuit.

by the control signal. Transition of control signal
has direct effect on the switch and thus, reloading
of control signal is intrusive.

4. Parallel and Pipelining
Large number of processing elements and complete
interconnection flexibility of DPAA can be uti-
lized to realize pipelining and parallel processing.
Pipelining and Parallel processing in conventional
microprocessor architecture is difficult to achieved
due to the limitation of interconnection flexibility
and number of processing elements available. For
instance, a 1GHz RISC processor, although works
at clock rate of GHz order, will have its perfor-
mance significantly reduced when pipelining and
parallel processing is not possible. This is no longer
the case in DPAA.

5. Power Consumption
The proposed architecture is based on parallel
computing and pipelining while the clock fre-
quency is being reduced. This would result in re-
duction of power consumption [11]. In addition,
the interconnection interface is designed to reduce
the power dissipation of the buses, as voltage am-
plitude of the modulated signal for each transmit-
ter is reduced to a small swing voltage. How-
ever, applying the same technique to other bus-
style such as Sonics (TDMA) style bus, is a difficult
task because it will reduced SN ratio significantly
and cause timing problems.

6. Identical Timing Requirement
In the state-of-arts array processors which utilized
tri-state bus, TDMA style bus or switching matrix,
timing requirements for each signal path (a proces-
sor to another processor) varies, depending on the
location of the two processors. In contrast, due to
the bus interface in DPAA, timing requirements
for transmitting signals from a processor to other
processor is the same, regardless of their position
in the chip.

Many novel architectures especially those of data-
flow architecture, are difficult to program. However,
program for DPAA can be easily generated using the

TAN et al.: A NOVEL DPAA PROCESSOR FOR DIGITAL SIGNAL PROCESSING
745

Block Diagram Generation

↓

Timing Synchronization

(Insertion of Delay Blocks)

↓

Optimization

↓

Hardware Mapping

(Allocation of codes)

Fig. 8 Program algorithm for CAD.

developed Auto-Program Generation Interface which
will be discussed in the next section.

5. Auto-Program Generation Interface

An auto-program generation interface had been devel-
oped to configure the proposed DPAA using simple nu-
merical formula as input. The program algorithm will
be discussed and evaluated.

5.1 Program Algorithm

In DPAA, each transmitter is assigned to a fixed PN se-
quence code. In order to establish a connection between
a receiver and a transmitter, the receiver should be con-
figured to use the same PN sequence code as used in the
transmitter. The codes used in transmitter are stored
in ROM while the codes for the receivers are stored
in cache memories. The program required to config-
ure DPAA consists of the receiver codes and can be
generated manually with the algorithm shown in Fig. 8.
Firstly, the application will be input in the form of block
diagrams or text equations. Next, delay blocks are in-
serted for synchronization purposes. Before mapping
the application into the hardware, optimization is car-
ried out to remove excessive hardware. Auto-program
generation interface using numerical formula as input
has been developed. However, timing justification and
optimization is still done manually. Compared to CAD
used in fine granularity reconfigurable architecture such
as FPGA, the auto-program generation used in DPAA
is much easier and faster. For FPGA, every signal path
had to be computed by taking into consideration timing
and electrical property while auto-program generation
interface developed for DPAA merely mapped the PN
sequence codes.

5.2 Design Flow Comparison: DPAA vs. FPGA

Comparison of the design flow is shown in Fig. 9. The

Fig. 9 Comparison of design flow: DPAA Vs FPGA.

approximated design time required for each stage is
given (written in bracket) by using several conventional
circuits such as 5 tap FIR filters, IIR filters, DCT etc.

Any design usually starts with algorithm design
that can be expressed with block diagrams, flow chart
and numerical formulas. For FPGA designs, the algo-
rithm will be converted into hardware description lan-
guages (HDL) such as VHDL or Verilog. Then HDL
design will be followed by circuits synthesis and hard-
ware mapping using conventional CAD tools. Depend-
ing on the design, these processes can take up to a few
months or at least a few weeks. However, DPAA which
utilized numerical formulas and block diagrams as in-
put, is more user friendly to both software and hard-
ware engineers. As the design duration is much shorter,
DPAA poses very low design cost.

6. Example: CMA Adaptive Array

For better understanding of the proposed work, an ex-
ample using CMA adaptive array will be discussed. The
algorithm used is based on [12], [13]. Usually, CMA
Adaptive Array consists of n-tap complex number FIR
filter with the coefficient in each tap (or known as
“weight” in CMA adaptive array) updated adaptively.
The block diagram is shown in Fig. 10 and the details
of CMA adaptive array is given as followed. Define an
n-dimensional received signal vector H(k) and weight
vector C(k) at a sampling time kTs(k = 1, 2...) where
Ts is a sampling period, as

H(k) =

h1(k)
h2(k)
h3(k)
...

 , C(k) =

c1(k)
c2(k)
c3(k)
...

 (1)

Both H(k) and C(k) are represented by complex
vectors. Calculation for the CMA adaptive array is as
shown in the following equations [12]:

OUT(k) = HT(k)C(k) (2)

746
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.3 MARCH 2001

Fig. 10 CMA adaptive array block diagram.

After calculation of each data, the coefficient will
be regenerated with the following equations. Where
mu is a coefficient.

ε(k) = OUT(k).(|OUT(k)|2 − 1) (3)

C(k + 1) = C(k)− µε(k)H∗(k) (4)

The CMA adaptive array had been implemented
using the proposed CAD tools for DPAA. For sim-
plicity, the example used consists of 4-tap FIR. As
all calculations listed above is done one after another,
CMA adaptive array works in three different phases, i.e.
Eq. (2) to generate output, (3) and (4) for coefficient re-
generation. Therefore, a program input for each phase
is written based on the numerical formulas given in
Eqs. (2)–(4). Note that dynamically programmability
of DPAA is utilized as the chip is reconfigured every cy-
cle to carry out three different programs. Calculations
are done in such a way that maximum parallelism and
pipelining are exploited. All possible parallel tasks are
carried out concurrently in those operating pipelines.
In the above example, the pipeline depth is two while
the throughput is 1 data frame per 11 cycles.

Program input for Eq. (2) which processes two taps
of the CMA adaptive array is shown in Fig. 11. The
program is compiled using the auto-program genera-
tion interface. The proposed CAD interface reads and
examines the syntax of the input file, and then maps
the numerical formula into available hardware. Infor-
mation needed to set up all LE is also compiled. As
expected, the mapping of DPAA is fast because each
phase requires less than 0.1ms on a 450MHz Pentium
III machine. This is much faster compare to FPGA
designs because the mapping of synthesized netlist on
a FPGA chip itself requires a few seconds. Note that
in order to synthesize a netlist for the above applica-
tions, a designer will take at least a few weeks to write
the above applications into HDL language, verified and
compiled with expensive CAD tools.

7. Conclusions

DPAA, a new architecture for DSP, and its VLSI imple-

Phase 1
========
Input:
inr
ini

Operation:
hr1 = inr; hi1=ini; //shift register
hr2 = hr1; hi2=hi1;
hr3 = hr2; hi3=hi2;
hr4 = hr3; hi4=hi3;

ta1=hr1*cr1; ta2=hr1*ci1; // complex number
ta3=hi1*cr1; ta4=hi1*ci1; // multiplication
tb1=hr2*cr2; tb2=hr2*ci2;
tb3=hi2*cr2; tb4=hi2*ci2;
or1=ta1 - ta4; oi1=ta2 + ta3;
or2=tb1 - tb4; oi2=tb2 + tb3;

totalr = or1 + or2; totali = oi1 + oi2; // addition
outr=totalr + outr; outi=totali + outi;

output:
outr
outi // output

Fig. 11 Program input for Eq. (2).

mentation has been described. Programming interface
for the proposed architecture has been developed and
it is shown that the new architecture will reduce devel-
opment cost significantly. DPAA has fulfilled its design
target as a new architecture which provides high paral-
lelism, high pipelining ability and high area efficiency
with simple programming interface.

As this work is the first generation of its kind, there
is much room for improvement such as speed, optimiza-
tion of program for dynamical reconfigurable applica-
tion, etc. However, the proposed DPAA is promising
with its dynamical programmability, complete routing
flexibility and high chip utilization. DPAA, with its
large number of processing elements and complete rout-
ing flexibility, can be utilized to explore parallel com-
puting. By incorporating various functions into DPAA,
we believe that DPAA can be a good mean to imple-
ment System-On-A-Chip (SoC) design.

For more advanced process technology, miniatur-
ization of device benefits DPAA because it will increase
the speed of DPAA. However, with reduced power sup-
ply voltage, designing high precision circuits in the mul-
tiple access bus interface will become difficult. In or-
der to utilize all available transmission channels, more
arithmetical functions should be incorporated into each
logic elements instead of one as proposed in DPAA.

Acknowledgement

The VLSI chip in this study has been fabricated in the
chip fabrication program of VLSI Design and Educa-
tion Center (VDEC), the Univ. of Tokyo with the col-
laboration by Rohm Corporation and Toppan Printing

TAN et al.: A NOVEL DPAA PROCESSOR FOR DIGITAL SIGNAL PROCESSING
747

Corporation. This work is supported by Japan Soci-
ety for the Promotion of Science (JSPS) Research for
Future Program.

References

[1] M. Dolle, S. Jhand, W. Lehner, O. Muller, and M. Schlett,
“A 32-b RISC/DSP microprocessor with reduced complex-
ity,” IEEE J. Solid-State Circuits, vol.32, no.7, pp.1056–
1066, July 1997.

[2] R.B. Yates, N. Thacker, S.J. Evans, S.N. Walker, and P.A.
Ivey “An array processor for general purpose digital image
compression,” IEEE J. Solid-State Circuits, vol.30, no.3,
March 1995.

[3] D.C. Chen and J.M. Rabaey, “A reconfigurable multipro-
cessor IC for rapid prototyping of algorithm-specific high-
speed DSP data paths,” IEEE J. Solid-State Circuits,
vol.27, no.12, pp.1895–1904, Dec. 1992.

[4] R.W. Hartenstien, R. Kress, and H. Reinig, “A reconfig-
urable data-driven ALU for Xputers,” IEEE Workshop on
FPGAs for Custom Computing Machine, FCCM’94, Napa,
CA, April 1994.

[5] H. Ochi, “FPAccA: Field programmable accumulator
array—Design and evaluation of FPAccA model 1.0 chip,”
Inf. Process., vol.40, no.4, pp.271–350, April 1999.

[6] J. Rose, R.J. Francis, D. Lewis, and P. Chow, “Architec-
ture of field-programmable gate arrays: The effect of logic
block functionality on area efficiency,” IEEE J. Solid-State
Circuits, vol.25, no.5, pp.1217–1225, 1990.

[7] J. Rose and S. Brown, “Flexibility of interconnection struc-
tures for field-programmable gate arrays,” IEEE J. Solid-
State Circuits, vol.26, no.3, pp.277–282, 1991.

[8] R. Yoshimura, B.K. Tan, T. Ogawa, S. Hatanaka, T.
Matsuoka, and K. Taniguchi, “DS-CDMA wired bus with
simple interconnect topology for parallel processing systems
LSIs,” ISSCC Digest of Techinical Papers, pp.370–371, Feb.
2000.

[9] S. Glisic and B. Vucetic, Spread Spectrum CDMA sys-
tems for Wireless Communication, Artech House Publish-
ers, 1997.

[10] M. Yamashina and H. Yamada, “An MOS current mode
logic (MCML) circuit for low power sub-GHz processors,”
IEICE Trans. Electron., vol.E75-C, no.10, pp.1181–1187,
Oct. 1992.

[11] A.P. Chandrakasan and R.W. Brodersen, Low Power Digi-
tal CMOS Designs, Chapter 4, Kluwer Academic Publish-
ers, pp.105–139, 1995.

[12] J.R. Treichler and B.G. Agee, “A new approach to multi-
path correction of constant modulus signal,” IEEE Trans.
Acoutst., Speech & Signal Process, vol.ASSP-31, no.2,
pp.459–472, April 1983.

[13] T. Ohgane, T. Shimura, N. Matsuzawa, and H. Sasaoka,
“An implementation of a CMA adaptive array for high
speed GMSK transmission in mobile communications,”
IEEE Trans. Veh. Technol., vol.42, no.3, pp.282–288, Aug.
1993.

Boon-Keat Tan was born in Penang,
Malaysia in 1972. He received his M.S. de-
gree from Osaka University, Osaka, Japan
in 1999. He is now working towards
his Ph.D. degree at the same university.
His current research interests are reconfig-
urable processors, high performance dig-
ital circuits and analog circuits. He is a
student member of the IEEE.

Ryuji Yoshimura was born in Nara,
Japan in 1973. He received his B.S.
and M.S. degrees from Osaka University,
Osaka, Japan in 1996 and 1998 respec-
tively. He is currently pursuing his studies
toward the Ph.D. degree at the same uni-
versity. His current research interests is
Analog Circuits. He is a student member
of the IEEE.

Toshimasa Matsuoka was born in
Osaka, Japan in 1966. He received the
B.S., M.S. and Ph.D. degrees in elec-
tronic engineering from Osaka University,
Osaka, Japan, in 1989, 1991 and 1996,
respectively. During 1988–1991, he was
involved in the research of heterostruc-
tures and superlattices of GaAs and re-
lated compounds. During 1991–1998, he
worked for the Central Research Labora-
tories, Sharp Corporation, Nara, Japan,

where he was engaged in the research and development of deep
submicron CMOS devices and ultra thin gate oxides. Since 1999,
he has been worked with Osaka University. His current research
includes phase lock loops and CMOS RF circuits. Dr. Matsuoka
is a member of the Japan Society of Applied Physics and the
IEEE.

Kenji Taniguchi received the B.S.,
M.S. and Ph.D. degrees from Osaka Uni-
versity, Osaka, Japan, in 1971, 1973 and
1986 respectively. From 1973 to 1986, he
worked for Toshiba Research and Devel-
opment Center, Kawasaki, Japan where
he was engaged in process modeling and
the design of MOS LSI fabrication tech-
nology. He was a Visiting Scientist at
Massachusetts Institute of Technology,
Cambridge, from July 1982 to November

1983. Presently, he is a Professor of Electronics Engineering
at Osaka University. His current research interests are in ana-
log circuits, radio frequency circuits, device physics and process
technology. Dr. Taniguchi is a member of the Japan Society of
Applied Physics. He is a fellow of the IEEE.

