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PAPER Special Issue on Function Integrated Information Systems

Dynamically Programmable Parallel Processor (DPPP):

A Novel Reconfigurable Architecture with Simple

Program Interface∗

Boon-Keat TAN†, Ryuji YOSHIMURA†, Nonmembers, Toshimasa MATSUOKA†,
and Kenji TANIGUCHI†, Regular Members

SUMMARY This paper describes a new architecture-based
microprocessor, a dynamically programmable parallel proces-
sor (DPPP), that consists of large numbers of simplified ALUs
(sALU) as processing blocks. All sALUs are interconnected via a
code division multiple-access bus interface that provides complete
routing flexibility by establishing connections virtually through
code-matching instead of physical wires. This feature is utilized
further to achieve high parallelism and fault tolerance. High
fault tolerance is realized without the limitations of conventional
fabrication-based techniques nor providing spare elements. An-
other feature of the DPPP is its simple programmability, as
it can be configured by compiling numerical formula input us-
ing the provided user auto-program interface. A prototype chip
based on the proposed architecture has been implemented on a
4.5mm× 4.5mm chip using 0.6µm CMOS process.
key words: CDMA bus, parallel processing, interconnection
topology, routing flexibility, fault tolerant

1. Introduction

As VLSI technology has advanced, implementing mul-
tiprocessor systems with many processors to achieve
parallelism has become popular. Such multiprocessor
systems should be implemented with a flexible inter-
connection topology in order to exploit maximum par-
allelism and fault tolerance. Several specific intercon-
nection topologies such as mesh, tree, hypercube, and
mesh-connected tree have been proposed [1], [2], how-
ever many of the proposed architectures are difficult
to implement and require large switching circuits. In
order to achieve efficient communication, large-scale
parallel processing systems such as those reported in
[3], [4] utilize special routing techniques and routing
chips. As feature sizes shrink, the multiprocessor con-
cept can be incorporated into the design of microproces-
sors to maximize parallelism. Recently proposed high-
performance microprocessors, particularly those with
data-path architectures, involve the use of several re-
configurable processing blocks that are interconnected
via high-speed switching circuits [5], [6]. All processing
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blocks in such microprocessors are designed to perform
parallel computing tasks, however, the design of the
switching circuit becomes the limiting factor in these
architectures. In addition, the complexity and diffi-
culty of design increase dramatically as the number of
processors increases.

In contrast, the interconnection topology adopted
in this work is based on orthogonal sequences as in [7].
We have already successfully implemented a code di-
vision multiple-access (CDMA) bus interface for par-
allel processing systems [8] that utilizes the orthogonal
pseudo-noise code sequence. The processor architecture
proposed in this paper, a dynamically programmable
parallel processor (DPPP), consists of a large number of
simplified processing blocks that are interconnected via
the CDMA bus interface. Unlike conventional parallel
processing systems that depend heavily on the inter-
connection topology or switching matrix circuitry, the
CDMA bus interface provides complete routing flexi-
bility with only a small silicon area. Instead of using
multi-function ALUs, each processing block in a DPPP
carries out several simple functions. Together with its
unique interconnecting topology, the proposed DPPP
features high chip utilization, high interconnection flex-
ibility, simple programmability without the need for
conventional CAD tools, dynamic reconfigurability, low
power consumption, and high fault tolerance. There
has been a recent proliferation of yield-enhancing tech-
niques involving the provision of spare elements dur-
ing fabrication that can be activated to replace faulty
primary elements [9]–[11]. However, the actual cost-
effectiveness of such schemes is still in doubt. In con-
trast, a DPPP has high fault tolerance even without
allocating spare elements.

2. Architecture

Figure 1 depicts the overall architecture of a DPPP,
which consists of simplified ALUs (sALU) as process-
ing elements. The sALUs are interconnected via a
multiple-access bus proposed by one of the authors [8].
We named the processing blocks in a DPPP “simplified
ALUs” because these blocks have relatively few arith-
metic functions compared to conventional ALUs. All
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Fig. 1 Architecture of proposed DPPP, comprised of many
sALUs interconnected via a CDMA bus.

Fig. 2 Structure of sALU, consisting of a transmitter circuit,
a receiver circuit and a logic block.

processing blocks in conventional data-path architec-
tures are identical, providing equal processing ability;
in the DPPP, some sALUs carry out a different set of
tasks and therefore differ from each other. The input
and output of the chip are connected to the multiple-
access bus via the interface circuit. The multiple-access
bus functions as a “virtual wire” that connects all pro-
cessors regardless of location on the chip. The DPPP
is based on the Harvard architecture, in which control
signals are separated from data signals. Instructions
for all sALU are loaded from an external sequencer via
several serial control buses.

2.1 Multiple Access Bus Interface

Figure 2 is a schematic of the structure of a sALU.
The sALUs consist of a logic block, a transmitter cir-
cuit and a receiver circuit; the transmitter and receiver
circuits themselves consist of a pseudo-noise (PN) code
generator, charge pumps, an integrator circuit, a mixer,
and memories such as ROM and memory cache. Cir-
cuit details for the interface are described in [8], [12].
The serial data output of the logic block is modulated
by a PN code, which is generated based on an address
stored in ROM. Each sALU has a unique address that

Fig. 3 Linear feedback shift register capable of generating 127
different PN codes.

Fig. 4 Simulation of CDMA bus interface operation showing
access period and code generation period.

differentiates it from others. The modulated signal is
then charge-pumped to the multiple access bus. In or-
der to receive the signal transmitted from a sALU, the
address of the sALU should be used to demodulate the
signal. The demodulated signal is retrieved via an in-
tegrator circuit and is then output to a logic block via
the INPUT node, as shown in Fig. 2. The control signal
VALID switches HIGH only when a signal is received.
The dynamic programmability of DPPP can be easily
understood by looking at how the PN codes are gen-
erated. Figure 3 shows the configuration of the PN
code generator; a generator that consists of linear feed-
back shift registers (LFSRs) requires an initial value
(INIT[6:0]) to create the PN sequence codes [13]. In
the DPPP, the initial value for the PN code genera-
tor is the address of each sALU, stored in the mem-
ory cache or ROM. The address is accessed in the first
1/127 of each clock cycle (access period); the remaining
time is the code generation period. During this period,
all data is transmitted between processing elements si-
multaneously through the multiple-access bus using PN
code modulation. The memory cache can be reloaded
dynamically in the code generation period even when
sALUs are functioning because the address is not being
accessed.

Figure 4 shows a simulation of multiple-access bus
operation with one sALU for simplicity. Note that the
voltage swing of the signal is small; i.e. the peak-to-
peak voltage of the signal is only 40mV. Consequently,
power consumption by the bus is much lower com-
pared to conventional Sonic type (time-division) inter-
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Fig. 5 Distributing functions of ALUs into simplified arith-
metic blocks, sALUs, that support several simple arithmetic func-
tions is advantageous for parallelism.

face. Transmissions using the multiple-access bus has
been verified using earlier circuits consisting of 10 pairs
of bus interface circuits. The bit error rate of the bus
interface is appreciably low.

2.2 Logic Block

An ALU in conventional processors can perform many
arithmetic functions. In contrast, in order to pro-
vide high interconnection flexibility, all functions in the
DPPP are distributed in different processing blocks, as
shown in Fig. 5. The sALUs incorporate several arith-
metic functions such as addition, subtraction, multi-
plication, shift operation, delay operation, comparison,
and bit-wise operations such as XOR and NOR. Dis-
tributing the functions into many different processing
blocks results in high chip utilization and facilitates
parallel processing. We have shown in previous work
that assigning individual arithmetic functions to single
processing blocks provides high chip area efficiency for
specialized digital signal processing [14]. However, the
above approach is not efficient for the design of general-
purpose processors such as the DPPP because some
functions are used with significantly less frequency. In
the DPPP, arithmetic functions that give good area ef-
ficiency are grouped into the same sALU. For example,
adders and subtractors share almost 90% of the hard-
ware, and thus combining the two functions into a single
sALU is desirable. Another criteria for grouping is that
frequently used functions should be grouped with less
frequently used functions.

As shown in Fig. 6, the logic block consists of a
serial 8-bit ALU with only a few arithmetic functions,
a control unit, a timing adjustment block, an overflow
processing block and a latency controller. Depending
on the functions of the sALU, the overflow processing
block may not be needed. The timing adjustment block

Fig. 6 Structure of logic block.

Fig. 7 Simple example of timing adjustment is done.

is required to synchronize arithmetic calculations be-
cause some functions require more than one cycle to
process data. For example, serial addition requires one
clock cycle for a given input whereas a compare oper-
ation requires 8 clock cycles. In addition, the starting
bit for each processor may arrive at different timings.
Figure 7 illustrates an example in which the sum of A,
B, C, D is generated using 3 adders (ADD1, ADD2,
ADD3). ADD1 and ADD2 operate immediately after
reset, whereas ADD3 commences functioning one clock
cycle later. This is achieved by using a latency con-
troller, which detects the commencement of operation
via a VALID signal.

The control unit stores the information required for
the timing adjustment and overflow processing blocks.
Dynamic reloading of setup information in the control
unit is not possible due to the continuous access by
the logic block and timing adjustment block. However,
dynamic function changes can be achieved by switch-
ing the function to another sALU. In other words, once
configured, all sALUs carry out a fixed function, but
the connections between all functional processors can
be reconfigured dynamically to achieve dynamic pro-
grammability.

3. How DPPP Works

As the DPPP is based on the Harvard architecture, the
control signals and data signals are separated, as shown
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Fig. 8 Instruction sets are loaded via several serial buses while
data signals transmitted via CDMA bus.

Fig. 9 Instruction format for each sALU.

in Fig. 8. The data signals utilize the multiple-access
bus while the control signal is transmitted using a num-
ber of serial buses. Initially, instructions for each sALU
are loaded from the external sequencer. However, the
instruction set can be reloaded during data processing
through the dynamic programmability of the architec-
ture. Figure 9 shows the instruction formats for rep-
resentative sALUs. The instruction sets for sALUs are
simple, consisting of only the addresses of the operand
and the operator. The address is used to generate PN
codes for the demodulation of data at the multiple-
access bus interface. The operator selects the functions
in each sALU and provides synchronization information
for the sALU. Note that the address required in the in-
struction set corresponds to the output of each sALU.
Therefore, data transfer between sALUs is carried out
by selecting the corresponding address. Broadcasting
of data to several sALU can be done by setting the
same address.

4. Program Interface

A CAD auto-program generation interface using nu-
merical formula input has been developed for the pro-
posed DPPP. As shown in Fig. 10, the program first
examines the syntax of the input text and checks for

Fig. 10 Program algorithm for user interface.

Input:
p11, p12, p21, p22, q11, q12, q21, q22;

Operation:
o11= p11*q11 + p12*q21;
o12= p11*q12 + p12*q22;
o21= p21*q11 + p22*q21;
o22= p21*q12 + p22*q22;
if( o11 ≥ o12) m1= o11 : o12;
// computing maximum component

output:
o11, o12, o21, o22, m1;

Fig. 11 Program input for matrix calculation.

floating nodes. The program then computes the la-
tency of each operation, and allocates each function to
processing blocks. Lastly, optimization is performed to
eliminate excess delay.

The design flow using the proposed program in-
volves merely compiling the proposed CAD for the nu-
merical formulas. The targeted algorithm can often be
expressed in the form of numerical formula. Simple
conditional expressions such as ‘IF’ are also supported.
A sample of the input used in the auto-program gen-
eration interface is shown in Fig. 11. An IF expression
is shown as an example. We evaluated the proposed
DPPP and the auto-program generation interface using
several conventional applications, as shown in Table 1.
As shown by the results, the design and programming
time using the DPPP is relatively short The proposed
interface is much simpler than hardware designs such as
FPGA, which involves the use of hardware description
language (HDL). The number of sALUs utilized rep-
resents the number of parallel tasks performed in each
application.

5. Fault Tolerant

The proposed architecture has high fault tolerance even
without using any specific fault-rectifying technique.
Fault tolerant is achieved by reallocating the task of
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Table 1 Evaluation of program user interface.

Applications Design Program No. of
Time Time ’sALU’s

CMA adaptive 50min 9ms 34
array (4 tap)
FIR filter 15min 8ms 14
(5 tap)
Counter 20min 5ms 7
(32 bits)
IDCT 35min 4ms 12
(2× 2 Matrix)

Fig. 12 Instruction sequence to be executed.

Fig. 13 If all sALUs surrounding the faulty block are occupied,
the task can be reconfigured to another sALU much due to the
absence of location limitations.

a fault processing block to any unoccupied sALU. For
example, when instruction sets such as those shown in
Fig. 12 are being executed by the DPPP with the con-
figuration shown in Fig. 13, the instructions are exe-
cuted by different processing blocks. The arithmetic
functions used in each sALU are highlighted in Fig. 13.
When the sALU labeled A becomes faulty, it can be
replaced by any other free sALU. Note that this can
be done regardless of whether the surrounding process-
ing blocks are occupied. In conventional array proces-
sors, faulty processors cannot be replaced under these
circumstances unless special interconnection topologies
and spare elements are provided. This follows from
the location-independence of the connections between
sALUs in the DPPP.

In other words, the DPPP will continue to function
correctly as long as there remain unoccupied sALUs to

Fig. 14 Micrograph of prototype chip consisting of 60 sALUs
fabricated on 4.5mm× 4.5mm silicon.

Table 2 Composition of processing blocks

sALUs Primary Sub-functions
(numbers) function
Gr1(MUL) Multiplication Delay Block,
(20) AND, OR
Gr2(ADD) Addition Delay Block,
(24) Subtraction NOT, XOR
Gr3(SHF) Shift Shift 1 bit2 bit right
(4) Operation Shift 1 bit2 bit left
Gr4(COM) Comparison Max, Min,
(4) Delay Block

replace faulty sALUs. The occurrence of faulty sALUs
will not kill the entire chip, reducing only the flexibility
in configuring computing task. Another feature of the
DPPP in terms of fault tolerance is that rerouting and
reconfiguration of the faulty sALU to its replacement
can be done easily and dynamically by changing the
receiver codes of the affected sALUs.

6. Chip Implementation

As a feasibility check of the proposed architecture, a
DPPP was implemented into a 4.5mm × 4.5mm pro-
totype chip using a 0.6µm triple-metal, double poly-
silicon CMOS process. A micrograph of the chip is
shown in Fig. 14. The DPPP prototype chip has 8 in-
puts, 8 outputs, and 52 processing blocks that can be
divided into four groups as shown in Table 2. Each
sALU carries out a primary function and several sub-
functions. Grouping was selected so as to realize high
chip density. The multiple bus access interface operates
at 200MHz. The performance of the chip is 106MOPs
when parallel processing is fully exploited. As all pro-
cessing blocks is able to function simultaneously, the
chip supports 52 parallel tasks. Note that due to high
density of the proposed architecture, number of pro-
cessing elements incorporated in the prototype chip is
relatively large compared to conventional architectures.

The number of different sALUs is chosen arbitrary,
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as shown in Table 2 taking into consideration that some
functions such as addition and multiplication are more
frequently used than others. However, the selection of
composition should be optimized based on a statistical
analysis of how frequently each arithmetic function will
be used in typical algorithms or applications. For exam-
ple, when the prototype chip is configured to execute a
16-tap FIR filter program, the utilization of hardware
resources is 90% (16 multipliers, 15 adders, 16 delay
blocks). In addition, optimal throughput is guaranteed
as all tasks can be executed in parallel. This is real-
ized through the provision on the prototype chip of a
sufficient number of adders for a corresponding number
of multipliers i.e. the ratio of Gr1(MUL) to Gr1(ADD)
approximately equals to one. Bad composition would
reduce the performance significantly.

The total number of possible interconnection is
7888(68 outputs× 116 inputs). In the DPPP, the entire
bus interface required 2.2×106 µm2 chip area. The chip
area required for the interconnect is almost negligible
because all sALUs in the DPPP are interconnected via
a differential bus. If implemented with a switch matrix
circuit, more than 5.0 × 106 µm2 is required without
considering the area required for interconnects, which
are expected to a further significant addition to chip
area.

7. Conclusions and Future Works

A parallel processor based on new architecture, a
DPPP, was proposed. The main feature of the DPPP
is the utilization of a code division multiple-access bus
instead of a conventional interconnection topology, dis-
tinguishing itself from other parallel processors. The
use of a CDMA bus is beneficial in that it provides com-
plete routing flexibility and dynamic programmability.
In addition, the DPPP consists of many simple process-
ing blocks that operate in parallel, making it possible to
achieve high chip density. An auto-program generation
interface was also proposed that allows numerical for-
mulas to be compiled and run on the DPPP. The DPPP
can be improved in terms of speed and power con-
sumption by further improving the CDMA bus inter-
face. Other future developments include the provision
of high-level programming language support for more
complicated tasks that cannot be expressed in terms of
numerical formulas or block diagrams. However, with
its large number of processing elements and complete
routing flexibility, the DPPP is useful for carrying out
pipelining and for performing concurrent tasks. It is
our belief that the DPPP will provide a new design
paradigm for parallel computing.
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