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Introduction. Let M be a compact connected riemannian manifold and
A the Laplacian acting on the space of C~-functions on M. The operator A
has a discrete spectrum consisting nonnegative eigenvalues with finite multi-
plicities. We denote by Spec M the spectrum of the A. Two compact con-
nected riemannian manifolds M and N are said to be isospectral to each other if
Spec M=Spec N. The spectrum of a riemannian manifold gives a lot of
information about its riemannian structure, but it does not completely deter-
mine the riemannian structure in general. In fact, there exist two flat tori
which are isospectral but not isometric (by J. Milnor, see [1]). On the other
hand some distinguished riemannian manifolds are completely characterized
by their spectra as riemannian manifolds. The n-dimensional sphere S” with
the canonical metric and the real projective space P"(R) with the canonical
metric are completely characterized by their spectra as riemannian manifolds if
n=6 (see [1], [8]). Recently, it has been shown successively that a 3-dimen-
sional lens space M is completely determined by its spectrum as a riemannian
manifold; first by M. Tanaka [7] in the case the order |z (M)| of the funda-
mental group of M is odd prime or 2-times odd prime, then by the author and
Y. Yamamoto [4] in a more general case, and finally by Y. Yamamoto [11] with-
out any restriction. These examples are riemannian manifolds of positive
constant curvature.

A connected complete riemannian manifold M (dim M=2) of positive con-
stant curvature 1 is called a spherical space form. Now, we consider the problem;

(0.1)  Is a spherical space form characterized by its spectrum among all spheri-
cal space forms ?

In this paper, we shall adapt one method to solve the problem and show affir-
mative results for the problem in the cases where spherical space forms are
3-dimensional and where spherical space forms are homogeneous.

Let S" (n=2) be the n-dimensional sphere of constant curvature 1. If M
is an n-dimensional spherical space form, then there exists a finite group G of
fixed point free isometries on S” such that M is isometric to S"/G. Let E, (k=0)
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be the eigenvalue k(k+n—1) of the Laplacian on S”/G. The generating function
F4(=) associated to the spectrum of the Laplacian on S”/G is defined by

Fe(2) = ‘i‘ (dim E,)z* .

By the definition, the spectrum of the spherical space form determines
the generating function and the converse is also true. Clearly, for alens space,
the generating function defined in the above is identical to the one defined in
[4]. In the paper [4], first we showed that the generating function of a lens
space has the unique meromorphic extension to the whole complex plane C.
And by the investigation of the Laurent expansion of the generating function
at poles, we proved the Main Theorem stated in [4]. The generating function
F¢(2) of a spherical space form S”/G has also the unique meromorphic exten-
sion to C. Their poles and the principal part of the Laurent expansion at
poles are closely related to the sets E(g) (¢ G) consisting of eigenvalues of g,
with multiplicity counted, and to the set o(G) consisting of orders of elements
in G. In 2, we investigate the positions, the orders of poles of F¢(z) and the
sets E(g), o(g) and their relations.

Combining the results in 2 and the classification theorem of 3-dimensional
spherical space forms due to W. Threlfall and H. Seifert [9], we shall show in 4.

Theorem L. If two 3-dimensional spherical space forms are isospectral, then
they are isomenric.

An n-dimensional (n=2) compact riemannian manifold is of constant cur-
vature K if n<5 and the manifold is isospectral to a compact riemannian manifold
of constant curvature K. (See [1],[8]). Together this with Theorem I, we see

Theorem II. A 3-dimensional spherical space forms are completely charac-
terized by its spectrum as a riemannian manifold.

Homogeneous spherical space forms are completely classified by J.A.

Wolf [10]. Using his results, we shall investigate properties of the generating
function of a homogeneous spherical space form in more details. Then we
shall obtain in 5.

Theorem III. Let M, N be spherical space forms. Suppose M is homogene-
ous and isospectral to N. Then N is isometric to M.

By the same reason as we have obtained the Theorem II, we see

Theorem IV. Homogeneous 5-dimensional lens spaces are completely charac-
terized by their spectra as riemannian manifolds.
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1. Spherical space forms and their spectra

Let S" (n=2) be the unit sphere centered at the origin in the (n+1)-di-
mensional Euclidean space R**'. We denote by O(n+1) the orthogonal group
acting on R**, A finite group G of O(n-1) is said to be a fixed point free subgroup
of O(n+-1) if for any g& G with g=1,,, (the unit matrix in O(n+1)), 1 is not an
eigenvalue of g. By the definition, a fixed point free finite subgroup G of O(n+1)
acts on S” fixed point freely, so that the quotient space S"/G becomes a rie-
mannian manifold of positive constant curvature 1 by the natural covering pro-
jection z of S” onto S"/G,

78" S"G.

Conversely, it is well known that any compact connected riemannian manifold
of positive constant curvature 1 is isometric to a quotient riemannian manifold
S"|G (n=2) with some fixed point free finite subgroup G of O(n+1). A com-
pact connected riemannian manifold of constant curvature 1 is called a spherical
space form.

Exampres. i) Let G be a fixed point free finite subgroup of O(n+1).
Suppose the order of G is one or two. Then G is {1,,,} or {+1,,,}, respecti-
vely. These yield the sphere S” and the real projective space P"(R).

ii) Let G be a fixed point free finite subgroup of O(2n) (n=2). Suppose G
is a cyclic subgroup of order g. Take a generator g of G. Then g is conjugate
in O(2n) to the element
R(l’_l) 0
q

o R(Z)
q

where p,, -+, p, are integers prime to ¢ such that the eigenvalues of g are
—p; l<i< 4 R0 _( cos 270 sin 2z

q (I1=i=n), and RO={ _in 279 cos 228/
Since G is conjugate in O(2#) to the fixed point free finite subgroup G'= {g"*}{=i,
tha spsce S*~!/G is isometric to the lens space L(g: py, ***, p,) (see [4]) as is seen
by Lemma 1.2 below

The following two lemmas give fundamental properties for spherical space
forms.

exp 2/ _—1% and exp 27/ —1

Lemma 1.1. i) Even dimensional spherical space forms are only the spheres
and the real projective spaces, ii) A finite fixed point free subgroup G of O(2n) is
contained in the special orthogonal group SO(2n).
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Proof. i) Let G be a finite fixed point free subgroup of O(2n+1) (2=1).
Then for any geG, detg’=1. Since 2n+1 is odd, g* has an eigenvalue 1.
Hence, g’=1,,,; which implies g=1,,4; or g=—1,,,;. Therefore G= {1,..:}

or {4-1z,41}.

il) LetgeG with g=#1,,. Then the eigenvalues of g are vy, ¥, **, ¥4, ¥ and
—1 with multiplicity 2(n—k), where 7, «-+, ¥, are unimodular complex num-
bers (#+41), since G is fixed point free. Thus we have det g=(—1)*""Pqy,+7;---

Y Tp=1. q.e.d.

Lemma 1.2. Let S"/G and S"|G’ be spherical space forms. Then S”|G is
sometric to S"|G' if and only if G is conjugate to G’ in O(n+-1).

Proof. Let g be an isometry of S”/G onto S”/G’. Then there exists an
isometry g of S" onto istself which covers the isometry g. Then isometry &
can be considered as an element of O(n+1) and yields an conjugation between
G and G'. Conversely let §&O(n+1) such that §Gg'=G’. Then g induces
the isometry g of S”/G onto S"/G’ such that gz(x)=n=(gx) for any xS”". q.e.d.

For a differentiable manifold M, we denote by C~(M) the space of complex
valued C=-functions on. M. Let A, be the Laplacian on R**! and (x,, -+, %,,)
the standard coordinate system on R"*!. Set r’= g}lx?. For k=0, let P* be

i=1
the space of complex valued homogeneous polynomials of degree k on R**!
and H* the subspace of P* consisting of harmonic polynomials on R**!,

H* = {fEP": Ajf=0}.

The group O(n+1) acts on P*. The subspace H* is a G-invariant subspace
and 7? is a G-invariant element of P We have a direct sum decomposition

(see [4]),
(1.1) Pt = H*Dr*p*2,

where we put P~'=P"2={0}.

The natural inclusion map 7 of S” into R**! induces the restriction map
t* of C=(R"*') into C=(S"),

* 1 C=(R™) — C=(S").

The group O(n-1) acts naturally on the spaces C=(R**!), C=(S") and its actions
commute with the map 7*.

Lemma 1.3. (See [4]). Let Ii* be the eigenspace with eigenvalue k(k-+n—1)
of the Laplacian on S”. Then the map i* gives an O(n-+1)-isomorphism H* onto
Sk,

¥ HY == 9i*,
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Let S”/G be a spherical space form. Then the natural projection z in-
duces the injective map z* of C=(S"/G) into C=(S™),

z* : C=(S"|G) — C=(S").
We see easily

Lemmal.4. The subspace n*(C=(S"|G)) of C=(S") comsists of all G-invariant
Sfunctions on S”.

Let A and A be the Laplacians on S”" and S”/G, respectively. Then we
have for any f € C=(S"/G),

(1.3) Ka*f = m*Af,

since 7 is a locally isometric mapping.
By Lemma 1.3, Lemma 1.4 and (1.3), we have

Proposition 1.5. Let ¢ and HE be the subspaces of H* and H* consisting
of all G-invariant elements of J* and H*, respectively. Then the space (z*)* 9Lt
s the eigenspace with eigenvalue k(k-+n—1) of the Laplacian A on S"|G and
isomorphic to Ht. Further, every eigenspace of A on S"|G obtained in this way.

2. The generating function associated to the spectrum of a spherical
space form

- It is well known that the sphere S” is not isospectral to the real projective
space P"(R) (cf.[1]). Together this fact with i) in Lemma 1.1, in case of even
dimensional spherical space forms, our isospectral problem is solved.

In [4], we defined the generating function associated to the spectrum of a
lens space. This generating function played an important role in our isospec-
tral problem for lens spaces. In this section, we also define the generating func-
tion associated to the spectrum of a spherical space form and study its properties.

Let M=S8""|G (n=2) be a spherical space form with a fixed point free
finite subgroup G of SO(2n).

DerFINITION. The generating function Fg(2) associated to the spectrum

of the Laplacian on M is the generating function associated to the infinite sequence
{dim Hé};ﬂ_o, i-e.,

Fo(z) = 3 (dim HE)z*.
=0
By the definition and Proposition 1.5, we have

Proposition 2.1. Let S*7!/G and S**7|G' be spherical space forms. Then
S*-1G 1is isospectral to S**7'|G’ if and only if
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Fo(z) = Fo(s) .

Theorem 2.2. Let S™7'|G be a spherical space form. On the domain
{z€C: |2| <1}, F¢(2) converges to the function

1 1—22
Fyz)= L s 1=%
)= 1G] 2 det (1—g?)

where |G| denotes the order of G.

Proof. Let X,, X,, be the characters of the natural representations of
SO(2n) on H* and P* respectively. Then we have

2.1) dim HA — IITI AN
and also by (1.1)
(2.2) | Xi(g) = Xu(&)—Xu-o(e) ,

where we put X_,=0 for ¢>0.

If an element g&.S0O(2#) is conjugate to an element g'€S0(2n) in O(2n),
then

(2.3) X(g)=Xg) k20.

Let g be an element in G of order q. Set y=exp 2z\/—1/g. And let 9%,
q%1, oo+, v?s, §?s be the eigenvalues of g, where py, p,, -+, p, are integers prime
to g. Then g is conjugate to the element

x(2) o
q
! in SO(2n).
P
0 R( q)
Let (%1, y1, ***, %, ¥,) be the standard euclidean coordinate system on R*.

Put 2;=x,4+/—1y; (i=1,2, -, n). Then the space P* has a base consisting of
all monomials of the forms

N
I

2lez/ = (zl)il. . (z”)i, . (21)1'1. . (5”)1',, ,

where iy, ++, 1,y f1, ***, J,=0 and 7,4+ +4i,+j;++-+j,=k. For any monomial
2f+Z7, we have

24) g(&1BT) = ot (5
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By (2,.2), (2.3) and (2.4), we have

D (g)s* = 2 Rale)—aol2))3*

=0

= (1-3) 3 %u(e)2*
= (1-3) P ()"

= (1_22) i 2 DR St M A

k=0 iy teetigtji bt in=h

==, 30 () ( iz ()

= (1—#) o -
(l_ryhz)...(l__fyﬁ,,z).(l_ry Plz)...(l_cy l’,,z)

122

 det (1,,—gz2)

Together this with (2.1), we obtain the theorem. q.e.d.

Remarks. i) Let E(g) be the set of eigenvalues of g, with multiplicity
counted. Then we have

det (1,,—g2) =yell'g[“)(l—yz) =YE1;I“)(z—fy) .

ii) By the theorem, the generating function can be considered as a meromor-
phic function on the whole complex plane C and its poles are on the unit circle
S!'={zeC|||z|=1}. This meromorphic extension of the generating function
to C is clearly unique.

In the followings, we consider the generating function associated to the
spectrum of a spherical space form S”/G as the meromorphic function of the
form in Theorem 2.2.

From i) in the above Remarks, we have

Corollary 2.3. Let S**7Y|G and S*7'|G’ be spherical space forms. Assume
there is a one to one mapping ¢ of G onto G’ such that the set E(g)=the set
E($(g)) for any g=G. Then S*™7|G is isospectral to S*7|G’.

Corollary 2.4. Let S™7'|G and S*7'|G’ be spherical space forms. Assume
S™-1G is isospectral to S**7*|G’'. Then we have |G|=|G'|.

Proof. The generating function F(2) has a pole of order 2n—1 at z=1 and

2

l;lfll (1—2)"'Fg(2) = Gl
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This proves Corollary 2.4. q.e.d.
Let G be a finite group.

DEFINITIONS. G, is the subset of G consisting of all elements of order k in
G. 0o(G) is the set consisting of orders of elements in G.
We have

G= |J G, (disjoint union).
154G
Lemma 2.5. Let G be a fixed point free finite subgroup of SO(2n) (n=2).
Then the subset G, is divided into the disjoint union of subsets Ci, +++, Ci* such
that each C}i (t=1,2, -+, 1) consists of all generic elements of some cyclic subgroup
of order kin G.

Proof. For any g€ G,, we denote by 4, the cyclic subgroup of G generat-
ed by g. For g, g’'€G, the cyclic group A4,N A, is of order k if and only if
A,=Ay. Now the lemma follows immediately. q.e.d.

Lemma 2.6. Let g be an element in SO(2n) (n=2) and of order q(q=3).
Set y=exp 2n\/ —1/q. Assume g has eigenvalues v, y™', y?1, oy7h1, eoe oyPh, YT
with multiplicities 1, 1, ,, 1, +++, 1y, i, respectively, where p,, -+, p, are integers prime
to q with p;=+p; (mod ¢) (1=5i<j<k), p;=41 (mod ¢q) ¢=1, ---, k) and
I+4+++iy=mn Then the Laurent expansion of the meromorphic function
1—22

- %  atz=v1
det (I—gz) " 277"

1 (\/__—1)11'{-1,),1 k o 1 ) . 1 _ ;
(2.5) ) BTy 1T {eot : (p;+1)—cot : (p;— 1)}

- the lower order terms.

Proof. We have

. 1—2?

l —ow\l

o N ey Y =Gy
1—o? & 1

T (r— Y (r— P (r— iy
_ 1 & { 1 }"i
(,Y__,Y—l)l ji=1 ,},p1+1(,y-pj+l_1)(1_,),—1;,--1)

=1—72*{ 1 [,1 1 ]}
(,),_,y—l)z 51 ,),pj+1(,y-pj—1‘_,),-pj+l) 1— g5+ | p1

_ 1—y? Y )
(7_7—1)1(1_72)'!—1 j=1 7"ﬁj+l l_ry'ﬁj'l
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_ (= 1 _ 1 i
(1_72)5-1 jI‘-I=, {1_ yoHL 1— 'y'l’i_l}

)yl b i
— S 1t oo % () —con 7 (5D’

1 S
1———_—_:1‘-’=%{1——\/—100t0} . q.e.d.

—e

where we used the formula

"Proposition 2.7. Let G be a fixed point free finite subgroup of SO(2n)
(n=2), and let kEa(G). We define a positive integer k, by
ky = 2n—1 if k=1 or2,

= max {max. of multiplicities of eigenvalues of g} if k=3.
€6

Then the generating function F(2) has a pole of order ky at any primitive k-th root

of 1.

Proof. It is easy to check that the generating function has poles of order
2n—1 at z=-+41. Hence, we may assume k=3. Let G,, C}, ---, Ci* be as in
Lemma 2.5. Then we have

(2.6) IG|Fo() =3 —1=% 4 s _ 1=2
ée,det (1,,—g)  #€e-e, det (1,,—g2)
- 1—22 1—2

7450 det (1,,—g2) ‘EG“G‘kdet(l—zr‘gz_).

Set y=exp 2z\/ —1/k. For any primitive k-th root v* of 1, where ¢ is an in-
teger prime to k, let

a,(2) A,-1(2) ay(t)
(z— ,.yt)ko+ (z— .yt)ko—rl‘ et (z~ ,y:)

by the principal part of the Laurent expansion of Fg(2) at z=%*. Then each
coefficient a,(¢) is an element in the k-th cyclotomic field @() over the rational
number field @ The automorphism o, of @(7) defined by

79

transforms a,(1) to a,(t) (i=1, 2, «++, k) by (2.6). Hence, it is sufficient to show
that the generating function F,(2) has a pole of order &, at =1, that is, to
show a;,(1)=0.

Note

cot a—cot b<<0 if O<b<a<rm.

Now, Proposition 2.7 follows immediately from (2.5) in Lemma 2.6 and (2.6).
q.e.d.
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From Proposition 2.7, we have

Corollary 2.8. Let S**~'|G and S™ |G’ be spherical space forms. Assume
S G is isospectral to S**7'|G’. Then, o(G)=a(G").

Proposition 2.9. Let S*7*/G and S**~'|G’ be as in Corollary 2.8. Then
the numbers of elements of order 4 in G and G' are equal.

Proof. If g=SO(2n) is of order 4, then g has eigenvalues /—1 and
—+/—1 with the same multiplicities n. Hence, we have

<3, det (1,,—g%) (1—}—22)" ’
where |G,| is the number of elements in G,.
Now, Proposition 2.9 follows immediately from this formula. q.e.d.

3. Classification of 3-dimensional spherical space forms

The classification of 3-dimensional spherical space forms has been obtained
by W. Threllfall and H. Seifert [9] (see also [3], [5] and [10]). In this section,
we shall describe their results and study some properties of the finite subgroups
appearing in the classification.

Let SO(3) be the special orthogonal group acting on R*. It is well known
that the finite subgroups of SO(3) (up to conjugations in SO(3)) are given as
follows (for details, see [10]);

Z,,: the cyclic group of order m (m=1),

D,,: the dihedral group of order 2n (n=2),

T: the tetrahedral group of order 12,

O: the octahedral group of order 24,

I: the icosahedral group of order 60.

These groups are given in terms of generators and relations by the followings;

31 Z,:4"=1,
32) D,: A"=B*=1, BAB'=4",
(33) T: A2=P "’—Q2=1 PQ = QP APA=0Q, AQA'=PQ,
(3.4) 0 { =Q0*=R'=1, PQ=QP, RAR'=4",

APA '=0Q, AQA*=PQ, RPR'=QP, ROR" ‘—Q !,
35 I A=B=C°*=ABC=1.
Moreover, it is known that T is isomorphic to the alternating group A, of 4-
symbols, O is isomorphic to the symmetric group S, of 4-symbols and I is iso-

morphic to the alternating group A; of 5-symbols.
Let H be the algebra of real quoternion numbers, which is a 4-dimensional
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vector space over the real number field R with basis {1, i, j, k} such that ?=
J’=k=—1, jj=—ji=k, jk=—kj=i and ki=—ik=j.

H = {a-+bi+c¢j+dk; a, b, c, d=R} .
As usual, we have the conjugation on H over R given by
aF T dk = a—bi—cj—dk .

The subset H'={¢gEH:¢qg=1} of H forms a multiplicative group, called
the group of unit quoternions, and it is isomorphic to the special unitary group
SU(2) acting on C2

ReMARK. The element —1 is the only element of order 2 in H'.

Let H, be the 3-dimensional real vector subspace of H with basis {i, j, k},
which will be identified R® by this basis. We have the map 7 of H' onto SO(3)

z: H' — SO(3)
defined by
=9 =947,
for g=H' and ¢'E H,,
7 gives a homomorphism of the group H' onto SO(3) and it is two-fold covering
map with z(g)==(—g).

Lemma 3.1. Let g be an element of order t in SO(3). Then the orders of
elements of w~'(g) are 2t and t for odd t, and 2t for even t.

Proof. Let s be an integer prime to £. Then we have

4 (coss?” +sin‘%k) = n(—cos%"i ——Sin{:ik)

_ (=) ¢

0 0 0/.

n 0
: s
Now, our element g is conjugate to ( t ) 0], for some integer s’ prime to
0 0 0
t, in SO(3). Then the elements in z~'(g) are conjugate in H' to :l:(cos‘VT” +

sins’T”k) Suppose ¢ is odd. Then we see easily that the orders of elements

(cossT”—l—sin‘Etik) and —(coss—t”—}—sinsT”k) are {¢, 2¢}. Next suppose ¢ is
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even. Then we see easily that they have the same order 2. q.e.d.

The finite subgroups of H' (up to conjugations in H') are given as follows
(see [10]); ‘

(3.6) Z,: the cyclic group of order m,
(3.7) D#==n"YD,,): the binary dihedral group of order 4n,

D}, is also given by
D}: A*=B*=1, BAB'=A4",
in th terms of generators and relations,

(3.8) T*=z"Y(T): the binary tetrahedral group of order 24,
(3.9) O*=="Y(0): the binary octahedral group of order 48,

and
(3.10) I*=z"Y(I): the binary icosahedral group of order 120.

The groups T'*, O*, I* are called the binary polyhedral groups.

Before describing the classification theorem, we need other two types of
finite groups.

The finite group Dj», (k=3, n odd and 7=3) of order 2*z is defined as
follows.

Let Z, be a cyclic subgroup of order 2* of H' and D¥, the binary dihedral
group of order 4n. Let Z;-1 be the cyclic subgroup of order 2#~* of Z and
let Z,, be the cyclic normal subgroup of order 2z of D, generated by 4 in
(3.7). Let ¢ be the isomorphism of the quotient group Z,+/Zy#-1 onto D,/ Z,,
Set

(3.11) Dy, = {(x, y)EZpX Diy: [y] = $([x])} ,

where [x], [y] mean the quotient classes in Z,/Zyu-1 and D},/Z,,. Then we
define

(3.12) Dir, = Dps,{(—1, —1), (1, 1)} .

Next, the finite group T'{#,(k=1) of order 3*8 is defined as follows.

Let Z; and T* be as before, considered as subgroup of H’'. Let Zu-1
be the cyclic subgroup of order 3*~! of Z;». Let Hy be the inverse image of
n of the subgroup of T generated by P and Q in (3.3). The group H, is a
normal subgroup of T* and is isomorphic to DF. Then the quotient groups
Zp|Zp-1 and T*|Hy are isomorphic to Z;. Hence, there exist only two iso-
morphisms +r;, Jr, of Z3/Z3-1 onto T*/H.
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Let ¢ be an isomorphism of Z;/Z;-1 onto T#/H,. We define
(3-13) Tir($) = (%, y)EZp X T*: [y] = ¢([#])} ,

where [x], [y] denote the quotient classes in each factor group. It is easy to
see Tirs(yry) is isomorphic to Tirs(yr;). In the followings, we denote by T'{es
the finite group isomorphic to one of the above groups. Note that T'41,.3= T*.

For two integers a and b, we denote by (a,b) the greatest common divisor
of a and b.

Theorem 3.2 (W. Seifert and H, Threlfall [9], see also [5] and [10]).
Let S3|G be a 3-dimensional spherical space form. Then G is isomorphic to
one of the following groups of type (I), (II), (III), (IV), (V) and (VI).
(I)  the group Z, with m=1,
(IT)  the group Z,X Djr, with (q, 2n)=1, k=3, n is odd and n=3,
(IIT) the group Z x D¥ with (g, 2n)=1 and n=2,
(IV) the group Z,X T4 with (g, 6)=1 and k=1,
(V)  the group Z, X O* with (g, 6)=1,
(VI) the group Z X I* with (g,30)=1.
Moreover, let S®|G' be an another spherical space form. Assume G is isomorphic
to G’ and is not of type (I). Then G is conjugate to G' in O(4), so that S3|G is
isometric to S3|G’.

Remark. If G is of type (I), then S3/G is a lens space as stated in examples
of 1. For the isometric conditions for lens spaces, see [4].

In the latter half of this section, we shall study some properties of the
finite groups appearing in the above theorem.

Lemma 3.3. Let Z,, be the cyclic subgroup of D¥, generated by the element
A in (3.7). Then all the elements of (D} —Z,,) are of order 4.

Proof. Any element in the set (D} —Z,,) is uniquely writen as BA*, where
1=<t<2n. Using the elementary relations in (3.7), we have

(BA'Y? = BA'BA!
= BA'""Y(AB)A!
= BA'"'BA*!
= (BA!-Y)?
—B.
Hence, the element BA* is of order 4. q.e.d.

From this lemma, we have directly the following two corollaries.
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Corollary 3.4. Let G=Z,x D}, be of type (III) in Theorem 3.1. Then
the number of the elements of order 4 in G is 2n for odd n and 2n+2 for even n,

respectively.
Corollary 3.5. Let G=Z,X D, be as in Corollary 3.4. Then we have

el
2

Lemma 3.6. Let G=Dj, be a finite group as in (3.11). Then we have

max o(G) = 2ng =

o(Dirg) = {2}, 2¥n’ : OSK'<<k, n' divides n} .

Proof. The group Dy+, is divided into two subsets, X=2Z-1X Z,, and
Y=(Zp—Zp-1) X (D¥—2Z,,). Since k=3, the sets of orders of elements in X
and Y are {2¥n': 0<k'<k, n’ divides n} and {2%}, respectively. It is easy
to see that the union of these sets coincides with the set o/(D3,), since k=3.

q.e.d.

From this lemma, we see easily

Corollary 3.7. Let G=Z X D3, be a finite group of type (II). Then
i) maxo(G)=2+" ‘=|_€2"—'.
i) 2%'€a(G) if and only if q' divides q.

Lemma 3.8. Let G=2Z, X Dj, be as in Corollary 3.7. Then the number of
elements of order 4 in G is 2.

Proof. It is sufficient to show that the number of elements of order 4 in
Dj, is 2. Let X and Y be the sets as in the proof of Lemma 3.6. Since k=3,
any element in Y does not yield an element of order 4 in Dj:,. Let (x, y)eX.
By [(x,y)], we mean its quotient class in Djs,. If [(x,y)] is of order 4, then
the order of y must be one or two, i.e., y=--1, (as elements in H’), since 7 is
odd. Thus, x must be of order 4. But the elements of order 4 in Z,:-1 consists
of two elements which differ in sign (as elements in H'). Therefore the
number of the elements of order 4 in Dj, is 2. q.e.d.

Lemma 3.9. Let T* be the binary tetrahedral group and Hy the subgroup
of T* defined before. Then o(T*— Hy)= {3, 6}.

Proof. Let T be the group as in (3.3). Then T is isomorphic to the
alternating group A, of 4 symbols 1, 2, 3 and 4. We use the usual notations
for permutations (see [2]). Then the subgroup =(Hj,) corresponds to the sub-
group Dy={1, (1,2) 3,4), (1,3) (.4), (1,4) (2,3)}. Since A,—D, (={(1,2,3),
1,3,2), (1,2,4), -}) consists of all 3-cycles in A,, we have o(4,—D,)= {3}.
Now, Lemma 3.9 follows from Lemma 3.1. q.e.d.
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Lemma 3.10. Let G= T be the finite group defined in (3.13). Then
o(G)={3" 2-3, 4.3¥, 2.3¥, 3¥: 1<Rk'<k}.

Proof. We divide the set G into two subsets, X=Zs-1X Hy and Y=
G—X. The orders of elements in X are 3¥, 2-3%, 4.3¥ (1<k’<k). On the
other hand, since o(T*—Hy)=1{3, 6} and o(Z;x—Zz;-1)={3"}, the orders of
elements in the set Y are 3* and 2-3%. q.e.d.

Lemma 3.11. We have o(0%)={1,2,3, 6,8} and o(I*)=1{1,2, 3,4, 5, 6,
10}.

Proof. This follows directly from the facts that O is isomorphic to S,
and I is isomorphic to As. q.e.d.

By Lemma 3.10 and Lemma 3.11, we have
Corollary 3.12. Let Giy=2Z,X Tz, Gy=Z,X 0* and Gy=Z X I* be

finite groups of type (IV), (V) and (VI), respectively. Then max o-(GIV)=EIV—l,

|Gyl Gyl 4

max a-(GV)=—6 and max o-(GVI)=i?—, respectively.

4. Proof of Theorem I

Let S3/G and S%G’ be spherical space forms and Fy(2), Fg/(2) their
generating functions. Suppose Fy(2)=F(2). Then we obtained in 2 the
followings;

#1) |G|=IG"],
4.2) o(G)=0c(G"), particularly max o(G)=max o(G").
(4.3) The numbers of elements of order 4 in G and G’ are equal.

First, suppose G is of type (I), i.e., G is cyclic. Then max o(G)=|G|.
By (4,1), (4.2), we have maxo(G")=|G’|. This implies G’ is also cyclic.
Thus S%G, S3/G’ are lens spaces. Hence, S%/G is isometric to S3/G’ by [4],
[7] and [11]. Next, suppose G is of type (II). Then by Corollary 3.5, 3.7
and 3.12, G’ is of type (II) or type (III). Comparing the numbers of elements
of order 4 in G and G’ (Corollary 3.4 and Lemma 3.8), we see G’ is of type
(II). Let G=Z,XDj, and G'=ZyXD3¥,. Then by Lemma 3.6, k=F'.
From ii) in Corollary 3.7, g=¢q’. Hence,n=n'. These implies G is isomorphic
to G'. Thus S3/G is isometric to S3/G’. Suppose G is of type (III). Then
G' s also of type (III), by Coroilary 3.5 and 3.12. By Corollary 3.4, we can
see easily G is isomorphic to G'. Hence, by Theorem 3.2, S%G is isometric
to S%/G’. Finally, suppose G is of type (IV), (V) or (VI). Then by Corollary
3.12, we obtain G’ is of the same type as G and isomorphic to G. By Theorem
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3.1, this means S%/G is isometric to S%®G’. Thus the proof is completed.
q.e.d.

5. The spectrum of a homogeneous spherical space form

In this section, we shall show a homogeneous spherical space form is com-
pletely characterized by its spectrum among all spherical space forms. First,
we recall the classification of homogeneous spherical space forms due to J.A.
Wolf.

Theorem 5.1 (See [10]). Let G be a fixed point free finite subgroup of
SO(2n) (n=2). Then the following conditions are equivalent.

1. 8*7YG is a riemannian homogeneous space.

2. For any gEG, either g=-1,, or there is a unimodular complex number
N such that half the eigenvalues of g are N and the other half are X.

3. Either (i) G is cyclic of order g=1, and G is conjugate to the image of
Z,={g'}i= under the representation TD---PT (n-times) of Z,, where T(g')=
R(t/q)c SO(2), or (ii) G is isomorphic to a binary dihedral or binary polykedral
group P*, n is even and G is conjugate to the image of P* under the representation

PD--Dp (%— times) of P*, where p: P*C(the group of unit quoternions)=
SU(2)c SO®4).
Let S?*7!/G be a homogeneous spherical space form. Then by 2 in Theorem

5.1, for any element g in G with g==+1,, g has only two eigenvalues A, A
with the same multiplicities 7.

Lemma 5.2. Let S**7|G be a spherical space form and \ a unimodular com-
plex number with A== -+1. Then we have

lim (3—3)"Fol(z) = I—Clr‘l (i—:%;;NA(G) ,

where N\(G) denotes the number of elements in G of which eigenvalues are N and
X with the same multiplicities n.

Proof. We have

: n 1—2? _ 1—2?
=) =Ry — oy

If g€G with g4=4-1,,, then the multiplicities of eigenvalues of g are at most #.
These imply the lemma. q.e.d.

Now, we give a proof of Theorem III.

Let $**7'/G, S*7/|G’ be spherical space forms. Assume S*7!/G is homo-
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geneous riemannian manifold and isospectral to S$?**~!/G’. By Theorem 5.1,
we have

SIN(G)=2(|G|—2) if |G| iseven,
A
=2(G|—1) if |G|isodd,

where the summation runs through all unimodular complex numbers which are
eigenvalues of some g&G with g4=4-1,,. By Lemma 5.2, we have

NAG) _ Ni\(G")
|G| 1G']

Since |G|=|G’| by Corollary 2.4, we see
NA(G) == N)‘(G,) .

Hence, we have
DINNG) =2(|G'|—2) if |G’'] is even,
A
=2(|G'|-1) if |G'|isodd.

This implies that any g&G with g==-+1,, has only two eigenvalues with the
same multiplicities #. Therefore S?~!/G’ is a riemannian homogeneous mani-
fold by Theorem 5.1. By 3 in Theorem 5.1, G, G’ are isomorphic to one of
the groups Z,, D¥,, T* O* or I*. On the other hand, we have seen before

(Corollary 3.5 and 3.12), max o(Z,)=|Z,|=g, maxo(DE)= ”’Tm — 20,

| T*|
4
the assumption, we have o(G)=0(G"), particularly max o(G)=max o(G'). From
these facts, we see that G is isomorphic to G’. 'This completes the proof by 3
in Theorem 5.1. q.e.d.

max o( T*)=

—6, max o(0%)=12%1 06* '

— SN P il
8 and max o(I*) 7 10. By

Appendix. In the proof of the Main theorem in [11], Y. Yamamoto
assumed that our isospectral problem for 3-dimensional lens spaces is equi-
valent to some number theoretical problem (Lemma in the below). For the
completeness, we give a proof of it in this appendix.

Let a(u: p,q) denote the number of lattice points (x,y)EZ? such that
@) |x]+1y| =u (ii) x+py=0 (mod g), where u, p, ¢ are given integers with p
prime to g. Let p’ be another integer prime to g. Let L(q: p) and L(q: p") be
3-dimensional lens spaces defined in [4]. In [4] and [11], the author and Y.
Yamamoto proved.

Theorem. If the lens space L(q: p) is isospectral to the lens space L(q: p")
then they are isometric.
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In [11], Y. Yamamoto assumed the following lemma to show the above
theorem for any composite number g.

Lemma. The spaces L(q: p), L(q: p') are isospectral if and omly if
a(u: p, Q)=a(u: p, q') for every positive integer u.

Proof. We retain the notations in [4]. Let G= {g*}izs be the cyclic
subgroup of SO(4) defining the lens space L(q: p)=S°/G, where g:(g 3),)5

U(2)cSO(4) and v=-exp2z\/—1/q. Let E,;.» be the eigenspace of the
Laplacian on L(gq:p) with the eigenvalué k(k+2). Then the dimension of
E,t+, dim E,.5), is the dimension of the space consisting of g-invariant ele-
ments in H*, because g is a generator of G. Let P¢ be the space of G-
invariant homogeneous polynomials of degree 2 on R‘ By (2.2) in [4], we
have

dim E, (45 = dim P&¢—dim P§2.

From (3.3) in [4], dim P¢ is equal to the number of the set
i) 4+ip—h—j.p=0 (modyg),
16 p,9) = {u i jpeze () HERICHD (o),
(i) &+ thtj =k
We can define the injection map » of I(k—2: p, g) into I(k: p, g) by
"P‘(ib iz: jl: ]2) = (il: i2+1)jl: j2+1) .
By this map, we can see easily dim E,.p is equal to the number of the set
(1) i—j+py=0 (modyg),
(Zj,y)E23: (ii) i+j+|y|=k,
(1) £=0, j=0
Put x=i—j in the above. Then the number of the above set is equal to the
number of the set

(i) x+py=0 (mod g),
G, x, y)E2Z2: (ii) 2j+%+|y|=k,
(iii) j+*=0, j=0
From this, we see easily the number of the above set is equal to the number of
the set

(i) x+py=0 (modg),
Jk:p, 9)= {(x,y)EZ% (ii) »+y=2 (modk),;.
(i) [x|+1yI=k
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It is clear that J(k: p, g)=J(k: p’, q) for every positive integer k if and only
if a(u: p, g)=a(u: p', q) for every positive integer u. 'This completes the proof
of the lemma. q.e.d.
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