

Title	An upper bound for Loewy lengths of projective modules in p-solvable groups
Author(s)	Willems, Wolfgang
Citation	Osaka Journal of Mathematics. 1987, 24(1), p. 77-81
Version Type	VoR
URL	https://doi.org/10.18910/5175
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

AN UPPER BOUND FOR LOEWY LENGTHS OF PROJECTIVE MODULES IN p -SOLVABLE GROUPS

WOLFGANG WILLEMS

(Received October 8, 1985)

1. Introduction. Let p be a prime, F a field of characteristic p and let G be a finite group. With every FG -module M there is attached a non-negative integer $L(M)$ called the Loewy length of M . If $J(FG)$ denotes the Jacobson radical of FG , then $L(M)$ is the smallest integer n such that $MJ(FG)^n$ is the zero module. The Loewy length of a module is of some interest since knowledge of it's value or at least of good bounds for it can be very useful determinating of the structure of the module.

In a significant paper [5], Jennings solved the structure problem for the group algebra of a p -group. Unfortunately, little is known about the algebra structure of an arbitrary group algebra, resp. of a p -block. However, in case of p -solvable groups, there are many papers concerning bounds for the Loewy length of a group algebra, resp. of a p -block ([6], [7], [8], [12], [14], [15], [16], [17]).

Recently Ninomiya found a lower bound for the Loewy length of a projective indecomposable module depending on the order of a vertex of it's head ([13]). The aim of this note is to determine an upper bound.

Throughout this paper all groups in questions are finite and p -solvable all modules finitely generated FG -modules where F denotes a field of characteristic p . The notation used in the following is consistent with that in the books of Feit [2] and Huppert/Blackburn [4].

2. Results

Theorem 1. *If P is a projective indecomposable module, then $L(P) \leq \max\{|V| \mid V \text{ is a vertex of a composition factor of } P\}$.*

Theorem 2. *Equality holds in Theorem 1 if and only if the defect group of the block to which P belongs is cyclic.*

Corollary (Koshitani, Okuyama, Tsushima). *Let B be a p -block with defect group D . Then $L(B) \leq |D|$ and equality holds if and only if D is cyclic.*

According to all the examples we know, it seems reasonable to ask the

Question. Let M be an irreducible module with vertex V . Is it true that $L(P_c(M)) \leq |V|$ where $P_c(M)$ denotes the projective cover of M ?

To see that the problem considered here differs from the analogue for p -blocks and defect groups, let us mention the following remarkable example ([10], [11]).

Let p be the prime 3 and let G denote the semidirect product of $SL(2,3)$ with the standard module. Then G possesses an irreducible module M with

$$L(P_c(M)) = |vx(M)|$$

where the vertex $vx(M)$ of M is elementary abelian of order 9.

3. Proofs

In what follows we may always assume that F is algebraically closed. The reduction to such a field is routine since the radical of a group algebra, vertices and defect groups are well behaved by field extensions.

Proof of Theorem 1.

We argue by induction on $(|G|_p, |G|)$ where $|G|_p$ denotes the p -part of the order $|G|$ of G .

Write $P = P_c(M)$ for some irreducible module M .

(1) First assume that $O_p(G) \neq \langle 1 \rangle$.

Let E be a normal abelian p -subgroup of G . Put $J = J(FE)$ and let G act by conjugation on the powers J^i of J . By a result of Alperin, Collins and Sibley [1], we have with $\bar{G} = G/E$ an FG -isomorphism

$$P_{\bar{c}}(M) \otimes J^i / J^{i+1} \cong P_c(M) J^i / P_c(M) J^{i+1}.$$

Since $E \leq C_G(J^i / J^{i+1})$, the left hand side is an $F\bar{G}$ -module, hence a projective $F\bar{G}$ -module. As FG -modules, all composition factors of

$$X := P_{\bar{c}}(M) \otimes J^i / J^{i+1}$$

are composition factors of $P_c(M)$.

Hence by the inductive hypothesis we get

$$\begin{aligned} L(X) &\leq \max\{|V| \mid V \text{ is a vertex of a composition factor of } X\} \\ &\leq \max\{|V| \mid V \text{ is a vertex of a composition factor of } P_c(M)\} \end{aligned}$$

and therefore

$$\begin{aligned} L(P_c(M)) &\leq \max\{|V| \mid V \text{ is a vertex of a composition factor of } P_c(M)\} \cdot L(FE) \\ &\leq \max\{|V| \mid V \text{ is a vertex of a composition factor of } P_c(M)\} \cdot |E| \\ &= \max\{|V| \mid V \text{ is a vertex of a composition factor of } P_c(M)\}. \end{aligned}$$

Thus it remains to deal with the case

$$H := O_{p'}(G) \neq \langle 1 \rangle.$$

Let N be an irreducible constituent of M_H and let I denote the inertial group of N in G , i.e.

$$I = I_G(N) = \{g \mid g \in G, N \otimes g \cong N\}.$$

(2) Next we consider the case $I < G$.

By Clifford's theory, there exists an irreducible FI -module X such that $M \cong X^G$ and $X_H \cong eN$ for some $e \in N$. According to Proposition 2.7 in [18] we have

$$P_G(M) \cong P_I(X)^G.$$

We claim that for all composition factors Y of $P_I(X)$ the induced modules Y^G are irreducible. Since $vx(Y) = vx(Y^G)$ we are done by the inductive hypothesis. Thus assume that Y is a composition factor of $P_I(X)$ and Z an irreducible submodule of Y^G . Obviously, $Y_H \cong fN$ for some $f \in N$.

If $\{g_1 = 1, g_2, \dots, g_r\}$ denotes a right transversal of I in G , then

$$Z_H \subseteq (Y^G)_H = Y_H \otimes g_1 \oplus \dots \oplus Y_H \otimes g_r$$

where the $Y_H \otimes g_i$ are precisely the homogeneous components of $(Y^G)_H$.

Now choose a homogeneous component of Z_H , say W . We may assume that $W \subseteq Y_H \otimes g_1$, otherwise we consider a suitable G -conjugate of W . Since I acts irreducibly on Y , we get $W_H = Y_H \otimes g_1$ and therefore $Z = Y^G$.

(3) Finally, let $I = G$.

Now, Fong's reduction theorem ([2], Chap. X) asserts that there exists a finite group \tilde{G} and a short exact sequence

$$\langle 1 \rangle \rightarrow Z \rightarrow \tilde{G} \rightarrow G \xrightarrow{f} \langle 1 \rangle$$

with Z a cyclic p' -group in the center of \tilde{G} .

Furthermore,

- (i) \tilde{G} contains a normal subgroup $\tilde{H} \cong H$ with $Z\tilde{H} = Z \times \tilde{H} = f^{-1}(H)$.
- (ii) There is an $F\tilde{G}$ -module \tilde{N} on which \tilde{H} acts irreducibly and an $F\tilde{G}$ -module \tilde{M} with $\tilde{H} \subseteq \ker(\tilde{M})$ such that M considered as an $F\tilde{G}$ -module is isomorphic to $\tilde{M} \otimes \tilde{N}$.
- (iii) $P_{\tilde{G}}(M) \cong P_{\tilde{G}}(\tilde{M}) \otimes \tilde{N}$.

Since $\tilde{H} \subseteq O_{p'}(\text{Ker}(\tilde{M}))$, we have $\tilde{H} \subseteq \text{Ker}(\tilde{Y})$ for all composition factors \tilde{Y} of $P_{\tilde{G}}(\tilde{M})$ (see [18], 3.1). Thus by ([4], Chap. VII, 9.12), the tensor product $\tilde{Y} \otimes \tilde{N}$ is irreducible. Because of ([4], Chap. VII, 14.1 and 14.2), there are isomorphisms

$$P_{\tilde{G}}(M) \cong P_{\tilde{G}/Z}(M) \cong P_G(M) \text{ and } P_{\tilde{G}}(\tilde{M}) \cong P_{\tilde{G}/\tilde{H}}(\tilde{M}).$$

In particular, each composition factor Y of $P_G(M)$ is of the form $Y \cong \tilde{Y} \otimes N$ for some composition factor \tilde{Y} of $P_{\tilde{G}}(\tilde{M})$. Since $\dim N$ is prime to p , we get $|vx(Y)| = |vx(\tilde{Y})|$, by ([3], 2.1). Now, $|\tilde{G}/\tilde{H}|_p = |G|_p$ and $O_p(\tilde{G}/\tilde{H}) \neq \langle 1 \rangle$. Apply part (1) of the proof to $P_{\tilde{G}/\tilde{H}}(\tilde{M}) \cong P_{\tilde{G}}(\tilde{M})$ and the proof is complete.

Proof of Theorem 2.

Assume first that the defect group D of the p -block B to which P belongs is cyclic. In this case it's well-known that

$$B \cong \text{Mat}(n, FU)$$

where $D \trianglelefteq U \leqslant \text{holomorph}(D)$ and U/D is a cyclic p' -group. From this we deduce quite easily that all the projective indecomposable modules in B are uniserial of length $|D|$. Since D is a vertex for all irreducible modules in B , the assertion follows.

For the other direction in Theorem 2 assume that $P = P_G(M)$ for some irreducible module M and

$$\begin{aligned} L(P_G(M)) &= \max \{ |V| \mid V \text{ is a vertex of a composition factor of } P_G(M) \} \\ &= |V_0|. \end{aligned}$$

We claim by induction on $(|G|_p, |G|)$ that V_0 must be cyclic. Then it's well-known that V_0 coincides up to G -conjugation with the defect group D . To do this assume first that $O_{p'}(G)$ is contained in the center $Z(G)$ of G . In this case

$$O_{p',p}(G) = O_{p'}(G) \times O_p(G)$$

and $G/O_{p',p}(G)$ acts faithfully on $O_p(G)$. Let E be an abelian normal p -subgroup of G and put $\bar{G} = G/E$.

Similiar to part (1) of the proof of Theorem 1 we get

$$L(P_{\bar{G}}(\bar{M})) = |V_0| \text{ and } E \text{ has to be cyclic.}$$

By the inductive hypothesis, V_0 is cyclic. Now, if G has at least two minimal normal p -subgroups, then V_0 is abelian.

In particular, $O_p(G)$ is abelian and therefore cyclic. Since $G/O_{p',p}(G)$ acts faithfully on $O_p(G)$, $O_p(G)$ is a Sylow p -subgroup of G . Hence G has only one minimal normal p -subgroup E . This implies that E is contained in the center of $O_p(G)$. Since $O_p(G)/E$ is cyclic, $O_p(G)$ must be abelian, hence cyclic and therefore a Sylow p -subgroup of G . The proof can now be finished by the same line as we did in (2) and (3) of the proof of Theorem 1.

References

- [1] J.L. Alperin, M. Collins and D. Sibley: *Projective modules, filtrations and Clifford theory*, Bull. London Math. Soc. **16** (1984), 416–420.
- [2] W. Feit: *The representation theory of finite groups*, North-Holland, Amsterdam/Oxford/New York, 1982.
- [3] W. Hamernik and G. Michler: *On vertices of simple modules in p -solvable groups*, Mitteilungen Math. Sem. Giessen **121** (1976), 147–162.
- [4] B. Huppert and N. Blackburn: *Finite groups II*, Springer-Verlag, Berlin/Heidelberg/New York, 1982.
- [5] S.A. Jennings: *The structure of a group ring of a p -group over a modular field*, Trans. Amer. Math. Soc. **50** (1941), 175–185.
- [6] S. Koshitani: *On the nilpotency indices of the radicals of group algebras of p -solvable groups*, Proc. Japan Acad. **53A** (1977), 13–16.
- [7] S. Koshitani: *A remark on the nilpotency index of the radical of a group algebra of a p -solvable group*, Proc. Edinburgh Math. Soc. **25** (1982), 31–34.
- [8] S. Koshitani: *On lower bounds for the radical of a block ideal in a finite p -solvable group*, Proc. Edinburgh Math. Soc. **27** (1984), 65–71.
- [9] S. Koshitani: *On the Jacobson radical of a block ideal in a finite p -solvable group for $p \geq 5$* , J. Algebra **80** (1983), 134–144.
- [10] S. Koshitani: *On the Loewy series of the group algebra of a finite p -solvable group with p -length > 1* , Preprint.
- [11] M. Lorenz: *On Loewy lengths of projective modules for p -solvable groups*, Comm. Algebra **13** (1985), 1193–1212.
- [12] K. Motose: *On a theorem of Tsushima*, Math. J. Okayama Univ. **25** (1984), 11–12.
- [13] Y. Ninomiya: *On a theorem of Koshitani*, Math. J. Okayama Univ. **26** (1984), 19–22.
- [14] Y. Tsushima: *Radicals of group algebras*, Osaka J. Math. **4** (1967), 179–182.
- [15] Y. Tsushima: *Some notes on the radical of a finite group ring*, Osaka J. Math. **15** (1978), 647–653.
- [16] Y. Tsushima: *Some notes on the radical of a finite group ring II*, Osaka J. Math. **16** (1979), 35–38.
- [17] D.A.R. Wallace: *Lower bounds for the radical of the group algebra of a finite p -soluble group*, Proc. Edinburgh Math. Soc. **16** (1968/69), 127–134.
- [18] W. Willems: *On the projectives of a group algebra*, Math. Z. **171** (1980), 163–170.

Johannes Gutenberg-Universität
 Fachbereich 17 Mathematik
 Postfach 3980 6500 Mainz
 F.R.G.

