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1. Introduction. Let p be a prime, F a field of characteristic p and
let G be a finite group. With every FG-module M there is attached a non-
negative integer L(M) called the Loewy length of M. If J(FG) denotes the
Jacobson radical of FG, then L(M) is the smallest integer 7 such that MJ(FG)"
is the zero module. The Loewy length of a module is of some interest since
knowledge of it’s value or at least of good bounds for it can be very useful
determinating of the structure of the module.

In a significant paper [5], Jennings solved the structure problem for the
group algebra of a p-group. Unfortunately, little is known about the algebra
structure of an arbitrary group algebra, resp. of a p-block. However, in case
of p-solvable groups, there are many papers concerning bounds for the Loewy
length of a group algebra, resp. of a p-block ([6], [7], [8], [12], [14], [15], [16],
[17]).

Recently Ninomiya found a lower bound for the Loewy length of a pro-
jective indecomposable module depending on the order of a vertex of it’s head
([13]). The aim of this note is to determine an upper bound.

Throughout this paper all groups in questions are finite and p-solvable
all modules finitely generated FG-modules where F denotes a field of char-
acteristic p. The notation used in the following is consistent with that in the
books of Feit [2] and Huppert/Blackburn [4].

2. Results

Theorem 1. If P is a projective indecomposable module, then
L(P)<max{|V ||V is a vertex of a composition factor of P}.

Theorem 2. Equality holds in Theorem 1 if and only if the defect group of
the block to which P belongs is cyclic.

Corollary (Koshitani, Okuyama, T'sushima). Let B be a p-block with
defect group D. Then L(B)< |D| and equality holds if and only if D is cyclic.

According to all the examples we know, it seems reasonable to ask the
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Question. Let M be an irreducible module with vertex V. Is it true that
L(Py(M))< |V | where P(M) denotes the projective cover of M ?

To see that the problem considered here differs from the analogue for
p-blocks and defect groups, let us mention the following remarkable example

({107, [11).
Let p be the prime 3 and let G denote the semidirect product of SL(2,3)
with the standard module. Then G possesses an irreducible module M with

L(Pe(M)) = |ox(M)]

where the vertex vx(M) of M is elementary abelian of order 9.

3. Proofs

In what follows we may always assume that F' is algebraically closed. The
reduction to such a field is routine since the radical of a group algebra, vertices
and defect groups are well behaved by field extensions.

Proof of Theorem 1.

We argue by induction on (|G|, |G|) where |G|, denotes the p-part of
the order |G| of G.

Write P=P (M) for some irreducible module M.
(1) First assume that O,(G)=<1D.

Let E be a normal abelian p-subgroup of G. Put J=J(FE) and let G
act by conjugation on the powers J? of J. By a result of Alperin, Collins and
Sibley [1], we have with G=G/E an FG-isomorphism

Pe(M)Q J'[J** =P o(M)J'[Po(M)J' .

Since ECSCy(Ji[Ji*), the left hand side is an FG-module, hence a projective
FG-module. As FG-modules, all composition factors of

X: = Pe(M)QJ' ]

are composition factors of Pg(M).
Hence by the inductive hypothesis we get

L(X)<max{| V||V is a vertex of a composition factor of X}
<max{| V||V is a vertex of a composition factor of Pg(M)}

and therefore

L(Pg(M))<max{| V||V is a vertex of a composition factor of Ps(M)} + L(FE)
<max{|V||V is a vertex of a composition factor of Po(M)}+ | E|
=max{| V||V is a vertex of a composition factor of Py(M)}.
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Thus it remains to deal with the case
H: = 0y/(G)=%<1>.

Let N be an irreducible constituent of M} and let I denote the inertial group
of Nin G, i.e.

I=I(N) = {g|g€G, N®g=N} .

(2) Next we consider the case I<G.

By Clifford’s theory, there exists an irreducible FI-module X such that
M=X¢ and Xy=<eN for some eN. According to Proposition 2.7 in [18]
we have

Po(M)=P(X)° .

We claim that for all composition factors Y of P,(X) the induced modules Y
are irreducible. Since vx(Y)=vx(Y°) we are done by the inductive hypothesis.
Thus assume that Y is a composition factor of P(X) and Z an irreducible sub-
module of Y¢. Obviously, Yy== fN for some f EN.

If {g,=1, g, -+, g,} denotes a right transversal of I in G, then

ZpS(YO)y = YpQ@D - ©YxQg,

where the Y;®g; are precisely the homogeneous components of (Y¢)g.

Now choose a homogeneous component of Z,, say W. We may assume
that WS Y,Q®g,, otherwise we consider a suitable G-conjugate of W. Since
I acts irreducibly on Y, we get Wy=Y;®g, and therefore Z=Y?°.

(3) Finally, let I=G.

Now, Fong’s reduction theorem ([2], Chap. X) asserts that there exists a

finite group G and a short exact sequence

<1>—>Z—>G—>G'—f><1>

with Z a cyclic p’-group in the center of G.

Furthermore,
(i) G contains a normal subgroup H=H with ZH=Zx H=f"*(H).
(ii) There is an FG-module N on which H acts irreducibly and an FG-module
M with HCker(M) such that M considered as an FG-module is isomorphic
to MQN.
(iii) Pa(M)=Pz(M)QN.

Since HZ 0 ,(Ker(M)), we have HCKer(Y) for all composition factors
Y of Pz(IT) (see [18], 3.1). Thus by ([4], Chap. VII, 9.12), the tensor product
YQAN is irreducible. Because of ([4], Chap. VII, 14.1 and 14.2), there are

isomorphisms
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Py(M)=<Pg:(M)=Py(M) and Pg(M)=<Pg(M).

In particular, each composition factor Y of Py(M) is of the form Y=YQN
for some composition factor ¥ of Pg(M). Since dimN is prime to p, we get
|ox(Y)|=lvx(D)], by (3], 21). Now, |G/H|,~|G|, and O,G/H)=1>.
Apply part (1) of the proof to Pgz(M)=<Pz(M) and the proof is complete.

Proof of Theorem 2.
Assume first that the defect group D of the p-block B to which P belongs
is cyclic. In this case it’s well-known that

B=Mat(n, FU)

where D < U <holomorph(D) and U/D is a cyclic p’-group. From this we
deduce quite easily that all the projective indecomposable modules in B are
uniserial of length [D|. Since D is a vertex for all irreducible modules in
B, the assertion follows.

For the other direction In Theorem 2 assume that P=Pg(M) for some
irreducible module M and

L(Pg(M)) = max{| V| |V is a vertex of a composition factor of Pg(M)}
= lVol .

We claim by induction on (|G|, |G|) that V, must be cyclic. Then it’s
well-known that V, coincides up to G-conjugation with the defect group D.
To do this assume first that O,(G) is contained in the center Z(G) of G. In
this case

Oy.5(G) = Oy(G) X O4(G)

and G/Oy ,(G) acts faithfully on O,G). Let E be an abelian normal p-sub-
group of G and put G=GJE.
Similiar to part (1) of the proof of Theorem 1 we get

L(Pz(M)) = |V,| and E has to be cyclic.

By the inductive hypothesis, V, is cyclic. Now, if G has at least two minimal
normal p-subgroups, then ¥V, is abelian.

In particular, O,G) is abelian and therefore cyclic. Since G/Oy 4(G)
acts faithfully on O0,G), O,(G) is a Sylow p-subgroup of G. Hence G has
only one minimal normal p-subgroup E. This implies that E is contained
in the center of O,(G). Since O,(G)/E is cyclic, O,G) must be abelian, hence
cyclic and therefore a Sylow p-subgroup of G. The proof can now be finished
by the same line as we did in (2) and (3) of the proof of Theorem 1.
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