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1. Introduction. Let p be a prime, F a field of characteristic p and
let G be a finite group. With every FG-module M there is attached a non-
negative integer L(M) called the Loewy length of M . If J(FG) denotes the
Jacobson radical of FG9 then L(M) is the smallest integer n such that MJ(FGf
is the zero module. The Loewy length of a module is of some interest since
knowledge of it's value or at least of good bounds for it can be very useful
determinating of the structure of the module.

In a significant paper [5], Jennings solved the structure problem for the
group algebra of a />-grouρ. Unfortunately, little is known about the algebra
structure of an arbitrary group algebra, resp. of a p-block. However, in case
of />-solvable groups, there are many papers concerning bounds for the Loewy
length of a group algebra, resp. of a p-block ([6], [7], [8], [12], [14], [15], [16],

Recently Ninomiya found a lower bound for the Loewy length of a pro-
jective indecomposable module depending on the order of a vertex of it's head
([13]). The aim of this note is to determine an upper bound.

Throughout this paper all groups in questions are finite and />-solvable
all modules finitely generated JPG-modules where F denotes a field of char-
acteristic p. The notation used in the following is consistent with that in the
books of Feit [2] and Huppert/Blackburn [4].

2. Results

Theorem 1. If P is a protective indecomposable module, then
L(P) < max { | V \ \V is a vertex of a composition factor of P} .

Theorem 2. Equality holds in Theorem 1 if and only if the defect group of
the block to which P belongs is cyclic.

Corollary (Koshitani, Okuyama, Tsushima). Let B be a p-block with
defect group D. Then L(E) < | D \ and equality holds if and only if D is cyclic.

According to all the examples we know, it seems reasonable to ask the
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Question. Let M be an irreducible module with vertex V. Is it true that
L(PG(M))< I V\ where PG(M) denotes the protective cover of M ?

To see that the problem considered here differs from the analogue for
^-blocks and defect groups, let us mention the following remarkable example

([10], [11]).
Let p be the prime 3 and let G denote the semidirect product of SL(2,3)

with the standard module. Then G possesses an irreducible module M with

L(PG(M))= \vx(M)\

where the vertex vx(M) of M is elementary abelian of order 9.

3. Proofs

In what follows we may always assume that F is algebraically closed. The
reduction to such a field is routine since the radical of a group algebra, vertices
and defect groups are well behaved by field extensions.

Proof of Theorem 1.
We argue by induction on ( | G \ py \ G \ ) where | G | p denotes the ^>-part of

the order |G| of G.
Write P=PG(M) for some irreducible module M.

(1) First assume that O^(G)Φ<1>.
Let E be a normal abelian ^-subgroup of G. Put J=J(FE) and let G

act by conjugation on the powers /' of /. By a result of Alperin, Collins and
Sibley [1], we have with G=G/E an FG-isomorphism

Since £'c:C'G(/'//'+1), the left hand side is an FG-module, hence a projective
FG-module. As FG-modules, all composition factors of

X: = Po(M)®flJi+1

are composition factors of PG(M).
Hence by the inductive hypothesis we get

L(X) <max{ | V \ \ V is a vertex of a composition factor of X}

<max{ I F I I F is a vertex of a composition factor of PG(M)}

and therefore

L(PG(M)) <max{ | V \ \ V is a vertex of a composition factor of PG(M)} L(FE)

<max{ I F I I F is a vertex of a composition factor of PG(M)} | E \

=max{ I F I I F is a vertex of a composition factor of PG(M)} .
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Thus it remains to deal with the case

Let N be an irreducible constituent of MH and let / denote the inertial group
of N in G, i.e.

/ = IG(N) = ig\g<=G, N®g^N} .

(2) Next we consider the case /<G.
By Clifford's theory, there exists an irreducible W-module X such that

M^X° and XH^eN for some e&N. According to Proposition 2.7 in [18]
we have

We claim that for all composition factors Y of Pj(X) the induced modules Y°
are irreducible. Since vx(Y)==vx(YG) we are done by the inductive hypothesis.

Thus assume that Y is a composition factor of Pj(X) and Z an irreducible sub-
module of YG. Obviously, YH^fN for some/eΛ".

If {£ι—l, g2, •••>&-} denotes a right transversal of / in G, then

where the YH®gi are precisely the homogeneous components of (YG)H

Now choose a homogeneous component of ZHy say W. We may assume
that W^ YH®g\> otherwise we consider a suitable G-conjugate of W. Since
/ acts irreducibly on F, we get WH= YH®gι an(i therefore Z— Y°.

(3) Finally, let I=G.
Now, Fong's reduction theorem ([2], Chap. X) asserts that there exists a

finite group G and a short exact sequence

with Z a cyclic ̂ '-group in the center of G.
Furthermore,

( i ) G contains a normal subgroup S^H with Z3=Zχβ=f~\H).

(ii) There is an jF(?-module N on which ΰ acts irreducibly and an Fir-module
M with jί?c;ker(M) such that M considered as an jF(?-module is isomorphic
to
(in)

Since -/?cO/>/(Ker(Λ3r)), we have J7^Ker(Y") for all composition factors
Ϋ of Pg(M) (see [18], 3.1). Thus by ([4], Chap. VII, 9.12), the tensor product
Ϋ®N is irreducible. Because of ([4], Chap. VII, 14.1 and 14.2), there are
isomorphisms
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and

In particular, each composition factor Y of PG(M) is of the form Y

for some composition factor Ϋ of Pg(Λ2Γ). Since dim/V is prime to p, we get

\vx(Y)\ = \vx(Ϋ)\, by ([3], 2.1). Now, |(?/#|,= |G|, and O,(<?/fl)Φ<l>.
Apply part (1) of the proof to PG/H($)^PG($) and the proof is complete.

Proof of Theorem 2.

Assume first that the defect group D of the />-block JS to which P belongs
is cyclic. In this case it's well-known that

where D<JZ7<holomorρh(Z)) and U/D is a cyclic p '-group. From this we

deduce quite easily that all the projective indecomposable modules in B are

uniserial of length \D\. Since D is a vertex for all irreducible modules in
β, the assertion follows.

For the other direction In Theorem 2 assume that P=PG(M) for some
irreducible module M and

L(PG(M)) = max{ | V \ \ V is a vertex of a composition factor of PG(M)}

We claim by induction on ( | G \ p, \G\) that VQ must be cyclic. Then it's
well-known that V0 coincides up to G-conjugation with the defect group D.

To do this assume first that O/(G) is contained in the center Z(G) of G. In

this case

and G/O/^(G) acts faithfully on OP(G). Let E be an abelian normal ^-sub-

group of G and put G=G/E.
Similiar to part (1) of the proof of Theorem 1 we get

L(Pg(Λί)) = I PO| and E has to be cyclic.

By the inductive hypothesis, P0 is cyclic. Now, if G has at least two minimal
normal />-subgroups, then VQ is abelian.

In particular, OP(G) is abelian and therefore cyclic. Since G/Op'ti>(G)

acts faithfully on OPG), OP(G) is a Sylow ^-subgroup of G. Hence G has
only one minimal normal ^-subgroup E. This implies that E is contained

in the center of OP(G). Since OP(G)IE is cyclic, OP(G) must be abelian, hence
cyclic and therefore a Sylow ^-subgroup of G. The proof can now be finished

by the same line as we did in (2) and (3) of the proof of Theorem 1.
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