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1. Introduction

In 1956, Hunt [3] characterized all possible homogeneous convolution
semigroups of probability distributions on a Lie group through the representations

of their infinitesimal generators. Let {^}f>0 be a convolution semigroup of
probability distributions defined on a Lie group G of dimension d. It defines a
semigroup of linear operators {Tt}t>0 on ^ by setting Ttf(σ) = \f(στ)μt(dτ\ where
^ is the Banach space consisting of bounded continuous functions /on G (such that

lim^^/ΐσ) exists if G is noncompact). Then the domain &>(A) of its infinitesimal

generator A contains ^2 (
a space consisting of ̂ 2^

uncti°ns on G) and Af,fe(£2

is represented by

(1.1)

-1
Here Xί9 -9Xd constitute a basis of the Lie algebra of G regarding them as left
invariant first order differential operators (vector fields), A=(alj) is a symmetric

nonnegative definite matrices, b = (bl) is a vector and v is a measure on G such
that v({e}) = 0 and J(/>(σ)v(rfσ)<oo, where e is the unit element of G. Further,

xί

9 9x
d

9 φ are (&2-fanctions on G satisfying (3.1) and (3.2). Conversely the above
operator determines a unique convolution semigroup.

In this paper we study nonhomogeneous convolution semigroups {μ s,f}o<s<f<oo
of probability distributions on a Lie group. In the first part (Sections 2-4), we
characterize them by representing their infinitesimal generators A(t\t>Q, similarly
as (1.1), where the triple (A,b,v) in the representation on A(ή depends on t. We
remark that a similar representation of the infinitesimal generator has been obtained

by Maksimov [7] in the case where the underlying Lie group is compact. However,
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we are particularly interested in the nonhomogeneous convolution semigroup on
a noncompact Lie group. Further, our Condition (Z>) needed for the representation
theorem is milder than his.

In the second part of this paper (Sections 5-6), we study nonhomogeneous
convolution semigroups having the self-similar property. A convolution semigroup

{μs J is called self-similar with respect to {yr}, if yrμs,t = μrs,rί holds for any s<t
and r>0, where {yr}r>0 is a one parameter group of automorphisms of G called
a dilation. Applying the representation theorem of the first part, we characterize
all self-similar nonhomogeneous convolution semigroups through their infinitesimal
generators. As a further application, we study selfdecomposable distributions on
a Lie group.

Operator-stable distributions and operator-stable Levy processes on Euclidean
spaces or infinite dimensional vector spaces have been studied with details. See
Jurek-Mason [4], Sato [10] and references therein. Recently the author [5] [6]
studied stable distributions and stable (homogeneous) convolution semigroups on
a simply connected nilpotent Lie group, which correspond to strictly operator-stable
distributions and strictly operator-stable Levy processes, respectively, on Euclidean
space. The present self-similar nonhomogeneous convolution semigroup on a Lie
group is a nonhomogeneous extension of the stable (homogeneous) convolution
semigroup.

Our selfdecomposable distribution on a Lie group corresponds to an operator
selfdecomposable distribution or a distribution of the class OL in Sato [10] on
an Euclidean space. We shall imbed it into a nonhomogeneous self-similar
convolution semigroup of distributions and then characterize the former through
the infinitesimal generator of the latter. We remark that in the case of Euclidean
space, the imbedding was done by Sato [10], where the latter is called a process

of class L.

2. Nonhomogeneous convolution semigroups on a Lie group and their
infinitesimal generators

Let G be a connected Lie group of dimension d. Elements of G are denoted
by σ, τ, etc., and its unit element is denoted by e. Let ^ (or '̂) be its left
invariant (or right invariant) Lie algebra. Elements of ^ (or '̂) are regarded as
left invariant (or right invariant) first order differential operators (vector fields) and
are denoted by X, 7, etc. (or X', Yr, etc.) We fix its basis {Xl9 . 9Xd} (or [X'l9 , AT;}).

Let μ be a distribution on G. For a bounded continuous function / on G,
we set μ(f} — \fdμ. For two distributions μ and v on G, their convolution is a
distribution on G defined by μ * v ( A ) = $Gμ(dσ)v(σ~1A). A distribution μ is called
infinitely divisible in the generalized sense if for any ε > 0, there exist distributions
v1, ,vw such that μ = vί *v 2 * • «v n and vJ{Uε)<ε for any j<n, where Uε is an
ε-neighborhood of the unit e of G. In particular, if we can choose v l 5 ,VM as identical
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distributions, the distribution μ is called infinitely divisible. In the case where G
is a Euclidean space, it is known that any infinitely divisible distribution in the
generalized sense is infinitely divisible. However, the author does not know whether
a similar fact is valid for distributions on Lie groups.

Let {μs,t}0<s<ί<oo be a family of probability distributions on a Lie group
G. It is called a nonhomogeneous convolution semigroup if it satisfies the following
two properties.

(i) (Semigroup property) μs,ί*μ ίu = μS M holds for any Q<s<t<u<ao.

(ii) (Continuity) For any f0>0, limΛ_4θsupo<s<ί<ίo,ί-s<Λ|μs,t(/)-/(^)|=0 holds
for any bounded continuous function /

Clearly each μs f is an infinitely divisible distribution in the generalized sense.

A convolution semigroup {μsf} is called homogeneous if for any s<t, μst

depends only on /—s. We denote it by μt_s. Then one parameter family of

distributions {μf}f>0 satisfies μs*μt = μs+t for any s,t>Q and μh-+δe weakly as
h -* 0, where δe is the unit measure concentrated at e. It is called a (homogeneous)

convolution semigroup.
Let (£ = (&(G) be the set of all bounded continuous functions / on G (such

that limσ_>00/(σ) exists if G is noncompact). It is a separable Banach space with
the supremum norm || ||.

We define

(2.1) P,.J(σ) = \f(στ)μ,tAdτ), fε «.

Then {/>

s,ί}o<s<ί<oo *s a family of linear operators on # and satisfies Ps,tPt,u = Ps>u
for all s<t<u. Further \imtlsPstf=f holds for all/e#.

We denote by $2 the totality of /e # such that it is twice continuously
differentiable. Let <£2 (or <g'2) be the totality of/e<T2 such that Xf and ΓZ/(or

X'fand Y'Z'f) belong to <? for any X,Y,Zε<$ (or X\Y',Z' e&'). Set

(2.2) l l / l l i= 11/11 + Σ I W / I I + Σ \\xpifl
i=l j , fc=l

Then #2 is a Banach space with this norm. It holds X'Pstf=PstX'f, etc., so that

PStt maps «"2 into itself and satisfies IIP^/II^ II/IΓ2

For the study of nonhomogeneous convolution semigroups, it is convenient

to introduce the associated space-time homogeneous semigroups. We need some
notations. Let G = Gx[0,oo) be the product manifold. Let <$ = %>(&) be the set
of all bounded continuous functions /on G such that lim^^/faf) exists uniformly
in ίe[0,7V] for any N if G is noncompact. Let f=f(σ,ί)e(tf. When we fix the
variable t and consider it as a function of σ, we denote it by ft(σ). Then $ is a
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locally convex linear topological space with seminourms: | | /Hjv = sup0< f£N | |/ f | |. If
a sequence {/„} of <% converges to / of ^ with respect to these seminorms, the
sequence is said to converge in the space <%.

Let <?2>1be the set of all/(σ,ήe^ which are twice continuously differentiable
with respect to σ and continuously differentiable witn respect to t. Here and in
the sequel, by the derivative at t=Q, we mean the right derivative: limΛio(/(σ,A)
-/foO))/λ. ^2,1 is the subspace of /e<?2iι such that Xf, YZf9 (d / dt)f belong
to <$ for any X, 7,Ze^. The space '̂24 is defined similarly. Obviously, the
spaces #, < 2̂,

 etc > are imbedded in the spaces #, ^2>1,
 etc > respectively.

Now, define

(2.3) ?r/(M = Λ.I + r(/; + rX*)

Then {Γr}r>0 are continuous linear operators on # and satisfy frfs=fr+s for
r,j>0 and rr/-»/as r->0 in <?. Consider the Laplace transform of { f r } . For

set

) = Γe-λrfrf(σ,s)dr = f
Jo Jo

Then Rλ are continuous linear operators on $ and satisfy the resolvent equation
Rλf=Rγf-(λ-y)RλRyf, for any /ί,y>0 and λRJ^fin <% as A-> oo. Therefore
the map Rλ:$ -*<% is one to one and the range {Rλf:fe^} is independent of λ9

which we denote by 2. The infinitesimal generator of the semigroup [fr] is
defined by

^o h

if the right hand side converges in the space .̂ The domain of the operator Ά
is the set of all /e <$ such that the above limit exists. It coincides with 3f and it
holds Άf= (λ — Rχ l)f for any fe 2.

We introduce a differentiability condition for the resolvent Rλ with respect to t.
Condition (/)). For any ge#'2,ι> R^g(a,t) is continuously differentiable with

respect to re[0,oo) and (d / dί)R&(σ,t) belongs to <&.
Assuming the above condition, Rλf belongs ̂ 2 ί if/e $2,1- Indeed, we have

X'Rj(a9s) = RλX'f(σ9s)9 Y'Z'Rjfas) = Rλ Y'Z'f(σ9s).

Further, we have λX'Rj-+X'f9 λY'Z'RJ^ Y'Z'f. Therefore \\A(Rj)t-ft\\'2 ->0
uniformly in ίe[0,ΛΓ] as λ -> oo for any W>0, if/e ^2,ι However, {λRλf} may not
converge to/with respect to the strong topology of <f'2>1, since (d / dήλRif may
not converge to (d / df)f.

We set
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(2-4)

It does not depend on λ because of the resolvent equation of Rλ .
The infinitesimal generator {A(t)}t>0 of {PSjt} or the convolution semigroup

{μs J is defined by

(2.5)

if the right hand side converges in the spae ^ as a function of (σ,t). Its domain
@({A(i)}) is the set of all/e^7 such that the above limit exists.

The following proposition describes a relation between the infinitesimal
generator [A(t)} of the convolution semigroup {μs>ί} and the infinitesimal generator
Ά of the associated space-time semigroup { f r } .

Proposition 2.1. Assume Condition (D). Then for any /e^2,ι> the limit

(2.6) A(t)ft(σ) = lim \(Pt,t+hft(σ) -/,(σ))
h^oh

exists in the space $ as a function of (σ, ί). Further, we have

(2.7) Af(σ,t)=A(t)f,(σ)+^(σ,ί).
ot

Proof. Letf=Rig. Note that fhf(σ,ί)= P,,t +h(ft+ A)(σ). Then,

)-f(σ,ί))-l-Pt,t+h(fl+h-ft)(σ)
h

in the space .̂ The proof is complete.

3. Representation of the infinitesimal generators

We shall represent the infinitesimal generator of the convolution semigroup.
The following theorem has been proved by Hunt [3] in the case where the
convolution semigroup is homogeneous. Maksimov [7] proved, in the case where
the convolution semigroup is nonhomogeneous but the underlying Lie group is
compact, a similar result under the differentiability condition of P0tt with respect to
a<t<b, which is stronger than our Condition (Z>).

In the following theorem, we shall fix jc1,---,^, φ of ^2 satisfying
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(3.1) x\e) = 0, ι=l,-ά Xix
j(e) = δij, ιj=l,-,rf,

(3.2) φ(e) = Q, </>(σ)>0 (σ^e\ Iim0(σ)>0, if G is noncompact,

Theorem 3.1. Assume Condition (D). Then #2 c &({A(t)}). Further, for any
2, A(f)f(σ) are represented by integro-dίfferential operators L(t)f:

(3.3) L(t)f(σ) = lχ fl'

•ί.
where A(f) = (alj(t)\ b(ί) = (bl(t)) and vt satisfy the following properties.
(a) A(t) = (alj(t)\ t > 0, are symmetric nonnegative definite matrices continuous in /,
(b) b(t) = (b\t)\ f>0, are continuous functions of t,
(c) vί9 ί>0, are positive measures on G such that vt({e}) = Q and the integrals
vt(φ) = §φ(τ)vt(dτ) are finite for any t > 0 and vt(φf) is continuous in t > Ofor anyfe <$.
The matrices A(t) and the measures vt are uniquely determined from the
nonhomogeneous convolution semigroup {μst}, but the vectors b(t) may depend on
the choice of the functions xl

9 9x?.

The proof of the theorem will be given after three lemmas. Our argument
in these lemmas is close to Hunt [3].

Lemma 3.2. For /e #, set

(3.4) A(t)J(σ)=l-(Pt,t+hf(σ)-f(σ)).

IffeΉ'2, A(i)hf(e) converges uniformly in ίe[0,7V] as h^Qfor any N>Q.

Proof. Let ί0>0. We show the uniform convergence of {A(t)hf(e)}h>0 with
respect to t as h -> 0 on a certain neighborhood of t0 . For each /, there exists
ψ(t) of ^2>1 such that

and \l/(t\τ,t)>Q \ϊτφe, limt_>00^
(ί)(τ,ί)>0 if G is noncompact. Indeed, on a certain

neighborhood U(t0) of t0 , the family of functions {ψ(ί) t e U(t0)} can be chosen in

the form ψ(t) = Σ£cfc(f)g*, where gk€@2,ι
 and ck(t) are continuous functions of
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t. Then, since A(t)hg$(e) converges uniformly in teU(t0) as h-+Q by Proposition
2.1, the family of functions {A(t)hψ

(f\e\ teU(t0), h>Q} is uniformly bounded.
Let 0<(5<1. In the sequel, we shall choose, on a certain neighborhood

K(f0)(c C/(f0)) of f 0 , a family of functions {g(ί)e^2,ι : / e K(f0)} satisfying

(3.5) ι/-/(<?) -£<<> +s<v)i < <5<At

(t) , w e nα
Since i/^M^Σ^τ)2 holds near e, there exists an ε neighborhood Uε

= {τ:Σix
ί(τ)2<ε2} of e (0<ε<l) and V(t0) such that for any teV(t0),

>l^W 2 ' if τe t/ β .
2 i

Set c = ̂ ε2/4. Choose Λ 0 >0 such that !̂ =λ0Rλof satisfies ||/— (gι) fIΓ2^c f°r anY
ίe F(ί0). Then we can choose g^eS^.i satisfying the following (i)-(iii).

(0 llfe'Mi^ and ||(agg>/a/||^l for teV(t0).

(ii) g^^giH-^0 satisfies

«{f)W =/(*), °̂W = Jf/(4 ί̂ °W = YZf(e), V^T, 7,Z e ».

(iii) The functions g(ί) are represented in the form g(t) = ΊLk

lc\(t)gl , where g'e Jί2,ι
and ci(ί) are continuous in t E V(tQ).
We shall prove that g(t} satisfies (3.5). If τe (7ε

c, it holds

=^
for any / e F(ί0) Further, if τ e t/ε and ί e F(ί0), by the mean value theorem, the
left hand side of the above is dominated by

where τ*eUε.
Now integrate both sides of (3.5) by the measure h~*fttt+h. Then we obtain

the inequality:

\A(t)hf(e) -
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since \l/(^(e)~^. We have further,

_ ~ (.) _ Γ ~
" e > ί ~ J o

P+*
= PtJ(A(u)ψ«

J du

by Proposition 2.1. Therefore,

1 P+*
ΛWfc M — J JU^d

which converges uniformly in teV(t^) as A->0, since ψ(t} = Σck(t)gk and cfc(f) are
continuous in f. This implies

\A(t)hf(e)-A(t)^\e)\ < O(δ\ V ie

i.e., A(t\f(e) and ^(OfcgίV) differ by (9(5) (uniformly in h). Further,
converges uniformly on V(tQ) as Λ -> 0 by property (iii). Since this is valid for any
<5>0, A(t)hf(e) should also converge. The proof is complete.

Lemma 3.3. Let JcV ,jcd, φ be the functions of #'2 satisfying (3.1) and
(3.2). Then, for any t > 0, A(t)f(e) = limΛ_0^(/)Λ/(^), /e *'2 is represented by L(f)f(e\
where L(t) are integro-differential operators represented by

(3.6)

I
Here (άlj(i)) is a symmetric nonnegative definite matrix, (b\t)) is a vector. v( is a
measure on G such that vt({e}) = Q and vt(φt)<co9 where G = G if G is compact and
G — Gu{oo} (a one point compactification of G) if G is noncompact.

Proof. Consider the family of positive measures

Then Fth(G) is equal to A(t)hφ(e\ which converges to a finite value as h -> 0 because
</>e^"2. Therefore, for each f>0, { jF f Λ ;Λ>0} is a family of a uniformly bounded
measures on G. Furthemore, since $f(τ)Fth(dτ) = A(t)h(fφ)(e), it converges as h -> 0

for any/6^2. Therefore the family of the measures {Ftth} converges weakly as
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h -» 0. We denote the limit measure by Ft .
Now for a given /e ̂ "2 , set

c =f(e\ Ci = XJ(e\ ctj = X&JJ- Σ ck*
k}(e).

Then the function g=f— c — ΣctX1 — Σctjx
lxj is of the form ψφ with I/Έ^ vanishing

at e. Therefore we have,

A(t)f(e) = A(ifc + Σ ĉ 1' + Σ Cyx'JcΉe) + Km
Λ->0"

=Σ^X^XΦί+Σ^(^£*/X^+ ί
J

Set

δtO - ̂ X^λ «°'(0

and define measures vί9ί>0, on G by

if £ cz= ί
JEE

Then vί(0/(β) is represented by (3.6) at σ = e.

REMARK. By the definition, άij(t)9 V(t) and vt(fφt) (/e^7) are continuous with
respect to the parameter t.

Lemma 3.4. Let /e^'2. V H ^ of compact supports, A(t)hf(σ) converges in
the space <$ as functions of (σ,t\ Let A(t)f(σ) be its limit. Then it is represented
by L(t)f(σ) of (3.6) for any σεG.

Proof. Apply the result of Lemma 3.3 to the function / o Lσ , where Lσ is the
left translation by σ. Since A(t\f(σ) = A(t)h(f ° Lσ}(e\ it converges to L(f)(f '° Lσ)(e)
by Lemma 3.3. Further, L(t)(f ° Lσ)(e) = L(t)f(σ) holds since we have X(foLσ)(e)
= Xf(σ\ etc. Therefore for each σeG,A(i)hf(σ) converges to L(i)f(σ) as Λ->0.

We want to show that if the support of /is compact, A(f)hf(σ) converges to
L(f)f(σ) boundedly. Let ί0, δ, ε be as in the proof of Lemma 3.2. For each

(ί,σ)eCj, we can choose g(2'<r)e^2,ι? satisfying the following (i'Hiii').

(i') M'*\\\2<c and 11(3^/3/11^1 for teV(tQ\ where c = δs2/4.

(ϋr) g(M=gι +g(ϊσ) satisfies

\σ)= YZf(σ\ VJ
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(iii') There exist a finite open covering {Ul9 ,Un} of A^=supp(/) and a

neighborhood F(f0) of t0 such that for each (/,σ)eK(ί0)x Ui9 g(t'σ) is written as

Σ]fcl(t9σ)gl

9 where gl€@2,ι
 and ct(f,σ) are continuous in (f,σ)e F(/0)x L^. For

(f,σ)eF(f0)x*c, g(t'σ) is written as ΣΓcfe')1, where (g')le@2Λ.
Then it holds

(3.7) \f^Lσ-foLσ(e)-g^^g^\e)\<δ^\ W e K(f0),

as in the proof of Lemma 3.2. Further, we have

(3.8) supsupM(Og^>||=M<oo,
ίeK(ίo) σ

by property (iii'). Integrate both sides of (3.7) by the measure h~lμtt+h. Then
we obtain

\A(t\(f o Lσ)(e) - (̂0,̂ )̂1 = 0(δ\

similarly as in the proof of Lemma 3.2. Note thatg(ί><τ) belongs to ®2,ι Then,

ι

Therefore,

sup

holds for any σ e G and / + ΛeF(/0). Consequently,

converges to L(t)f(σ) boundedly as h -> 0.

Now note

Let /z^O. Then we obtain &PSttf=PSttL(t)f, since >4(0Λ/ converges to L(t)f

boundedly.
Integrating the last equality with respect to /, we obtain

(3.9) />,,,/=/

Then we have

'+ Pt,uL(u)fdu.
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Since £(t/)/e<f and \\L(u)f-L(t}f\\ -> 0 as M -» f, \\A(t}hf-L(t)f\\ -> 0 holds uniformly
in /e[0,7V] as λ->0 for any 7V>0. The proof is complete.

Proof of Theorem 3.1. We have seen in the proof of Lemma 3.4 and its
proof that if /e^n^ is of compact support, then (3.9) holds. Now for any

/e^2, there exists a sequence {/„} of ^n^ of compact supports, such that

L -»/> Xfn -* */and ΎZfn -> 7Z/hold uniformly on compact sets for any X9 Y,Zε <$
and further the convergences are bounded convergences. Then L(t)fn -» L(f)f
boundedly. Therefore, equality (3.9) is valid for any /e^2. Then A(t)hf(σ)

converges to L(t)f(σ) in the space ̂  as functions of (σ,t). This proves < 2̂ ^ ̂ ({^(0})
and A(t)f=L(f)f.

We will prove that vf(oo) = 0 in the case where G is noncompact. Let {/„}

be a sequence of ^2

 such ^lat fn(
co)=l f°r a'l n> and /M(σ)~^^ Xfn(

σ)-*®>
yz/w(σ)->0 boundedly for any σeG. Then L(t)fn(σ) converge to a constant
function ^ = ̂ (00) boundedly. Since (3.9) is valid for any/,,, we have γsPsuhdu = Q,

proving h = Q.

Now let xl, 9x
d

9 φ be functions of ^2 satisfying (3.1) and (3.2). These
functions belong to @)({A(t)}). Then we can apply Lemma 3.3 with these
functions. Then we get A(t)f—L(t)f, where the coefficients of L(t) is determined

by bi(ί) = A(t)(xi)(el aiJ(t) = A(t^xlx^e)9 etc.
The uniqueness of al\t) is obvious, since alj(ί) = A(ή(xtxj)(e) holds, where xl

9 9x
d

are any functions satisfying (3.1). It is clearly symmetric. Further, for any complex
numbers z1, ,zd, we have

Therefore (aI7(0) is nonnegative definite. Next, let/e^2 be a function such that
f(e) = ̂ ./(̂ ) = XiXjf(e) = 0 for any /, / Then, ^(/)/(^) = f/(τ)vf(rfτ). Therefore, the
uniqueness of the Levy measure v, follows.

In applications, it is sometimes convenient to extend the domain of the
infinitesimal generators of the convolution semigroups. We first introduce some
notations. Let ^ be the set of all bounded continuous functions on G and let

&2 be the set of all twice continuously differentiable functions on G such that Xf,
XYf belong to $ for any X, F,Ze^. Let $ be the set of all bounded continuous
functions on G and let $2 Λ be the set of all functions f(σ,i)e$ which is twice
continuously differentiable with respect to σ and continuously differentiable with
respect to t such that Xf, XYf, (d / df)f belong to J for any X,Y,Ze9. Then it

holds <#<=.&, etc.
The semigroups {Ps,t} and { f r } associated with a convolution semigroup {μ$ί}

can be extended to the spaces & and Jί, respectively. For /e^2, we define
integro-differential operators {L(ή} by (3.3).
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Corollary 3.5. Let /e & '2. F°r any ^>0, Pstf is continuously differentiable
with respect to tE(s9co)9 and satisfies

(3.10) d =

4. Problems related to the infinitesimal generators

4.1. Stochastic differential equation. Existence of the nonhomogeneous
convolution semigroup

Let {μs,ί}0<s<f<oo be a nonhomogeneous convolution semigroup on a Lie
group G. Then on a certain probability space (Ω,J*Γ,/)), we can define a stochastic

process {φt\t>ϋ} with values in G satisfying the following equality:

= •" ^o.fii^i^ti^r1

J J y 4 ι X X Λ M

for any 0<^ < ••• <tn<co and Borel sets Aί9 9An of G. The stochastic process

{φt9t>0} has independent increments, i.e., G-valued random variables φ~\φt.9

/= !,-••,« are independent for any Q = t0<tl< <tn«x>. Indeed the equality

(4.1) implies

(4.2) P(φ-_\φtiEBh i=l,-,«)= Π^.^W
i= 1

for any Borel sets Bi9 ι=l, ••-,«. The process {φί5ί>0} is called a process with

independent increments on the Lie group G associated with the nonhomogeneous

convolution semigroup {μs,t} Conversely let [φt,t>ϋ] be a stochastic process

with values in G continuous in probability such that it has independent increments

and ψQ — e. The process {φt,t>0} is called a process with independent

increments. Define μst(B) = P(φ~iφtεB). Then {μsί} is a nonhomogeneous

convolution semigroup. It is said to be associated with the process with independent

increments {φt,t>Q}.

The process with independent increments {φt,t>Q} has a modification such

that it is right continuous with the left hand limit with respect to time ί, provided

that the associated nonhomogeneous convolution semigroup {μst} satisfies Condition

(Z>). Indeed, if/e#2 >f(<Pt)—f(e)~-&L(s)f(<p^ds is a martingale with mean 0 because
of the equality (3.10). Then the stochastic process f(φt)9t>Q, has a modification

which is right continuous with left hand limits. Since this is valid for any /e ̂ 2 , the

existence of such a modification for the process φ(,ί>0, follows.

Now suppose we are given integro-differential operators {L(t)} represented by
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(3.3), where the coefficients aij(t\ b\t\ vt satisfies conations (a)-(c) of Theorem
3.1. We show the existence of the convolution semigroup whose infinitesimal
generator is represented by the integro-differential operators {L(t)}9 constructing a
process with independent increments by solving a stochastic differential equation
on the Lie group.

Let (A(t)9b(t),vt) be an arbitrary triple satisfying conditions (a)-(c) of Theorem
3.1. Then there exists a nonhomogeneous Brownian motion Bt = (B} ,--,$) such
that the mean of Bt — Bs is ^sb(r)dr and the covariance is ^s(aij(r))dr and a
nonhomogeneous Poisson random measure N((s,f] x E) on G with intensity measure
dtdvt(τ) independent of Bt .

We consider a stochastic differential equation on the Lie group G driven by
Bt and N((s,ί]xE):

(4.3)

+ (f(φu-τ)-f(φu-W(dudτ)Γ+ ί
Js JG

Γ+ ί
Js JG

where N((s,t}xE} = N((s,f]xE}-\t

svu(E)du and / is a test function of ^2. The
integral §- odBu is the Stratonovich integral.

Theorem 4.1. For any s>Q and σeG, there exists a unique solution of the
stochastic differential equation (4.3) driven by Bt and N((s,t] x E). Denote the solution
by φStt(σ) and set φSft = φSft(e). Then it has the following properties:

(1) σφs>ί(τ) = φs,t(στ) holds a.s. for any σ, τ and s<t.

(2) φs,tφttU = φs,u holds a.s. for any s<t<u.
(3) φt = φ0t is a process with independent increments.

The proof can be carried out similarly as in Applebaum-Kunita [1]. We
omit the details of the proof. The above theorem implies:

Theorem 4.2. Suppose we are given a family of triple (A(t\b(t\v^ f>0,
satisfying conditions (a)-(c) of Theorem 3.1. Then there exists a unique
nonhomogeneous convolution semigroup {μs J such that the domain <3>({A(t)}) of the

infinitesimal generator [A(i)} includes ^2

 ana Λ(l)f, fe(&2 is represented by L(t)f
of (3.3).

4.2. An extension of the convolution semigroup
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We have so far considered the convolution semigroup {μsf} defined for
0<,y<ί<oo. However, in some applications, we encounter a convolution
semigroup {μst} defined only for Q<s<t<ao9 i.e., μ0 ί is not defined. Thus the
limit μ0 ί = lims^0μsί may or may not exists. Even so, we can obtain the
representation of the infinitesimal generator under a condition similar to Condition
(D).

Let {μM}o<s<f<oo be a convolution semigroup on a Lie group G. Then for
any ,s>0, there exists a stochastic process φStt,t>s with values in G with independent
increments such that φStS = e and μt^(A) = P(φ~t

ίφsueA) holds for all s<t<u. The

semigroup of linear operators {^s,ί}o<s<ί<oo» its infinitesimal generator {A(t)}t>0

and the domain &ι({A(ί)}) are defined in the same way as in Section 2.

Denote (/x(0,oo) by G°. Let $° be the set of all continuous functions on

G° such that sup f>1/N | |/ f | | <oo and limσ_00/(σ,0 exists uniformly in ίe[l/7V, TV]
for any 7V>0. It is a locally convex linear topological space with seminorms

I I / I I $ * = sup!/N <,<#!!/, ||. The resolvents Rλ are defined on the space #°. Let '̂.Ί
be the set of all fe^°, which is twice continuously differentiable with respect
to σ and continuously differentiable with respect to />0 and X'f, Y'Z'f, (d / dήf
belong to ^° for any X', Γ',Z'e0, where X'9 etc., are right invariant vector
fields.

Let ^2,1 be a dense subspace of ^°i'Λ. We introduce a differentiability
condition of the resolovent Rλ, which is slightly weaker than Condition (D)

introduced in Section 2.

Condition (D0). For any ge^2,ι > ^^(σ»0 is continuously differentiable with
respect to fe(0,oo) in the space <8°.

Now if we restrict the time set of the convolution semigroup {μs J to [ε, oo),
where ε>0, then we can apply Theorem 3.1 and its Corollary for this convolution

semigroup. Therefore the assertions of the theorems are valid if "ί>0" is replaced

by "ί>0" in the corresponding statement.

We are interested in the case where μ0,t = liπιs|oμs,f exists. If the limit exists,
the extended family of distributins {μs, t}0<s<f<oo becomes a convolution semigroup
in the sense of Section 2. The existence of μ0, is equivalent to the convergence
(in probability) of φStt as s -> 0. Further, if the limit exists, <pf = lims_>0φM becomes
a process with independent increments associated with the extended semigroup.

Theorem 4.3. Assume Condition (D0) for the convolution semigroup

KJcxs^oo Then <£2 c 3({A(t)}\ Further, A(t)fje<$2 is represented by L(f)f

of (3.3).
Furthermore, if μ 0 f exists, the triple (A(t),b(t),vt)t>0 satisfies the following

integrability condition:
(d) The triple (A(t),b(t),vt) is integr able on the interval (0,1), i.e.,
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(4.4)

(4.5)

where φ is a function of ^2 satisfying (3.2).
Conversely, suppose that we are given a triple (A(t\b(t\v^t>Q satisfying (a)-(c)

of Theorem 3.1 and (d). Then there exists a unique nonhomogeneous convolution

semigroup {μ5,,}o<s<f<oo su^h that the domain ^({A(t)}) of the infinitesimal
generator [A(i)} includes <%2 and A(t)f, /e^2, is represented by L(t)f of
(3.3). Further, μ0 ί exists for any ί>0.

In order to prove the theorem, we shall apply the orthogonal representation
theory of the Lie group.

Let g'.G-* O(ή) be a C°°-homomorphism, where O(ri) is the linear Lie group
of orthogonal n x ^-matrices. We call g an orthogonal representation of G of
degree n. For an orthogonal representation g of degree «, we define an
n x Ai-matrix μ(g) by μ(g) = (μ(gί;)). Then we have

Lemma 4.4. (1) It holds μ*v(g) = μ(g)v(g)for any distributions μ, v on G and
orthogonal representation g.

(2) If μ is an infinitely divisible distibution on G in the generalized sense, the
matrix μ(g) is invertible for any orthogonal representation g.

Proof. For any distributions μ, v and any orthogonal representation g,
we have

μ * vfe) = ί ίμ(dσ)v(σ- ldτ)g(τ) = ί !μ(dσ)v(dτ)g(στ)

= \μ(dσ)v(dτ)g(σ)g(τ) = μ(g)v(g\
J J

proving the first assertion.
We prove the second assertion. Since μ is infinitely divisible in the

generalized sense, for any ε>0, there exists μί9'-,μn such that μ = μ 1 * *μπ

and μ/£/ε

c)<ε for any j<n, where Uε is an ε-neighborhood of the unit e of

G. Then it holds μ(g) = μι(g)'-μn(g). Since g(e) is the identity and g(σ) is
continuous in σ, μ,(g) are invertible for anyy <n for a sufficiently small ε. Therefore
μ(g) is also invertible. The proof is complete.

We shall modify the Peter-Weyl theory concerning the completeness of
representations of a compact Lie group, so that it can be applied to a noncompact
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Lie group. Set

(4.6) Δw = {gij{σ): g(σ) = (g,/σ)) are orthogonal representations of degree n}

and define Δ —u n Δ M . It is a system of bounded C°°-functions.

Lemma 4.5 (cf. Pontryagin [9]). The system Δ is locally uniformly complete
in $) i.e., any element of & can be approximated uniformly on each compact subset
of G by a sequence of linear sums of elements of Δ.

Proof. We will follow the argument of [9]. Let K be the set of all real
C°°-functions k(σ) with compact supports such that k(σ) = k(σ~1) holds for all
σeG. For keK, we consider an integral equation

(4.7) φ(σ) = λ\k(σ-lτ)φ(τ)dτ9

on the real L2(dτ) space, where dτ is a (left) Haar measure. Any nontrivial solution
φ 7^0 of (4.7) belonging to L2(dτ) is called an eigen function of the kernel k and
λ is called an eigen value of the kernel k.

Let Δ'(fc) be the set of all eigen functions of the above integral equation with
all possible eigen values. Define Δ' = uk6KΔ'(λ:). Then Δ' is a locally uniformly
complete system in 38. See [9], Section 29.

For a given keK, let φ^--,φn be a complete system of orthonormal eigen
functions with an eigen value λ. These are C°°-functions since k is a C°°-function
with a compact support. Let α be any fixed element of G. Then, since dτ is a
Haar measure, φt(ασ), /=!,•••,« are also eigen functions with the same eigen
value λ. Then there exists a matrix g(α) such that

(4.8) 9iM=£g0{oc)<p/a), /= l,- ,n.
j

Noting that {<Pι,••-,<?„} are orthonormal, it is easy to verify that the matrix g(α)
is orthogonal. It is a C°°-function of α and satisfies g(α/J)=g(α)g(/J) for all
α,/?eG. Therefore g is an orthogonal representation of G, i.e., g ΐ jeΔ.

Now, setting σ = e in (4.8), we have φi(a) = Σjgij{ai)φJ{e) for all αeG. This
shows that each φ{ is a linear sum of elements of Δ. Therefore, any /eJf can be
approximated uniformly on each compact sebset of G by a sequence of linear
sums of elements of Δ. The proof is complete.

Proof of Theorem 4.3. Suppose first that μ0, exists. Consider the n x w-matrix

function L(r)g(σ) = (L(r)g0 (σ)). Note that gtj belongs to ̂ 2 A direct computation
yields L(r)g(σ)=g(σ)L(r)g(e). Then we have (d/ Λ)μStJ(g) = μs,t(g)L(i)g(e) by Corollary
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3.5. Then we obtain μSίt(gΓ\dl di)μs,t(g) = L(i)g(e). Let j-»0. Then μ^gΓ'

(d/dt)μ0j(g) = L(ήg(e). The left hand side is integrable near 0 since μG,t(g)~ l -* I as
f->0. Therefore L(t)g(e) is integrable on (0,1).

We take a component of g = (gfe/), say gfcί and denote it by/ We show that

(4.9) Σ fl"(ιΛfo xif(σ)Xjf(σ) + (/(στ) -f(σ))2vu(dτ)du < oo.

Let φ s ί, />s, be a process with independent increments such that φs,s = e and the

law of φst is μsΛ . We may assume that it is a solution of the stochastic differential

equation (4.3), where Bt is a Brownian motion with mean 0 and Cov(Bt — Bs) = γsA(u)du

and N((s9t~] x E) is a Poisson random measure with intensity measure v,Λ. Equation

(4.3) is written as

(4.10) f(φj = δkl + (kj)-compomnt of g(φJL(ύ)g(e)du + M^t(f\
Js

where Mst(f) is a martingale, whose bracket process is given by

(4.H)

Γί (f(ψ
JsJG

Since φs,f -> ςt)0tf in probability, ĵ (φs>M)L(%(e)ί/M -> f0^(φ0>M)L(w)^)rfw. Therefore,

limsj0Afsί(/) exists boundedly. This proves limS|0<Msί(/)><oo a.s. Then

we obtain (4.9).

The above argument implies

(V
Jo

(4.12) \aίj(u)\du<oo,

(4.13) (f(στ)-f(σ))2vu(dτ)dU<ao.
QJ G

Then we get $Q\bl(u)\du< oo, since γ0\L(u)g\du< oo. We can repeat a similar argument

for fe&2 instead of g. Then we obtain (4.13) for any/e^2. Then we have

γ0($φ(τ)vu(dτ))du<ao. We have thus obtained (4.4) and (4.5).

Conversely suppose we are given a triple (A(t),b(t),vt)t>0 satisfying (a)-(d). Then

there exists a Brownian motion Bt starting from 0 at time 0 with mean γ0b(u)du

and covariance γ0A(u)du, and a Poisson random measure N((s,t]xE) with the

intensity measure vtdi independent of Bt. Then the stochastic differential equation

(4.3) has a unique solution φStt(σ) for any 0<s<t<ao. It defines a convolution
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semigroup {μs,ί}0<5<ί<0o by setting μStt(E) = P(φStt e E\ where φatt = φStJ(e). It admits
the required property. The proof is complete.

4.3. The case where the Lie group is simply connected and nilpotent

We shall obtain another representation of the infinitesimal generator in the
case where the Lie group G is simply connected and nilpotent. An important
fact on a simply connected, nilpotent Lie group is that any σeG is represented
uniquely as σ = exp(ΣixiXi), where Xί," ,Xd is a fixed basis of ^ and
x = (xί," ,xd)eRd. Further, the exponential map exp:^-» G is a diffeomorphism.
See Hochschild [2].

We shall restrict our attension to the convolution semigroup satisfying Condition

Theorem 4.6. Let G be α simply connected and nilpotent Lie group. Let

{μ s,f}o<s<ί<oo be a nonhomogeneours convolution semigroup on G satisfying Condition
(DQ). Let {A(t)}t >0 be its infinitesimal generators. Set ξ(x) = expΣ^^ . Then for

, A(t)f is represented by the integro-differential operator L(f)f, where

(4. 1 4) L(t)f(σ) = £ a

L M

where A(t) = (aίj(t)) and b(t) = (bl(t)) satisfy (a) and (b) of Theorem 3.1, respectively
(replacing "f>0" by "f>0") and
(cf) vt, f>0, are Levy measures on Rd, i.e., they satisfy

v,({0})=0, ί -
JB Ί

(4.15)

for any ί>0. Further, §Rd(\x\2/(l + \x\2))f(x)vt(dx) is continuous in t>0 for any
bounded continuous function f on Rd.

Further, if μ0 t = lim s ioμ s t exists, the following (dr) is satisfied.
(df) The triple (A(f),b(t\vt) is integrable on the interval (0,1), i.e., A(t), b(t) satisfies
(4.4) and vt satisfies

Γ(ίrJo \Jκ d A

(4.16)

Conversely, suppose that we are given triple (A(t),b(ί),vt)t>0 satisfying (a), (b),
(cr) and (df). Then there exists a unique nonhomogeneous convolution semigroup

{μs,ί}o<s<ί<oo sucn that the domain <2>({A(t)}) of the infinitesimal generator {A(t)}t>0

includes #2

 ana A(f)f, /e^25 ^ represented by L(i)f of (4.14). Further, μ0>ί
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exists.

Proof. We shall apply Theorem 3.1 and Theorem 4.3. Let x = (xί9 9xd) be
the global canonical coordinate of G, i.e., for σ = exp(ΣjcIJQ, we set xi(σ) = xi. Define

the functions x1,—,**, φ of %2 by x\σ) = xj[σ)/(l + \x(σ)\2) and φ(σ) = \x(σ)\2/(I
+ |x(σ)|2). We define a measure cΓ'v, on Rd by ξ-1vί(^) = vί(ξ(£1)) for any Borel
sets E of /?d. For simplicity of the notation, we denote the measure ξ~ίvt by
vt. Then (3.3) is written as (4.14). Properties (c') and (d') follow from properties
(c) and (d) of Theorems 3.1 and 4.3, immediately.

The triple (A(t)9b(t)9vt) of Theorem 4.6 determines the operators L(t\ so that
it determines and characterizes the convolution semigroup {μSff}. It is called the
characteristics of the convolution semigroup {μStt}

5. Infinitesimal generators of self-similar nonhomogeneous convolution

semigroups

As an application of Theorem 4.6, we shall determine the infinitesimal generators
of all self-similar nonhomogeneous convolution semigroups. It will turn out that
the infinitesimal generator A(t) can not be defined at t = Q in many cases.

Let β be an automorphism of the Lie group G, i.e., it is a diffeomorphism of
G and satisfies β(τσ) = β(τ)β(σ) for any τ,σeG. For a distribution μ on G, we
denote by βμ the distribution such that βμ(A) = μ(β~\AJ) holds for any Borel set

A of G. Then it holds (βμ)(f) = μ(f°β\ where f°β is the composition of the
function/and the map β. Further, the equality β(μ*v) = (βμ)*(βv) holds for any
distributions μ, v.

Let {μSft} be a nonhomogeneous convolution semigroup of distributions on

G. Set μ(

s

βj = βμs,t. Then {μ(/j} is a nonhomogeneous convolution semigroup.
Indeed, we have βμStt*βμtίU = β(μStt*μM) = jβμs,M for any s<t<u and j5μS)ί(/)

— μs,t(f° β) ~+f(e) as k"^! -> 0 f°r any/e J*. We discuss the infinitesimal generator
of {μ(/J} in connection with that of {μs,,}.

Let £//? be the differential of the automorphism β. Then dβ defines an
automorphism of the Lie algabre ,̂ i.e., dβ is an invertible linear map of ^ onto

itself satisfying the relation dβ\_X,Y] = [dβX,dβY] for all X,Ye%, where [,] is
the Lie bracket. It holds (dβX)f=X(f o β)o β~ι for any Xe& and/e#2. Now

if we fix a basis {Xί9 9Xd} of the Lie algebra ,̂ <//? induces naturally an invertible
linear tranformation of Rd, which we denote by the same notation dβ.

For a measure v on Rd, we denote by dβv the measure such that
(dβv)(A) = v(dβ~\A)) holds for any Borel set A.

Lemma 5.1. Let {μs>ί} be a nonhomogeneous convolution semigroup on a simply
connected nilpotent Lie group G satisfying Condition (Z)0). Let β be an automorphism
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of G. Then {μ(/j = βμs,t} w 0 nonhomogeneous convolution semigroup satisfying

Condition (/)0). Let {A(β)(t)} be its infinitesimal generator. Then it is represented

by

(5.1)

(f(σξ(x))-f(σ)-]

^

where ((aij(ί)),(bl(t)),vt) is the characteristics of the convolution semigroup {μStt}.

Proof. Let {P(/j} be the semigroup of linear operators associated with
{μ(βj}. Then it satisfies P%ϊf=Ps,t(f°β)°β~i, where {PSJ is the semigroup of
{μsf}. Then, the corresponding resolvents /?(/} and Rλ are related by R(f}f
= Rλ(foβ)oβ~l. Therefore R(

λ

β) satisfies Condition (D0) if Rλ satisfies it. Let
{A(β\t)} be its infinitesimal generator. It satisfies A(β\t)f=A(ή(fo β)oβ~l for any

/e^2 . Since A(t)f\s represented by L(t)foϊ (4.14), A(β\t)fis represented as L(β\t)f
of (5.1). The proof is complete.

Let {yr}r>o be a one parameter group of automorphisms of the Lie group G,
i.e., (i) for each r>0, yr is an automorphism of G, (ii) yrys = yrs holds for any r,ly>0,
(iii) yr is continuous in re(0,oo). It is called a dilation if it satisfies (iv) yr(σ)-*e
uniformly on compact sets as r -> 0. A dilation can not be defined on an arbitrary
Lie group. Indeed, if a dilation exists on the Lie group G, the Lie group is
necessarily simply connected and nilpotent.

Given a dilation {yj, we set δt = γet, —oo<ί<oo. Then {δt} is a one parameter
group of diffeomorphisms of G. Let Y be its infinitesimal generator (a complete
C00 -vector field):

(5.2)
f-»0

Then, it holds

(5.3) ^f yt=

Note that Y is not necessarily an element of 0.
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A nonhomogeneous convolution semigroup {μ s,f}o<s<f<oo is called self-similar

with respect to a dilation {yr}r>0 if yr

us,t = lj'rs,rt holds for any r>0 and
Q<s<t<ao. Let {φt9t>0} be a (7-valued stochastic process with independent
increments associated with {μs>ί}. Then it is self-similar with respect to {yr}, if
and only if the law of the process {φ^r) = yr(φ^t>ύ} is equal to the law of the
process {φ|r) = <prί,/>0,} for any r>0.

In this section we will characterize all self-similar nonhomogeneous convolution
semigroups through the representation of the infinitesimal generators. We first
show that any self-similar convolution semigroup satisfies Condition (Z>0) of Section 4
so that the infinitesimal generator admits the representation (4.14).

Lemma 5.2. Let {μs>ί} be a nonhomogeneous convolution semigroup on a simply
connected nilpotent Lie group G. Suppose that it is self-similar with respect to a
dilation {yr}. Then its resolvent Rλ satisfies Condition (D0).

Proof. The associated semigroup {PStt} satisfies Psj(f°y^°y,~ί(σ) = Prs,rtf(σ)'
Therefore,

σ9t)=Γe-λsPt>t+s(ft+s)(σ)ds
Jo

Set «*!,! = {/e <$ϊ'Λ : F/e J}. It is a dense subset of ̂  . For/e ̂ 11, the above is
continuously differentiable with respect to />0. The proof is complete.

We shall study the infinitesimal generator of a self-similar nonhomogeneous
convolution semigroup. Let dyr be the differential of the automorphism y r. Then
{dγr}r>0 is a one parameter group of automorphisms of .̂ It satisfies dyrX->Q
as r->0 for any Xe&. The linear map dyr is represented by ί/yr = exp(logr)β,
where β is a linear map of ^ such that all of its eigen values have positive real
parts. Further it satisfies Q\_X, 7] = \_QX, Y] + [JT, Q Y~] for all X9 Ye &. The map
dyr is often written as rQ and the linear map Q is called the exponent of the

dilation {yr}r>0 The adjoint (transpose) of Q is denoted by Q.

Theorem 5.3. Let {μ s,ί}o<s<f<oo &e a nonhomogeneous convolution semigroup
on a simply connected nilpotent Lie group G. Suppose that it is self-similar with
respect to a dilation {yr} with exponent Q. Then its infinitesimal generator
{A(t)}t>0 admits the representation {L(t)}t>0 0/(4.14). Further, the triple (A(t\b(t\vt)
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satisfies the following equalities:

(5.4) A(t) = ΓitQA(\)tQ\ W>0.

(5.5) v^r'CSλ Vί>0,

where V j is a Levy measure satisfying

(5.6) I
JΛ

(5.7) 4<ι)=/β-'*<l)+ {-^ . . .V. j r '^v^x), W>0.

Conversely suppose that we are given an arbitrary triple (A(ΐ)9b(l)9v J of a
symmetric nonnegative definite matrix A(\), a vector b(\) and a Levy measure
v t satisfying (5.6). Let {yr} be an arbitrary dilation and let Q be its exponent. Then

there exists a unique convolution semigroup {μStt}o<s<t< oo whose infinitesimal generator
{A(t)}t>0 admits the representation {L(t)} of (4.14) with characteristics (5.4), (5.5),
(5.7). It is self-similar with respect to {yr}.

Proof. Let {A(r\t)} be the infinitesimal generator of {μ£j}, where μ£t = μrs,rί.
Then it holds A(r\t) = rA(rt\ where {A(t)} is the infinitesimal generator of {μs,,}. Next
let {A(yr\f)} be the infinitesimal generator of the nonhomogeneous convolution

semigroup {μ ,̂r)}. Since μ t̂

r) = μ£} holds for any s<t and r>0, we have
A(Vr\t)f=rA(rt)f9 fe(&2 for any r>0 and ί>0. This implies, in particular,
A(t)f= Γ lA(yt\l)f, fε%2 . Now A(γt\l)f is represented by L(γt\l)f of (5.1). Since
dyt = tQ holds, we get equalities (5.4), (5.5) and (5.7) by comparing the coefficients
of operators L(t) of (4.14) and Γ lL(yt\l).

We shall prove the integrability condition (5.6) by making use of the integrability
condition (d') of Theorem 4.6. Setting t = e~u in (4.16), the left hand side of (4.16)

equals

(5'8)

Γ1 Γ bcl2 Γ°° Γr lM ^γ2(tQ^)(dx)}dt=\ {
Jo Jn-l + |x|2 Jo JR-I

l cl2

"
I -uQ |2

= ι ( i Λ ,-l,>w*)
Since,

Cl log(l + W2) < - - - d u <c2 log(l + W 2
foo

:ί.r
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holds with some positive constants q , c2 (Urbanik [13]), the integral (5.8) is finite
if and only if integrability (5.6) holds.

Conversely suppose that the triple ^(l),^!)^) satisfies the conditions

mentioned in the theorem. Define the triple (A(t)9b(t)9vt) by (5.4), (5.5) and
(5.7). Then it satisfies (a), (b), (c'), (d') of Theorems 3.1 and 4.6 because of
(5.6). Therefore there exists a nonhomogeneous convolution semigroup {μs?ί} with
characteristics (A(t)9b(t)9vt). We will show that it is self-similar with respect to

{yr}. It is enough to prove μ ,̂r) = μ$ f°r a" r>0 and s<ί. It is easy to verify
that the triple (A(t)9b(t)9vt) satisfies

A(rt) = r~ *rQA(t)rQ\ vrt = r~ l(rQvt),

for any ί>0 and r>0. Therefore the infinitesimal generator [A(yr\ί)} of {μ(

s

yj}}
satisfies A(y'\t) = A(r\i) = rA(rt) for any r>0 and ί>0, where {A(r\ή} and {A(t)}

are infinitesimal generators of {μ£j} and {μs>ί}, respectively. This implies μ(

s

Ύj} = μ(s,l
for any s < t and r > 0. The proof is complete.

Theorem 5.3 tells us that an arbitrary integro-differential operator L(\) (or
the characteristics (A(\\b(V\v ^)) satisfying the integrability condition (5.6) and an
arbitrary dilation {γr} give us a unique nonhomogeneous {yr}-self-similar convolution

semigroup. However, if we restrict our attention to homogeneous ones, it is much
more restrictive.

In Kunita [6], a homogeneous convolution semigroup {μj is called stable
with respect to a dilation {γr}9 if γrμt = μrt holds for all t>0 and r>0. Therefore
for a homogeneous convolution semigroup, the self-similar property and the stable
property are identical. The following Corollary indicates how strongly the

characteristics and the dilation are related for the stable convolution semigroups.

Corollary 5.4 (cf. Kunita [6]). Let {μf} be a homogeneous convolution semigroup
on a simply connected nilpotent Lie group G. It is self-similar (stable) with respect

to a dilation {yr} with exponent Q, if and only if its characteristics (A,b,v) satisfies

the following equalities'.

(5.9)

(5.10) v(E) = I λ(dθ) \
Js Jo

where S={θeRdι\θ\ = 1, \rQθ\>\ for all r>l} and λ is a bounded measure on S,

and b satisfies
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(5.11) (Q-I)b= ~ 2

Proof. Theorem 5.3 tells us that the homogeneous convolution semigroup is
self-similar with respect to rQ if and only if its characteristics (A,b,v) satisfies

for all />0. These three equalities are equivalent to (5.9), (5.10) and (5.11),
respectively. See the proof of Theorem 2.1 in [6].

REMARK. The equality (5.11) indicates the following two cases:
a) If 1 is not an eigen value of Q, the vector b is determined by v and Q. It
is given by the following bί:

(5.12) V

b) If 1 is an eigen value of Q, the measure v satisfies an additional equality:

where Wλ is the invariant subspace of Rd generated by eigen vectors associated with

eigen value 1, TWl is the projector to the space Wv and Wί = {(Q — I)x',xe W±}.
Further the vector b is given by bι+bQ, where bί is the vector of (5.13) and b0

is an element of IVί = {x: Qx = x}.

Finally, we give some examples of stable, and nonstable self-similar Brownian
motions on a Heisenberg group. Let G be a Heisenberg group. It is diffeomorphic

to R3 and is a simply connected nilpotent Lie group of step 2. There exists a

basis {Xi9X2,X3} of the Lie algebra ^ of G satisfying [Xl9X2'] = X3 and
[Ar

1,A
r

3] = [Λr

2,Λ
r

3]=0. Consider a differential operator:

(5.14) L(c) = erf + c2 Xl + c3Xl,

where c = (cί9c2,c3) are nonnegative constants. Then there exists a unique
homogeneous convolution semigroup {μjc)} with the infinitesimal generator L(c). Let
Q be a 3 x 3 diagonal matrix with diagonal elements o ί ί , α2 and α3 where o ί ί , α 2,
α3 are positive constants. Then for any r>0, rQ defines an automorphism of ̂

if and only if α3 = α 1 H-α 2 . If the equality holds, there exists an automorphism
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γr of G such that dγr = rQ. Then {yr}r>0 is a dilation with the exponent Q. The
homogeneous convolution semigroup {μt

(c)} is self-similar with respect to the dilation,
if and only if c3 = 0 and the exponent satisfies α1=«2 = l/2 and α3 = l. See
Kunita [6].

However, if c is a time dependent function c = c(t\ then the situation is
completely different. Denote the right hand side of (5.14) by L(c\t). Then there
exists a unique nonhomogeneous convolution semigroup {μ$} with the infinitesimal
generator L(c\i). Further, it is self-similar with respect to the dilation with exponent
Q such that α3 = α 1 -hα 2 , if and only if L(c\f) is represented by

(5.15) L(c\t) = (cίt
2Λl-ί)X^(c2t

2Λ2-ί)

where cί9 c2, c3 are arbitrary nonnegative constants.

6. Selfdecomposable distributions and the associated self-similar non-

homogeneous convolution semigroups

6.1. Selfdecomposable distributions

Let β be an automorphism of the Lie group G. A distribution μ on G is
called ^-decomposable if there exists a distribution μβ such that μ = βμ*μβ. Let
{γr} be a dilation on G. A distribution μ is called {yr} -Selfdecomposable if it is
^-decomposable for any 0<r<l. If {μst} is self-similar with respect to {γr}, μ0 ί

is {yr} -Selfdecomposable for any />0.
The following theorem is a generalization of Sato [10], where a Q-

Selfdecomposable distribution on Rd is imbedded into a nonhomogeneous
convolution semigroup on Rd.

Theorem 6.1. Let μ be a distribution on a simply connected nilpotent Lie group
G equipped with a dilation {yr}. Suppose that μ is infinitely divisible in the generalized
sense and {yr} -self decomposable. Then there exists a unique nonhomogeneous
convolution semigroup {μs>ί} on G, self-similar with respect to {yr} such that μ0 α —μ.

For the proof of the theorem, we need a lemma.

Lemma 6.2. (1) Let μ and v be infinitely divisible distributions in the generalized
sense. Suppose that there exists a distribution ξ such that μ = v * ξ. Then ξ is
uniquely determined.

(2) Let μ be infinitely divisible in the generalized sense. Let {vn} be a sequence
of infinitely divisible distributions in the generalized sense converging weakly to
an infinitely divisible distribution v in the generalized sense. Suppose there exists
a sequence of distributions {ξn} such that μ = vn*ξn. Then the sequence {ξn} converges
weakly to a distribution ξ such that μ = v*ξ.
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Proof. Let g be an orthogonal representation of G. Then we have the equality

μ(g} = v(g)ζ(g)- Since v(g) is invertible, we obtain ξ(g) = v(g)~lμ(g). Let Δ be the
system of bounded C°°-functions on G introduced by (4.6). Since Δ is locally
uniformly complete in & by Lemma 4.5, ξ is uniquely determined by v and μ. This
proves the first assertion of the lemma.

We shall prove the second assertion. Since μ(g) = vn(g)ξn(g) and (vw(g)} converges
to the invertible matrix v(g), {ξn(g)} converges for any orthogonal representation
g. We shall prove that the sequence ξn,n = 1,2, converges weakly to a distribution
ξ. Let G = Guoo be a one point compactification of G. It is a semigroup by
setting σoo = ooσ=oo for any σeG. All distributions μ,v,ξw,/f=l,2, can be
regarded as distributions on G by setting μ({oo}) = 0, etc. Then there exists a
subsequence {ξnk} of {ξn} converging weakly to a distribution ζ on the space G,
since G is a compact space. It satisfies μ = v * ξ i.e., for any continuous function
/ on G, we have

where ξ is a measure on G such that ξ — ζ on G. We shall prove <f({oo}) = 0. Let
χ{oo) be the indicator function of the set {00} and /„ be a sequence of continuous

functions over G such that /π |χ{oo}. Then μ(/J = v*ξ(/H)+/Λ(oo)|"({oo}). Let n
tend to infinity. Both of μ(/,,) and v *£(/„) converges to 0. Since lim/π(oo)=l,
we obtain <f({oo}) = 0. We have thus proved the equality μ = v*ξ. Since ξ is

unique by (1), the sequence [ξn] converges weakly to ξ on the space G. The
proof is complete.

Proof of Theorem 6.1. Set μ0tt = ytμ. If 0 < f < l , we have μ = μ0tt*μt. We
set μ0 t = μ and μίs t = μt . Then it holds μ0> t = μ0>ί * μt t . For 0 < s < t < oo, we set

μst = yfμs/ί> i . Then we have μs t = μs , * μt Λ if s<t<\. Indeed, since

^0,5 * μStt *μttι= y^o,s/t * ytμs/t, i * μt, i = y^s/* * μβ/tf 0 * μt, i = w * μt, i = μ,

we have μ0 s * (μs>ί * μt,ι}~μo,s * Ms,ι This proves μs , * μt,ι=μs,ι ™ view of Lemma
6.2 (1). Next for any 0<s<f<M<oo, we have

Therefore {μs J is a nonhomogeneous convolution semigroup.
We will prove the continuity of the semigroup {μs,J. Note the equality

μ0 r = μ0 s * μst . Since μ0?s = ys/fμ0,f , μo,s converges weakly to μ0 , as s -> ί. Therefore
μs t converges weakly to (5ε as s —> ί by Lemma 6.2 (2). Furthermore, noting

μs,ί = yΛ/t,ι» we obtain supM<ε|μSjf(/)-/(e)| -»0 as ε-^0, and for any ε>0,

sup |μs,t(/)
s,f >ε,|s-ί| <h
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These two convergences imply the continuity of the semigroup.

We will next prove the uniqueness of the convolution semigroup. Let {μSjt}

be another convolution semigroup satisfying γrμs,t = μrs,rt and βoΛ==μ Then we
have μ0,s = ysμ = μo,s

 for anY *>° Since μ0ίS* μst = γtμ = μ0s* μst and μ0,s = μ0,s

hold, we have μStt = μStt for any s<t by Lemma 6.2 (1). The proof is complete.

We do not discuss the existence of the density function of the selfdecomposable
distribution. But we derive a partial differential equation satisfied by the density

function. Let F be the infinitesimal generator ( = a complete C°° vector field) of
δt = yet, —ao<t<cQ, defined by (5.2). Then it holds

(6.1)
ί->l t—\

It is represented by

(6.2)
j,k

where σ = expΣxj(σ)Xj.

Theorem 6.3. Suppose that μ0>ί has a density function gt(σ) with respect to

the Haar measure dσ. Then it satisfies

(6.3)

where (L(t)—jY)* is the formal adjoint represented as

(6.4) (!(/) --Y) */(σ) = ~Σ <P(ί)XtXjf(σ) - £ V(t)XJ(σ)

lF/(σ)+l(trβ)/(σ)

f
j R

+
Rd

Proof. Let /e*2. Then P^J satisfies ^P0ftf=P0>tL(t)f. Since

/t)> we have

0^_1p y/
— — ~^o,ί * J,

dt h-+o h t
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Therefore we have

for any /e#2 Then the density function gt satisfies (6.3). The proof is
complete.

6.2. The case of Euclidean space. Operator-self-similar convolution semigroups
and operator-selfdecomposable distributions

We shall consider the case where G = Rd. Let {μst} be a nonhomogeneous
convolution semigroup on Rd satisfying Condition (Z)0). Then μs>t are infinitely

divisible distributions for all Q<s<t. We shall compute their characteristic

functions. Set/z(x) = exp/<z,.x>. Then μs,,(/J(0) = μS)ί(z) coincides with the chara-
cteristic function (Fourier transform) of the distribution μ s ί. Further we have
L(t)fz(x) = Φ(t,z)fz(x\ where

Φ(t,z) = —ΣflyWzizι + ίΣ*ίWzi + (exp/<z,x> — 1 —^-—-)vt(dx).
2u i J 1 + M

Therefore, if 0 <s < t we have from (3.10), μs>f(z) -1 = £φ(r,z)μs,r(z)dr. Differentiating

both sides with respect to t, we obtain ^μsί(z) = Φ(f,z)μsf(z). Integrating the

differential equation, we arrive at Levy-Khinchine's formula:

(6.5) μs>ί(z)

/ 1 Γ f< Γ
= expl —<z,( A(r)dr)zy +/< b(r)dr,z} + (exp /<z,x> — 1 —

V 2 Js Js J

where Nst = γsvrdr. Consequently, the generating elements of the infinitely divisible
distribution μs f is given by

f f \
AWrΛ b(r)dr,\ v,dr\.

Js Js /

Conversely, suppose we are given a triple (A(t)9b(t)9vt) which satisfies (a), (b),
(c') and (d') of Theorem 3.1 and Theorem 4.6. Then there exists a unique convolution

semigroup {μSjf} on Rd such that the characteristic functions of {μs>f} are given by
the Levy-Khinchine's formula (6.5).

An automorphism β of Rd is nothing but an invertible linear transformation.

Then the dilation {yt}r>0 is represented by yr = exp(logr0 = rQ,r>0, where Q is
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a linear transformation such that the real parts of its eigen values are all positive. A

distribution μ on Rd is {rβ}-selfdecomposable if and only if μ is exp( — tQ)-
selfdecomposable in Jurek-Mason [4] or ζ)-selfdecomposable in Sato [10].

We give a simple proof of Urbanik's characterization of selfdecomposable
distribution by means of the generating elements. A merit of our proof is that
we get more informations for each term in the representations of the generating
elements.

Let Q be a given d x rf-matrix such that the real parts of eigen values of Q
are all positive.

Theorem 6.4 (Urbanik [13]). Let μ be a distribution on Rd with the generating

elements (A,b,v). It is selfdecomposable with respect to {rQ} if and only if A and
v satisfy the following properties (i) and (ii):
(i) Thr matrix A is represented by

(6.7) •-ΓJo

with a symmetric nonnegative definite matrix A(l).

(ii) The Levy measure v is represented by

(6.8)
o

with a Levy measure vv satisfying (5.6).

Proof. Let μ be a distribution, selfdecomposable with respect to {rQ}. There
exists a unique nonhomogeneous convolution semigroup {μsί} on Rd , self-similar

with respect to {rQ} such that μ0)1 =μ. Then in view of Theorem 5.3, the generating

elements of the infinitely divisible distribution μst are given by

(6.9) \-rQA(\)rQ'dr, -(
Jsr Jsr

Consider the case s = 0 and ί=l. Setting u = — log r in (6.9), we obtain (6.7), (6.8) and

Conversely suppose that the generating elements (A,b,v) of the distribution μ

satisfies (i) and (ii). Define b(l) by the relation (6.10). Next define the triple
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(A(t),b(i),vt) by (5.4), (5.5) and (5.7) using the triple ^(l), !̂)^). Then it satisfies
the integrability condition (d') of Theorem 4.6, because of (5.6). Therefore there
exists a nonhomogeneous convolution semigroup {μsf} with characteristics
(A(t)9vt9b(t))9 which is self-similar with respect to {rQ} by Theorem 5.3. Then the

distribution μ0 t, is selfdecomposable with respect to {rQ}, whose generating elements

are given by (6.7), (6.8) and (6.10). Therefore μ = μ0,ι» proving that μ is
selfdecomposable with respect to {rQ}. The proof is complete.

Here is another representation of the Levy measure v in Theorem 6.4. The

following is due to Yamazato, Wolfe, Jurek and others. We refer to Yamazato
[14] and Sato-Yamazato [11].

Theorem 6.5. Let μ be a distribution on Rd with the generating elements

(A,v,b). It is selfdecomposable with respect to {r°~} if and only if A and v satisfy
the following properties (ϊ) and (ii'):

(i') A(\) = QA + AQ is a nonnegative definite matrix, where Q is the transpose ofQ.
(ii') The Levy measure v is represented by

(6.11) v(E) = f λ(dθ) Γ χE(rQθ)kθ(r)r- ldr,

where λ is a bounded measure on 5={0;|θ| = l, jrQ0|>l for all r>0} and kθ(r) is
nonincreasing in re(0,oo), measurable in ΘeS and satisfies

(6.12)

Proof. It is sufficient to prove that properties (i') and (ii') are equivalent to
the properties (i) and (ii) of the previous theorem, respectively. Suppose (i) is

satisfied. Then,

'= - P° {-(̂ -
Jo at

QA+AQ'= - {-(̂ -̂ (1)̂  + ̂ - (̂1)-
at

Conversely suppose that the matrix A(\) = QA Λ-AQ is nonnegative definte. Define
A=^e~tQA(l)e~tQ'dt. It satisfies A(\) = QA+AQf. Then we must have A=A9

proving the equivalence of (i) and (i').
Suppose next that (ii) of Theorem 6.4 is satisfied. Let us remark that every

xeRd— {0} is represented by x = sQθ, where 5-6(0,00) and ΘeS. Define a measure

λ on S by λ(F) = vi({sQΘ;s>l, ΘeF}). It is a bounded measure. There exists a
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family of (conditional) measures {μθ:θeS} on (0,oo), measurable with respect to
θ such that

(6.13) vί(E)= I λ(dθ) I
Js Jo

holds for all Borel sets E. Then we have

ί (e~'Q

j Rd

= ί λ(dβ) Γ Γ
Js Jo Jo

= 1 WΘ)Fr-ldr(*
Js Jo Jr

= t λ(G

J s

(We set se f = r in the above computation.) Therefore, setting kθ(r) = μθ([r9ao)), we
obtain the representation (6.11). Further, we have by (6.13),

(6.15) I log(l -f |jc|2)v1(Λc)= - ί λ(dθ) Γ log(l + \rQθ\2)dkθ(r)
JR<* Js Jo

The last equality follows from integration by parts. See Lemma 2.2 in
[11]. Therefore (5.6) holds if and only if the last member of the above is finite,
or equivalently, (6.12) is satisfied

Conversely suppose that (ii') is satisfied . Set

Γ f*3

v !(£)= — λ(dθ)\ Xε(rθ)dkθ(r).
Js Jo

It is a Levy measure satisfying (5.6). Then a computation similar to (6.14) implies
the equality (6.8). The proof is complete.
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