<table>
<thead>
<tr>
<th>Title</th>
<th>Notes on the Cobordism Group U*(Ln(m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kamata, Masayoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 9(2) P.287-P.292</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1972</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/51784</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/51784</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
NOTES ON THE COBORDISM GROUP $U^*(L^n(m))$

MASAYOSHI KAMATA

(Received August 31, 1971)

1. Let $U^*(X)$ be the unitary cobordism group of a finite CW complex X. P.S. Landweber [4] and K. Shibata [6] determined the unitary cobordism group of the lens space $L^n(m)=S^{2n+1}/Z_m$. In this paper, we use the structure of the reduced unitary cobordism group of $L^n(m)$ to prove the following

Theorem 1. If positive integers p and q are relatively prime, there exists an isomorphism

$$\psi: \bar{U}^{ev}(L^n(p)) \oplus \bar{U}^{ev}(L^n(q)) \to \bar{U}^{ev}(L^n(pq)),$$

where $\bar{U}^{ev}(\cdot)=\sum_i \bar{U}^{2i}(\cdot)$.

Let $U_*(X)$ be the unitary bordism group of a space X. Denote by BZ_m the classifying space of the group Z_m. Using the duality isomorphism $D: U_*(L^n(m)) \approx U^*(L^n(m))$ and the isomorphism $U_k(L^n(m)) \approx U_k(BZ_m)$ for $k<2n+1$ [3], we have $U_k(BZ_m) \approx \bar{U}^{2n+1-k}(L^n(m))$ for $k<2n+1$. Then, Theorem 1 implies the following

Theorem 2. If p and q are relatively prime, there exists an isomorphism

$$\psi_*: U_{od}(BZ_p) \oplus U_{od}(BZ_q) \to U_{od}(BZ_{pq}),$$

where $U_{od}(\cdot)=\sum_i U_{2i+1}(\cdot)$.

Using the spectral sequence [3], we obtain

$$U_{2i}(BZ_m) \approx U_{2k}.$$

For a prime p, $U_*(BZ_p)$ was determined in [1] and [3].

Denote by $\bar{K}(X)$ the reduced Grothendieck group of isomorphism classes of complex vector bundles over X. In [2], Conner and Floyd gave the isomorphism

$$\bar{K}(X) \approx \bar{U}^{ev}(X) \otimes U^*Z.$$

Therefore, Theorem 1 implies the following
Theorem 3. (N. Mahammed [5]) If p and q are relatively prime, there exists an isomorphism

$$K(L^*(p)) \oplus K(L^*(q)) \simeq K(L^*(pq)).$$

2. In this section we prove Theorem 1. Denote by CP^n the n-dimensional complex projective space and by γ the canonical complex line bundle over CP^n. Let $\pi: L^*(P) \to CP^n$ be the natural projection and put

$$x_p = \pi^*c_1(\gamma),$$

where $c_1(\gamma)$ is the first Chern class of γ in the sense of Conner and Floyd [2].

Let $F(\ ,)$ is the formal group law such that

$$F(c_1(\gamma), c_1(\gamma')) = c_1(\gamma \otimes \gamma')$$

for complex line bundles γ, γ' over the same CW complex [7]. For a positive integer m, let $[m]_F(x) \in U^*[[x]]$ be a formal power series defined by the following formulas

$$[1]_F(x) = x$$
$$[k]_F(x) = F(x, [k-1]_F(x)).$$

In [6], K. Shibata gave the following

Theorem 2.1.

$$U^*(L^*(m)) \cong \Lambda_{\nu}(D[pt, i]) \oplus U^*[[x_m]]/(x_m^{m+1}, [m]_F(x_m)),$$

where $[pt, i] \in U^*_\partial(L^*(m))$ is the bordism class represented by an inclusion map of a point, Λ_{ν} () is the exterior algebra over U^* and $(x_m^{m+1}, [m]_F(x_m))$ denotes the ideal generated by x_m^{m+1} and $[m]_F(x_m)$.

The same result can be obtained also by the method of P.S. Landweber [4] directly.

Considering the following short exact sequence

$$0 \to \bar{U}^*(L^*(m)) \to U^*(L^*(m)) \to U^* \to 0,$$

it follows from Theorem 2.1 that

$$\bar{U}^*(L^*(m)) \cong U^*[[x_m]]/(x_m^{m+1}, [m]_F(x_m)),$$

where $\bar{U}^*[[x_m]]$ is the kernel of the homomorphism

$$\varepsilon: U^*[[x_m]] \to U^*$$

defined by $\varepsilon(\sum a_k x_m^k) = a_\nu$.

We define a homomorphism
\[\psi: \bar{U}^e(L^*(p)) \oplus \bar{U}^e(L^*(q)) \to \bar{U}^e(L^*(pq)) \]

by \(\psi(P(x_p), Q(x_q)) = P([q]_F(x_{pq})) + Q([p]_F(x_{pq})) \), where \(P(x_p), Q(x_q) \) and \(P([q]_F(x_{pq})) + Q([p]_F(x_{pq})) \) are the classes of the formal power series \(P(x_p) \in \bar{U}^*[x_p], Q(x_q) \in \bar{U}^*[x_q] \) and \(P([q]_F(x_{pq})) + Q([p]_F(x_{pq})) \in \bar{U}^*[x_{pq}] \) respectively.

Using the associativity of the formal group law, we obtain

\[
[p]_F([q]_F(x)) = [p]_F([pq]_F(x)) \quad (3)
\]

From (2) and (3), it follows that the homomorphism \(\psi \) is well defined.

We define the multiplication in \(\bar{U}^e(L^*(p)) \oplus \bar{U}^e(L^*(q)) \) by

\[
(x, y) \cdot (x', y') = (xx', yy').
\]

We prove the following lemma, so that the homomorphism \(\psi \) is a ring homomorphism.

Lemma 2.2. If \(p \) and \(q \) are relatively prime, \([p]_F(x_{pq}) \cdot [q]_F(x_{pq}) = 0 \) in \(\bar{U}^e(L^*(pq)) \).

Proof. We put

\[
I_{p,q} = (x_{pq}^{x_{pq}^2}, [pq]_F(x_{pq})).
\]

We show that \([p]_F(x_{pq}) \cdot [q]_F(x_{pq}) \in I_{p,q} \). From (3),

\[
p[q]_F(x) + \sum_{i=1}^{\infty} a_i ([q]_F(x))^i = [pq]_F(x),
\]

\[
q[p]_F(x) + \sum_{i=1}^{\infty} b_i ([p]_F(x))^i = [pq]_F(x),
\]

where \(x = x_{pq} \).

Since \(p \) and \(q \) are relatively prime, there exist integers \(a \) and \(b \) such that \(ap + bq = 1 \). Then, we have

\[
[p]_F(x) \cdot [q]_F(x)
\]

\[
= a[p]_F(x) \cdot ([pq]_F(x) - \sum_{i=1}^{\infty} a_i ([q]_F(x))^i)
\]

\[
+ b[q]_F(x) \cdot ([pq]_F(x) - \sum_{i=1}^{\infty} b_i ([p]_F(x))^i).
\]

We put

\[
X = [p]_F(x), \quad Y = [q]_F(x), \quad a'_i = aa_i \quad \text{and} \quad b' = bb_i.
\]

The equation (4) implies
Therefore,

\[\{1 + \left(\sum_{i=1}^{\infty} a'_i Y^{i-1} + \sum_{i=2}^{\infty} b'_i X^{i-1} \right) \} = I \in I_{p,q}. \]

Therefore,

\[XY = I(1 + A + A^2 + \cdots) \in I_{p,q}, \]

where \(A = -\left(\sum_{i=1}^{\infty} a'_i Y^{i-1} + \sum_{i=2}^{\infty} b'_i X^{i-1} \right) \).

q.e.d.

Proposition 2.3. If \(p \) and \(q \) are relatively prime, then \(\psi \) is epimorphic.

Proof. Since \(\psi \) is the ring homomorphism, we need only to prove the existence of the elements \(y \) and \(z \) which satisfy \(\psi(y, z) = x_{pq} \). We put

\[[p]_p(x_{pq}) = \sum_{i=0}^{\infty} c_i x_{pq}^{i+1}, \quad c_0 = p \]

and

\[[q]_p(x_{pq}) = \sum_{i=0}^{\infty} d_i x_{pq}^{i+1}, \quad d_0 = q. \]

We find series \(A = \sum_{i=0}^{\infty} a_i x_{pq}^i \) and \(B = \sum_{i=0}^{\infty} b_i x_{pq}^i \) which satisfy

\[x_{pq} = A[p]_p(x_{pq}) + B[q]_p(x_{pq}), \]

that is, \(a_i \) and \(b_i \) satisfy the following

\[pa_0 + qb_0 = 1, \quad (c_0 = p \text{ and } d_0 = q), \]

\[a_1 c_0 + a_1 c_1 + b_1 d_0 + b_2 d_1 = 0 \]

\[\sum_{i=0}^{k} a_{k-i} c_i + \sum_{i=0}^{k} b_{k-i} d_i \]

\[= a_k c_0 + b_k d_0 + \sum_{i=1}^{\infty} (a_{k-i} c_i + b_{k-i} d_i) \]

\[= 0. \]

Since \(p \) and \(q \) are relatively prime, there exist \(a_0 \) and \(b_0 \) which satisfy \(1 = pa_0 + qb_0 \).

Suppose that \(a_j \) and \(b_j \) are determined for \(j < k \). Put

\[a_k = -a_0 \sum_{i=1}^{k} (a_{k-i} c_i + b_{k-i} d_i) \]

and

\[b_k = -b_0 \sum_{i=1}^{k} (a_{k-i} c_i + b_{k-i} d_i), \]

then \(a_k \) and \(b_k \) satisfy the above relation. Therefore,

\[x_{pq} = \sum_{k=0}^{\infty} P_{k,1} x_{pq}^k. \]
where

\[P_{k,1} = a_k[p]_p(x_{pq}) + b_k[q]_p(x_{pq}). \]

Suppose that

\[x_{pq} = \sum_{k=0}^{\infty} P_{k,m} x_{pq}^k, \]

where \(P_{k,m} \) is a polynomial of \([p]_p(x_{pq})\) and \([q]_p(x_{pq})\) with the coefficients in \(U^* \), and for \(k \geq 1 \)

\[P_{k,m} = x_{pq}^m Q_{k,m}, \quad Q_{k,m} \in U^*[[x_{pq}]]. \]

Then, we have

\[x_{pq} = P_{0,m} + \sum_{k=1}^{\infty} P_{k,m} \left(\sum_{j=0}^{\infty} P_{j,m} x_{pq}^j \right)^k \]

\[= P_{0,m} + \sum_{k=1}^{\infty} P_{k,m} \{ P_{0,m} + \sum_{j=1}^{\infty} P_{j,m} x_{pq}^j \}^k. \]

Put

\[P_{0,m} + \sum_{k=1}^{\infty} P_{k,m} \{ P_{0,m} + \sum_{j=1}^{\infty} P_{j,m} x_{pq}^j \}^k = \sum_{k=0}^{\infty} P_{k,m+1} x_{pq}^k. \]

Then, we have

\[P_{0,m+1} = P_{0,m} + \sum_{k=1}^{\infty} P_{k,m}(P_{0,m})^k \]

and since \(P_{j,m} = x_{pq}^m Q_{j,m} \) for \(j \geq 1 \), there exists \(Q_{j,m+1} \in U^*[[x_{pq}]] \) such that

\[P_{j,m+1} = x_{pq}^m Q_{j,m+1}, \quad j \geq 1. \]

By induction, we have

\[x_{pq} = P_{0,n} + \sum_{k=1}^{\infty} P_{k,n} x_{pq}^k, \]

and for \(k \geq 1 \)

\[P_{k,n} = x_{pq}^m Q_{k,n}, \quad Q_{k,n} \in U^*[[x_{pq}]]. \]

Therefore,

\[x_{pq} - P_{0,n} \in I_{p,q} = \{ x_{pq}^{n+1}, \ [p]_p(x_{pq}) \}. \]

Put

\[P_{n} = P([p]_p(x_{pq})) + Q([q]_p(x_{pq}))+[p]_p(x_{pq}) \cdot Q([q]_p(x_{pq})) \cdot R, \]

where \(R \in U^*[[x_{pq}]] \).

From Lemma 2.2,

\[x_{pq} - P([p]_p(x_{pq})) - Q([q]_p(x_{pq})) \in I_{p,q}. \]

Therefore, we obtain
Proposition 2.4. The order of the group $\bar{U}^{2s}(L^n(m))$ is m^t, $t = \sum_{i=-s+1}^{s} \tau_i$, where τ_i is the number of partitions of i for $i \geq 0$ and $\tau_i = 0$ for $i < 0$.

Proof. Consider the spectral sequence $E^{p,a}_r$ associated with $\bar{U}^{2s}(L^n(m))$. There is a filtration

$$
\bar{U}^{2s}(L^n(m)) = J^{0,2s} \supset J^{1,2s-1} \supset \cdots \supset J^{n,2s-2s-1} = 0
$$

with $J^{p,q}/J^{p+1,q-1} = H^q(L^n(m); U^p)$. Then, for $1 \leq s+i \leq n$,

the order of $J^{2s+2s-2s+i/2,J^{2s+2s-2s-2s-1+i/2}} = \begin{cases} m^i & \text{if } i \geq 0, \\ 1 & \text{otherwise.} \end{cases}$

Therefore, the order of $\bar{U}^{2s}(L^n(m))$ is m^t, $t = \sum_{i=-s+1}^{s} \tau_i$. q.e.d.

From the Proposition 2.4, we have the following

Corollary 2.5. The order of $\bar{U}^{2s}(L^n(p)) \oplus \bar{U}^{2s}(L^n(q))$ is equal to that of $\bar{U}^{2s}(L^n(pq))$.

Proposition 2.3 and Corollary 2.5 prove Theorem 1.

OSAKA CITY UNIVERSITY

References