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1. Introduction

Let G be a compact, 1-connected, simple Lie group of rank 2 or 3. That
is, G is one of the following:

SUQ3). Sp(2), G,, SU(4), Spin(7) and Sp(3).
In [14], for these groups G, we have given a complete description of the Chern
character ([7, §1])
ch: K¥(G) — H¥G; Q).

Using this, one can easily compute the Adams operations V" ([1]) on K*(G)
for all r&Z (see (2.5)).

Throughout this paper p will denote an odd prime. Let us introduce
some spectra ([4, Part III]). Let KZ, denote the ring spectrum representing

complex K-theory localized at p. Let kZ be its (—1)-connected cover.
So there is a map of ring spectra «: kZ,—>KZ, such that

Kyt ﬂ*(kZ(p)) = Z(p)[u] - n*(KZ(p)) = Z(,,)[u, u“l]
satisfies xy(u)=wu where |u|=2. As is well known, there is a ring spectrum
g(p) such that
»-2 .
kZ(p) = i\——/o Ez'g(p) .

Here the injection ¢: g(p)—kZ(, is a map of ring spectra such that

i 7x(9(D)) = Zplv] = ma(kZip) = Ziplu]
satisfies ¢y (v)=u?"' where |v|=2(p—1). For r prime to p there are maps of
ring spectra
V' KZy — KZyy ,
V' kZy —> kZy ,
v 9(p) —9(p)
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which are called the stable Adams operations ([6], [5]). They commute with
x, ¢ and satisfy J'(u)=ru. Let

0,: g(p) = Z** g (p)

be a unique map of spectra such that (v-)8,=+"—1 where v-: Z2?~Vg(p)—g(p)
is multiplication by v. We denote by j(p;r) the fibre spectrum of 6,. If r
or r' generates the group of units of Z/p?% then j(p; r)==j(p;r’). In this case,
we may write j(p) for j(p;r) and use a suitable r to discuss it. j(p) is known
to be a ring spectrum (see [13]).

Let ﬂEi(G) (resp. ]@‘(G)) be the 7-th reduced j(p)-homology (resp. co-

homology) group of G. One of our targets is to compute the groups j(p):(G)
foi all the above G and p. As will be mentioned in § 3, the cases (G, p)=(G,, 3),
(Sp(3), 3) are most interes.ing. Then we obtain

Theorem 1.1. For i<21 and G=G,, Sp(3) the groups }(T’),-(G) are listed
in the following table:

i
k 10 11 12 13 14 15 16

G, 0 Zep 0 o0 ZI3®Z s )
Sp3) | Z[3®Zp» Zesp 0 Zi3 ZB3®Z/3FDZep 0 0

i
\ 17 18 19 20 21
G

G, Z[3 Z|32 0 0 Z[3
Sp(3) | ZI3  Z]3BZ|¥FD®Ze 0 0 Z[3DZ[33DZ s

where @ indicales the direct sum of the groups.

Since G is parallelizable, the Poincaré duality isomorphism
E(G) = E*(G)

holds for any spectrum E, where n=dim G (see [4, Part III]). Therefore,
to compute j(p),(G) it suffices to compute j(p)*"*(G). Theorem 1.1 is a con-
sequence of Theorem 4.6, in which the cup-product ring structure of j(p)*(G)
is described for (G, p)=(G,, 3), (Sp(3), 3).

The remainder of this paper is organized as follows. In §2 we collect
some results for later use. In §3 we describe the action of 6, on g(p)*(G).
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In §4 we compute the rings j(p)*(G).

2. Preliminaries
This section is devoted to describe the rings K*(G; Z(p»), k*(G; Zp),
£2(p)*(G) and the homomorphism ck: K*(G)—H*(G; Q).
P

Notice that G is assumed to be as in §1 and p is assumed to be
an odd prime. According to Borel [9], G has no p-torsion and we have

Lemma 2.1. There exist elements x,, ,SH*™ Y G;Zy), for 1<i<1
(where 1=2 or 3), such that

H*(G; Z(p)) = A(xz’n;—l) Xomg—1 °°"» x2m,—1)
where 2=m<m,<---<m; and A denotes an exterior algebra (over Zy).

For this lemma and the values of m; see [8].
We need the famous result of Hodgkin [11]:

Lemma 2.2. Let {p,, «, p;} be a system of ring generators of the complex
representation ring R(G). Then there exist elemenis B(p;)EK™(G), for 1<i<],
such that

K*(G) = MB(ps); -+, B(p:))RZ[u, u™'] .

Therefore
KX(G; Zip) = MB(py), > Bp1)) @Z pu, u™] .

The following proposition shows that

k: R¥G; Zy) = KXG; Z(yp),
¢ g(P)XG) = k¥(G; Ziy)

are injective.
Proposition 2.3. One can choose elements

EmiS8(RY™THG),  for 1<i<I,
such that ‘
( i ) g(P)*(G)=A(Ezm,—1, R §2m1—1)®Z(p)[v]'
(i) k4G5 Zp)=M(Em,-1); **» e(Eom,-1)) @ Z p[u]-
(iil) K*(G; Zp)=A(rt(Emm-1), *+*» ©t(Eomy-1)) R Z 1t u™"].
(iv) The CW-filtration degree ([7, 82]) of Eum;—1 s 2m;—1; or equivalently,
kt(Eom;—1) Satisfies
ch(u"ikce(Epm;—1)) = CXym;—1-+higher terms

where ¢ is a unit of Z,.
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Proof. By [7, §2.4] the Atiyah-Hirzebruch spectral sequence for K*(G; Z(,)
collapses. Therefore it follows from the naturality with respect to « (resp. ¢)
that the Atiyah-Hirzebruch spectral sequence for k*(G; Z(,) (resp. g(p)*(G))
collapses. Thus Lemma 2.1 yields the result; in particular, for (iv) see [7, §2.5].

We quote from [14] the following
Lemma 2.4. For our groups G, the Chern character

ch: KY(G) = R(ZG) = H*(=G; Q)=H*"Y(G; Q)
is given by:
(1) If G=SU(3), we have
Chﬁ()\.l) = —xa‘i—%‘xs ’

chﬁ(hz) = _xs_% X5

(where {\;, N} generates R(SU(3))).
(2) If G=Sp(2), we have

Chﬁo\q) = X3 _“%% ’

chB(N,) = 2x3+%x7 .
(3) If G=G,, we have

Chﬁ(P]) = 2x3 +‘—xll )

chB(A2py) = 10x3——%xn .
4) If G=SU4), we have

fh,e(hl) = —X3 ‘|‘%‘xs— %xﬁ ’

chB(\,) = —2x4 + %xﬁ ’
1

chﬁ()@) = —xa —%xs—gx', .

(5) If G=Spin(7), we have

chB(N) = 2x3— %‘x7+ %xu ’
chB(N%) = 10x;+ £x7— i"cn )
3 12

chB(A7) = 2x3+ % 7+ 61_Oxu .
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(6) If G=Sp(3), we have

chB(N) = x5 — lx,—l— Hl()xu >

6
chB(Ny) = 4x5+ %xv— %xu ’
11
Chﬁ(x:;) = 6x3+ 9('7 +27)x11 .

An application of this result is a quick calculation of the operation
on K*(G). For example, in K™Y (SU(3)) we have

25) ¥w(eow) = "D gon+ 7= D gy,

W(B0D) = " 00+ 7D g

(cf. the proof of Proposition 3.3).

3. The operation 6, on g(p)*(G)

In this section we first recall the facts we need about the p-localization
of G. With this as a background, we shall describe the action of 8, on g(p)*(G).
Let B,(p), for n>1, be the S**!-bundle over S?**~! such that
H*(BA(p); Z[p) = M%zn+r P'ys1)
It has a cell structure:

(3.1) B,(p)== S+ 214261 | gnt2+20-1)

Then G is called p-regular if and only if it is homotopy equivalent to a product
of spheres when localized at p, and G is called quasi p-regular if and only if

it is homotopy equivalent to a product of spaces B,(p) and spheres when loca-
lized at p.

The following result is due to Mimura and Toda [12].
Lemma 3.2. We have
1) SU(3)%S3>< S% for p=3.
(2) Sp(Z)?S“X S” for p=>5;
SHDZB,O)
() G5=S*x 8™ for p=T7;
G,=B,(5).

5
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4) SUA=SXS*XST for p=5;
SU#)=B,(3)x S°.

(5) Spin(T)=S*X S"™xXS" for p>7;
Spin(T)=By(5)x S".

6) SPR)FS XSS for p27;
Sp(3)=By(5) x 5.

We first consider the cases in which G is p-regular.

Proposition 3.3. In the following cases there are elements &, E g(p)*"i~(G),
for 1<i<, as in Proposition 2.3, which satisfy:

(1) G=S8U3), p=3.

@) W) = = A= B0

WaE) = BOW—BM) .
(b) 6,(8) =0, 6,&)=0.
(2) G=5p(2), p=5.
2 2 1
(a) wru(&s) = ?:3(7“1)4“ EIB(M) ch X3

el = — 2800) + B x4
(b) 0,(8)=0, 6,(&)=0.
(3) G=G, p=>7.
@) el = > B+ B 2
wri(Ey) = 58(p1) — B(AZPI)
(b) 0,(8)=0, 6,(¢n)=0.
4 G=SU@4), p>5.
2 1 1 1
(a) wr(Es) = — '3—3(7”1)— ZB(M) - ?3(7‘3) N X3
u3m(55) = By — B — X5
u"“(&) =— B\) + :8(7\'2) - :3(7\'3) X7 .
(b) 0,E)=0, 6,()=0, 6,()=0.
(5) G = Spin(7), p=>7.

X3
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(@) welf) =SB0+ BN B(A) 2%
whedE) = —B0M) + B .
WelEy) = BOM) — BV + 48(4y) S
() 6,E)=0, 0,E)=0, 6,(F)=0.
6) G=Sp3), p>7.
@ walE)= LA+ B0 AR

4 _ 7 1 1 ch
utre(E,) = 5 B)+ 5 B(N2)+ 4 BN)—
weEn) = BM) — 28() + B(s) X1 -
(b) 6,.(E5)=0, 6,5)=0, 6,(4)=0.

Proof. We show (1) only, because the others can be shown quite simi-
larly. Since {B(\.), B(\,)} forms a Z-basis for K~}(SU(3)) by Lemma 2.2

(and [14, §2]), it is easy to see that {—% BO)— % B(), BA)—BM)}
forms a Z,-basis for K~Y(SU(3); Z(,); their images under ch are as required
by Lemma 2.4. On the other hand, by Proposition 2.3 {u?ce(&;), wre(Es)}t is a
Zp-basis for K"Y(SU(3); Z(p»). These (together with (b)) permit us to conclude
that there exist &;€g(p)'(SU(3)), i=3, 5, satisfying (a).

To prove (b) we compute ' (uke(E;)) and ' (k&) in K(SSU(3)). By
use of the formula ch®"=r'ch® [1, Theorem 5.1 (vi)] where ch® is the com-
position

~ h

R(2G)— H¥(3G; 0) — H*(SG; Q)
(where m,, is the projection to the 2¢g-dimensional component), we have

ch (WPnce(E3)) = rPxs = ch(rutree(&s)) .
Since ch: K(ZG)—H*(ZG; Q) is injective, it follows that
Y (Pre(Es)) = rulru(Es) .
Since ' (1¥)=r*4, it follows that
W (r(E3)) = we(&s) -

Since Y»" commutes with #, ¢ and «, ¢ are injective, it follows that

V() = &s.
Similarly we have ¥ (&5)=E&;. So (b) follows by the definition of 6,.
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In view of Lemma 3.2, all statements in Proposition 3.3 except (a) are
clear. But, if one wants to discuss a homomorphism f*: g(p)*(G')—g(p)*(G)
which is induced by a homomorphism of compact Lie groups f: G—G’, it
seems to us that (a) is necessary.

Before considering the cases in which G is quasi p-regular, we describe
2(p)*(By(p)) and the b,-action on it. Since @, detects L' (see [13, Lemma 1.1]),
it follows from the Atiyah-Hirzebruch spectral sequence argument using (3.1)
that

(3.4) There exist ;< g(p)'(By(p)), for i=3, 2p+1, such that

(1) &) (Bup)) = Als Eapr)®Zip[v]-
(ii) The operation 0, is given by

0,(&3) = Expr1, 0,(E2pr) = 0.

Proposition 3.5. In the following cases there are elements &,,,_,< g(p)*™™
(G), for 1<i<l, as in Proposition 2.3, which satisfy:
() G=sp, p=3. 1
(a) w'ru(Es) = EB(M) ch Xt ?x-,

wtedE) = —28N\)+ B(A) — X7 .

(b) O(E5)=E;, 04&,)=0.
(2) G=G,, p=5.

(a) uted(Es) = Blps) ) 20y %
uG'“(Eu) = 5:8(P1)_,8(A2P1) - %xn
(b) OiE) = Eu, OiE)=0.
(3) G=SU®#), p=3.
@) )= =3 B0 B0 sk
WelE) = BO) B =
u“m(&,) = —BMN\) + BA)—BMy) X7 .
(b) 6y(E:) = %zs,, 0,E) =0, 04E)=0.
(4) G=Spin(7), p=5.
2 . 1 ’ 2 l
(a) “’“(53)—?18(7”1) +?3(A7) o 2x3+60xu
wtea(Er) = — B + BA) > x
eE) = BOM)—BOD+48(A) Lo

2
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(b) )= Eu OfE) =0, Offu)=0.
(5) G=5p(3), p=5.

vty — S ao+L gt L <
(@) wrlE) =SB+ 5BM) T B0 xet oo

‘ 7 1 1 ch
u'ey(Er) = —‘76(7\'1)‘1‘ _Z‘ﬁ(xz)'i' ::3(7\'3) —_—> X%
WrEn) = 28N — 2B(\) + B(s) X1 -
(b) OfE) = gEu OiE) =0, O)=0.
Proof. We prove (1) only; the proof for the others is similar. First,

(a) follows from Proposition 2.3 and Lemma 2.4 as in the proof of Proposition
3.3. To prove (b) we compute Y*(u*ke(£3)). In K(=.Sp(2)) we have

ehp(ilea() = Dot 2

= Pty )+ 2,

= 22chi® ku(E3)+22 chu® ku(E) .
Therefore
VA (Ulke(E3)) = 22lre(E5)+- 2"t re(E7) .
Since ¢(v)=u*(where p=3), it follows that
V(E;) = Es+0E; .
Similarly we have
‘I"Z(Eu) =§&y.
These imply the result.

There remain the cases in which G is neither p-regular nor quasi p-regular.

Proposition 3.6. In the following cases there are elements &,,,_, € g(p)*"~(G),
for 1<i<1, as in Proposition 2.3, which satisfy:

(1) G=G, p=3.

(@) ety = Al L Bk
we(En) = 58(p)— B(A%y) T

(b) 0E) = 5 vEu, OulEn) = 0.
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2) G==Spin(7), p=3.

(a) wre(E) = B(M) zxa—gx,%xu
ch
wed(E) = —B(M) +8(A) — %
Wri(Ey) = BOM)—BM)+48(Ar) %xn .

(b) Oy(E) = —zsw%vsu, 0, (E) =0, O,E;)=0.
3) G=Sp(3), p=3.

(@) weulE) = B(M) sty s
h
whed(E) = —48(M)+B(M) = x—}x
wre(En) = 28(M)—2B(N2)+B(Ns) Xy .

(b) Oy(E) = —%&, 0,(&,) = ~%su, Ox(Ew) = 0.

This proposition follows from the calculation similar to that in the proof
of Proposition 3.3. 'We omit the details of the proof.
It is known [10] that

Spin (7)== Sp (3) .

Therefore j(3)*(Spin(7))==<3j(3)*(Sp(3)). Henceforth we exclude to consider

the former.

4. The j(p)-cohomology of G

In Lemma 4.2 we present formulas on the multiplicative structure of
J(P)¥(X) (where X satisfies a certain condition). In the rest of this section

we compute ]@*(G) for all pairs (G, p). Finally we comment on ]T(;S*(G).
Throughout this section, the letters X and Y will stand for finite con-
nected CW-complexes.

Consider the fibration sequence
8. .7 0
27e(p) = i(p) = &(p) = Z*7°¢(p) -
It leads to a short exact sequence
—~ — )
(4.1) 0 — Coker (6: g(p)'(X) = &(p)** (X)) >

JPHX) 3 Ker (8: g(p)(X) - 2(p) (X)) = 0
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for any 7€Z. In this situation we shall use the following notation. For any
xEg(p)*(X) we write ® for 8(x) € j(p)*~#*3(X); therefore, if x & Im (0), we
have #=0. Suppose now that xEKer(d). Then we denote by X an element
such that 5(®)=ux; it is unique if g(p)*(X) is (p-)torsion free. This condition
is satisfied for X=G by Proposition 2.3.

Lemma 4.2. Suppose that 2(;)*(){ ) is torsion free. Then, with the above
notations, for any x, yeé(\j-;)*(X ), the following formulas hold in ;(vp)*(X)

(i) 2Uy=xUy.
(i) ZUY=xUy.
(iii) *UF=xUy.
(iv) 2UF=0.

Proof. Parts (i), (ii) and (iii) are proved by using the same technique
as in [13, §4]; we refer to it for the details. In this proof we will use the facts
which are shown there, without specific reference.

It remains to prove part (iv). Since % is a map of ring spectra and 78=0,
we have

72U F) = 7(8(%) US(y)) = »8(x) Und(y) =0U0 =0.

Hence there exists a 2E€g(p)*(X) such that #UJ=2z. This equality implies
that, in the following diagram, the outer square is commutative:

x Loxax — Y smiasri =
l xny 1 Ta/\ 1
SmtUig NS g Ing Smin3gN\Zj 11 8
[~
4

2m+2p—3g/\2”g 'u", 2m+n+2p—3g

where d is the diagonal map; xg(p)"* 3 X), ysg(p)"** 3%(X); g=9(p),
J=J(p);pe and p; are multiplications in g(p) and j(p) respectively. The
commutativity of square I is obvious and that of square II was shown in [13,
Lemma 4.4]. Thus we have

2=8UJ = p(*A)d
= w(SAD)(1A8)(xAy)d

= Sus(1An)(LA8)(» A\ y)d
=0.
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By virtue of this lemma, if one computes ]GS*(X ) by using (4.1), then
its ring structure is automatically known.

We now record some basic data for j(p). Since ¥'(v)=r""'0, the coeffi-
cient ring of j(p) is given by
(43) mx(J(2) = Zep {1} © @ ZIp™ {0}
where the formula

v(r'®P—1) = 1+,(i)

([2, Lemma (2.12)]) is essential. We also have the Cartan formula for 6,:
for any x, y € g(p)*(X),
(44) 0,(xUy) = 0,(x)Uy+xUb,(y)+v-0,(x) Ub,(y)
(cf. [13, Lemma 4.1]).

Let us enter into a computation of j(p)*(G). As is well known, the co-
fibration

XVY—->XXY—->XAY
leads to a split short exact sequence
0=j(p)(XAY) = j(p)(XXY) = j(p)(X)Dj(p)(Y) — 0
for any i/€Z. Therefore by Lemma 3.2, in order to compute j@*(G) when

G is p-regular or quasi p-regular, it suffices to determine ]@*(Bl( ?)). From
(3.4) we deduce

Proposition 4.5. The ring ]:G;)*(Bl( p)) is given by:

—~ T—v o ——— —
](P)*(Bl(P)) =](P)*(So) {E3gzp+1} @Z(p) {§2p+1}
T ———
@Z(p) {(rp_l—‘l)&—vgzpﬂ}’
P D Z/P2+vp(i)+vp(i+l)m
=1
where the relations
5271 =0 ’
‘viEzp-H, — (r—i(i’—l)_l),vi—lgs (for iZ 1)
hold.
Proof. By using (4.4), in g(p)*(Bi(p)) we have
er('vifsfzpﬂ) = (re D —1)v" &k,
0,(v'Espe1) = (™0 —1)0' &y,

0,(v'E;) = (r* =V —1)o g+ F e DY,
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So the kernel and cokernel of 6, are easily calculated and the result follows.

In this way, if G is p-regular or quasi p-regular, the ring j(p)*(G) can be
described. For the remaining cases, from parts (1) and (3) of Proposition 3.6
we deduce

Theorem 4.6. With the notation as in Lemma 4.2, the ring j(3)*(G) for
G=G,, Sp(3) is given by:

1) G=G,.
i JB3)(Gy)
14 Z(v{fs’—?n;
13 0
12 0
11 Z]3 e} ®Z o (Euk
10 0
9 0
8 Z[3 {4
7 Z[3{vEEn}
6 0
5 0
4 0
e ———
3 2|3 W Euk ®Zio B8~ o
2 0
1 0
0 Z[3*{E}
—1 Z3{°EE )
-2 0
—3 0
—4 Z|3*{vEs}
_5 Z[3{v*EEn}
—6 0
-7 0
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(2) G=5pQ3).
i JQR)Y(Sp(3))
21 Z(s) {5357511}
20 0
19 0
18 Z[3{EE £} DZ iy {E£En)
17 0
16 0
15 0
e e T
14 i Z/3 {vE£E 0 DZ» {38:Eu+ —2—'057511}
13 0
12 0
11 Z[34EEn} DZ o (Ent
/' —
10 Z/32{'02§3§75u} DZ»{3E:E+ = WEaE11+ 'U PEEnt
9 0
8 ZJ3 {E_u} o~
7 Z3 ek Lot} @213 0EE) ©Zo0 Wt oEu)
6 Z/3 {71353&7&11}
5 0
4 RS
3 Z[3{vEE— — 'z’zgagu} EBZ/33 {7)2‘53’311} BZ 38+ = 7)":"7‘}‘ —‘0 E
2 Z/3 {7’ EEEnt
1 0
0 ZP3 Bt 5 vl ©ZI3*

Proof. For (1) we have
‘92(‘0’:53511) = (.22‘._1).‘1".-153511 >
92(7)'511) = (22'—1)'0'_1511 ’
02(,2)1'&3) — (22:‘_l)vi-lgs_l_zzi—lvﬂlgu .
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For (2) we have

O(v'EEEn) = (2% =)' €y,

O,(v'EEy) = (X —1)0' g8y,

Ox(v'EsEn) = (2 —1)0 g, — 2% 0'EE,,

Ox(v'Ey) = 2 —1)0' g,

O)(v'EsE7r) = (25— 1) EE,— 2% 30 B E 2% 230 EE
0,(v'E;) = (2% —1)oi~'E,— 28235, |

0(v'Es) = (2 —1)0' 6 —2" "',

So the result follows from elementary calculations of the kernel and cokernel

of 02.

Proof of Theorem 1.1.
By using the Poincaré duality isomorphism

JBUE) = {PUGBI@US)
=[P H@®IPY (S = i(#y(G)

where n=dim G, Theorem 1.1 follows from Theorem 4.6 and (4.3).

Finally we talk about the Pontrjagin ring structure of j(p)«(G). Since
in Lemma 2.2 each B(p;) is primitive (see [11]), the ring structure of Ky(G)
can be determined. Furthermore, the y"-action on K4(G) can be determined
by using the formula

¥(aNa) =¥’ (a) N¥'(a)

where a€K*(G), a €Kx(G) and N denotes the cap product. Therefore the

ring structure of j’(\ps*(G) will be obtained by using the homology instead of
the cohomology and taking the same course as in this paper.
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