Osaka University Knowledge Archive

Title	Adams operations in the connective K-theory of compact Lie groups
Author(s)	Watanabe, Takashi
Citation	0saka Journal of Mathematics. 1986, 23(3), p. $617-632$
Version Type	VoR
URL	https://doi.org/10.18910/5180
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

ADAMS OPERATIONS IN THE CONNECTIVE K-THEORY OF COMPACT LIE GROUPS

Takashi WATANABE

(Received May 25, 1985)

1. Introduction

Let G be a compact, 1-connected, simple Lie group of rank 2 or 3 . That is, G is one of the following:

$$
S U(3): S p(2), G_{2}, S U(4), S p i n(7) \quad \text { and } \quad S p(3)
$$

In [14], for these groups G, we have given a complete description of the Chern character $([7, \S 1])$

$$
c h: K^{*}(G) \rightarrow H^{*}(G ; Q)
$$

Using this, one can easily compute the Adams operations ψ^{r} ([1]) on $K^{*}(G)$ for all $r \in Z$ (see (2.5)).

Throughout this paper p will denote an odd prime. Let us introduce some spectra ([4, Part III]). Let $\boldsymbol{K} \boldsymbol{Z}_{(p)}$ denote the ring spectrum representing complex K-theory localized at p. Let $k Z_{(p)}$ be its (-1)-connected cover. So there is a map of ring spectra $\kappa: \boldsymbol{k} \boldsymbol{Z}_{(p)} \rightarrow \boldsymbol{K} \boldsymbol{Z}_{(p)}$ such that

$$
\kappa_{*}: \pi_{*}\left(k Z_{(p)}\right)=Z_{(p)}[u] \rightarrow \pi_{*}\left(K Z_{(p)}\right)=Z_{(p)}\left[u, u^{-1}\right]
$$

satisfies $\kappa_{*}(u)=u$ where $|u|=2$. As is well known, there is a ring spectrum $\boldsymbol{g}(p)$ such that

$$
\boldsymbol{k} Z_{(p)} \simeq \bigvee_{i=0}^{p-2} \Sigma^{2 i} \boldsymbol{g}(p)
$$

Here the injection $\iota: \boldsymbol{g}(p) \rightarrow \boldsymbol{k} \boldsymbol{Z}_{(p)}$ is a map of ring spectra such that

$$
\iota_{*}: \pi_{*}(\boldsymbol{g}(p))=Z_{(p)}[v] \rightarrow \pi_{*}\left(k Z_{(p)}\right)=Z_{(p)}[u]
$$

satisfies $\iota_{*}(v)=u^{p-1}$ where $|v|=2(p-1)$. For r prime to p there are maps of ring spectra

$$
\begin{aligned}
& \psi^{r}: \boldsymbol{K} Z_{(p)} \rightarrow \boldsymbol{K} Z_{(p)}, \\
& \psi^{r}: \boldsymbol{k} Z_{(p)} \rightarrow \boldsymbol{k} Z_{(p)}, \\
& \psi^{r}: \boldsymbol{g}(p) \rightarrow \boldsymbol{g}(p)
\end{aligned}
$$

which are called the stable Adams operations ([6], [5]). They commute with κ, ι and satisfy $\psi^{r}(u)=r u$. Let

$$
\theta_{r}: \boldsymbol{g}(p) \rightarrow \Sigma^{2(p-1)} \boldsymbol{g}(p)
$$

be a unique map of spectra such that $(v \cdot) \theta_{r} \simeq \psi^{r}-1$ where $v \cdot: \Sigma^{2(p-1)} \boldsymbol{g}(p) \rightarrow \boldsymbol{g}(p)$ is multiplication by v. We denote by $\boldsymbol{j}(p ; r)$ the fibre spectrum of θ_{r}. If r or r^{\prime} generates the group of units of Z / p^{2}, then $\boldsymbol{j}(p ; r) \simeq \boldsymbol{j}\left(p ; r^{\prime}\right)$. In this case, we may write $\boldsymbol{j}(p)$ for $\boldsymbol{j}(p ; r)$ and use a suitable r to discuss it. $\boldsymbol{j}(p)$ is known to be a ring spectrum (see [13]).

Let $\widetilde{j(p)_{i}}(G)$ (resp. $\left.\widetilde{j(p)^{i}}(G)\right)$ be the i-th reduced $\boldsymbol{j}(p)$-homology (resp. cohomology) group of G. One of our targets is to compute the groups $\widehat{j(p)_{i}(G)}$ for all the above G and p. As will be mentioned in $\S 3$, the $\operatorname{cases}(G, p)=\left(G_{2}, 3\right)$, $(S p(3), 3)$ are most interes.ing. Then we obtain

Theorem 1.1. For $i \leq 21$ and $G=G_{2}, S p(3)$ the groups $\widetilde{j(3)_{i}}(G)$ are listed in the following table:

where \oplus indicates the direct sum of the groups.
Since G is parallelizable, the Poincaré duality isomorphism

$$
E_{i}(G) \cong E^{n-i}(G)
$$

holds for any spectrum \boldsymbol{E}, where $n=\operatorname{dim} G$ (see [4, Part III]). Therefore, to compute $\widetilde{j(p)_{i}}(G)$ it suffices to compute $\widetilde{j(p)^{n-i}}(G)$. Theorem 1.1 is a consequence of Theorem 4.6 , in which the cup-product ring structure of $\widetilde{j(p)^{*}}(G)$ is described for $(G ; p)=\left(G_{2}, 3\right),(S p(3), 3)$.

The remainder of this paper is organized as follows. In $\S 2$ we collect some results for later use. In $\S 3$ we describe the action of θ_{r} on $g(p)^{*}(G)$.

2. Preliminaries

This section is devoted to describe the rings $K^{*}\left(G ; Z_{(p)}\right), k^{*}\left(G ; Z_{(p)}\right)$, $g(p)^{*}(G)$ and the homomorphism $c h: K^{*}(G) \rightarrow H^{*}(G ; Q)$.

Notice that G is assumed to be as in $\S 1$ and p is assumed to be an odd prime. According to Borel [9], G has no p-torsion and we have

Lemma 2.1. There exist elements $x_{2 m_{i}-1} \in H^{2 m_{i}-1}\left(G ; Z_{(p)}\right)$, for $1 \leq i \leq l$ (where $l=2$ or 3), such that

$$
H^{*}\left(G ; Z_{(p)}\right)=\Lambda\left(x_{2 m_{1}-1}, x_{2 m_{2}-1}, \cdots, x_{2 m_{l}-1}\right)
$$

where $2=m_{1} \leq m_{2} \leq \cdots \leq m_{l}$ and Λ denotes an exterior algebra (over $Z_{(p)}$).
For this lemma and the values of m_{i} see [8].
We need the famous result of Hodgkin [11]:
Lemma 2.2. Let $\left\{\rho_{1}, \cdots, \rho_{l}\right\}$ be a systtm of ring generators of the complex representation ring $R(G)$. Then there exist elemenis $\beta\left(\rho_{i}\right) \in K^{-1}(G)$, for $1 \leq i \leq l$, such that

$$
K^{*}(G)=\Lambda\left(\beta\left(\rho_{1}\right), \cdots, \beta\left(\rho_{l}\right)\right) \otimes Z\left[u, u^{-1}\right]
$$

Therefore

$$
K^{*}\left(G ; Z_{(p)}\right)=\Lambda\left(\beta\left(\rho_{1}\right), \cdots, \beta\left(\rho_{l}\right)\right) \otimes Z_{(p)}\left[u, u^{-1}\right]
$$

The following proposition shows that

$$
\begin{aligned}
& \kappa: k^{*}\left(G ; Z_{(p)}\right) \rightarrow K^{*}\left(G ; Z_{(p)}\right), \\
& \iota: g(p)^{*}(G) \rightarrow k^{*}\left(G ; Z_{(p)}\right)
\end{aligned}
$$

are injective.
Proposition 2.3. One can choose elements

$$
\xi_{2 m_{i}-1} \in g(p)^{2 m_{i}-1}(G), \quad \text { for } \quad 1 \leq i \leq l
$$

such that
(i) $g(p)^{*}(G)=\Lambda\left(\xi_{2 m_{1}-1}, \cdots, \xi_{2 m_{i}-1}\right) \otimes Z_{(p)}[v]$.
(ii) $k^{*}\left(G ; Z_{(p)}\right)=\Lambda\left(\iota\left(\xi_{2 m_{1}-1}\right), \cdots, \iota\left(\xi_{2 m_{l}-1}\right)\right) \otimes Z_{(p)}[u]$.
(iii) $K^{*}\left(G ; Z_{(p)}\right)=\Lambda\left(\kappa \iota\left(\xi_{2 m_{1}-1}\right), \cdots, \kappa \iota\left(\xi_{2 m_{l}-1}\right)\right) \otimes Z_{(p)}\left[u, u^{-1}\right]$.
(iv) The $C W$-filtration degree $\left([7, \S 2]\right.$) of $\xi_{2 m_{i}-1}$ is $2 m_{i}-1$; or equivalently, $\kappa \iota\left(\xi_{2 m_{i}-1}\right)$ satisfies

$$
\operatorname{ch}\left(u^{m_{i} \kappa \iota}\left(\xi_{2 m_{i}-1}\right)\right)=c x_{2 m_{i}-1}+\text { higher terms }
$$

where c is a unit of $Z_{(p)}$.

Proof. By [7, §2.4] the Atiyah-Hirzebruch spectral sequence for $K^{*}\left(G ; Z_{(p)}\right)$ collapses. Therefore it follows from the naturality with respect to κ (resp. ι) that the Atiyah-Hirzebruch spectral sequence for $k^{*}\left(G ; Z_{(p)}\right)$ (resp. $\left.g(p)^{*}(G)\right)$ collapses. Thus Lemma 2.1 yields the result; in particular, for (iv) see [7, §2.5].

We quote from [14] the following
Lemma 2.4. For our groups G, the Chern character

$$
\operatorname{ch}: K^{-1}(G)=\tilde{K}(\Sigma G) \rightarrow \tilde{H}^{*}(\Sigma G ; Q) \cong \tilde{H}^{*-1}(G ; Q)
$$

is given by:
(1) If $G=S U(3)$, we have

$$
\begin{aligned}
& \operatorname{ch} \beta\left(\lambda_{1}\right)=-x_{3}+\frac{1}{2} x_{5} \\
& \operatorname{ch} \beta\left(\lambda_{2}\right)=-x_{3}-\frac{1}{2} x_{5}
\end{aligned}
$$

(where $\left\{\lambda_{1}, \lambda_{2}\right\}$ generates $R(S U(3))$).
(2) If $G=S p(2)$, we have

$$
\begin{aligned}
& \operatorname{ch} \beta\left(\lambda_{1}\right)=x_{3}-\frac{1}{6} x_{7} \\
& \operatorname{ch} \beta\left(\lambda_{2}\right)=2 x_{3}+\frac{2}{3} x_{7}
\end{aligned}
$$

(3) If $G=G_{2}$, we have

$$
\begin{aligned}
& \operatorname{ch} \beta\left(\rho_{1}\right)=2 x_{3}+\frac{1}{60} x_{11} \\
& \operatorname{ch} \beta\left(\Lambda^{2} \rho_{1}\right)=10 x_{3}-\frac{5}{12} x_{11}
\end{aligned}
$$

(4) If $G=S U(4)$, we have

$$
\begin{aligned}
\operatorname{ch} \beta\left(\lambda_{1}\right) & =-x_{3}+\frac{1}{2} x_{5}-\frac{1}{6} x_{7}, \\
\operatorname{ch} \beta\left(\lambda_{2}\right) & =-2 x_{3} \quad+\frac{2}{3} x_{7}, \\
\operatorname{ch} \beta\left(\lambda_{3}\right) & =-x_{3}-\frac{1}{2} x_{5}-\frac{1}{6} x_{7} .
\end{aligned}
$$

(5) If $G=\operatorname{Spin}(7)$, we have

$$
\begin{aligned}
& \operatorname{ch} \beta\left(\lambda_{1}^{\prime}\right)=2 x_{3}-\frac{2}{3} x_{7}+\frac{1}{60} x_{11}, \\
& \operatorname{ch} \beta\left(\lambda_{2}^{\prime}\right)=10 x_{3}+\frac{2}{3} x_{7}-\frac{5}{12} x_{11}, \\
& \operatorname{ch} \beta\left(\Delta_{7}\right)=2 x_{3}+\frac{1}{3} x_{7}+\frac{1}{60} x_{11} .
\end{aligned}
$$

(6) If $G=S p(3)$, we have

$$
\begin{aligned}
& \operatorname{ch} \beta\left(\lambda_{1}\right)=x_{3}-\frac{1}{6} x_{7}+\frac{1}{120} x_{11} \\
& \operatorname{ch} \beta\left(\lambda_{2}\right)=4 x_{3}+\frac{1}{3} x_{7}-\frac{13}{60} x_{11} \\
& \operatorname{ch} \beta\left(\lambda_{3}\right)=6 x_{3}+x_{7}+\frac{11}{20} x_{11} .
\end{aligned}
$$

An application of this result is a quick calculation of the operation ψ^{r} on $K^{*}(G)$. For example, in $K^{-1}(S U(3))$ we have

$$
\begin{align*}
& \psi^{r}\left(\beta\left(\lambda_{1}\right)\right)=\frac{r^{2}(r+1)}{2} \beta\left(\lambda_{1}\right)+\frac{r^{2}(-r+1)}{2} \beta\left(\lambda_{2}\right), \tag{2.5}\\
& \psi^{r}\left(\beta\left(\lambda_{2}\right)\right)=\frac{r^{2}(-r+1)}{2} \beta\left(\lambda_{1}\right)+\frac{r^{2}(r+1)}{2} \beta\left(\lambda_{2}\right)
\end{align*}
$$

(cf. the proof of Proposition 3.3).

3. The operation θ_{r} on $g(p)^{*}(G)$

In this section we first recall the facts we need about the p-localization of G. With this as a background, we shall describe the action of θ_{r} on $g(p)^{*}(G)$.

Let $B_{n}(p)$, for $n \geq 1$, be the $S^{2 n+1}$-bundle over $S^{2 n+2 p-1}$ such that

$$
H^{*}\left(B_{n}(p) ; Z \mid p\right)=\Lambda\left(x_{2 n+1} \mathscr{P}^{1} x_{2 n+1}\right),
$$

It has a cell structure:

$$
\begin{equation*}
B_{n}(\cdot p) \simeq S^{2 n+1} \cup e^{2 n+1+2(p-1)} \cup e^{4 n+2+2(p-1)} \tag{3.1}
\end{equation*}
$$

Then G is called p-regular if and only if it is homotopy equivalent to a product of spheres when localized at p, and G is called quasi p-regular if and only if it is homotopy equivalent to a product of spaces $B_{n}(p)$ and spheres when localized at p.

The following result is due to Mimura and Toda [12].
Lemma 3.2. We have
(1) $S U(3) \underset{p}{\widetilde{p}} S^{3} \times S^{5}$ for $p \geq 3$.
(2) $S p(2) \widetilde{p} S^{3} \times S^{7}$ for $p \geq 5$;
$S p(2) \simeq B_{1}(3)$.
(3) $G_{2} \widetilde{p} S^{3} \times S^{11}$ for $p \geq 7$;
$G_{2} \widetilde{5} B_{1}(5)$.
(4) $S U(4) \widetilde{p} S^{3} \times S^{5} \times S^{7}$ for $p \geq 5$;
$S U(4) \underset{3}{\widetilde{3}} B_{1}(3) \times S^{5}$.
(5) $S p i n(7) \widetilde{p} S^{3} \times S^{7} \times S^{11}$ for $p \geq 7$;
$\operatorname{Spin}(7) \underset{5}{\widetilde{5}} B_{1}(5) \times S^{7}$.
(6) $S p(3) \widetilde{p} S^{3} \times S^{7} \times S^{11}$ for $p \geq 7$;
$S p(3) \underset{5}{\widetilde{5}} B_{1}(5) \times S^{7}$.
We first consider the cases in which G is p-regular.
Proposition 3.3. In the following cases there are elements $\xi_{2 m_{i}-1} \in g(p)^{2 m_{i}-1}(G)$, for $1 \leq i \leq l$, as in Proposition 2.3, which satisfy:
(1) $G=S U(3), \quad p \geq 3$.
(a) $u^{2} \kappa \iota\left(\xi_{3}\right)=-\frac{1}{2} \beta\left(\lambda_{1}\right)-\frac{1}{2} \beta\left(\lambda_{2}\right) \xrightarrow{c h_{1}}{ }^{x_{3}}$

$$
u^{3} \kappa \iota\left(\xi_{5}\right)=\quad \begin{gathered}
2 \\
\beta\left(\lambda_{1}\right)-\beta\left(\lambda_{2}\right) \xrightarrow{c n}
\end{gathered} \xrightarrow{x_{5} .}
$$

(b) $\theta_{r}\left(\xi_{3}\right)=0, \quad \theta_{r}\left(\xi_{5}\right)=0$.
(2) $G=S p(2), p \geq 5$.
(a) $u^{2} \kappa \iota\left(\xi_{3}\right)=\frac{2}{3} \beta\left(\lambda_{1}\right)+\frac{1}{6} \beta\left(\lambda_{2}\right){ }_{c h}{ }^{x_{3}}$

$$
u^{4} \kappa \iota\left(\xi_{7}\right)=-2 \beta\left(\lambda_{1}\right)+\beta\left(\lambda_{2}\right) \longrightarrow \quad x_{7}
$$

(b) $\theta_{r}\left(\xi_{3}\right)=0, \quad \theta_{r}\left(\xi_{7}\right)=0$.
(3) $G=G_{2}, p \geq 7$.
(a) $u^{2} \kappa \iota\left(\xi_{3}\right)=\frac{5}{6} \beta\left(\rho_{1}\right)+\frac{1}{30} \beta\left(\Lambda^{2} \rho_{1}\right) \xrightarrow{c h}{ }^{2 x_{3}}$

$$
u^{6} \kappa \iota\left(\xi_{11}\right)=5 \beta\left(\rho_{1}\right)-\beta\left(\Lambda^{2} \rho_{1}\right) \quad \longrightarrow \quad \frac{1}{2} x_{11} .
$$

(b) $\theta_{r}\left(\xi_{3}\right)=0, \quad \theta_{r}\left(\xi_{11}\right)=0$.
(4) $G=S U(4), \quad p \geq 5$.
(a) $u^{2} \kappa \iota\left(\xi_{3}\right)=-\frac{1}{3} \beta\left(\lambda_{1}\right)-\frac{1}{6} \beta\left(\lambda_{2}\right)-\frac{1}{3} \beta\left(\lambda_{3}\right) \quad x_{3}$

$$
\begin{array}{llll}
u^{3} \kappa l\left(\xi_{5}\right) & = & \beta\left(\lambda_{1}\right) & -\beta\left(\lambda_{3}\right) \xrightarrow{c h} \\
u^{4} \kappa \iota\left(\xi_{7}\right) & =-\beta\left(\lambda_{1}\right)+\beta\left(\lambda_{2}\right) & -\beta\left(\lambda_{3}\right) &
\end{array}
$$

(b) $\theta_{r}\left(\xi_{3}\right)=0, \quad \theta_{r}\left(\xi_{5}\right)=0, \quad \theta_{r}\left(\xi_{7}\right)=0$.
(5) $\quad G=\operatorname{Spin}(7), \quad p \geq 7$.
(a) $u^{2} \kappa \iota\left(\xi_{3}\right)=\frac{3}{10} \beta\left(\lambda_{1}^{\prime}\right)+\frac{1}{30} \beta\left(\lambda_{2}^{\prime}\right)+\frac{8}{15} \beta\left(\Delta_{7}\right) \quad 2 x_{3}$

$$
\begin{array}{lll}
u^{4} \kappa \iota\left(\xi_{7}\right)=-\beta\left(\lambda_{1}^{\prime}\right) & +\beta\left(\Delta_{7}\right) \xrightarrow{c h} \\
u^{6} \kappa \iota\left(\xi_{11}\right)=\beta\left(\lambda_{1}^{\prime}\right)-\beta\left(\lambda_{2}^{\prime}\right)+4 \beta\left(\Delta_{7}\right) & x_{7} \\
\end{array} \quad \frac{1}{2} x_{11} .
$$

(b) $\theta_{r}\left(\xi_{3}\right)=0, \quad \theta_{r}\left(\xi_{7}\right)=0, \quad \theta_{r}\left(\xi_{11}\right)=0$.
(6) $\boldsymbol{G}=S p(3), \quad p \geq 7$.
(a) $u^{2} \kappa \iota\left(\xi_{3}\right)=\frac{2}{5} \beta\left(\lambda_{1}\right)+\frac{1}{10} \beta\left(\lambda_{2}\right)+\frac{1}{30} \beta\left(\lambda_{3}\right) \quad x_{3}$

$$
\begin{array}{lll}
u^{4} \kappa c\left(\xi_{7}\right)=-\frac{7}{2} \beta\left(\lambda_{1}\right)+\frac{1}{2} \beta\left(\lambda_{2}\right)+\frac{1}{4} \beta\left(\lambda_{3}\right) \xrightarrow{c h} \\
u^{6} \kappa \iota\left(\xi_{11}\right)=\beta\left(\lambda_{1}\right)-2 \beta\left(\lambda_{2}\right)+\beta\left(\lambda_{3}\right) & x_{7} \\
& x_{11} .
\end{array}
$$

(b) $\quad \theta_{r}\left(\xi_{3}\right)=0, \quad \theta_{r}\left(\xi_{7}\right)=0, \quad \theta_{r}\left(\xi_{11}\right)=0$.

Proof. We show (1) only, because the others can be shown quite similarly. Since $\left\{\beta\left(\lambda_{1}\right), \beta\left(\lambda_{2}\right)\right\}$ forms a Z-basis for $K^{-1}(S U(3))$ by Lemma 2.2 (and [14, §2]), it is easy to see that $\left\{-\frac{1}{2} \beta\left(\lambda_{1}\right)-\frac{1}{2} \beta\left(\lambda_{2}\right), \beta\left(\lambda_{1}\right)-\beta\left(\lambda_{2}\right)\right\}$ forms a $Z_{(p)}$-basis for $K^{-1}\left(S U(3) ; Z_{(p)}\right)$; their images under $c h$ are as required by Lemma 2.4. On the other hand, by Proposition $2.3\left\{u^{2} \kappa \iota\left(\xi_{3}\right), u^{3} \kappa \iota\left(\xi_{5}\right)\right\}$ is a $Z_{(p)}$-basis for $K^{-1}\left(S U(3) ; Z_{(p)}\right)$. These (together with (b)) permit us to conclude that there exist $\xi_{i} \in g(p)^{i}(S U(3)), i=3,5$, satisfying (a).

To prove (b) we compute $\psi^{r}\left(u^{2} \kappa \iota\left(\xi_{3}\right)\right)$ and $\psi^{r}\left(u^{3} \kappa \iota\left(\xi_{5}\right)\right)$ in $\tilde{K}(\Sigma S U(3))$. By use of the formula $c h^{q} \psi^{r}=r^{q} c h^{q}$ [1, Theorem 5.1 (vi)] where $c h^{q}$ is the composition

$$
\tilde{K}(\Sigma G) \xrightarrow{c h} \tilde{H}^{*}(\Sigma G ; Q) \xrightarrow{\pi_{2 q}} \tilde{H}^{2 q}(\Sigma G ; Q)
$$

(where $\pi_{2 q}$ is the projection to the $2 q$-dimensional component), we have

$$
\operatorname{ch} \psi^{r}\left(u^{2} \kappa \iota\left(\xi_{3}\right)\right)=r^{2} x_{3}=\operatorname{ch}\left(r^{2} u^{2} \kappa \iota\left(\xi_{3}\right)\right) .
$$

Since $c h: \widetilde{K}(\Sigma G) \rightarrow \tilde{H}^{*}(\Sigma G ; Q)$ is injective, it follows that

$$
\psi^{\gamma}\left(u^{2} \kappa \iota\left(\xi_{3}\right)\right)=r^{2} u^{2} \kappa \iota\left(\xi_{3}\right) .
$$

Since $\psi^{r}\left(u^{2}\right)=r^{2} u^{2}$, it follows that

$$
\psi^{r}\left(\kappa \iota\left(\xi_{3}\right)\right)=\kappa \iota\left(\xi_{3}\right) .
$$

Since ψ^{r} commutes with κ, ι and κ, ι are injective, it follows that

$$
\psi^{r}\left(\xi_{3}\right)=\xi_{3} .
$$

Similarly we have $\psi^{r}\left(\xi_{5}\right)=\xi_{5}$. So (b) follows by the definition of θ_{r}.

In view of Lemma 3.2, all statements in Proposition 3.3 except (a) are clear. But, if one wants to discuss a homomorphism $f^{*}: g(p)^{*}\left(G^{\prime}\right) \rightarrow g(p)^{*}(G)$ which is induced by a homomorphism of compact Lie groups $f: G \rightarrow G^{\prime}$, it seems to us that (a) is necessary.

Before considering the cases in which G is quasi p-regular, we describe $g(p)^{*}\left(B_{1}(p)\right)$ and the θ_{r}-action on it. Since θ_{r} detects \mathscr{P}^{1} (see [13, Lemma 1.1]), it follows from the Atiyah-Hirzebruch spectral sequence argument using (3.1) that
(3.4) There exist $\xi_{i} \in g(p)^{i}\left(B_{1}(p)\right)$, for $i=3,2 p+1$, such that
(i) $g(p)^{*}\left(B_{1}(p)\right)=\Lambda\left(\xi_{3}, \xi_{2 p+1}\right) \otimes Z_{(p)}[v]$.
(ii) The operation θ_{r} is given by

$$
\theta_{r}\left(\xi_{3}\right)=\xi_{2 p+1}, \theta_{r}\left(\xi_{2 p+1}\right)=0 .
$$

Proposition 3.5. In the following cases there are elements $\xi_{2 m_{i}-1} \in g(p)^{2 m_{i}-1}$ (G), for $1 \leq i \leq l$, as in Proposition 2.3, which satisfy:
(1) $G=S p(2), p=3$.
(a) $\begin{array}{rlr}u^{2} \kappa \iota\left(\xi_{3}\right) & = & \frac{1}{2} \beta\left(\lambda_{2}\right) \\ u^{4} \kappa \iota\left(\xi_{7}\right) & =-2 \beta\left(\lambda_{1}\right)+\beta\left(\lambda_{2}\right) & x_{3}+\frac{1}{3} x_{7} \\ \theta_{7} .\end{array}$
(b) $\quad \theta_{2}\left(\xi_{3}\right)=\xi_{7}, \quad \theta_{2}\left(\xi_{7}\right)=0$.
(2) $G=G_{2}, \quad p=5$.
(a) $u^{2} \kappa \iota\left(\xi_{3}\right)=\beta\left(\rho_{1}\right)$ $\begin{aligned} & u^{2} \kappa \iota\left(\xi_{3}\right)=\beta\left(\rho_{1}\right) \\ & u^{6} \kappa \iota\left(\xi_{11}\right)=5 \beta\left(\rho_{1}\right)-\beta\left(\Lambda^{2} \rho_{1}\right)\end{aligned} \xrightarrow{c h} \begin{gathered}{ }^{2 x_{3}+\frac{1}{60}} x_{11} \\ \frac{1}{2} x_{11}\end{gathered}$.
(b) $\quad \theta_{2}\left(\xi_{3}\right)=\frac{1}{2} \xi_{11}, \quad \theta_{2}\left(\xi_{11}\right)=0$.
(3) $G=S U(4), \quad p=3$.
(a) $u^{2} \kappa \iota\left(\xi_{3}\right)=-\frac{1}{2} \beta\left(\lambda_{1}\right) \quad-\frac{1}{2} \beta\left(\lambda_{3}\right) \quad{ }^{2}{ }^{x_{3}+\frac{1}{6} x_{7}}$

$$
\begin{array}{lrrr}
u^{3} \kappa \iota\left(\xi_{5}\right)= & \beta\left(\lambda_{1}\right) & -\beta\left(\lambda_{3}\right) c h & x_{5} \\
u^{4} \kappa \iota\left(\xi_{7}\right)= & -\beta\left(\lambda_{1}\right)+\beta\left(\lambda_{2}\right)-\beta\left(\lambda_{3}\right) & & x_{7} .
\end{array}
$$

(b) $\quad \theta_{2}\left(\xi_{3}\right)=\frac{1}{2} \xi_{7}, \quad \theta_{2}\left(\xi_{5}\right)=0, \quad \theta_{2}\left(\xi_{7}\right)=0$.
(4) $\quad G=S p i n(7), \quad p=5$.

(a) | $u^{2} \kappa \iota\left(\xi_{3}\right)$ | $=\frac{1}{3} \beta\left(\lambda_{1}^{\prime}\right)$ | $+\frac{2}{3} \beta\left(\Delta_{7}\right)$ | | | | | |
| ---: | :--- | ---: | :--- | :---: | :---: | :---: | :---: |
| | $2 x_{3}+\frac{1}{60} x_{11}$ | | | | | | |
| $u^{4} \kappa \iota\left(\xi_{7}\right)$ | $=-\beta\left(\lambda_{1}^{\prime}\right)$ | $+\beta\left(\Delta_{7}\right)$ | | | | | x_{7} |
| $u^{6} \kappa \iota\left(\xi_{11}\right)$ | $=\beta\left(\lambda_{1}^{\prime}\right)-\beta\left(\lambda_{2}^{\prime}\right)+4 \beta\left(\Delta_{7}\right)$ | | $\frac{1}{2} x_{11}$. | | | | |

(b) $\quad \theta_{2}\left(\xi_{3}\right)=\frac{1}{2} \xi_{11}, \quad \theta_{2}\left(\xi_{7}\right)=0, \quad \theta_{2}\left(\xi_{11}\right)=0$.
(5) $G=S p(3), \quad p=5$.
(a) $u^{2} \kappa \iota\left(\xi_{3}\right)=\frac{5}{12} \beta\left(\lambda_{1}\right)+\frac{1}{12} \beta\left(\lambda_{2}\right)+\frac{1}{24} \beta\left(\lambda_{3}\right) \quad x_{3}+\frac{1}{120} x_{11}$

$$
\begin{array}{ll}
u^{4} \kappa \iota\left(\xi_{7}\right)=-\frac{7}{2} \beta\left(\lambda_{1}\right)+\frac{1}{2} \beta\left(\lambda_{2}\right)+\frac{1}{4} \beta\left(\lambda_{3}\right) \xrightarrow{c h} x_{7} \\
u^{6} \kappa \iota\left(\xi_{11}\right)=2 \beta\left(\lambda_{1}\right)-2 \beta\left(\lambda_{2}\right)+\beta\left(\lambda_{3}\right)
\end{array}
$$

(b) $\quad \theta_{2}\left(\xi_{3}\right)=\frac{1}{8} \xi_{11}, \quad \theta_{2}\left(\xi_{7}\right)=0, \quad \theta_{2}\left(\xi_{11}\right)=0$.

Proof. We prove (1) only; the proof for the others is similar. First, (a) follows from Proposition 2.3 and Lemma 2.4 as in the proof of Proposition 3.3. To prove (b) we compute $\psi^{2}\left(u^{2} \kappa \iota\left(\xi_{3}\right)\right)$. In $\tilde{K}(\Sigma S p(2))$ we have

$$
\begin{aligned}
\operatorname{ch} \psi^{2}\left(u^{2} \kappa \iota\left(\xi_{3}\right)\right) & =2^{2} x_{3}+\frac{2^{4}}{3} x_{7} \\
& =2^{2}\left(x_{3}+\frac{1}{3} x_{7}\right)+2^{2} x_{7} \\
& =2^{2} \operatorname{ch} u^{2} \kappa \iota\left(\xi_{3}\right)+2^{2} \operatorname{ch} u^{4} \kappa \iota\left(\xi_{7}\right) .
\end{aligned}
$$

Therefore

$$
\psi^{2}\left(u^{2} \kappa \iota\left(\xi_{3}\right)\right)=2^{2} u^{2} \kappa \iota\left(\xi_{3}\right)+2^{2} u^{4} \kappa \iota\left(\xi_{7}\right) .
$$

Since $\iota(v)=u^{2}$ (where $p=3$), it follows that

$$
\psi^{2}\left(\xi_{3}\right)=\xi_{3}+v \xi_{7} .
$$

Similarly we have

$$
\psi^{2}\left(\xi_{11}\right)=\xi_{11} .
$$

These imply the result.
There remain the cases in which G is neither p-regular nor quasi p-regular.
Proposition 3.6. In the following cases there are elements $\xi_{2 m_{i}-1} \in g(p)^{2 m_{i}-1}(G)$, for $1 \leq i \leq l$, as in Proposition 2.3, which satisfy:
(1) $G=G_{2}, \quad p=3$.

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
u^{2} \kappa \iota\left(\xi_{3}\right) & =\beta\left(\rho_{1}\right) \\
u^{6} \kappa \iota\left(\xi_{11}\right) & =5 \beta\left(\rho_{1}\right)-\beta\left(\Lambda^{2} \rho_{1}\right)
\end{aligned} \xrightarrow{c h} \begin{array}{l}
{ }^{2 x_{3}+\frac{1}{60} x_{11}} \\
\frac{1}{2} x_{11} .
\end{array} \\
& \text { (b) } \quad \theta_{2}\left(\xi_{3}\right)=\frac{1}{2} v \xi_{11}, \quad \theta_{2}\left(\xi_{11}\right)=0 \text {. }
\end{aligned}
$$

(2) $G=\operatorname{Spin}(7), \quad p=3$.
(a) $u^{2} \kappa \iota\left(\xi_{3}\right)=\beta\left(\lambda_{1}^{\prime}\right)$

\[

\]

$$
\theta_{2}\left(\xi_{11}\right)=0
$$

(3) $G=S p(3), \quad p=3$.
(a) $u^{2} \kappa c\left(\xi_{3}\right)=\beta\left(\lambda_{i}\right)$
$x_{3}-\frac{1}{6} x_{7}+\frac{1}{120} x_{11}$

$$
\begin{array}{lrr}
u^{4} \kappa \iota\left(\xi_{7}\right)=-4 \beta\left(\lambda_{1}\right)+\beta\left(\lambda_{2}\right) & \stackrel{c h}{\longrightarrow} & x_{7}-\frac{1}{4} x_{11} \\
u^{6} \kappa \iota\left(\xi_{11}\right)=2 \beta\left(\lambda_{1}\right)-2 \beta\left(\lambda_{2}\right)+\beta\left(\lambda_{3}\right) & & x_{11} .
\end{array}
$$

(b) $\quad \theta_{2}\left(\xi_{3}\right)=-\frac{1}{2} \xi_{7}, \quad \theta_{2}\left(\xi_{7}\right)=-\frac{3}{4} \xi_{11}, \quad \theta_{2}\left(\xi_{11}\right)=0$.

This proposition follows from the calculation similar to that in the proof of Proposition 3.3. We omit the details of the proof.

It is known [10] that

$$
S p i n(7) \underset{p}{\widetilde{p}} S p(3)
$$

Therefore $j(3)^{*}(S \operatorname{pin}(7)) \cong j(3)^{*}(S p(3))$. Henceforth we exclude to consider the former.

4. The $\boldsymbol{j}(\boldsymbol{p})$-cohomology of \boldsymbol{G}

In Lemma 4.2 we present formulas on the multiplicative structure of $\widetilde{j(p)}{ }^{*}(X)$ (where X satisfies a certain condition). In the rest of this section we compute $\widetilde{j(p)^{*}}(G)$ for all pairs (G, p). Finally we comment on $\widetilde{j(p)_{*}}(G)$.

Throughout this section, the letters X and Y will stand for finite connected $C W$-complexes.

Consider the fibration sequence

$$
\Sigma^{2 p-3} g(p) \xrightarrow{\delta} j(p) \xrightarrow{\eta} g(p) \xrightarrow{\theta} \Sigma^{2 p-2} g(p)
$$

It leads to a short exact sequence

$$
\begin{align*}
& 0 \rightarrow \operatorname{Coker}\left(\theta: \widetilde{g(p)^{i-1}}(X)\right. \rightarrow \widetilde{\left.g(p)^{i+2 p-3}(X)\right)} \stackrel{\delta}{\rightarrow} \tag{4.1}\\
& \widetilde{j(p)^{i}}(X) \xrightarrow{\eta} \operatorname{Ker}\left(\theta: \widetilde{g(p)^{i}}(X) \rightarrow \widetilde{\left.g(p)^{i+2 p-2}(X)\right) \rightarrow 0}\right.
\end{align*}
$$

for any $i \in Z$. In this situation we shall use the following notation. For any
 have $\bar{X}=0$. Suppose now that $x \in \operatorname{Ker}(\theta)$. Then we denote by \tilde{x} an element such that $\eta(\tilde{x})=x$; it is unique if $\widetilde{g(p)^{*}}(X)$ is $(p$-)torsion free. This condition is satisfied for $X=G$ by Proposition 2.3.

Lemma 4.2. Suppose that $\widetilde{g(p)}{ }^{*}(X)$ is torsion free. Then, with the above notations, for any $x, y \in \widetilde{g(p)^{*}}(X)$, the following formulas hold in $\widetilde{j(p)^{*}}(X)$:
(i) $\tilde{x} \cup \tilde{y}=\widetilde{x \cup y}$.
(ii) $\tilde{x} \cup \bar{y}=\overline{x \cup y}$.
(iii) $x \cup \tilde{y}=\overline{x \cup y}$.
(iv) $\bar{x} \cup \bar{y}=0$.

Proof. Parts (i), (ii) and (iii) are proved by using the same technique as in [13, §4]; we refer to it for the details. In this proof we will use the facts which are shown there, without specific reference.

It remains to prove part (iv). Since η is a map of ring spectra and $\eta \delta \simeq 0$, we have

$$
\eta(\bar{x} \cup \bar{y})=\eta(\delta(x) \cup \delta(y))=\eta \delta(x) \cup \eta \delta(y)=0 \cup 0=0 .
$$

Hence there exists a $z \in g(p)^{*}(X)$ such that $\bar{x} \cup \bar{y}=\bar{z}$. This equality implies that, in the following diagram, the outer square is commutative:

where d is the diagonal map; $x \in g(p)^{m+2 p-3}(X), y \in g(p)^{n+2 p-3}(X) ; \boldsymbol{g}=\boldsymbol{g}(p)$, $\boldsymbol{j}=\boldsymbol{j}(p) ; \mu_{\boldsymbol{g}}$ and $\mu_{\boldsymbol{j}}$ are multiplications in $\boldsymbol{g}(p)$ and $\boldsymbol{j}(p)$ respectively. The commutativity of square I is obvious and that of square II was shown in [13, Lemma 4.4]. Thus we have

$$
\begin{aligned}
\bar{z} & =x \cup \bar{y}=\mu_{j}(x \wedge \bar{y}) d \\
& =\mu_{j}(\delta \wedge 1)(1 \wedge \delta)(x \wedge y) d \\
& =\delta \mu_{g}(1 \wedge \eta)(1 \wedge \delta)(x \wedge y) d \\
& =0
\end{aligned}
$$

By virtue of this lemma, if one computes $\widetilde{j(p)}{ }^{*}(X)$ by using (4.1), then its ring structure is automatically known.

We now record some basic data for $\boldsymbol{j}(p)$. Since $\psi^{r}(v)=r^{p-1} v$, the coefficient ring of $\boldsymbol{j}(p)$ is given by

$$
\begin{equation*}
\pi_{*}(j(p))=Z_{(p)}\{\tilde{1}\} \oplus \underset{i \geq 1}{\oplus} Z \mid p^{1+\nu_{p}(i)}\left\{\overline{\left.v^{i-1}\right\}}\right. \tag{4.3}
\end{equation*}
$$

where the formula

$$
\nu_{p}\left(r^{i(p-1)}-1\right)=1+\nu_{p}(i)
$$

([2, Lemma (2.12)]) is essential. We also have the Cartan formula for θ_{r} : for any $x, y \in g(p)^{*}(X)$,

$$
\begin{equation*}
\theta_{r}(x \cup y)=\theta_{r}(x) \cup y+x \cup \theta_{r}(y)+v \cdot \theta_{r}(x) \cup \theta_{r}(y) \tag{4.4}
\end{equation*}
$$

(cf. [13, Lemma 4.1]).
Let us enter into a computation of $\widetilde{j(p)^{*}}(G)$. As is well known, the cofibration

$$
X \vee Y \rightarrow X \times Y \rightarrow X \wedge Y
$$

leads to a split short exact sequence

$$
0 \rightarrow \widetilde{j(p)^{i}}(X \wedge Y) \rightarrow \widetilde{j(p)^{i}}(X \times Y) \rightarrow \widetilde{j(p)^{i}}(X) \oplus \widetilde{j(p)^{i}}(Y) \rightarrow 0
$$

for any $i \in Z$. Therefore by Lemma 3.2, in order to compute $\widetilde{(p)^{*}}(G)$ when
 (3.4) we deduce

Proposition 4.5. The ring $\widetilde{j(p)^{*}}\left(B_{1}(p)\right)$ is given by:

$$
\begin{aligned}
\widetilde{j(p)^{*}}\left(B_{1}(p)\right)= & \widetilde{j(p)^{*}}\left(S^{0}\right) \widetilde{\left\{\xi_{3} \xi_{2 p+1}\right\}} \oplus Z_{(p)} \widetilde{\left\{\xi_{2 p+1}\right\}} \\
& \oplus Z_{(p)}\left\{\left(r^{p-1}-1\right) \xi_{3}-v \xi_{2 p+1}\right\} \\
& \oplus \underset{i \geq 1}{\oplus} Z \mid p^{2+v_{p}(i)+v_{p}(i+1)} \widetilde{\left\{v^{i-1} \xi_{3}\right\}}
\end{aligned}
$$

where the relations

$$
\begin{aligned}
& \overline{\xi_{2 p+1}}=0 \\
& \overline{v^{i} \xi_{2 p+1}}=\left(r^{-i(p-1)}-1\right) \overline{v^{i-1} \xi_{3}} \quad(\text { for } i \geq 1)
\end{aligned}
$$

hold.
Proof. By using (4.4), in $g(p)^{*}\left(B_{1}(p)\right)$ we have

$$
\begin{aligned}
& \theta_{r}\left(v^{i} \xi_{3} \xi_{2 p+1}\right)=\left(r^{i(p-1)}-1\right) v^{i-1} \xi_{3} \xi_{2 p+1}, \\
& \theta_{r}\left(v^{i} \xi_{2 p+1}\right)=\left(r^{i(p-1)}-1\right) v^{i-1} \xi_{2 p+1}, \\
& \theta_{r}\left(v^{i} \xi_{3}\right)=\left(r^{i(p-1)}-1\right) v^{i-1} \xi_{3}+r^{i(p-1)} v^{i} \xi_{2 p+1} .
\end{aligned}
$$

So the kernel and cokernel of θ_{r} are easily calculated and the result follows.
In this way, if G is p-regular or quasi p-regular, the ring $j(p)^{*}(G)$ can be described. For the remaining cases, from parts (1) and (3) of Proposition 3.6 we deduce

Theorem 4.6. With the notation as in Lemma 4.2, the ring $\widetilde{j(3)^{*}}(G)$ for $G=G_{2}, S p(3)$ is given by:
(1) $G=G_{2}$.

i	$\widetilde{j(3)^{i}\left(G_{2}\right)}$
14	$Z_{(3)} \widetilde{\left\{\xi_{3} \xi_{11}\right\}}$
13	0
12	0
11	$Z / 3 \overline{\left\{\xi_{3} \xi_{11}\right\} \oplus Z_{(3)} \widetilde{\left\{\xi_{11}\right\}}}$
10	0
9	0
8	$Z / 3 \overline{\left.\xi_{11}\right\}}$
7	$Z / 3\left\{v \xi_{3} \xi_{11}\right\}$
6	0
5	0
4	0
3	$Z / 3^{2}\left\{\overline{\left.v^{2} \xi_{3} \xi_{11}\right\}} \oplus Z_{(3)}\left\{3 \xi_{3}-\frac{1}{10} v^{2} \xi_{11}\right\}\right.$
2	0
1	0
0	$Z / 3^{3}\left\{\overline{\xi_{3}}\right\}$
-1	$Z / 3\left\{\overline{\left.v^{3} \xi_{3} \xi_{11}\right\}}\right.$
-2	0
-3	0
-4	$Z / 3^{2} \overline{\left\{v \xi_{3}\right\}}$
-5	$Z / 3\left\{v^{4} \xi_{3} \xi_{11}\right\}$
-6	0
-7	0

(2) $G=S p(3)$.

i	$\widetilde{j(3)^{i}}(S p(3))$
21	$Z_{(3)} \widetilde{ } \widetilde{\left.\xi_{3} \xi_{7} \xi_{11}\right\}}$
20	0
19	0
18	$Z / 3\left\{\overline{\left.\xi_{3} \xi_{7} \xi_{11}\right\}} \oplus Z_{(3)} \widetilde{\left\{\xi_{7} \xi_{11}\right\}}\right.$
17	0
16	0
15	0
14	$Z / 3\left\{\overline{\left.v \xi_{3} \xi_{7} \xi_{11}\right\}} \oplus Z_{(3)}\left\{3 \xi_{3} \xi_{11}+\frac{1}{2} v \xi_{7} \xi_{11}\right\}\right.$
13	0
12	0
11	$Z / 3\left\{\overline{\left.\xi_{3} \xi_{11}\right\}} \oplus Z_{(3)} \widetilde{\left\{\xi_{11}\right\}}\right.$
10	$Z / 3^{2}\left\{\overline{\left.v^{2} \xi_{3} \xi_{7} \xi_{11}\right\}} \oplus Z_{(3)}\left\{3 \xi_{3} \xi_{7}+\frac{3}{4} v \xi_{3} \xi_{11}+\frac{1}{40} v^{2} \xi_{7} \xi_{11}\right\}\right.$
9	0
8	$\underline{Z / 3}\left\{\overline{\xi_{11}}\right\}$
7	$Z / 3 \overline{\left\{\xi_{3} \xi_{7}-\frac{1}{16} v \xi_{3} \xi_{11}\right\}} \oplus Z / 3^{3}\left\{\overline{\left.v \xi_{3} \xi_{11}\right\}} \oplus Z_{(3)}\left\{\xi_{7}+\frac{1}{4} v \xi_{11}\right\}\right.$
6	$Z / 3\left\{\overline{v^{3} \xi_{3} \xi_{7} \xi_{11}}\right\}$
5	0
4	$Z / 3 \overline{\left\{v \xi_{11}\right\}}$
3	$Z / 3\left\{\begin{array}{\|c} \\ \left.\xi_{3} \xi_{7}-\frac{4}{5} v^{2} \xi_{3} \xi_{11}\right\}\end{array} Z / 3^{3}\left\{\overline{\left.v^{2} \xi_{3} \xi_{11}\right\}} \oplus Z_{(3)}\left\{3 \xi_{3}+\frac{1}{2} v \xi_{7}+\frac{1}{10} v^{2} \xi_{11}\right\}\right.\right.$
2	$Z / 3\left\{\overline{\left.v^{4} \xi_{3} \xi_{7} \xi_{11}\right\}}\right.$
1	0
0	$Z / \overline{\left\{3 \xi_{3}-\frac{8}{5} v^{2} \xi_{11}\right\}} \oplus Z / 3^{3}\left\{\overline{\left.\xi_{3}\right\}}\right.$

Proof. For (1) we have

$$
\begin{aligned}
& \theta_{2}\left(v^{i} \xi_{3} \xi_{11}\right)=\left(2^{2 i}-1\right) v^{i-1} \xi_{3} \xi_{11}, \\
& \theta_{2}\left(v^{i} \xi_{11}\right)=\left(2^{2 i}-1\right) v^{i-1} \xi_{11}, \\
& \theta_{2}\left(v^{2} \xi_{3}\right)=\left(2^{2 i}-1\right) v^{i-1} \xi_{3}+2^{2 i-1} v^{i+1} \xi_{11} .
\end{aligned}
$$

For (2) we have

$$
\begin{aligned}
& \theta_{2}\left(v^{i} \xi_{3} \xi_{7} \xi_{11}\right)=\left(2^{2 i}-1\right) v^{i-1} \xi_{3} \xi_{7} \xi_{11}, \\
& \theta_{2}\left(v^{i} \xi_{7} \xi_{11}\right)=\left(2^{2 i}-1\right) v^{i-1} \xi_{7} \xi_{11}, \\
& \theta_{2}\left(v^{i} \xi_{3} \xi_{11}\right)=\left(2^{2 i}-1\right) v^{i-1} \xi_{3} \xi_{11}-2^{2 i-1} v^{i} \xi_{7} \xi_{11}, \\
& \theta_{2}\left(v^{i} \xi_{11}\right)=\left(2^{2 i}-1\right) v^{i-1} \xi_{11}, \\
& \theta_{2}\left(v^{i} \xi_{3} \xi_{7}\right)=\left(2^{2 i}-1\right) v^{i-1} \xi_{3} \xi_{7}-2^{2 i-2} 3 v^{i} \xi_{3} \xi_{11}+2^{2 i-3} 3 v^{i+1} \xi_{7} \xi_{11}, \\
& \theta_{2}\left(v^{i} \xi_{7}\right)=\left(2^{2 i}-1\right) v^{i-1} \xi_{7}-2^{2 i-2} 3 v^{i} \xi_{11}, \\
& \theta_{2}\left(v^{i} \xi_{3}\right)=\left(2^{2 i}-1\right) v^{i-1} \xi_{3}-2^{2 i-1} v^{i} \xi_{7} .
\end{aligned}
$$

So the result follows from elementary calculations of the kernel and cokernel of θ_{2}.

Proof of Theorem 1.1.

By using the Poincare duality isomorphism

$$
\begin{aligned}
j(p)_{i}(G) & =\widetilde{j(p)_{i}}(G) \oplus \widetilde{j(p)_{i}}\left(S^{0}\right) \\
& \simeq \widetilde{j(p)^{n-i}}(G) \oplus \widetilde{j(p)^{n-i}}\left(S^{0}\right)=j(p)^{n-i}(G)
\end{aligned}
$$

where $n=\operatorname{dim} G$, Theorem 1.1 follows from Theorem 4.6 and (4.3).
Finally we talk about the Pontrjagin ring structure of $\widetilde{j(p)_{*}}(G)$. Since in Lemma 2.2 each $\beta\left(\rho_{i}\right)$ is primitive (see [11]), the ring structure of $K_{*}(G)$ can be determined. Furthermore, the ψ^{γ}-action on $K_{*}(G)$ can be determined by using the formula

$$
\psi^{r}(a \cap \alpha)=\psi^{r}(a) \cap \psi^{r}(\alpha)
$$

where $a \in K^{*}(G), \alpha \in K_{*}(G)$ and \cap denotes the cap product. Therefore the ring structure of $\widetilde{j(p)_{*}}(G)$ will be obtained by using the homology instead of the cohomology and taking the same course as in this paper.

References

[1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[2] J.F. Adams: On the groups $J(X)$-II, Topology 3 (1965), 137-171.
[3] J.F. Adams: Lectures on generalised cohomology, Lecture Notes in Math. Vol. 99, Springer, 1969.
[4] J.F. Adams: Stable homotopy and generalised homology, Chicago Lectures in Math., Univ. of Chicago Press, 1974.
[5] J.F. Adams: Infinite loop spaces, Ann. of Math. Studies No. 90, Princeton Univ. Press, 1978.
[6] J.F. Adams, A.S. Harris and R.M. Switzer: Hopf algebras of cooperations for real and complex K-theory, Proc. London Math. Soc. (3) 23 (1971), 385-408.
[7] M.F. Atiyah and F. Hirzebruch: Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. Vol. 3, Amer. Math. Soc., 1961.
[8] A. Borel: Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. 61 (1955), 397-432.
[9] A. Borel: Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J. (2) 13 (1961), 216-240.
[10] B. Harris: On the homotopy groups of the classical groups, Ann. of Math. 74 (1961), 407-413.
[11] L. Hodgkin: On the K-theory of Lie groups, Topology 6 (1967), 1-36.
[12] M. Mimura and H. Toda: Cohomology operations and the homotopy of compact Lie groups-I, Topology 9 (1970), 317-336.
[13] T. Watanabe: On the spectrum representing algebraic K-theory for a finite field, Osaka J. Math. 22 (1985), 447-462.
[14] T. Watanabe: Chern characters on compact Lie groups of low rank, Osaka J. Math. 22 (1985), 463-488.

Department of Mathematics
Osaka Women's University
Daisen-cho, Sakai
Osaka 590, Japan

