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1. Introduction

Let G be a compact, 1-connected, simple Lie group of rank 2 or 3. That
is, G is one of the following:

SU(3): Sp(2), G2, SU(4), Spin(7) and Sρ(3).

In [14], for these groups G, we have given a complete description of the Chern
character ([7, §1])

ch:K*{G)-+H*(G;Q).

Using this, one can easily compute the Adams operations ψr ([1]) on K*(G)
for all r<ΞZ (see (2.5)).

Throughout this paper p will denote an odd prime. Let us introduce
some spectra ([4, Part III]). Let KZ(P) denote the ring spectrum representing
complex i^-theory localized at p. Let kZ(P) be its (—l)-connected cover.
So there is a map of ring spectra κ\ kZ(P)->KZ(P) such that

fc*: π*(kZ(p)) = Z(P)[u] -> π*(KZ(p)) = Z(p)[u, u'1]

satisfies κ*(u) = u where \u\—2. As is well known, there is a ring spectrum
g(p) such that

{p)

Here the injection c: g(p)-*kZ(P) is a map of ring spectra such that

**: π*(g(ρ)) = Z(p)[v] -> π*(kZ(p)) = Z(p)[u]

satisfies ι*(v)=up~1 where \v\=2(p— 1). For r prime to p there are maps of
ring spectra

ψr:KZ(p)-*KZ(p)y

ψr: kZ(P) -+kZ(p),

Ψr' oip) ~
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which are called the stable Adams operations ([6], [5]). They commute with

icy t and satisfy ψr(u)=ru. Let

be a unique map of spectra such that (v )θr—ψr— 1 where v : Σ2{p~ι)g(p)

is multiplication by v. We denote by j(p r) the fibre spectrum of θr. If r

or r' generates the group of units of Z/p2, then j(p; r)^=^j(p; r'). In this case,

we may write j(p) for j(p; r) and use a suitable r to discuss it. j(p) is known

to be a ring spectrum (see [13]).

Let j(p)i(G) (resp. j(p)\G)) be the z-th reduced j(p)-homology (resp. co-

homology) group of G. One of our targets is to compute the groups j(p)i(G)

foi all the above G and p. As will be mentioned in §3, the cases (G, p)=(G2y 3),

(Sp(3), 3) are most intereSving. Then we obtain

Theorem 1.1. For /<21 and G=G2y Sp(3) the groups y(3), (G) are listed

in the following table:

Gz

Sp(3)

G2

*(3)

^ \
G2

Sp(3)

0

0

0

10

0

1

0

0

Z/3®Z ( 3 )

17

Zβ

Zβ

2

0

0

11

ZC 3)

* c 3 )

18

Z/3 2

Z/30Z/33G

3

^ C 3 )

12

0

0

4

0

0

13

0

Z/3

19

0

0

5

0

0

6

Zβ

0

14

Z/330Z (

Z/3©Z/33(

20

0

0

7 8

0 0

^ C 3 ) ^

15

3) 0

21

Zβ

Z/3©Z/33S

9

0

0

16

0

0

)^C3)

where 0 indicates the direct sum of the groups.

Since G is parallelizable, the Poincarό duality isomorphism

holds for any spectrum E, where w—dim G (see [4, Part III]). Therefore,

to compute j(p)i(G) it suffices to compute ]{p)n~ι{G). Theorem 1.1 is a con-

sequence of Theorem 4.6, in which the cup-product ring structure of j(p)*(G)

is described for (G,p)=(G2, 3), (Sp(3), 3).

The remainder of this paper is organized as follows. In §2 we collect

some results for later use. In §3 we describe the action of θr on g(p)*(G).
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In §4 we compute the rings j(p)*(G).

2. Preliminaries

This section is devoted to describe the rings K*(G; Z(P))y k*(G; Z(P))y

g(p)*(G) and the homomorphism ch: K*(G)-+H*(G\ Q).

Notice that G is assumed to be as in §1 and p is assumed to be
an odd prime. According to Borel [9], G has no />-torsion and we have

Lemma 2.1. There exist elements x2mi-.i^H2mi~\G; Z(P)), for \<i<l
{where 1=2 or 3), such that

H*(G; Z(p)) = A(x2mι.u x2m2.ly •••, x2mi-i)

where 2=m1<τw2< <wί/ and Λ denotes an exterior algebra (over Z(P)).

For this lemma and the values of m{ see [8].
We need the famous result of Hodgkin [11]:

Lemma 2.2. Let {pl9 , p7} be a system of ring generators of the complex
representation ring R(G). Then there exist elemenis β(ρi)^K~\G))for ί<i<l,
such that

K*(G) = Λ(/?(Pl), .", β(p,))®Z[ύ, u-1].

Therefore

K*(G; Z(fi) = A(β(Pl), ..-, β(p,))®Z(p)[u, w"1] .

The following proposition shows that

κ:k*(G;Z(jA)-+K*(G;Z(fi),

are injective.

Proposition 2.3. One can choose elements

ξ^-^iipf'-XG). for
such that

( i ) g(pnG)=A(ξ2mi^ .-, ξ2mι

(ii) k*(G; Z{p))=K{c(ξ2mι^ .-
(iii) K*(G; Zifi)=K{Ki{^^\
(iv) The CW-filtration degree ([7, §2]) of ξ2m-ι is 2m, — 1 ; or equivalently,

™(%2mi-i) satisfies

ch(umifcc(ξ2mi_1))=cx2mi-i+higher terms

where c is a unit of Z(P).
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Proof. By [7, § 2.4] the Atiyah-Hirzebruch spectral sequence for K*(G; Z(p))
collapses. Therefore it follows from the naturality with respect to K, (resp. C)
that the Atiyah-Hirzebruch spectral sequence for k*(G;Z(P)) (resp. #(/>)*(£?))
collapses. Thus Lemma 2.1 yields the result; in particular, for (iv) see [7, §2.5].

We quote from [14] the following

Lemma 2.4. For our groups G, the Chern character

ch: K~\G) = £(ΣG) -> #*(ΣG; Q)^β*~\G\ Q)

is given by:
(1) IfG=SU(3)twehave

chβ(\1)= _ X 3 +

chβ(\2) = -X3-—X5

(where {Xl9 λ2} generates R(SU(3))).
(2) IfG=Sp(2),wehavι<

(3)

(4)

IfG=G2,we

IfG=SU(4),

have

chβ(Pl) = 2*3

chβ(A*Pl) = 10.

, we have

3 * 7

+ έ
V3~Ϊ2

chβ(\1)= —x3+—xs—-rxi,
L o

chβ(\2)=-2x3 +Jχ7>

chβ(X3) = —x3 ——x5— -—x7.L o

(5) // G=Sρin(7)y we have

chβ(X{)= 2x3-^-
3

chβ{Xί) =

chβ(A7)=
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(6) // G=Sp(3), we have

= x3 — — #7+ 7 ^ * 1 1 ,

chβ(\3) = 6x3 + ocΊ + — xn .

An application of this result is a quick calculation of the operation

on K*(G). For example, in K~\SU(3)) we have

(2.5)

(cf. the proof of Proposition 3.3).

3. The operation θr on g{p)*(G)

In this section we first recall the facts we need about the ^-localization

of G. With this as a background, we shall describe the action of θr on

Let Bn(p), for n > l , be the S2w+1-bundle over S2**2*-1 such that

H*(BΛ{p); Zip) = A(x2n+1 5>V2 n + 1),

It has a cell structure:

(3.1) BJφ)^S2n+1 U62«+1+2^-1> U *4

Then G is called ^-regular if and only if it is homotopy equivalent to a product

of spheres when localized at py and G is called quasi ^-regular if and only if

it is homotopy equivalent to a product of spaces Bn(p) and spheres when loca-

lized at p.

The following result is due to Mimura and Toda [12].

Lemma 3.2. We have

(1) SU(3)^S3XS5 for p>3.

(2) Sp(2)~S3xS7 for p>5;

(3) G 2 ^ 5 3 x S π for p>7;
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(4) SU(4)^S3xSsxS7 for

(5) Spin(7)=fS3xS7xSu for

Sptn(7)ψB1{5)xS7.

(6) Sp(3)ψS3xS7xSa for

We first consider the cases in which G is />-regular.

Proposition 3.3. In the following cases there are elements

for 1</<C/, as in Proposition 2.3, which satisfy:

(1) G = SU(3)9 p>3.

L L Cίl\

(b) *„(&) = 0, ίr(f5) = 0 .

(2) G = Sp{2), p>5.

(a) 4 ^
Crl

= - 2/8(λ,) + /3(λ2)

(b) θtft) = 0, θr(ξ7) = 0.

(3) G = G2, p>7.

(a) | ^

(b) ^(?3) = 0, θr(

(4) G =

(a) «»« 4 i
i o ό

u3m(ξ5) = ^(λx) - β(\3) -i-» ^

M

4

Λi(?7) = - £(*,) + /S(λ2) - β(\3) x7.

(b) ίr(e,) = 0, *,(&) = 0, ^(f,) = 0.
(5) G = Spίn{7),
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(a) tSκt(ξ3) = ^β{\{)+±β(X'2)+^β(A7) 2x3

u*>u(ξ7) = -β(Xί) + y S ( Δ 7 ) - ^ x7

ί) - /8(λί) + 4/3(Δ7)

(b) θ,(ξ3) = 0, *,(&) = 0, θ,(ξn) = O.

(6) G=Sp(3), p>7.

(a) «*«<&) = J-/3(λi) + ^/3(λ2)+^/3(λ3) x3

- 2/3(λ2) + yS(λ3)

(b) θr(ξ3) = 0,

Proof. We show (1) only, because the others can be shown quite simi-
larly. Since {^(λx), /3(λ2)} forms a Z-basis for K"\SU(3)) by Lemma 2.2

(and [14, §2]), it is easy to see that { — l ^ x , ) - !

forms a Z^-basis for K"~\SU(3) Z^) their images under ch are as required
by Lemma 2.4. On the other hand, by Proposition 2.3 {u2κι(ξz), u3κc(ξs)} is a
Z(i>)-basis for K~\SU(3); Z ( ί )). These (together with (b)) permit us to conclude
that there exist ξi^g(py(SU(3))y ί = 3 , 5, satisfying (a).

To prove (b) we compute ψr(u2tcι(ξ3)) and ψr(u3/cι(ξ5)) in K(ΣSU(3)). By

use of the formula chqψr=rqchq [1, Theorem 5.1 (vi)] where elf is the com-
position

; Q)

(where πϊq is the projection to the 2gr-dimensional component), we have

chV{tfκL{ξ3)) == t'x, = chitViutf,)).

Since cA: ^ ( Σ G ) ^ /?*(ΣG; Q) is injective, it follows that

ψr(u2

Kl(ξ3)) = rV,u{ξ,).

Since •ψ '(κ2)=r2κ2, it follows that

Since i|rr commutes with κy ι and K, L are injective, it follows that

Ψ\ξ3) = ξz .

Similarly we have ψr(ξ5)~ξ5. So (b) follows by the definition of θr.
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In view of Lemma 3.2, all statements in Proposition 3.3 except (a) are
clear. But, if one wants to discuss a homomorphism / * : g(p)*(G')-*-g(p)*(G)
which is induced by a homomorphism of compact Lie groups /: G-*G\ it
seems to us that (a) is necessary.

Before considering the cases in which G is quasi ^-regular, we describe
gipYiB^p)) and the ^-action on it. Since θr detects IP1 (see [13, Lemma 1.1]),
it follows from the Atiyah-Hirzebruch spectral sequence argument using (3.1)
that

(3.4) There exist ?,€=&)'&(#)), for *=3, 2p+l,.

(i)
(ϋ)

g(P)*(Bi(P)) = Λ(?3, ξ2,+i)®Z(p)[v].
The operation θr is given by

0r(?3) = ?2ί+l) 0r(?2ί+l) =

Proposition 3.5. In the following cases there

(G)Jor

(1)

(2)

(3)

(4)

l<Li<l, as in Proposition 2.3, which satisfy:

G=Sp(2), p=3.

(a) u2κc(ξ3)= y/S(λ2) ch Xf\

u4κι(ξ7) = — 2/3(λ!) + β(X2) >

(b) Θ2(ξ3)=ξ7, Θ2(ξ7)=θ.

G=G2, ρ=5.

(a) u2κι(ξ3) = β(Pl) 2x^
ch

Λί(fn) = 5β(Pl)-β(A2

Pl) *

\U) ^2\^3/ Λ s 11 > ^2\oll/ ^

G=SU(4), ρ=3.

(a) M

2 « t ( ? 3 ) = - i /3(λ,) -—/3(>
2 2

0.

are elements

1

* 7 .

h 6 0 X u

2 " '

0 ^3+

u?κι(ξs) = β(λ,i) — /3(λs) • Ê

u4κι(ξ7) = — jβ(λj) + β(\2)—β(}ι

(b) ^ 3 ) = y ? 7 , ^ s ) = 0, <?,(&) =

G=Spin(7), p=5.

(a) M2«ί(?3) = — yδ(λί) + — ^ ( Δ 7 )
3 3

IAM(£7) = -/3(λί) + /S(Δ7)

= 0.

2x,+—
ch 6 C
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(b) ^f,) = yfu, θtf,) = 0, Θ2(ξu)=θ.

(5) G=Sp(3), p=S.

(a) «*

r
Z

f u) = 2/3(λ1). - 2/3(λ2) + /3(λ3)

(b) 4
Proof. We prove (1) only; the proof for the others is similar. First,

(a) follows from Proposition 2.3 and Lemma 2.4 as in the proof of Proposition
3.3. To prove (b) we compute ψ2(u2κt(ξ3)). In K(Σ,Sp(2)) we have

y X7)+2%

= 22chu2κι(ξz)+22chu*κι(ξ7).

Therefore

Since ^(z;)=w2(where/)=3), it follows that

Similarly we have

Ψ2(ξ») = ξu •

These imply the result.

There remain the cases in which G is neither ^-regular nor quasi ^-regular.

Proposition 3.6. In the following cases there are elements ξ2mi-i^g(p)2mi~1(G),
for l < / < / , as in Proposition 2.3, which satisfy:

(1) G=G2, p=3.

(a) iA«(£,) = β(Pl) ±

«Λ«(&i) = 5/8(P l)-/8(Λ2

P l)

(b) j

2x3+cn oU
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(2)

(3)

G=Spin(7),
( \ 2 /£ \

\&) U κcyς3)

u6/cc[ζu)

(b) ^j(f,) =

G=Sp(3),

[3.) U Kl>\ζ2) •

U ^^(bll)

(b) Θ2(ξ3) =

p=3.

= /δ(λί)

p=3.

ch
+/3(Δ7) —

b 11 > *'2\δ7/ = = = ^ >

= 2/3(λι)-2/3(λ2)+/3(λ3)

:(&7) fu,

^ +

This proposition follows from the calculation similar to that in the proof
of Proposition 3.3. We omit the details of the proof.

It is known [10] that

Spin (7) ̂ Sp (3).

Therefore j(3)*(Spin(7))exj(3)*(Sp(3)). Henceforth we exclude to consider
the former.

4. The jXpJ-cohomology of G

In Lemma 4.2 we present formulas on the multiplicative structure of

j(p)*(X) (where X satisfies a certain condition). In the rest of this section

we compute j{p)*{G) for all pairs (G,p). Finally we comment on j(p)*(G).
Throughout this section, the letters X and Y will stand for finite con-

nected CW-complexes.

Consider the fibration sequence

It leads to a short exact sequence

(4.1) 0 -» Coker {β:^}r\X) -

Jip)'{X) X Ker (θ:
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for any i&Z. In this situation we shall use the following notation. For any
x^g(P)*(X) we write ff for δ(x)(=j(P)*~2p+3(X) > therefore, if #<Ξlm(0), we
have #=0. Suppose now that #eKer(0). Then we denote by % an element

such that v(%)=x'j it is unique if g(p)*(X) is (̂ >-)torsion free. This condition
is satisfied for X=G by Proposition 2.3.

Lemma 4.2. Suppose that g{p)*(X) is torsion free. Then, with the above

notations, for any x9 y^g(ρ)*(X), the following formulas hold in y(

( i )

(ii)

(iii)

(iv)

Proof. Parts (i), (ii) and (iii) are proved by using the same technique
as in [13, §4]; we refer to it for the details. In this proof we will use the facts
which are shown there, without specific reference.

It remains to prove part (iv). Since η is a map of ring spectra and 978—0,
we have

η(χ \Jy) = v(8(x) U 8(y)) = vS(x) U ηS(y) = 0 U 0 = 0 .

Hence there exists a z^g(p)*(X) such that %Uy=z. This equality implies
that, in the following diagram, the outer square is commutative:

where d is the diagonal map; xGg(p)m+2p"\X)i y^g(p)n+2p"3(X); g=g(p),
j = j(p);μg and μj are multiplications in g(p) and j(p) respectively. The
commutativity of square I is obvious and that of square II was shown in [13,
Lemma 4.4]. Thus we have

= μj(δΛl)(lΛδ)(xΛy)d

= 8μσ(lΛv)(lΛδ)(xΛy)d

= 0.
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By virtue of this lemma, if one computes j(p)*(X) by using (4.1), then
its ring structure is automatically known.

We now record some basic data for j{p). Since Λjrr(v)=rp~1v, the coeffi-
cient ring of j(p) is given by

(4.3) **(J(P)) = Z(fi {1} θ θ Z//>1+V> {v^}

where the formula

Vp{rHP-i)_1)==1+Vp(i)

([2, Lemma (2.12)]) is essential. We also have the Cartan formula for θr:
for any x, y Gg(p)*(X)9

(4.4) θr(x U y) = θr{x) U y+x U θr( y)+v θr(x) U θr{y)

(cf. [13, Lemma 4.1]).

Let us enter into a computation of i(/>)*(G). As is well known, the co-
fibration

XVY->XxY->XΛY

leads to a split short exact sequence

o -*j(fy(XAY) - Λ S ' C ^ X Y) -+Kpy(X)®KPY(Y) - o

for any /GZ. Therefore by Lemma 3.2, in order to compute y(^)*(G) when

G is ̂ -regular or quasi p-reguhr, it suffices to determine j{p)*(Bx{p)). From
(3.4) we deduce

Proposition 4.5. The ring j( />)*(Si(/>)) is given by:

θ θ

where the relations

ζ 0

Proof. By using (4.4), in g(p)*(Bi(p)) we have

θr(v%ξ2p+1) = ( r ^ - i y - 1 ^ ! ,
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So the kernel and cokernel of θr are easily calculated and the result follows.

In this way, if G is ^-regular or quasi ^-regular, the ring j(p)*{G) can be

described. For the remaining cases, from parts (1) and (3) of Proposition 3.6

we deduce

Theorem 4.6. With the notation as in Lemma 4.2, the ring ,/(3)*(G) for
G=G2, Sρ(3) is given by:

(1) G=G2.

14

13

12

11

10

9

8

7

6

5

4

2

1

0

-1

-2

-3

-4

-5

-6

-7

0

0

0

0

0

0

0
_

Z/32{rfθJ©Z(a){3f3-^i

0

0

0

0

0

0
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(2) G=Sp(3).

i

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Zβ{

. Z/3WfA

z\.

£j\O \V ζ3£ηζ\\ϊ τχ)4

Zβ{U,-^Un)

y(3) (^(3))

0

0

0

0

0
1

0

0

3 1

0

ZβiU ^ ^

\ φZβ3 {vξ3ξn} ΘZ,3) {ξ7+ ±vξn}

Zβ{v%ξ7ξu}
0

ZβWn} ^ ^ _ _ ^
7<β3{v%ξn} ΘZ(3) {3?3+ γ ^ 7 + ^«2?π>

Z/3V^7fn>
0

Proof. For (1) we have
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For (2) we have

Θ2(v%) = (2»-l)vi-%-2»-<t3v%1,

So the result follows from elementary calculations of the kernel and cokernel

oiθ2.

Proof of Theorem 1.1.
By using the Poincare duality isomorphism

where n=dimG, Theorem 1.1 follows from Theorem 4.6 and (4.3).

Finally we talk about the Pontrjagin ring structure of j(p)*(G). Since
in Lemma 2.2 each β(pi) is primitive (see [11]), the ring structure of K*(G)
can be determined. Furthermore, the ^-action on K*(G) can be determined
by using the formula

ψr(af]a) =

where a^K*(G), a^K*(G) and Π denotes the cap product. Therefore the

ring structure of j(p)*{G) will be obtained by using the homology instead of
the cohomology and taking the same course as in this paper.
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