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Introduction. Let S[m,, m;] denote the set of all C*-symbols a(¢, x, £) on
[0, TTx R:x R (0<T =1) such that

(0.1) | DiD¢Dia(t, %, £)| <C; o p<EX™ N (2-<ED ™)

for constants C; 4 s, where <€>=(14-|£|?)"? and w=1/(/4-1) with an integer [>0.
Consider a hyperbolic operator of first order:

(0.2) L=D—#[ut X, D) +B(1),

O .t X, D,

where p;, j=1, -+, m are real valued and satisfy

1) pit, x E)eS[1,0]
11) |l"‘j (t) X, g)_”k(t) xa E) | 26<§> (7 *k)

for a constant ¢>0, and the symbol o(B(t))(x, &) of the lower order operator B(¢)
satisfies

(0.4) o(B(t))(x, £)€ S[0, —1].

(0.3) {

The purpose of the present paper is to construct the fundamental solution
E(t, s) (0=s=t=<T,) of the Cauchy problem

LU=®({) on [5 Ty,

0.5
( ) U|t=s: v

for a small constant T, (0<T,<T). It should be noted that the operator L is
degenerate at t==0 and B(#) is not uniformly bounded on [0, T] as a family of
pseudo-differential operators with parameter t&[0, T].

To construct E(¢, s), we find first the perfect diagonalizer N(f) such that the
symbol o(N(t)) (x, &) belongs to S[0, 0] and



258 K. SHINKAI

(0.6) LN(t)=N(t)L, mod B,(S™"),
where L, is an operator of the form

(0.7) L=D—{[mtXD)
0 T LwxD)
FABXD) o RO

0 XD

such that f(t, %, £)€S[0, —1] and o(R@)(x &) € Ho= [| Slo—vo, —].

Then, for L, we can construct the fundamental solution E|(¢,s), and, by using
E\(t, 5), the fundamental solution E(#, s) for L can be found in the form

(0.8) E(t,s) = N(t)Eyt, )N*(s)+ R_.(t, s),

where N¥(s) is a parametrix of N() and o(R_.(Z, $))(%, E)E B, (S™).

We note that E(t, s) is represented as the sum of Fourier integral operators
which have phase functions (¢, s, ¥, £) defined as the solutions of eiconal equa-
tions:

i—t'; )= <s<i<
(0.9) { Bip;—t'us(t, %, Vip) =0  (0=s=<t<T,),

Bi(s, 5) = x-&,

and have symbols in o<Q<1S[0’ M+ & —M—¢€]. The constant M is defined
by

(0.10) M= max lim sup_{tImfi(t, % E)},

1<i<m R0 x,t{£)®2
0<t<R™!

and indicates the order of regularity-loss of the solution of the Cauchy problem.

Concerning the problem (0.5) Kumano-go [7] constructed the fundamental
solution without condition (0.3) ii) by using Fourier integral operators of multi-
phase. It should be emphasized that our fundamental solution E(¢, s) is re-
presented by Fourier integral operators of single phase, and M is determined
explicitly by (0.10). The perfect diagonzalization of (0.6) for L enable us such
a construction of E(¢, ).

In §1 we define some classes of pseudo-differential operators and Fourier in-
tegral operators as variants of classes in Boutet de Monvel [2], and summarize
fundamental theorems on operators of these classes. In §2, using a similar me-
thod to that of Kumano-go [6], we construct the perfect diagonalizer N(¢) such
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that (0.6) holds. We note that o/(R(2))(x, £)EH* and €S~ for any fixed >0,
but that H°E B(S™™) on [0, T]. So we can not apply the method in Kumano-
go [6] directly. From this reason, in §3, we first treat a single operator and then
construct the fundamental solution Ey(#, s) for a purely diagonal operator L,=
L,—R(t). In §4 the fundamental solution E\(¢,s) for L, is constructed in the
form

E(t, ) = Eft, I+ Qt, )+ @u(t, ),

and by using E\(t, s) the fundamental solution E(t,s) for the general L can
be constructed. The crucial point in the discussions of §4 is in finding
Q(t,s). Finally in §5 we consider a higher order operator L of the form:

(0.11) L= D';'+k}§ a(t, X, D)D",
where a,(t, x, £) have the forms
(0.12) at, x, £) = 2 1°0a, (2, x, )

with differential polynomials a, ,(t, x, &) of order k—j in & and o(j, k) =max
{0, (k—j)(’+1)—k}. We assume that the roots y,, -+, p,, of the equation

(0.13) A @Aty =0
are real and satisfy (0.3). Then, we show that the Cauchy problem:

{ Lu = o(t) on [s, Ty

0.14 . .
019 Hims =, j=0,-,m—1

is reduced to the system (0.5) by modifying the method in Shinaki [11]. We
note that the operator L of this type is a generalization of operators which have
been treated by Alinhac [1], Chi Min-You [3], Nakamura [8], Nakamura and
Uryu [9], Oleinik [10], Uryu [13] and Yoshikawa [14], [15].

The author would like to express his gratitude to Professor H. Kumano-go,
Professor M. Ikawa and Mr. K. Taniguchi for their kind suggestions and a
number of stimulating conversations. '

1. Preliminaries. For xR}, £ R} and multi-indices &, 8 we use the
following notation:

xE = xE e taE,, <E=1+[E1),
la|=a++a,, al=ala,!.

dt = (2z)"dE, D,== —id[0t, 0, = 0y,
D,; = —10/0x; ,
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z=a?} g:’ D§=D§}"D§;,
afg)(x, §) = 0¢Dia(x, £)
fo(x) = (azlf("“)’ ) azuf(x)) .
Let S*(=S1,0) denote Hormander’s class of symbols a(x, £) on R” which satisfy
(L.1) la@(x, £)| < CuplE>'™'™  on RIXRE,

and the associated pseudo-differential operators a(X, D,) are defined by
(1.2) a(X, Dyulx) = 05— || erta(a, Eyu(w+y)aedy
= tim ([ eorex(ee, ey)a(s, Epute-+)dzay

uEBRY),

where X(£, y) €S (the Schwartz space of rapidly decreasing functions on R**) such
that X(0, 0)=1 and B(R") denotes the space of C*-functions in R" whose deriva-
tives of any order are all bounded.

Let X(#) be a C”-function in R' such that

3 {nga)gl on R,
(13) X() =1 (lt|=1), =0 (It]22).

Set w=1/(l+1) for a positive integer / and define a function 7 by
(1.4) 7(2) = n(t, §) = t-+<ETX(KE") .
Then we have

{ (t+<§>-m)/2§77(f’ E)§t+<§>_n ’

(1-3) E>=q(t, )<2  (0=<t<T=1)

and by easy calculation
(1.6) | Didgn(z, £)| <C; o<E>™""n(2, £)'7 .

Following Boutet de Monvel [2] we define classes of symbols of pseudo-
differential operators.

DeriniTION 1.1, 1) For real m;, m, we denote by S[m,, m,] the space of
2ll C=-symbols a(t, x, £) on [0, T]X R;X R (0= T =1) such that for any non-
negative integer j and multi-indices &, B we have

(1.7) | Diafg)(t, %, £)] < C; o p<EX™ (2, £ .

i) For real m,, my, m; we denote by S[m,, m,, m;] the space of all C*=-
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symbols a(t, s, x, §) on [0, T} x [0, T]X Ry x R} (0= T <1) such that for any non-
negative integers j, £ and multi-indices «, B we have

(1.8) | DiDsa)(t, 5, %, E)] <C; 4. s<ED™™®In(2, EYy™in(s, Eym .
iii) We set
B(8™") = N S[m—v, m)],
B, (S77) = (] Slrm—v, my, m3]
A" = (| S[m—v, —v(I+1)].

RemARk. 1°. From (1.5) and (1.6) we have
(1.9 7(t, £)'€S[0, v]  for real »
and
a(t, x, £)€ S[m,, m;) = a(t, x, £)€S™*"2 |
a(t, s, x, £)E.S[m,, m,, m,)
= a(t, s, x, ) Smtemtems (7 = max {0, —m;})
for any fixed ¢t and s€[0, T7.

(1.10)

2°.  We can consider a(t, x, £) €.S[m,, m,] as an element of S[m;, m,, 0]. So
by this identification we write S[m,, m,] C.S[m,, m,, 0], and the statements for
the symbols of S[m,, m,, m;] often hold for symbols of S[m,, m,].

3°. It is easily proved that

[;] S[my—v, my)] = U B(S7)
and

O S[m,—v, my, m;] = D B, (S7Y).

Proposition 1.2. i) S[my, my) N\ S[mi, mj], if m;=<m{ and m,—m,w <m|—
mio.

i)  S[m,, my, mg) C S[mi, mi, mi] if “m,<mi, m—myo <m{—mjw and my=m}5”

or “m=m}, m—myo=mi—mio and my=m3;”’.

Proof is omitted.

Proposition 1.3. i) Let a(t,s, x, £)ES[m,, my, my]. Then, for any non-
negative integers j, k we have

(1.11) tista(t, s, x, £) € S[m,, my+j, my+k]

and
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(1.12) DiDza(t, s, x, §)E S[m,, my—j, my—K] .

ii) Let a(t, s, x, &) € S[m,, m,, ms] and b(t, s, x, E)ES[m], mz, m5]. Then,
we have '

(1.13) a(t, s, x, £)b(t, s, x, £)E S[m;+mi, my+mj, ms-+-m3] .
iii) Let a(t, x, )™ and b(t, x, E)E S[m,, m;). Then, we have
(1.14) a(t, x, £)b(z, x, &) Jmrmme

Proof. i) and ii) are clear. Writing 7(¢, £)"=<&)> " (<ED*n(t, &))" we get
(1.14).

Lemma 14. Set
(1.15) h(t, &) = n(t, £)'<E> .
Then, we have

1) h(z, £)'€S[p, vl] for any real v,
ii) h(t, E)—t'<E>E e,
i) (2, E)/h(t, E)—In(t, E)E IL*,
where hy(t, E)=D,h(t, ).
Proof. 1) is clear. Since I(t,&)=h(t, £))—t'<E> =0 when #KE>*"=2,
7(t, E)XED® is bounded on supp I(¢,£). So we have ii). Since (¢, £)=1+
X, (2KE>®) and X, (&KE>®)E JL°, we have by Proposition 1.3-iii)
thy(t, E)[h(z, £)—I[n(z, £)
= X (t<E>*)[n(¢, E)E 4* .
Proposition 1.5. i) Let au(t,s, x, E)ES[m—v, my,, my] for v=0,1, ---.
Then, there exists an a(t, s, x, £) E S[m,, m,, my] such that
a~ayt+a,+ - mod B, (S77)

in the sense

N-1
a— 2} a,€S[m—N, m,, ms] for all N .

v=0

Two such symbols differ by an element of B, (S™%).
il) Let by(t, x, E)E S[my—v, my—v(I+1)] for v=0, 1, --.  Then, there exists
a b(t, x, £) € S[m,, m,) such that
b~by+b,+ -+ mod (™™ m*

in the sense
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N-1

b— 3 b,&8[m—N, m, —N(i+1)]  for all N.

v=0
Two such symbols differ by an element of (™ ™
Proof. Using X(¢) of (1.3) we set

Po(E) = 1=X(<ED)

(1.16) Ve(t, &) = 1—=X(En(t, E)HED) .

Then, setting

alt, 5, % §) = DVl 5 % )

and
b(t, 3, £) = 2370, (t, E)Bult, %, E)

for appropriate 1=€,>¢€,>:+->¢€,>---—0, we get i) and ii) by usual method.

Proposition 1.6. Let a(t, s, x, £)S €[m,, m,, my] and b(t, s, x, E)E S[mi, m},
mf) and define aob(t, s, x, &) by

(1.17) aob(t, s, %, £)
= Os— S e Ea(t, s, x, E+Eb(, 5, x+y, E)dE'dy .
Then, we have
(1.18) aob(t, s, x, &) € S[m,+mi, my~+m3, ms+mi]
and for A=a(t, s, X, D,), B=b(t, s, X, D,) we have
AB = acb(t, s, X, D,) .
Moreover, we have

(1.19) aob(ii‘, s, %, E)~ ) i'a“”)(t, 8, %, EYow (2, s, %, E) mod B; (S77).
@ a.

Proof. If we note Remark 1° of Definition 1.1, the proof is clear.

Corollary 1.7. Let a(t,x,&)ES[m,, m;) and b(t, x, )€ H". Then, both
aob(t, x, £) and boa(t, x, £) belong to Hm+m "z,

When A(t) is an m X m matrix of pseudo-differential operators with symbols
in S[m,, my], we also write o(A(t)) ES[m,, m;). We denfie |o(A(t))| by

IO-(A(t)) | = lgg’n |aj,k(t’ X, g) | ’
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where a; 4(t, x, ) is the (j, k)-element of o(A(2))(x, £).

Lemma 1.8. Let o(NV(t))(», &)= S[—v, —v(l4+1)] v=1,2, -+, be mXm
matrices. Then, there exists N(t) such that o(N(t))(x, )€ S[0, 0] and

(1.20) N@)~I+NO)+NO(t)+--- mod S{°.
Moreover, N(t) has a parametrix N(t)} such that o(N(t)*)(x, £) € S[0, 0] and
a(N@)N@E—I), o(NQEPNE)—I)EB(S™™).
Proof. Let 7,(t, £) be the symbol defined by (1.16). 'Then, by Proposition
1.5-i1) we see that

a(N@)x, £) = I+ Z:} Yo, E)(N(B))(#, £)

belongs to S[0, 0] for appropriate 1=¢&,>-+->&,>+--—0 and (1.20) holds. Fur-
thermore, noting

| Divé)(2, &) SC; abin(2, &) FEXEN ™" "n(2, €)™

and 7(¢, £)""KE>a(NM(8))(x, E) e S[—(v—1), —(v—1)(I4-1)] < S[0, 0], »=1, 2, -++,
we get |det o(V(2))(x, )| =c for a constant ¢>0, if we choose small &,>0.
Noting Remark 1° of Definition 1.1, the parametrix N(¢)* of N(¢) can be con-
structed by usual procedure.

According to Kumano-go [5] we call a real valued C”-function ¢(x, £) in
R X R} a phase function, when it satisfies conditions:

i) é(x &)—x-EES
i) | V.p(x, E)—E| =(1—&)|E]+c
iii) |V.Vep(x, §)—I|=1-&
(0<&=1, 0<&=1, ¢>0).

(1.21)

Then the Fourier integral operator As=a¢(X, D,) with phase function ¢(x, &)
and symbol a(x, £)€.S™ is defined by.

(1.22) Aw(x) = Os— Sg e"(‘b("’é)_"'f)a(x, E)u(X')dijdx’(uE_@(RZ)) .
Concerning fundamental theorems on Fourier integral operators, we refer to §2

of [5].
Let A(2, x, £)€S[1, I] be real valued. Consider the Hamilton equation

dt dp
— = — VL, g, y 57 = VaAMD g, Oéy téT;
123) 1dg~ " VMb®P) G =VMbp)  on 0= 0

g, p}i-s = {1, &1
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and the eiconal equation

(1.24) { 0ip—A(t, %, Vup) =0  on 0s, t=T,,

(s, 5, %, &) = x-&

for a small T, (0<T,=<T). Then, we can prove the following statements by the
same procedure to §3 in [5].

Lemma 1.9. For a small T,(0<T,<T) the initial value problem (1.23)
has the solution {q, p} (t,s,, &) on 0=s, t<T, such that

(1.25) { q, s, 3, &)—yES[0, 14+1,0] (0=s=t=<T)),
o, s, v, EN)—E'ES[1,14+1,0] (0=s=t=T))

and

(1.25) { q(t, s, 9, EN)—yES[0,0, I4+1] (0=t=s=T)),
Bt 59, E)—E'ES[1, 0, 1+1]  (0<t=s<T;).

Lemma 1.10. Let T,(0<T,=T)) and &, (0<&,=1) be constants such that
|9g/dy—I|=(1—¢&) 0=s, t=T,

Then, for the mapping x=q(t, s, y, ): RyDy—>xER; with (t,s,E) as parameters,
there exists the inverse y=y(t, s, x, §) such that
y(t; S, X, E)_xES[O) l+1’ 0] Oé
(1.26) y(, s, x, £)—x<S[0, 0, I41] 0=t
|0y[ox—I| =(1—&)/é; .
Theorem 1.11. There exists T, (0<T,=T) such that the initial value pro-
blem (1.24) has the unique solution ¢(t, s)=o(t, s, x, &) on 0=s, t =T, which satisfies
(1.21) and
o(t, s, x, E)—x-E€S[1, I+1, 0] 0=s=t=T,),

(1.27) { o, s, x, E)—x-£€S[1,0,14+1]  (0=t=s=T,).
Corollary 1.12. For a C*-function f(t, x, £) on [0, To] X R7 X R set

f(t’ s, ¥, £) = f(¢, q(t, s, ¥, £),%).

Then, we have

(1.28) D.f(t, s, v, &)
= {th(t; X, E)_lmlglxw)(t’ X, de)(t» §, X, E))f(ﬁ)(t’ X, g)}x=q(l 5,9,8) ¢

The following lemma is important in the proof of Theorem 4.2 in §4.
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Lemma 1.13. Let a(t, s, x, £)E S[my, my, my] and 1(t, s, %, E) € f’jo S[m{—v,
mi—v(l+1), mi]. Set As=ay(t,s, X, D,) with ¢(t, s, x, &) of Theorem 1.11 and
R=r(t,s,X,D,). Then both R,= A4R and R,=RA, are pseudo-differential
operators with symbols
(1.29) ri(t, s, %, E)E ﬁo S[my+mi—v, my+-mj—v(I+1), my-+mj]

(j = 1’ 2) ’

where

(130) 7t s, % E') = Os— s g a(t, s, %, Eyr(t, s, o'y E)dEdx’
with

?1= (2, 5, %, E)—x-E+-(x—x")-(E-E)

and

(131) 7t s, %, E') = Os— SS Eoun(t, s, %, E)a(t, s, x', £)dEdx’
with

Py = (x—a') (E—E)F (8, 5, o', E)—a'E".

Moreover, we have

(1.32) n(t, s, % E)~3 6%a@”(z, 5, % Ey(t, 5 %, &) mod B, (S°7)
and '

(1.33) ity 5, % )3 L1t 5, %, Bt 5 %, F)  mod B, (S7),
where v

(1.34) at, s, x, £) = &@tan"=bg(t s, x, ).

Proof. It is clear that 7, and 7, are defined by (1.30) and (1.31), respec-
tively. By Theorem 1.11 we have

(1.35) | DiDia(t, s, x, &)
SCjpas<E™MT M (n(t, E)TIKED) HEITITi(1, EYmaTin(s, E)mTE.

On the other hand by the assumption for 7(¢, s, x, &) we have
(1.36)  =((t, &)KED)1(2, s, x, E)E ﬁoS[m{——v, ms—v(l+1), m§] for any .

Then, from (1.35) and (1.36) we see that
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(1.37) aex, s, x, Eyw(t, s, x, )
Efjo S[my+mi—v— ||, my+mi—v(l+1), my+mj] .
Now we write
n(t, o3 8)= 05— ([ ea(t, s, 5, €80, 5, 40, E)aE dy
Then, by Taylor’s expansion
at, s, x, E'+&") = >3 E,—md(‘”)(t, s, %, £")

o< !

YN D % [ a—oyvae, s, x, &-+oe7)a0,
: 0

16=5
we have
N — i 7 (%) ’ r
(138) Tl(t, S, X, & ) = IENa! a (t, s, x, & )r(w)(t, s, X, £ )
1 1
+8 2 L 10y s, 5, %, 800,
18=x ¢! Jo
where
(1.39) hao(t, s, %, E)

= Os— SS e @t 5, x, E'+OE w8, 5, x4+, E') dE"dy
= 05— ([ e e Tae, s, v, £+ 087)

X <D r(t, %, s+y, E')dE"dy

for any even integer #=0. Then, noting

{ E'+HOE" > S2KEHEDH,
(e, E'+HE7)TS27CE D (e, £

and using (1.35) we see from the assumption for r(z, s, x, &) that
{hw,o(t: s, %, £)} |8l=N 0<0s1 is bounded in

N Stmit-mi—N—v, myt-mi—v(i4-1), myt-mi] .

Hence, from (1.38), (1.39) we get (1.29) for j=1 and (1.32). By the same
method we get the statement for 7,(¢, s, , £).

2. Diagonalization. In this section we consider a hyperbolic mXm
system
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@2.1) L,= D—A(t)—Aft) on [0, T]

of pseudo-differential operators of first order, where

D,
D[ = {0 KN O:l
D,

a(A®)x, E)ES[1, 1], o(AB)(x, £)ES[0, —1]

for an integer />0. We assume the eigenvalues \(Z, x, £), **-, A,,(¢, %, &) of
a(A,(t))(x, £) are all real and belong to S[1,7]. Modifying the notion ‘prefectly
diagonalizable’ in Kumano-go [6] we introduce the following notion.

and

DeriniTION 2.1. 1) For n(#)=7(¢, £) defined in (1.4) the operator L, is said
to be 7(t)-diagonalizable, when there exists IVy(¢) such that o(N,(¢))€.S[0, 0] and
|det o(INV(2)) | =c on [0, TTX R; X R; for a constant ¢>0, and we can write

2.2) LN()=NHL  mod B(S™)
for some L of the form
23) L—=D—9t)+B# on[0,1],
where
2.4) D) B) = [Mlt % )

[ 0 a3, E)J

and o(B(t))(x, £)=.S[0, —1].

ii) 'The operator L, is said to be »(f)-perfectly diagonalizable, when there
exists N(t) such that o(N(z))€S[0, 0] and |det o(N(2))| >c¢ on [0, T]X R:X R}
for a constant ¢ >0, and we can write

(2.5) LN(t)=N(t)L, mod B(S™~)

for some L, of the form

(2.6) L,=D—9t)+F®)+RE on [0, T],
where o(F(#)) is a diagonal matrix of the form

o (F(t)) = { fits % 8) g ]ES[O, —1]

2.7 .
&7 O f.t, % 8)

and o(R(2))E .
Ny(t), N(t) are called the diagonalizer, the perfect diagonalizer for L, respec-
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tively.

Theorem 2.2. For L of (2.3), assume that there exists a constant c,>>0
such that
(2.8) [Nty %, E)—=Nat, %, E) | Zen(t)<E>  (j#k).
Then, L is n(t)-perfectly diagonalizable.

Proof. According to Kumano-go [6] we find the perfect diagonalizer N(z)
such that
2.9) { NE)~I4-NO@)+NO(t)+ - mod 4°

aN(@)eS[—r, —v(i+1)] (@=12,-),
(2.10) (D—D(t)+B(t))N(t)=N(2)(D:— D(@)+ F(2)+ R(2))

mod B(S™™),

and
2.11) { F(ty~FOt)+FO({)+-  mod J"
A FOENES[—v, —v(i+1)—1] (@ =0,1,-).
Let b; 4(k) bet the (j, k)-elements of o(B(t)), and set
F® = diag [B]
a(N®) = (nf) by
(2.12), bifl(Nj—M)  (j*F)

1
) =

0 (j=F)
B® = (D,— 9+ B)(I+ N®)—(I+N®)D,— D+ F®),

where by diag [ B] we denote a diagonal matrix with the same diagonal with B’s.
Then, we have

B® = B—[9, NV|—FO4 N{{ BNO_— NOF® |
where [D, NO] = ONO—NOD and o(N{P) = D,c(ND).

Since o(B—[9, NV]—F®) & S[—1, —1], we have
o(F®)eS[0, —1],
(2.13), o(N®YES[—1, —(4-1)],
o(BV)ES[—1, —(I4+1)—1].

Now, we assume that F®), N¢D BED =0, 1, ---, v—1 (v21) are deter-
mined as

o(F®)eS[—p, —p(+1)—1],
(2.13) (VD)@ S[—(u+1), —(u+1)(I4+1)],
o(BD)E S| —(ut1), —(a+1)(+1)—1],
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and define F™, NO*O B+ by
F® = diag [B™],
(NO*) = (n$3) by

oyn — | BHOG—M) - (GR)
(2.12), . ' v ?1 (i=H)
B = (D,— 9D+ B)(I+ :‘-_"'1 N®)

V41 v
—(I+ L NO)(D— D+ 3 F®),

po= =
where b} are the (j, k)-elements of o(B™).

Then, we have
B — (BM—[Q), N¥*D]— FM) 4 N{+D
+ BN _ SYNGFO_NOH ST )
u=1 ®=0

and by the definition of F® and NV we have
o(BO—[D, NI F®)eS[—(+1), —s(1+1)—1].

Hence we get (2.13), for p=wv, and by induction, for any p=0, 1, ---.
Now, by Proposition 1.5-ii) there exist N(f) and F(t) such that (2.9) and
(2.11) hold. We set

R= LN—N(D,—9+F).
Then, we have o(R)E4". Let N*be a parametrix of N which exists by Lemma
1.8, and set R=N*R. Then o(R)E %" and
o(LN(t)—N(t)(D— D+ F(t)+ R(1)) €B(S™) .

Corollary 2.3. Let L, be 7(t)-diagonalizable. Assume that the eigenvalues
M(E, %, E), oo, Am(, %, E) of o(Ay(2)) satisfy (2.8). Then Ly is perfectly diagonaliza-
ble.

3. Construction of fundamental solution. The first order single
operator case. Let L be a single hyperbolic operator of the form

(3.1)  L=D,—\t X, D)+f(t,X,D;) on[0,T] (0<T=I),

where

(3.2) { A, x, E)ES[1, 1] real valued,

1@, x, £)S[0, —1].
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Consider the Cauchy problem

{ Lu = ¢(2) on [s, T,]
ulieg=v  (0SssTy)

for a small T (0<T,=T).
Theorem 3.1. Set
34 M=1m sup {tImf(t,x, E)}.

Rooc x,#EZR
0<t<R!

(3.3)

Then, there exists uniquely a symbol e(t, s, x, £) in the class (] S[0, M+&, —M—¢]
0<E<
om 0=s=<t=T, (with T, of Theorem 1.11) such that the Fourier integral operator

Ey(t, s)=es(t,s, X, D,) with phase function $(t,s,x, &) given by Theorem 1.11 is
the fundamental solution of the Cauchy problem(3.1) for L, i.e.,

(3.5) { LEyt,s)=0 on 0=s=<t=T,,

Ey(s,s)=1 (identity operator) .

RemMARK. Since (4<ED7*)(1—1/(#KE>+1)=(t+<E>")— <&
<n(t, &) <t+4-<E>7%, and <E)>""=<t/R when t{E)>* =R, we have

(3.4) M—fim sup (6™ Smfit, 0 6,

64y M= im S b0 ) I flt, 0 £
0<t<R1

Proof. The uniqueness will be proved after Theorem 3.2. Solving trans-
port equations we first construct an approximate fundamental solution Ey(z, s)

in the sence )
36 { LEyt,s)=0 mod B, ,(S™) on 0=s=<t=<T,,
) Eys,9)=1.

We assume that the symbol &(2, s, x, £) of Ey(t, 5) has the form:

(3.7) &, s, %, g)N;‘; eft,s, %, &) mod B, (S

and

(3.8) eft, s %, E)E [) S[—v, M+& —M—¢]  (#=0,1,2,-+).
Set

(3.9) 8t 5,3, B) = —i 3301, 5, Vbt 5 3, )

X 03¢(t, s, %, E)+1(t, s, x, V.9(t, 5, %, £))
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and consider

(3‘10) L= D‘—INE 7\‘<u)(t) X, de))D:"{'g(ta S5 X, E) .

=1

Then, by the usual expansion formula of Fourier integral operators (See [5]), we
have by using (1.24)

(3.11) o(Les o(t, )%, ) = Loy g1ty 5, %, E) .

Here

(3.12) n(t, 5, 3 o= 3 T DA 3, V(e 5, 5, ', )
Xeyft, s, ®', E)}v=  mod B, (S77)

and

(3.13) V.02, 5, % &, E) = S: Vab(t, 5, '+ 0(x—x"), £)IO .

Then, from (1.27), (3.2) and (3.8) we see that
(3.14) r(t, s, x, E)Eo N S[—v, M+&—1, —M—¢] (»=0,1, -+-).
<<t :

Hence, if we can determine e,(Z, 5) as the solution of

Le,=0 on 0=s=<t=<T,,
(3.15)
efs, 5) =1
and
(3.16) { Le,+r,., =0 on 0=s=t<T,,
eys,5)=0 (v=1,2, ),
then we have
N
a(L z_“,)e,,,d,(t, s, X, D,))
N
= 2 (-Eev+7v)

v

]
o

N

= -Eeo'!‘ \gl (-Cev+rv—l)+rN

—rve [} S[—N, M4+&e—1, —M—g].
o<e<t

Thus, if we determine &(t,s, x, £) so that (3.7) holds and e(s, s)=1, then
we get (3.6).

Now, we solve (3.15) and (3.16) in what follows. Let ¢(2,5,7,€) be the
solution of (1.23) given by Lemma 1.9. Then, by Corollary 1.12 the equations
(3.15) and (3.16) are reduced, respectively, to
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D@yt,s,9,5)+8(t,5,3,8)ét,5,9,6) =0,
(3.18) N
eo(J,S,y,f) - ]
and
Dté‘v(t’S,y; E)
(319) +E(t,syy,E)é-«(t»s,y»f)—l—?’u-l(t,s,y, E) =0,
e,(5,5v,E) =0 (r=12,-),
where

é‘v(t)s’yﬂf) = eV(t’s’(.I([757y’f)’ ‘E) ’
(3.20) 8(t,5,9,8) = g(t,5,4(t,59,£), £)

7,(t,5,9,8) = r.(2,5,9(,5,9,8), &) .
Hence we have

(3.21) éo(f,s,y,’é) = exp [~ Si g(a,s,y,g)dd]
and

éy(,5,9,8)
(3.22)

t t
— S 7or(os,9, E)exp[—i S 2o",5,3,E)do"do .

Consequently, setting

(3 93) { Z;(t,o-,s,x,f) = g(G,S,Q(G,S,_V(i,S, xrg)) E), E)
7(t,0,5,%,E) = r(c,5,9(c,5,)(1,5,%,E), ), £)

for the inverse y=y(t,s, %, &) of x=q(t,s,y,&) given by Lemma 1.10, we have
t

(3.24) et s, %, E) = exp[—iS Bt 0,5, E)do]

and ’

ev(t’sa x,E)
(3.25)

t_ t
_ —iS Forlt, o5, %, E)exp[~—is 5,05, %, E)dodo .
Now, we first note that from Remark of Theorem 3.1 we have

(<) (1-1/@EX"+1))
=n(t,§)=t+<E7".
By the definition (3.4)" of M there exists for any €>0 a constant C, such that

Im f(t,s,8)
S(MA-€)2) (t4-<ED™)+ Ce {14HE>7(14-<E>7) .

Then, using (3.9), (3.23), (3.26), (3.27) and Theorem 1.11, we have

(3.26)
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ﬁe(“’z(t, g,8,X%, E))
S (M+8)(o+<E)+CHIH<E " (o +<E7)}
for another constant C{. On the other hand, by (1.5)
(3.29)  log((tH<E>)(s+<E>~) log(n(t,E)/(n(s, £)+log 2.
Hence, using
[ <@ o+ ydo=t
and (3.28), we have

(3.30) lexp[—7 S:;(t,a,s, x,E)da]| SCi/(n(t,E)[n(s, E))M*®

for a constant C!’. We have
| DiD:D} 03DEg(t, o, 5, %, £) |
<C; i 4w p<ET (L, E) (o, E) 7 Fu(s, E) T
Then, noting
[[ 700,82 2 1081 (5>
=C.(a(t,€)[n(s,£))"
for a constant C,, we have
| DiD!3IDS S:?(t, o055, E)do |
=C. ;40,87 " (t,E) In(s,E)"H(n(t,E)/n(s, &))" -
Thus, together with (3.30) we see that
(3.32) ety )€ [) S10,M+-6,—M—é].

(3.31)

We already checked (3.14) for 7, if (3.8) holds for e,. Hence, if we prove
(3.8) for e, assuming (3.14) for »—1, then (3.8) holds for any ». And this fact
is clear by (3.25).

Now, from (3.17) we see that there exists 7.(Z,s,%,E) €3, (S ) such that

(3.33) Léy(t,s,X,D,) = R.(t,s) (= r.(t,5,X,D,)) .
Then, setting
Wy(t,s) = —iR.(1,s),

(3'34) Wv+1(t;5) = St Wl(t,H)W,(e,s)de (V =12 )’
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we get the fundamental solution E(%,s) in the form
t -
(3.35) E(t,5) = o(Bt,5)+ S By(1,0) 3 W(8,5)d0 .
s v=1

From the theory of pseudo-differential operators of multiple symbols, there
exists a symbol &.(t,s,%,E)E B, (S™) such that
E(t,s) = é4(t,5,X,D,)+€. 4(t,5,X,D,)
(cf. [5], [12]). Then, setting
e(t,s,x,E) = é(t,s,%,E)+€(t,s,%,8),
we get the desired result.

Theorem 3.2. The fundamental solution Eu(t,s) 0=s=t=1T,) given in
Theorem 3.1 has the meaning even when 0=t<s=T,, and Ey(t,5) 0=t=s=T,) is
the fundamental solution of the backward initial value problem for L, i.e.,

(3.36) { LE4(t,s) =0 on 0=<t=<s<T,,

Ey(s,s)=1.
Furthermore, we have
(3.37) e(t,s,x, £)€0<[;]<1S[0, —M'—& M'+€] (0=t=s=T,),
where M’ is defined by
(3.38) lim sup {—tImf(t,x,E)} .

R x,t(£Y92R
0<t<R™!

Proof. We check the proof of Theorem 3.1. We have by Lemma 1.9,
1.10 and Theorem 1.11 that

4(¢,5,9,8")—y€S[0,0, +1]
(3.39) y(t,s,%,E")—2€S[0,0, (41]
o(t,s5,%,E)—x-£E€S[1,0. 14-1]

on 0=t=<s<T, Noting (3.24) we write
et s,%,E) = exp[i gt 5, 0,5,%,E)do]
on 0=¢t<s<T, Then, from (3.9) and (3.38)
eo(t,s,x,E)GoL]QS[O, —M'—&,M'+€],

and, following the similar procedure to the proof of Theorem 3.1 by keeping
in mind the fact 0=¢t<s=<T,, we complete the proof.
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Proof of the uniquness of Ey(2,s) in Theorem 3.1. Set
L* = D,—\*(t,X,D.y+f*(t,X,D.),

where A* and f* are the formal adjoints of A and f, respectively. Then, L* is
the formal adjoint of L. Since A(Z,x,&) is real valued, we see that \*(¢,x,&)—
M2, x,E)E S0, [], and, there exists a f*(¢,x,&) € S[0, —1] such that

L* = D,—\(t,X,D,)+f*(t,X,D,).
Therefore, we can apply Theorem 3.2 to L*. Let E¥(2,5) (0=t=<s=T,) be the

fundamental solution of the backward initial value problem for L*.
Now, assume that thr there exist two fundamental solutions E(t,s) and
Ej(t,s) (0=<s<t<T, of L in () S[0,M+¢& —M—¢€]. For wES we set
<e<1
u(t,s,x) = (Eo(t,s)—E§(t,9))w (0=s=t=T,).
Then, u(t,s, x) satisfies
{ Lu(t,s,x) =0 on 0=s=:=T,,
u(s,s,x) =0.

On the other hand, for b(¢,x) € B,(S) on [0,T;] set
o(t,a) =i S; EX(t,0)b(c, x)do .
Then, we have
L*v = b(t,x) (0=t=T,), v(Tp,x) = 0.
Hence, we have

0= (", 0)do = | (v L*o)do

_ S " (u, b)do for all bE B(S) .

This means that
0 = u(t,s,x) = (E4(t,5)—Ei(t,s))w for all
weS (0=s=t=T,).

Thus we have e(t,s,x,E)=e'(¢,s,x,£) .

Corollary 3.3. i) The solution u(t,x)EB,(S) on [0,T,] of the Cauchy
problem (3.3) for p(t)€ B(S) on [0, Ty] and S exists uniquely and is represented
by

(3.40) w(tys, %) = Bolt, syt S' Eu(t,0)p(0)d0 .
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ii) We have
(3.41) Es(t,7)Eo(7,5) = Eg(2,5) (0=<s,7,t<T}).

Proof. i) Itis clear that u(t,s,x) defined by (3.40) is the solution of (3.3).
Let v(2,x)E B,(S) on [0,Ty] be the solution of (3.3) for p(#)=0 and =0,
and let Ef(¢,s) be the fundameintal solution for the formal adjoint L* of L.
Set

wltys) = i S; EX(t,0)0(6,%)d0 .
Then, we have

L*w =9 on [0,T,), w(Te,x)=0.

Hence we have
Ty To T
[* 0,0pae = [ (0, L*w)dt = [* wo,mpe =0,
0 0 0
and v(¢,#)=0on [0,T,]. This proves the uniqueness of the solution of (3.3).
i) Set u(t,7,x)=Es(t,7)E4(7,s)yr for yES. Then, u satisfies
{ Lu=0 on[0,T,],
w(t,7,x) = Eg(7,5)Y .

On the other hand #(¢,x)=E4(t,s)y also satisfies (3.42). Hence, by i) we have
u=1 on [0, T,] which proves (3.41).

(3.42)

Corollary 3.4. For the operator L, of (2.6) let L, be the operator of the
form

(3.43) L, = D,— 9(t)+F(t).

Let E; 4,(t,5), (0=s,t<T,) be the fundamental solution for L;=D,—;(t,X,D,)+
fi(t,X,D,). Then, the fundamental solution E,(t,s)(0=s,t=T,) of the Cauchy
problem

(3.44) { L, U = @(t) on[0,T],

U I t=s — R4 (Oé.fé TO)
exists uniquely in the form
E1’¢1(f, S) 0 }

(3.45) Ey(t,s) =[ .
0 Eye(ts)

4. Construction of fundamental solution. The first order system
case. In the first place we prove the fundamental lemma.
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Lemma 4.1. Let L, be the operator of the form (2.6). Then, the funda-
mental solution E\(t,s) of the Cauchy problem

1) { LU =®(t) onl[s, T,

Ulpey = ¥ (0Ss<T)
exists in the form
4.2) E\(t,s) = Eyt,s) (I+Q,(ts))+R-(t,),

where Ey(t,s) is the fundamental solution for L, in Corollary 3.4, and Q(1,s), Q.(t,s)
satisfy
43) { Q(s,s) = 0, o(Q(2,9)) (», £)=S][0,0,0],

. Q.(s5,5) = 0, o(Qu(2,9)) (%, E)E-CBI,S(S-OO) ’

O=s=t

A

Ty).
Proof. If we find @ such that E(t,s)= Et,s)(I+Q(t,s)) satisfies
(4.4) o(L,E) = o(RE,+ REQ+ E,DQ)E B, (S7),

then E‘l(t,s) is an approximate fundamental solution for L,. Hence by the
usual procedure, which also used in the proof of Theorem 3.1, we can find
E\(t,s) in the form (4.2).

Set

(4.5) R(t,s) = Eys,t)R()E(t) with R(t) of (2.6).
Then, we see that (4.4) is equivalent to

(4.6) (DAL, 5)+ R(t,9)Q(t,5)+ B(t,9) € B, (S
(0=s<t<T).

We find such Q(z.5)=gq(t,s,X, D,) in the form

4.7) { 'lv(f’S)fSl—v,O,O] (0<s<t<T,),
qv(s)s) =0

and

(+8) a(t,)~au(t,)+a,(t,5)++ mod B, (S™).

We first note that from Theorem 3.1, 3.2 and Corollary 3.4

0-( EZ( ’ ))( ) 0<e<1 = _t_: 0/ >
0‘( 2( ))( ’E) [g 1 t z ’
E “’ o<e< (“<s<_. <__.— 0)
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where
M—-gaé}’(”{M} M —max{M},
(4.10) M; = lim sup. {tJmf,(t %,£)},

R—oo x t(f)“’
0<t<R

Mj= lim Hfgp {tImfi(t,%,6)} .
StSR

Hence, setting #(z,s,%,£)=a(R(t,5)) (x,&), we have by Lemma 1.13

@11)  #t,5,5,8)
e (1 (| S[le—j, M+M'+E—j(I4+1), —M—M'—¢&].

0<egl v>1

Then, noting

(n(2,E)[n(s, £))" = (n(2,§)"<ED) " (n(s, §) <EX*) ™

=(n(z,&)"KED)™,
we see that
(4.12) r(t,s,x,E)E Q;S[m—j’ —j(+1),0].
If we assume (4.7), we can write for @,(¢,5)=a.(t,s,X,D,)
(4.13) U(DtQ¢+I§Qv) = Dyg,+7rq,+r, (v= 0,1, "') ’
where
(4.14) ry(t,s,%,E)eS[o—v—1,0,0].

Now, using (4.13) we define g, by

{ Dg,+re,+r, ,=0 (r,= r),

(4.15) a.(5,5) =0 (»=0,1,-)

inductively. Then, if we check (4.7) for q,, we get q(,s,x,&) by (4.8).

The solution of (4.15) can be written in the form
t
(4.16) as(t,5) = —i{ Tuoi(s09)ds
o t S Spu-1
+3 i af o [ 79
b= s $2 s

oo T (Suo 1y )Ty 1Sy S) o
By (4.12) we have

(4.17) [7(2,5)| = C<EX(#<EX"+-1)2

and get

279
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(4.18) S' |#(o,9)ldo = || CE(o<®"+1) o
= —[C/(a<E>"+1)];
= C(t—9)[(t+<E>7°) .
Set
(419) IF-(t) s,x,E)
= [ a0 "o [ 1R 9) 1 1709 50
and assume

CH(t—s)"
I“ VI é_——_._ M
N S

Then, we have
tCKEY” C*o—s)"
IF-+1 19V = da'
e Wi s
_ Cre™ S' (e—9)" 4o
w! s (o4 <E>TY)
and setting 2=(o—s)/(c+<E>"*) we have

P (e—9) . ooy (ENEHD)
) e =6+ ®™), #ds

_ (t—s Bt+1 .
(m+1) (s4<E>77) (1467
So we have
Cu+1(t__s)u+1
II‘-+1 IOy Ay é - *
o n D= i e
With (4.19) we have
CH(t—9)" —
4.20 L(t,s,2,8)=——— 2 — =12,-).
20 Bomd= ey “ M
Thus, from (4.16) for =0 we have
. Sy CHE—s)®
4.21 (b9l = 20 ———<—o
20 = B ey
< ex gﬁi

=P [t+ <§>"°]_1‘

Differentiate the both sides of (4.16) and estimate similarly. Then, we see
that

(4.22) ay(t,s, x,£) € S[0,0,0], gu(s,5) = 0 .
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Now, assume that (4.7) holds for some »=0. Then, by (4.14)
(4.23) [ Into9)ldo=ce—siem.
Hence, in (4.16) we use

0 7o) s S s =) 8
< Cl—9<E"
Then, by (4.20) we have

(4.24) |au(t,5)| < CKE ™ exp [%]

=GB,
and finally get (4.7) for all v= 0. Q.E.D.

Now, we shall state the main theorem of the present paper.

Theorem 4.2. Let L and L, be the operators cf the form (2.3) and (2.1),
respectively. Let N(t) and N (2) be the perfect diagonalizers for L and L,, respec-
tively, and let E\(t,s) be the fundamental sclution for L, of (2.6).

Then, the fundamental sulutions E(t,s) and E(t,s) for L and L, can be found
in the forms

425 E(t,s) = N(t)E\(t,s)N¥s)+R.(t,5),
(29 1 o(Ru(t,9) (E)E B, (S™7) (0=5S=T))
and
Ey(t,5) = N()E\(t,s)N¥s)+R.(5)
(+26) { o(R.(8,9) (%,E)EB, (S™7) (0=s<t=<T),

respectively, where N*¥(s) and N¥(s) are the parametrices of N (s) and N (s), respec-
tively.

Furthermore, both E(t,s) and E(t,s) are represented as the sums of Fourier
integral operators with phase functions ¢;(t,s), j=1,--,m and symbols of class
(4.27) (1 S[0, M+¢, —M—&].

o<e<

Proof. It is easy to see that
N(t)E\(t,s)N¥s)+(I—N(s)N*¥s))

is an approximate fundamental solution for L. Then, noting o(I—N(s)N¥(s))
€3,(S™) and solving the integral equation as in (3.35) we get (4.25). Since by
Lemma 4.1, E\(t,s) is the sum of Fourier integral operators with phase func-
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tions ¢,(2,s) and symbols of class stated in (4.27), the rest of the proof for L is
clear. Similarly we get for L,.

Theorem 4.3. The Cauchy problem

(4.28) { LU =0 on[s, Ty
Ul-,=Y€H,, 0=s=T))
and
(4.29) { L,U =0 on[s, Ty}
Ulee = YEH,, (0=ssT))

have the unique solutions U(t,s) and U(t,s) in the form
(4.30) U(t,s) = E(t,s)¥, Uyt,s) = Eyt,s)¥,

respectively, where H, is the usual Sobolev space for real o. Furthermore, for any
&€>0 we have

(4.31) Y21 Ulloy 11V a4 Uille = Cl ¥l O=s=t=T)
and
(4’32) IIUIIO‘—(M+e)w7 HVUOHG‘—(M+2)0)~§ C:”\Ij”a‘ (0§5§t§ To)

where V=" m+(,5,X,D,) is defined by
7M+e(t’ $, X, g) = (n(s’ E)/'ﬂ(t, E))M'F! .

ReEMARK. From (4.32) we see that Mw denotes the supremum of re-
gularity loss of the solution. It should be noted that in Kumano-go [7] the
constant M is determind as a sufficiently large number depending on L, and
that constants C, and C{ are independent of ¢ and s for 0=s=¢=T,.

Proof. Since vy..E(t,s) is the sum of Fourier integral operators with
symbols of class S[0,0,0], we have (4.31) for 0=s=<t<T, andU(¢,s). Since

Va4 Ulle= 27X n(s, D)™ Ul
227" Ullo- o0 »

we get (4.32) for 0=s=<t=T,and U(t,s). The rest of the proof is done similarly.

S. The higher order case. In this section we consider a single higher
order operator of the following type:
L=DI+3a(t, X, D)DI,
: =) |
(5.1) at,x%,E) = D3 n()* DDk, (2,5, )
a; ;(t,x,£)€S[k—},0] on [0,T]XR;X R},
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and consider the Cauchy problem

[ Lu=o(2) on [s, Ty],

G2 | Datlis=4; (=0, -+, m—1).
Set

(5.3) P(\) = A"Fay A" - +ay,

and

(5.4) G(\) = a; A" Hay APy,

Theorem 5.1. Let the roots p,(t,x,&), -, pu(t, x, E) of P(\)=0 be real
valued and satisfy (0.3) for a constant ¢>0.

Then, the equation Lu=q can be reduced to a system LU=*(0, -+, 0, @), where
L has the form (2.3) with (¢, x, £)=n(t) (¢, x, &), j=1, +--,m. The constant M
of (4.10) s given by

(5.5) M= max lm sup  {Ji(t, % E}+Lm—1)
0<t<R™
where

Titt, %, &) = 27 Gl =m0t lm) P (w)2|
P (”‘k)
P = 6)‘P and P’ = 6£P,

ReEMARK. It is easily verified that the differential operator of the form (0.11)
satisfies (5.1).

Proof. I (Reduction to first order system). Let

5.6 H(t)= [h(t, D))" ™
(3 n(t, D,y ©

0 * 1 ,
where h(t, £) is the symbol defined in Lemma 1.4, and set

5.7 U=H@{t)[ u
(5.7) iy
D7 'u
Then, Lu=g is reduced to a first order system L,U=®, where
LO = Dt_A(t) Y
a(A(?)) = [(m—1D)hh™Y, h
T m—2pp, n 0

(5.8) 0 ' .

hEY, b
—aht " —a, WM, e, —ahTY, —ay
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and ®=/(0, 0, ---, 0, @) .
By Lemma 1.2, 1.4, Proposition 1.6 and its Corollary we have o(A(t))E

S[1, 1].
IT (Principal and sub-principal part). We set
o(Ay(2) = 0, . k. .
0, " h
_nlam,o<g>l—m’ '—nlam—l,0<g>2—m, "ty ”—771111,0
and
1 .
Ay?)) = — [—i(m—1)]
) =D 0

_am'1<§>l—m’ —am—l,l<g>2 SO —ax

Then, we have

(A D) ESIL, 1]
(5.9) a(Aq(2)) € S[0, —1]

a(A(t)—A,(t)—A()eS[—1, —(I4+-1)—1].
This follows from

akhl_k—ﬂ’ak,o<f>l_k—ﬂ—lak,1<f>l_k

= ﬁz k= DUDhg, pioke S[—1, —(I+1)—1]

and
—(m—j)hh ' —i(m—j)In e 4" .

III (Diagonalizer). The diagonalizer Ny(t) of L, is given by

(5'10) O'(No(t)): 1 y "% 1
/-"l/<‘f> y % I-"m/<£>

......

(af <EDY"2 5 ooy (o [<EDY™
To prove this it is enough to show that
(5.11) the (j, k)-element of (Vo) o(A,)a(Ny) = 8; 7’1,
where 3; ;=1 if j=k, =0 if j==k. And, this follows from

the (j, k)-element of o(A,)o(N,) = 7' (s /<ED) ™!
for j=1, -, m—1,
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the (m, k)-element of o(A,)a(Ny)
- _77’<E>1""{a,,._o+am—1,ol‘k+"'-i-al'o,u,;,?'“}
= 7' EDY™ !

and
g gi S1n[<ED)' ™1 = 8; 4,

where g; , is the (j, v)-element of o(N;)™".
IV (Computation of M). We have
the (j, k)-element of na(Ag)a(Ny) = —i(m—7)l(ps/<ED) ™

for j=1,+-,m—1
and
the (m, k)-element of 7o (Ag)a (V) = —G(pe)<EX'™.

We define polynomials Q;(\) of A(j=1, *+-, m) by

(5.12) 0,00 = 2 gV
Then we have

Q;(Mk) = ai,k .

Thus we have
0,00 = I (v =)= )
and
0,0u() = 5 P (a)/P ().
Since ¢; ,=<E>""'/P'(4), we have
(5.13) the (k, k)-element of 7o(NVy) "o Ag)o (Vo)
= —i 5 s}~ G w )™

= —ilm él @ (s [<ED)' -1l f’é}l e (1 [<ED)' !

—G(1)[P'(124)
== —alm4-1{0(AOs(N))}a=,— G ()P’ (12)

= —illm—1)—(G(ue)— - lsP" )/ P (1)
We also have

(5.14) the (k, k)-element of o(V) "o (IV; ;)
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= e el — Vi K
= Ibk,raagk(llfk)
= — L P ()P ().

V (End of the proof of Theorem 5.1). If we set
(5.15) L = D,—N}!AN+N;{N, .,
then we have
N,L = LN, mod B,(S™).
By (5.9) and (5.11) we have
L=D—9+B,
where
(D) =17 [,u,l(t, %, £) 0 ]
O putt,2,8)
and o(B)ES[0, —1]. We set
ety %, £)
= the (k, k)-element of o(B)
— {il(m—1)+(G () — %(natﬂ’k—}_lﬂ‘k)P”(”‘k))/P (LR
Since
a(N§AN)— (Vo) ‘(Ao (Vo) €S[0, 0],
a(N§ANo)—a(Ny) 'a(Ag)a(No) ES[—1, —1]

and
(NN ) —o(Ny) lo (N, ) ES[—1, —1],

we have by (5.13) and (5.14)
lim sup {n(¢, &E)eu(t, %, E)} = 0.

Rooo x,t{§)O2R
0<¢t<R™1

Thus the M of (4.10) is given by (5.5).
Theorem 5.2. Let L satisfy the condition of Theorem 5.1.  Then the solution

u of the Cauchy problem (5.2) with p(t)=B(S) and ;€S j=0, 1, «--,m—1,
extsts uniquely in [s, T,] and it is given by

(5.16) u(t, ) = S BV, 5, X, Do,
t

+i{ B¥(t, 00 X, DIplodo,
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where E5*? is the (1, j)-element of the fundamental solution E, of the operator
(5.17) D—r 0, 1
0

0
0, 1

—Qpy — Ay, — g —a4p"

The regularity loss caused by Ei* in the sense of Remark to Theorem 4.3 is
equalt to

(5.18) my = o(M—I(m—1)—k+1).
Proof. An approximate fundamental solution of (5.17) is given by
(5.19) E, = H({t)N,()E(t, s)Ni(s)H¥(s)
+(I—H(s)Ny(s)Ni(s)HY(s)) ,

where E(t,s) is the fundamental solution of L of (5.15). Using E, we can
construct the fundamental solution E, as in the proof of Theorem 3.1. By
(5.19) we have

(5.20) a(E3H(2, 9))(x, £)
e () S[1—k, M+e—lm—1), —M—E—l(k—m)].
0<e<
Thus, we have (5.18).
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