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Let R be a commutative ring. In [3] we defined a generalization D (B, V, @)

of quaternion algebra over R. In this note we use a notation (B’Tfp> instead
of D(B,V, @), where p=(V, ¢). The first object in this paper is to show the
following generalizations of the well known classical formulas;

CR)ex(50)~(257),

] o ) o ) [e] . .ge
(B’ z;} %) X R<B 2 l;, (p°> ~ (B*B 2 ;;*B/ q)") for a symmetric bilinear

R-module @,=(U, @,). From the formulas, it is deduced that every element in
Quat (R), the subgroup of Brauer group generated by quaternion algebras, is

expressed as [B‘]’;p‘] [BZI,Q %]---[B "}zq’"] for n<|Q4(R)|, where Q(R) is the

quadratic extension group. The second object is to investigate on a quaternion

R-algebra (B’ cp) such that (M)~R. We shall show that if (B’—¢) ~R
R R R

then @ is R-free i.e. p=<a) for some unit a in R, furthermore, if 2 is invertible

in R then (M> ~R implies (M)zcl’—b) for some unite ¢ and b in R,
R R R

i.e. R-free quaternion algebra. Finally, we give a condition for (%(B) to be

(1_3}%_?’>ng; (B};p) is isomorphic to a matrix ring R, if and only if there is a

quadratic extension B’ of R such that [B’] is identity element in Q4(R) and

{E};)DB’ DR. Particularly, if 2 is invertible in R, we have some equivalent

conditions for (B;R(R)ng, and as a corollary we have Homg(B, B)=R, for

every [B] in Qy(R). Throughout this paper, we assume that R is a commutative
ring, every ring has identity element, and every subring and extension ring of a
ring have a common identity element.
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1. Definitions and preliminary

Let B be an extension ring of R. If the residue R-bimodule B/R is in-
vertible, then B is called a quadratic extension of R. As well known, if B is
an R-algebra and quadratic extension of R then B is commutative (cf. [8]).
And, if B is a separable commutative quadratic extension, then BDR is a
Galois extension with Galois group G={I, 7}, where 7 is characterized as the
unique R-algebra automorphism of B such that B"(={beB; 7(b)=b})=R (cf.
[8]). Then every R-algebra automorphism of B is expressed as e 7+(1—e)l for
some idempotent e in R and identity map / on B, and is an involution (cf. [4]).
Therefore, we shall call the automorphism 7 the main involution of B, and
denote it by 7(b)=>b for b= B. For a separable commutative quadratic extension
BDR, we consider a hermitian left B-module @=(V, @) defined by a finitely
generated projective left B-module V' and a hermitian form @: VX V—B,
satisfied @(v, v")=@(v/, v) and @(au--bv, v")=a @(u, v')+b p(v, v’) for u, v, v’V
and @, b B. When V is an invertible left B-module, we shall call p=(V, @) a
rank one hermitian left B-module. If @;=(V;, @;), i=1,2 are hermitian left
B-modules, then the tensor product @,@@,=(V,QzV,, ¢.Q®,) is a hermitian
left B-module defined by ¢,Q@,: V.Q 5V, X V,QgV,—B; (b:Qb,, b/®b, YW
@1(by, b, )p,(b,, b,)). If p,=(U, @,) is a symmetric bilinear left R-module, then
igo@o=(BR U, igo®,) is a hermitian left B-module defined by i,@,(bQu, b’ @u’)
=b @,(u, w)b’ for b@u, ¥Q@u’ in BRQRU. A ring D is called a quaternion R-
algebra if D satisfies the following conditions;

1) D is an Azumaya R-algebra,

2) there is a subring B of D such that DD B is a quadratic extension and
BDR is a separable quadratic extension.

If D is a quaternion R-algebra and B is such a subring of D as above defini-
tion, then B is a maximal commutative subring of D and there is a rank one
non degenerate hermitian left B-module o=(V, @) such that D=B®V and the
multiplication in D is characterized by (b42) (b'~+2")=bb'+bv'+b'v-+p(v, V')

for b-+-v, b’'+o'€BDV, (cf. [3]) Then D is denoted by (%). In the Brauer

group B(R) of R, we denote by n Quat(R) the subgroup of B(R) generated by
classes of quaternion R-algebras. We define an integer Ly(R) as follows; for
any integer n, Lo(R)=<n if and only if every element of Quat (R) is expressed as
a class of a tensor product of m quaternion R-algebras for some integer m=<n.

The set O/(R) of isomorphism classes [B]’s of separable commutative
quadratic extensions B’s of R is an abelian group under the product [B,][B,]=
[B,*B,), where B,*B,=(B,® gB,)"**" for the main involution 7; of B;, i=1, 2,
The identity element of Q(R) is [R X R], (cf. [8]).
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2. Tensor product of quaternion R-algebras

In [3] we showed that a quaternion R-algebra (B}eq)) is a generalized
crossed product of B and G=G(B/R)={l, 7}. Using an idea of Hattori [2],

we have

Theorem 1. We have Brauer equivalence
B, 7’1) B, ¢z> ~ B, ¢1®¢2)
( R ®R( R ( R '
Proof. Let G={I, 7{ be the Galois group of BDR, and &, -**Xp, ¥, *** Vs
a G-Galois system of B, i.e. it satisfies D ; &;7;,=1, 2% x;7(y;)=0in B. Then
e,=2%%Q®y; and e,=>% x;Q7(y;))=2) 7(x;)®y;,=1Q1—e, are orthgonal
idempotents in (B’E%) ® R(%). It is known that

(2,2)0x (2422 (2 smor otz

=é (B®RB)31@31(B®RV2)31®31(V1®RB)31®e1(V1®RV2)e1 = el(B ®RB) S é,
(V.QrV,)=B® V1®EV2=(’L¢;Q;®&>, where g;=(V, ;) i=1, 2.

Theorem 2. Let p,=(U, @,) be a rank one non degenerate symmetric bilinear
R-module. Then we have

Bl) iBl°¢o> <B2) i82°¢0)z<Bl*Bzy iletngO(;)O) <B1’ i31°¢0®¢0>
< R ®R R = R ®R R ’

and

<Bu i31°¢’o®¢’o)g<31, (iBI°¢c)®(i31°¢o))gHomR(Bn B,)~R.
R R

Proof. From the definition of (?Lj;%) we can put <MI§LO&)=B1€B
B,®rU, (&%ﬂ)sz@BZ@) rU, and the tensor product Dz(&%fﬁ)%

@22 27) B, 1B, ®B,0xB,0UBB,RUDR B,® B0 U R B.®x

U. Since BB, is a subring of B,®gB,, D=(B18:°P0) @ (B2 15:°%s) con-
2 g 2 R R
tains D,=BI*BZ@(BI*32)®RU=(BI"‘L;BI*&L%) and D,—B,®xRD

B,QrUQrRQr U;(%jﬂ%) as subrings. Every element of B*B,=

(B,® gB,)"1*™ commutes with every element of B,QrUQ B, U, therefore
(B1#B,)® rU and B,R® rU QK xrRQ gU commute elementwise, and so are B,Q xR
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and (B*B,)®rU. Accordingly, subrings D, and D, of D commute elementwise,
and so a ring homomorphism D,® zD,—D is defined by the contraction. Using
the following lemma and the fact that D,Q gD, and D are Azumaya R-algebras,
we can check that D,®zD,—D is an isomorphism. Namely, since (B,QzR)
(B,*B,)=(B,Q £B,)"*™(B,® gB,)"1*"2=B,Q zB,, we have D,D,=D. From the
definition of hermitian module, we have iz o(®,Q®,)==(ig,°P0) R (ip,°Py),

therefore by [3], (2.10), we have <Mi(g°_.®¢°_))zHomR(B®RU, B® pU)=
Hompg(B, B)~R.
Lemma 1. Let ADB be a G-Galois extension of commutative rings. If G
is a direct product of normal subgroups G, and G,, then we have
A = AC1A4C22= A% R gA°: .

Proof. This is obtained immediately from Theorem 3.4 in [1] applying
to the contract ring homomorphism A% zA4%—A4.

Lemma 2. Let B, and B, be separable commutative quadratic extensions
such that [B,]=[B,] in O(R), and o: B,—B, an R-algebra isomorphism. If ¢,=
(Vi @,) and @,=(V,, @,) are rank one non degenerate hermitian left B,- and B,-
modules, respectively, such that there is a o-semi-linear isomorphism h: V,—V,
making the following diagram commut;

X
VXV, —— V,XV,

b b

B, —» B,

then there is an R-algebra isomorphism f: (B l}e¢1>—><B 2’R¢2>, and f induces o and
h on B, and V| respectively.

Proof. From the definitions of <l%> i=1, 2, f is immediately defined
by o and A, (cf. [5], Prop. 3).

Propsotion 1. Let (BLR%> and (Bz’—prz> be quaternion algebras such that
[B.]=[B,] in O,(R). Then thereis a quaternion R-algebra (&flj such that

<B 1’R¢2,>g<BZ’R¢2>. Therefore, we have

(&Rgzl) ®R<BZ,R¢2)~<BI’ Q)zle@%I)’ provided [B,]=[B,] in O,(R) .
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Proof. Suppose [B,]=[B,] in Q,(R). There is an R-algebra isomorphism
o: B,—B,. Then, by change of ring, there is a rank one non degenerate her-
mitian B,-module @,'=(B,® ,V,, op,) for p,=(V,, »,). From ¢ and a o-semi-
linear isomorphism k: V,—B,QzV,; vMV>1RQ9, one can construct an R-

algebra isomorphism f: <Bz}2¢2>—)<BvR¢2/> by Lemma 2. Accordingly, by

Theorem 1 we have (%ﬁ>® R<§2’T%!> =~ (B I’R‘pl> ® R<BvR‘Pz/>~ (Bv?D}z ®¢’z'>_

Let us denote by |Q,(R)| the cardinal number of the set Qy(R).

Theorem 3. We have
Lo(R)= |Q«(R)| —1.
Proof. Suppose |Q(R)|=n<oo, and Q(R)={[B,]=1, [B.], **[Ba_1]}-
By Proposition 1, every element [4] in Quat(R) is expressed as A~<§Ekﬂ) Rr
B,, ¢, By 1, P :
(%)@--@R(—%—‘) for suitable @,, @,, ++* Py_;.

3. Quaternion algebra of split type
Theorem 4. For any quaternion R-algebra (B—’RE), if (B’R#)~R then p=

(V, @) is R-free, i.e. there is a wnit ain R such that p=<a>. Then (%) is
B, a
denoted by (—R—)

Proof. Put (%f)zBEBV, @—=(V, ¢). Then VV=B in (%2), (cf. [3],

(2.1)). Suppose <%>2HomR(P, P) for a finitely generated projective and

faithful R-module P. Then, P may be regarded as a faithful left (-B%i?)-module
and also a faithful B-module. Since B is a maximal commutative subring of
(%):HomR(P, P), P becomes an invertible left B-module. From V'V

=B, we have P=VP=V®gzP. Since P is invertible as B-module, it means
that V is B-free.

From Theorem 1 and 2, we have <Bl’ia>® R<BI,26)~(B ’R ab), and(

(B;é a>g(Bl*§2’ a>®R(BII’Qa2)~(Bl*]B;,2’ a>.

A quaternion R-algebra (li’R—(p>=B @V has an involution (B}Q¢>—><B’ch>;

B,,a
R

)®x
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dWd defined by (b+v)=b—ov for b€B, vV. Then, the norm N: (BR )

—R; dMW>dd defines a non degenerate quadratic R-module (( > )
(B, N|B)L(V, N|V), (cL. [3], 2.7)).

Corollary 1. For a quaternion R-algebra (B}T‘p>, the following conditions

are equivalent:

1) Thereis a unit a contained in N(B)= {bb; b< B} such that (B—I’;E) = (§I’Q—a>

2) (li’R—?)zHomR(B, B).

Proof. 1)=2): Since <§]’2—a> is a crossed product of a cylic group G=

G(BJR) and B with the trivial factor set a€ N(B), we have (%‘_‘)= A(G, B)=
Hompg(B, B), where A(G, B) means a twisted group ring of G and B. 2)=1):
By theorem 4, ( }2¢) Homg(B, B)~R implies ¢p=<a)> for some unit a in R.

Then, <B&4> is a crossed product of G=G(B/R) and B with the factor set a,

and (BR“> Homg(B, B)=A(G, B). Therefore, a is in N(B).

Lemma 3. ([3], (2.13)). Let (BI’;p

and put g=—N |V, i.e. ¢(v)=—N(©) for vEV. Then (V, q) is hyperbolic if and
only if (Bl=1in QR). If (Bl=1in Q,(R) then (Z:2)~R.

>=B®V be a quaternion R-algebra

Proof. Suppose (V, q) is hyperbolic. Then there are totally isotropic R-
submodules V, and V, such that V=V ,pV, and V; is invertible, i=1, 2. Since
0=¢(v)=—N(v)=—2v0=2" for every vV, we have V;V;=0,:=1,2, and so
B=VV=VV,+V,V,. Puta=V,V,and a,=V,V,. Then we have B=a,+a,.
Therefore, there are e, Ea, and e,Ea, such that e¢,-}-e,=1. Since a,a,=a,a,=0,
e, and e, are orthogonal idempotents and a;,=e¢;B, i=1, 2. Applying the main
involution 7 of B, we have 7(e,B)=7(V,V,)=7(p(V,, V.))=p(V,, V)=V,V,=
e,B and B=e,BPe,B, therefore [B]=1 in Q,(R). Conversely, if [B]=1 in Q4(R),
there are orthogonal idempotents e, and e, such that B=e,BPe,B and &,=e,.
Then we have V=e,V @e,V and e,V, ¢,l are totally isotropic R-submodule of
(V, q), because of g(e,v)=e,ve,v=e,,0°=0 for every ev€e, V. If [B]=1 in
O,(R), then the Clifford algebra C(V, q) of (V, g) is similar to R and isomorphic

to <V1’e¢)’ (cf. [3], (2.8)), and so (Ek—‘p)~R.
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Proposition 2. If a quaternion R-algebra <%2> contains a separable quad-

ratic extension B’ of R, then there is a rank one non degenerate hermitian B’-module

@’ such that (%) = (%)

Proof. Firstly we shall show that B’ is a maximal commutative subring of
(Bk¢>. Since B’ is a separable subalgebra of the Azumaya R-algebra (BR¢>

B};p); bb’=b'b for all b'EB’} 1s also separable

the commutor ring B”= {b E(
over R, (cf. [6], Theorem 2). Then we have that (BRq’)DB”:)B’DR B"is a

direct summand of (%t_p) as left B”-module, and so is B’ as left B’-module.

When we consider (ilzj'i)@ gR/m for a maximal ideal m of R, we have (B}eq))
RrRMDOB"QRzR/mDB'Q xgR/m>DR[m, therefore we may assume that R is a
field. If B”+B’, then B” becomes a commutative subring of (%) having

[B”: R]=3. This is imposible for the simple ring (%g) with [(%): R]=4.

Accordingly, B’ is a maximal commutative subring of (l%) By [7], Proposi-

tion 3 and [3], (2,.1) and (2.2), we have (%’):(B'}f') for some rank one

non degenerate hermitian left B’-module ¢'=(V", ¢’).

Theorem 5. A quaternion R-algebra (B’,_Tc;?) is isomorphic to a matrix ring
R, of degree two if and only if there is a quadratic extension B’ of R such that
(%)DB':)R and [B)=1 in O,(R).

Proof. Suppose that there is a quadratic extension B’ such that [B]=1 in
O.(R) and (%)DB’ DR. By Proposition 2, we may assume [B]=1 in O (R)

for (B};p) , i.e. B=Re,@P Re,, where e, and e, are orthogonal idempotents. Then by

Lemma 3 we have (IEI’Q—';D)~R and by Theorem 4 (¥>=(%>=B®Bv,
where v’=¢(v, v)=a is unit in R. We have also an R-algebra isomorphism

from the matrix R, to (BRa) B®Bv=Re,PRe,DRe,vPRe,v defined by
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<(1) g)/\/\/\—wl, <8 ?)’W‘—)ez, (g (l))W—)a—lelv and ((1) 8)’\/\/\—>e2'0. The converse
is easily obtained from that B’=<§ %)ch is a quadratic extension such that
[B]=1in O,(R).

Corollary 2. For any quaternion R-algebra (%’), we have

B,
(BZ)@eB=5..

Proof. This s clear from (%2>® RBg(i@ﬁg’BiB‘__W) and [BRgB]
=1in Q(B).
Corollary 3. If a quaternion R-algebra <B,T¢> satisfies either [B]=1 in

Oy(R) or p=<a) for some unit a in R contained in N(B), then the quadratic R-
module ((B;‘#>, N ) is hyperbolic.

Proof. If [B]=1in Q(R), (V, N|V) and (B, N|B) are hyperbolic by
B, ¢ _ : B, ¢
Lemma 3, therefore (( - ) N)=(V, NIV) L(B, N|B) is so. If ( - )

= (%%l) and a&N(B) then a can be replaced by 1 and so (B—I’z—l-)zB@Bv for

o*=1. Then, we have ((B}e"’), N):(B,N[B) | (Bo, N|Bo)=~(B, N|B)_L
(B, —N|B), therefore this is hyperbolic.

4. In case 2 is invertible

In this section we assume that 2 is invertible in R.

Proposition 3. If (§’E¢—7>~R then (B,Tfp> s R-free, i.e. there are units a

B};P) - (“}Q”)= RDPRI®RIDRI, *=a, j*=b and ij=—ij.

and b in R such that (

Proof. If <B’T¢)~R, by Theorem 4 ¢ is B-free, i.e. there is a unit @ in

R satisying p=<a), and (1%)=BEBBZ', i’=a. Since 2 is invertible, B’=R][¢]
= R[X]/(X*—a) is a separable quadratic extension of R. By Proposition 2, we

/
have (B’I{—P> = (B’T?/) for some @’, and @’ is also B’-free, i.e. @'=<b>=(B’}, ¢’)



QUATERNION ALGEBRAS OVER A COMMUTATIVE RING 511

for some unit b in R. This means (%>=<11’1%>:B’ @B j=RPRIDRy
PRy, and i*=a, j*=b, ji=ij=—1i.

Theorem 6. For a quaternion R-algebra <B}Q¢

), the following conditions

are equivalent;

) ().

2) there is an element u in <B———};p) such that w’=1 and R[ul=R-+Ru is a
maximal commutative subring of (B-}’!—fp),

3) there is a quadratic extension B’ of R such that <B’T¢>g<lz_’§> and
[B]=1 in Q4(R),

4) there is a unit a in R such that (B}f)%'(B;’e a) for a separable quadratic

extension B’ and ac N(B’),

B, o) (0.1) ‘hi
5) (—R—>_( R for some unit b in R.

Proof. 1)=2): The element ((1) (1)>=u in R, satisfies the condition 2).
2)=3): For a u satisfying the condition 2), B’=R][u] is a quadratic extension
of R. Because, D:<B’T¢) is a finitely generated projective left R[u]® pD°-
module, defined by (e®d°)y=ayd for yeD, aRQd° €R[u]®rD°, since R[u]
®rD° is a separable R-algebra. And a maximal commutaive subring of D is
R[u]=Homgr,@,p(D, D). Therefore, every maximal ideal p of R, R[u], is a
maximal commutative subring of D,. Hence [R[u],: Ry]=2. B’R[u] is a sepa-
rable qaudratic extension of R such that [B’]=1 in Q«(R). By Proposition 2, we
have (‘—Bi}—;—p>=<£,?¢/> for some @’. 3) = 1) and 2) = 5) are easily obtained

from Theorem 5 and Proposition 3. 5) = 4) is clear. 4) = 2): Put (%)
=B'®B'v, v’=a. Since acN(B’), there is a b in B’ such that a=N(b)=>bb.

Put u=b7"v, then #’=1 and R[«] is a maximal commutative subring of (B;,Q a).

Corollary 4. If [B] is any element of Q,(R), the twisted group ring A(G, B)
of B and the Galois group G=G(B|R) is isomorphic to a matrix ring R,. Therefore
we have Homg(B, B)=R,.
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Proof. Since A(G, B)=B@Brg(%_1), ( is the main involution of B),

by Theorem 6 we conclude Homg(B, B)=A(G, B)g(B—I’el-)sz.

(1
(2
(31
(41
(51
(6]
(7]
(8]
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