

Title	Note on quaternion algebras over a commutative ring
Author(s)	Kanzaki, Teruo
Citation	Osaka Journal of Mathematics. 1976, 13(3), p. 503–512
Version Type	VoR
URL	https://doi.org/10.18910/5193
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Kanzaki, T. Osaka J. Math. 13 (1976), 503-512

NOTE ON QUATERNION ALGEBRAS OVER A COMMUTATIVE RING

Dedicated to Professor Mutsuo Takahashi on his 60th birthday

TERUO KANZAKI

(Received September 10, 1975)

Let R be a commutative ring. In [3] we defined a generalization $D(B, V, \varphi)$ of quaternion algebra over R. In this note we use a notation $\left(\frac{B, \varphi}{R}\right)$ instead of $D(B, V, \varphi)$, where $\varphi = (V, \varphi)$. The first object in this paper is to show the following generalizations of the well known classical formulas;

 $\left(\frac{B, \varphi}{P}\right) \otimes_{R} \left(\frac{B, \varphi'}{P}\right) \sim \left(\frac{B, \varphi \otimes \varphi'}{P}\right),$ $\left(\frac{B, i_{B^{\circ}} \varphi_{0}}{R}\right) \otimes_{R} \left(\frac{B', i_{B'^{\circ}} \varphi_{0}}{R}\right) \sim \left(\frac{B^{*}B', i_{B^{*}B'^{\circ}} \varphi_{0}}{R}\right)$ for a symmetric bilinear *R*-module $\varphi_0 = (U, \varphi_0)$. From the formulas, it is deduced that every element in Quat (R), the subgroup of Brauer group generated by quaternion algebras, is expressed as $\left[\frac{B_1, \varphi_1}{R}\right] \left[\frac{B_2, \varphi_2}{R}\right] \cdots \left[\frac{B_n, \varphi_n}{R}\right]$ for $n < |Q_s(R)|$, where $Q_s(R)$ is the quadratic extension group. The second object is to investigate on a quaternion *R*-algebra $\left(\frac{B, \varphi}{R}\right)$ such that $\left(\frac{B, \varphi}{R}\right) \sim R$. We shall show that if $\left(\frac{B, \varphi}{R}\right) \sim R$ then φ is *R*-free i.e. $\varphi = \langle a \rangle$ for some unit *a* in *R*, furthermore, if 2 is invertible in R then $\left(\frac{B, \varphi}{R}\right) \sim R$ implies $\left(\frac{B, \varphi}{R}\right) \simeq \left(\frac{a, b}{R}\right)$ for some unite a and b in R, i.e. R-free quaternion algebra. Finally, we give a condition for $\left(\frac{B, \varphi}{P}\right)$ to be $\left(\frac{B, \varphi}{R}\right) \cong R_2; \left(\frac{B, \varphi}{R}\right)$ is isomorphic to a matrix ring R_2 if and only if there is a quadratic extension B' of R such that [B'] is identity element in $Q_s(R)$ and $\left\{\frac{B,\varphi}{R}\right\} \supset B' \supset R$. Particularly, if 2 is invertible in R, we have some equivalent conditions for $\left(\frac{B, \varphi}{R}\right) \cong R_2$, and as a corollary we have $\operatorname{Hom}_{R}(B, B) \cong R_2$ for every [B] in $Q_s(R)$. Throughout this paper, we assume that R is a commutative ring, every ring has identity element, and every subring and extension ring of a ring have a common identity element.

1. Definitions and preliminary

Let B be an extension ring of R. If the residue R-bimodule B/R is invertible, then B is called a quadratic extension of R. As well known, if B is an *R*-algebra and quadratic extension of *R* then *B* is commutative (cf. [8]). And, if B is a separable commutative quadratic extension, then $B \supset R$ is a Galois extension with Galois group $G = \{I, \tau\}$, where τ is characterized as the unique R-algebra automorphism of B such that $B^{\tau}(=\{b\in B; \tau(b)=b\})=R$ (cf. [8]). Then every R-algebra automorphism of B is expressed as $e \tau + (1-e)I$ for some idempotent e in R and identity map I on B, and is an involution (cf. [4]). Therefore, we shall call the automorphism τ the main involution of B, and denote it by $\tau(b) = \overline{b}$ for $b \in B$. For a separable commutative quadratic extension $B \supset R$, we consider a hermitian left B-module $\varphi = (V, \varphi)$ defined by a finitely generated projective left B-module V and a hermitian form $\varphi: V \times V \rightarrow B$, satisfied $\varphi(v, v') = \overline{\varphi(v', v)}$ and $\varphi(au+bv, v') = a \varphi(u, v') + b \varphi(v, v')$ for $u, v, v' \in V$ and a, $b \in B$. When V is an invertible left B-module, we shall call $\varphi = (V, \varphi)$ a rank one hermitian left B-module. If $\varphi_i = (V_i, \varphi_i), i=1,2$ are hermitian left B-modules, then the tensor product $\varphi_1 \otimes \varphi_2 = (V_1 \otimes_B V_2, \varphi_1 \otimes \varphi_2)$ is a hermitian left *B*-module defined by $\varphi_1 \otimes \varphi_2 \colon V_1 \otimes_B V_2 \times V_1 \otimes_B V_2 \rightarrow B$; $(b_1 \otimes b_2, b_1' \otimes b_2') \longrightarrow A$ $\varphi_1(b_1, b_1')\varphi_2(b_2, b_2')$. If $\varphi_0 = (U, \varphi_0)$ is a symmetric bilinear left *R*-module, then $i_B \circ \varphi_0 = (B \otimes_R U, i_B \circ \varphi_0)$ is a hermitian left B-module defined by $i_B \varphi_0(b \otimes u, b' \otimes u')$ $=b \varphi_0(u, u')\overline{b'}$ for $b \otimes u, b' \otimes u'$ in $B \otimes_R U$. A ring D is called a quaternion Ralgebra if D satisfies the following conditions;

1) D is an Azumaya R-algebra,

2) there is a subring B of D such that $D \supset B$ is a quadratic extension and $B \supset R$ is a separable quadratic extension.

If D is a quaternion R-algebra and B is such a subring of D as above definition, then B is a maximal commutative subring of D and there is a rank one non degenerate hermitian left B-module $\varphi = (V, \varphi)$ such that $D = B \oplus V$ and the multiplication in D is characterized by $(b+v)(b'+v') = bb'+bv'+\bar{b}'v+\varphi(v,v')$ for b+v, $b'+v' \in B \oplus V$, (cf. [3]) Then D is denoted by $\left(\frac{B,\varphi}{R}\right)$. In the Brauer group B(R) of R, we denote by n Quat(R) the subgroup of B(R) generated by classes of quaternion R-algebras. We define an integer $L_Q(R)$ as follows; for any integer n, $L_Q(R) \leq n$ if and only if every element of Quat (R) is expressed as a class of a tensor product of m quaternion R-algebras for some integer $m \leq n$.

The set $Q_s(R)$ of isomorphism classes [B]'s of separable commutative quadratic extensions B's of R is an abelian group under the product $[B_1][B_2] = [B_1*B_2]$, where $B_1*B_2 = (B_1 \otimes_R B_2)^{\tau_1 \times \tau_2}$ for the main involution τ_i of B_i , i=1, 2. The identity element of $Q_s(R)$ is $[R \times R]$, (cf. [8]).

2. Tensor product of quaternion R-algebras

In [3] we showed that a quaternion *R*-algebra $\left(\frac{B, \varphi}{R}\right)$ is a generalized crossed product of *B* and $G=G(B/R)=\{I, \tau\}$. Using an idea of Hattori [2], we have

Theorem 1. We have Brauer equivalence

$$\left(\frac{B, \varphi_1}{R}\right) \otimes_R \left(\frac{B, \varphi_2}{R}\right) \sim \left(\frac{B, \varphi_1 \otimes \varphi_2}{R}\right).$$

Proof. Let $G = \{I, \tau\}$ be the Galois group of $B \supset R$, and $x_1, \dots, x_n, y_1, \dots, y_n$ a G-Galois system of B, i.e. it satisfies $\sum_i x_i y_i = 1$, $\sum_i x_i \tau(y_i) = 0$ in B. Then $e_1 = \sum_i x_i \otimes y_i$ and $e_2 = \sum_i x_i \otimes \tau(y_i) = \sum_i \tau(x_i) \otimes y_i = 1 \otimes 1 - e_1$ are orthogonal idempotents in $\left(\frac{B, \varphi_1}{R}\right) \otimes_R \left(\frac{B, \varphi_2}{R}\right)$. It is known that

$$\binom{B, \varphi_1}{R} \otimes_R \binom{B, \varphi_2}{R} \sim e_1 \left(\left(\frac{B, \varphi_1}{R} \right) \otimes_R \left(\frac{B, \varphi_2}{R} \right) \right) e_1 = e_1 ((B \oplus V_1) \otimes_R (B \oplus V_2)) e_1$$

= $e_1 (B \otimes_R B) e_1 \oplus e_1 (B \otimes_R V_2) e_1 \oplus e_1 (V_1 \otimes_R B) e_1 \oplus e_1 (V_1 \otimes_R V_2) e_1 = e_1 (B \otimes_R B) \oplus e_1$
 $(V_1 \otimes_R V_2) \simeq B \oplus V_1 \otimes_B V_2 = \left(\frac{B, \varphi_1 \otimes \varphi_2}{R} \right), \text{ where } \varphi_i = (V_i, \varphi_i) \quad i = 1, 2.$

Theorem 2. Let $\varphi_0 = (U, \varphi_0)$ be a rank one non degenerate symmetric bilinear *R*-module. Then we have

$$\left(\frac{B_1, i_{B_1} \circ \varphi_0}{R}\right) \otimes_R \left(\frac{B_2, i_{B_2} \circ \varphi_0}{R}\right) \simeq \left(\frac{B_1 \ast B_2, i_{B_1 \ast B_2} \circ \varphi_0}{R}\right) \otimes_R \left(\frac{B_1, i_{B_1} \circ \varphi_0 \otimes \varphi_0}{R}\right),$$

and

$$\left(\frac{B_1, i_{B_1} \circ \varphi_0 \otimes \varphi_0}{R}\right) \simeq \left(\frac{B_1, (i_{B_1} \circ \varphi_0) \otimes (i_{B_1} \circ \varphi_0)}{R}\right) \simeq \operatorname{Hom}_R(B_1, B_1) \sim R.$$

Proof. From the definition of $\left(\frac{B, i_B \circ \varphi_0}{R}\right)$, we can put $\left(\frac{B_1, i_{B_1} \circ \varphi_0}{R}\right) = B_1 \oplus B_1 \otimes_R U$, $\left(\frac{B_2, i_{B_2} \circ \varphi_0}{R}\right) = B_2 \oplus B_2 \otimes_R U$, and the tensor product $D = \left(\frac{B_1, i_{B_1} \circ \varphi_0}{R}\right)$ $\otimes_R \left(\frac{B_2, i_{B_2} \circ \varphi_0}{R}\right) = B_1 \otimes_R B_2 \oplus B_1 \otimes_R B_2 \otimes_R U \oplus B_1 \otimes_R U \otimes_R B_2 \oplus B_1 \otimes_R U \otimes_R B_2 \otimes_R U$ U. Since $B_1 * B_2$ is a subring of $B_1 \otimes_R B_2$, $D = \left(\frac{B_1, i_{B_1} \circ \varphi_0}{R}\right) \otimes_R \left(\frac{B_2, i_{B_2} \circ \varphi_0}{R}\right)$ contains $D_1 = B_1 * B_2 \oplus (B_1 * B_2) \otimes_R U = \left(\frac{B_1 * B_2, i_{B_1 * B_2} \circ \varphi_0}{R}\right)$ and $D_2 = B_1 \otimes_R R \oplus B_1 \otimes_R U \otimes_R R \otimes_R U = \left(\frac{B_1, i_{B_1} \circ \varphi_0}{R}\right)$ as subrings. Every element of $B_1 * B_2 = (B_1 \otimes_R B_2)^{\tau_1 \times \tau_2}$ commutes with every element of $B_1 \otimes_R U \otimes_R B_2 \otimes_R U$, therefore $(B_1 * B_2) \otimes_R U$ and $B_1 \otimes_R U \otimes_R R \otimes_R U$ commute elementwise, and so are $B_1 \otimes_R R$ T. Kanzaki

and $(B_1*B_2)\otimes_R U$. Accordingly, subrings D_1 and D_2 of D commute elementwise, and so a ring homomorphism $D_1\otimes_R D_2 \rightarrow D$ is defined by the contraction. Using the following lemma and the fact that $D_1\otimes_R D_2$ and D are Azumaya *R*-algebras, we can check that $D_1\otimes_R D_2 \rightarrow D$ is an isomorphism. Namely, since $(B_1\otimes_R R)$ $(B_1*B_2)=(B_1\otimes_R B_2)^{I\times\tau_2}(B_1\otimes_R B_2)^{\tau_1\times\tau_2}=B_1\otimes_R B_2$, we have $D_1D_2=D$. From the definition of hermitian module, we have $i_{B_1}\circ(\varphi_0\otimes\varphi_0)\cong(i_{B_1}\circ\varphi_0)\otimes(i_{B_1}\circ\varphi_0)$, therefore by [3], (2.10), we have $\left(\frac{B_1, i_{B_1}\circ(\varphi_0\otimes\varphi_0)}{R}\right)\cong \operatorname{Hom}_R(B\otimes_R U, B\otimes_R U)\cong$ $\operatorname{Hom}_R(B, B)\sim R$.

Lemma 1. Let $A \supset B$ be a G-Galois extension of commutative rings. If G is a direct product of normal subgroups G_1 and G_2 , then we have

$$A = A^{G_1} A^{G_2} \cong A^{G_1} \otimes_{B} A^{G_2}$$

Proof. This is obtained immediately from Theorem 3.4 in [1] applying to the contract ring homomorphism $A^{G_1} \otimes_{\mathbf{B}} A^{G_2} \rightarrow A$.

Lemma 2. Let B_1 and B_2 be separable commutative quadratic extensions such that $[B_1] = [B_2]$ in $Q_s(R)$, and $\sigma: B_1 \rightarrow B_2$ an R-algebra isomorphism. If $\varphi_1 = (V_1, \varphi_1)$ and $\varphi_2 = (V_2, \varphi_2)$ are rank one non degenerate hermitian left B_1 - and B_2 modules, respectively, such that there is a σ -semi-linear isomorphism $h: V_1 \rightarrow V_2$ making the following diagram commut;

$$\begin{array}{cccc} V_1 \times V_1 & \xrightarrow{h \times h} & V_2 \times V_2 \\ & \downarrow \varphi_1 & & \downarrow \varphi_2 \\ & B_1 & \xrightarrow{\sigma} & B_2 \end{array}$$

then there is an R-algebra isomorphism $f: \left(\frac{B_1, \varphi_1}{R}\right) \rightarrow \left(\frac{B_2, \varphi_2}{R}\right)$, and f induces σ and h on B_1 and V_1 respectively.

Proof. From the definitions of $\left(\frac{B_i, \varphi_i}{R}\right) i=1, 2, f$ is immediately defined by σ and h, (cf. [5], Prop. 3).

Propsotion 1. Let $\left(\frac{B_1, \varphi_1}{R}\right)$ and $\left(\frac{B_2, \varphi_2}{R}\right)$ be quaternion algebras such that $[B_1] = [B_2]$ in $Q_s(R)$. Then there is a quaternion R-algebra $\left(\frac{B_1, \varphi_2'}{R}\right)$ such that $\left(\frac{B_1, \varphi_2'}{R}\right) \approx \left(\frac{B_2, \varphi_2}{R}\right)$. Therefore, we have $\left(\frac{B_1, \varphi_1}{R}\right) \otimes_R \left(\frac{B_2, \varphi_2}{R}\right) \sim \left(\frac{B_1, \varphi_1 \otimes \varphi_2'}{R}\right)$, provided $[B_1] = [B_2]$ in $Q_s(R)$.

506

Proof. Suppose $[B_1] = [B_2]$ in $Q_s(R)$. There is an *R*-algebra isomorphism $\sigma: B_2 \to B_1$. Then, by change of ring, there is a rank one non degenerate hermitian B_1 -module $\varphi_2' = (B_1 \otimes_{B_2} V_2, \sigma \varphi_2)$ for $\varphi_2 = (V_2, \varphi_2)$. From σ and a σ -semilinear isomorphism $h: V_2 \to B_1 \otimes_{B_2} V_2; v \to 1 \otimes v$, one can construct an *R*-algebra isomorphism $f: \left(\frac{B_2, \varphi_2}{R}\right) \to \left(\frac{B_1, \varphi_2'}{R}\right)$ by Lemma 2. Accordingly, by Theorem 1 we have $\left(\frac{B_1, \varphi_1}{R}\right) \otimes_R \left(\frac{B_2, \varphi_2}{R}\right) \cong \left(\frac{B_1, \varphi_1}{R}\right) \otimes_R \left(\frac{B_1, \varphi_1}{R}\right) \otimes_R \left(\frac{B_1, \varphi_2'}{R}\right)$. Let us denote by $|Q_s(R)|$ the cardinal number of the set $Q_s(R)$.

Theorem 3. We have

$$L_{Q}(R) \leq |Q_{s}(R)| - 1$$

Proof. Suppose $|Q_s(R)| = n < \infty$, and $Q_s(R) = \{[B_0] = 1, [B_1], \cdots [B_{n-1}]\}$. By Proposition 1, every element [A] in Quat(R) is expressed as $A \sim \left(\frac{B_1, \varphi_1}{R}\right) \otimes_R \left(\frac{B_2, \varphi_2}{R}\right) \otimes \cdots \otimes_R \left(\frac{B_{n-1}, \varphi_{n-1}}{R}\right)$ for suitable $\varphi_1, \varphi_2, \cdots \varphi_{n-1}$.

3. Quaternion algebra of split type

Theorem 4. For any quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$, if $\left(\frac{B, \varphi}{R}\right) \sim R$ then $\varphi = (V, \varphi)$ is R-free, i.e. there is a winit a in R such that $\varphi = \langle a \rangle$. Then $\left(\frac{B, \varphi}{R}\right)$ is denoted by $\left(\frac{B, a}{R}\right)$.

Proof. Put $\left(\frac{B, \varphi}{R}\right) = B \oplus V$, $\varphi = (V, \varphi)$. Then VV = B in $\left(\frac{B, \varphi}{R}\right)$, (cf. [3], (2.1)). Suppose $\left(\frac{B, \varphi}{R}\right) \cong \operatorname{Hom}_{R}(P, P)$ for a finitely generated projective and faithful *R*-module *P*. Then, *P* may be regarded as a faithful left $\left(\frac{B, \varphi}{R}\right)$ -module and also a faithful *B*-module. Since *B* is a maximal commutative subring of $\left(\frac{B, \varphi}{R}\right) = \operatorname{Hom}_{R}(P, P)$, *P* becomes an invertible left *B*-module. From *VV* = *B*, we have $P = VP \cong V \otimes_{B} P$. Since *P* is invertible as *B*-module, it means that *V* is *B*-free.

From Theorem 1 and 2, we have
$$\left(\frac{B, a}{R}\right) \otimes_R \left(\frac{B, b}{R}\right) \sim \left(\frac{B, ab}{R}\right)$$
, and $\left(\frac{B_1, a}{R}\right) \otimes_R \left(\frac{B_2, a}{R}\right) \cong \left(\frac{B_1 * B_2, a}{R}\right) \otimes_R \left(\frac{B_1, a^2}{R}\right) \sim \left(\frac{B_1 * B_2, a}{R}\right)$.
A quaternion *R*-algebra $\left(\frac{B, \varphi}{R}\right) = B \oplus V$ has an involution $\left(\frac{B, \varphi}{R}\right) \rightarrow \left(\frac{B, \varphi}{R}\right)$;

 $d \longrightarrow \overline{d}$ defined by $\overline{(b+v)} = \overline{b} - v$ for $b \in B$, $v \in V$. Then, the norm $N: \left(\frac{B, \varphi}{R}\right)$ $\rightarrow R; d \longrightarrow d\overline{d}$ defines a non degenerate quadratic *R*-module $\left(\left(\frac{B, \varphi}{R}\right), N\right) = (B, N | B) \perp (V, N | V)$, (cf. [3], (2.7)).

Corollary 1. For a quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$, the following conditions are equivalent:

1) There is a unit a contained in $N(B) = \{b\bar{b}; b \in B\}$ such that $\left(\frac{B,\varphi}{R}\right) \cong \left(\frac{B,a}{R}\right)$.

2)
$$\left(\frac{B,\varphi}{R}\right) \cong \operatorname{Hom}_{R}(B, B).$$

Proof. 1) \Rightarrow 2): Since $\left(\frac{B, a}{R}\right)$ is a crossed product of a cylic group G = G(B/R) and B with the trivial factor set $a \in N(B)$, we have $\left(\frac{B, a}{R}\right) = \Delta(G, B) \cong$ Hom_R(B, B), where $\Delta(G, B)$ means a twisted group ring of G and B. 2) \Rightarrow 1): By theorem 4, $\left(\frac{B, \varphi}{R}\right) \cong$ Hom_R(B, B) $\sim R$ implies $\varphi = \langle a \rangle$ for some unit a in R. Then, $\left(\frac{B, a}{R}\right)$ is a crossed product of G = G(B/R) and B with the factor set a, and $\left(\frac{B, a}{R}\right) \cong$ Hom_R(B, B) $\cong \Delta(G, B)$. Therefore, a is in N(B).

Lemma 3. ([3], (2.13)). Let $\left(\frac{B, \varphi}{R}\right) = B \oplus V$ be a quaternion R-algebra and put q = -N | V, i.e. q(v) = -N(v) for $v \in V$. Then (V, q) is hyperbolic if and only if [B] = 1 in $Q_s(R)$. If [B] = 1 in $Q_s(R)$ then $\left(\frac{B, \varphi}{R}\right) \sim R$.

Proof. Suppose (V, q) is hyperbolic. Then there are totally isotropic R-submodules V_1 and V_2 such that $V = V_1 \oplus V_2$ and V_i is invertible, i=1, 2. Since $0 = q(v) = -N(v) = -vv = v^2$ for every $v \in V$, we have $V_i V_i = 0$, i=1, 2, and so $B = VV = V_1 V_2 + V_2 V_1$. Put $a_1 = V_1 V_2$ and $a_2 = V_2 V_1$. Then we have $B = a_1 + a_2$. Therefore, there are $e_1 \in a_1$ and $e_2 \in a_2$ such that $e_1 + e_2 = 1$. Since $a_1 a_2 = a_2 a_1 = 0$, e_1 and e_2 are orthogonal idempotents and $a_i = e_i B$, i=1, 2. Applying the main involution τ of B, we have $\tau(e_1 B) = \tau(V_1 V_2) = \tau(\varphi(V_1, V_2)) = \varphi(V_2, V_1) = V_2 V_1 = e_2 B$ and $B = e_1 B \oplus e_2 B$, therefore [B] = 1 in $Q_s(R)$. Conversely, if [B] = 1 in $Q_s(R)$, there are orthogonal idempotents e_1 and e_2 such that $B = e_1 B \oplus e_2 B$ and $\bar{e}_1 = e_2$. Then we have $V = e_1 V \oplus e_2 V$ and $e_1 V$, $e_2 V$ are totally isotropic R-submodule of (V, q), because of $q(e_1 v) = e_1 v e_1 v = e_1 \bar{e}_1 v^2 = 0$ for every $e_1 v \in e_1 V$. If [B] = 1 in $Q_s(R)$, then the Clifford algebra C(V, q) of (V, q) is similar to R and isomorphic to $\left(\frac{V, \varphi}{R}\right)$, (cf. [3], (2.8)), and so $\left(\frac{B, \varphi}{R}\right) \sim R$.

Proposition 2. If a quaternion R-algebra $\left(\frac{R, \varphi}{R}\right)$ contains a separable quadratic extension B' of R, then there is a rank one non degenerate hermitian B'-module φ' such that $\left(\frac{B, \varphi}{R}\right) = \left(\frac{B', \varphi'}{R}\right)$.

Proof. Firstly we shall show that B' is a maximal commutative subring of $\left(\frac{B,\varphi}{R}\right)$. Since B' is a separable subalgebra of the Azumaya R-algebra $\left(\frac{B,\varphi}{R}\right)$, the commutor ring $B'' = \left\{b \in \left(\frac{B,\varphi}{R}\right); bb' = b'b$ for all $b' \in B'\right\}$ is also separable over R, (cf. [6], Theorem 2). Then we have that $\left(\frac{B,\varphi}{R}\right) \supset B'' \supset B' \supset R$, B'' is a direct summand of $\left(\frac{B,\varphi}{R}\right)$ as left B''-module, and so is B' as left B'-module. When we consider $\left(\frac{B,\varphi}{R}\right) \otimes_R R/m$ for a maximal ideal m of R, we have $\left(\frac{B,\varphi}{R}\right) \otimes_R R/m \supset B' \otimes_R R/m \supset R/m$, therefore we may assume that R is a field. If $B'' \pm B'$, then B'' becomes a commutative subring of $\left(\frac{B,\varphi}{R}\right)$ having [B'': R] = 3. This is imposible for the simple ring $\left(\frac{B,\varphi}{R}\right)$ with $\left[\left(\frac{B,\varphi}{R}\right): R\right] = 4$. Accordingly, B' is a maximal commutative subring of $\left(\frac{B,\varphi}{R}\right)$. By [7], Proposition 3 and [3], (2, 1) and (2.2), we have $\left(\frac{B,\varphi}{R}\right) = \left(\frac{B',\varphi'}{R}\right)$ for some rank one non degenerate hermitian left B'-module $\varphi' = (V', \varphi')$.

Theorem 5. A quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$ is isomorphic to a matrix ring R_2 of degree two if and only if there is a quadratic extension B' of R such that $\left(\frac{B, \varphi}{R}\right) \supset B' \supset R$ and [B']=1 in $Q_s(R)$.

Proof. Suppose that there is a quadratic extension B' such that [B']=1 in $Q_s(R)$ and $\left(\frac{B,\varphi}{R}\right)\supset B'\supset R$. By Proposition 2, we may assume [B]=1 in $Q_s(R)$ for $\left(\frac{B,\varphi}{R}\right)$, i.e. $B=Re_1\oplus Re_2$, where e_1 and e_2 are orthogonal idempotents. Then by Lemma 3 we have $\left(\frac{B,\varphi}{R}\right)\sim R$ and by Theorem 4 $\left(\frac{B,\varphi}{R}\right)=\left(\frac{B,a}{R}\right)=B\oplus Bv$, where $v^2=\varphi(v,v)=a$ is unit in R. We have also an R-algebra isomorphism from the matrix R_2 to $\left(\frac{B,a}{R}\right)=B\oplus Bv=Re_1\oplus Re_2\oplus Re_1v\oplus Re_2v$ defined by

T. KANZAKI

 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} & \longrightarrow e_1, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} & \longrightarrow e_2, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} & \longrightarrow a^{-1}e_1v \text{ and } \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} & \longrightarrow e_2v.$ The converse is easily obtained from that $B' = \begin{pmatrix} R & 0 \\ 0 & R \end{pmatrix} \subset R_2$ is a quadratic extension such that [B'] = 1 in $Q_s(R)$.

Corollary 2. For any quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$, we have $\left(\frac{B, \varphi}{R}\right) \otimes_{R} B \cong B_{2}$.

Proof. This is clear from $\left(\frac{B, \varphi}{R}\right) \otimes_R B \approx \left(\frac{B \otimes_R B, i_{B \otimes_R B} \circ \varphi}{B}\right)$ and $[B \otimes_R B] = 1$ in $Q_s(B)$.

Corollary 3. If a quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$ satisfies either [B]=1 in $Q_s(R)$ or $\varphi = \langle a \rangle$ for some unit a in R contained in N(B), then the quadratic R-module $\left(\left(\frac{B, \varphi}{R}\right), N\right)$ is hyperbolic.

Proof. If [B]=1 in $Q_s(R)$, (V, N | V) and (B, N | B) are hyperbolic by

Lemma 3, therefore $\left(\left(\frac{B,\varphi}{R}\right), N\right) = (V, N | V) \perp (B, N | B)$ is so. If $\left(\frac{B,\varphi}{R}\right) = \left(\frac{B,a}{R}\right)$ and $a \in N(B)$ then a can be replaced by 1 and so $\left(\frac{B,1}{R}\right) = B \oplus Bv$ for $v^2 = 1$. Then, we have $\left(\left(\frac{B,\varphi}{R}\right), N\right) = (B, N | B) \perp (Bv, N | Bv) \cong (B, N | B) \perp (B, -N | B)$, therefore this is hyperbolic.

4. In case 2 is invertible

In this section we assume that 2 is invertible in R.

Proposition 3. If $\left(\frac{B, \varphi}{R}\right) \sim R$ then $\left(\frac{B, \varphi}{R}\right)$ is R-free, i.e. there are units a and b in R such that $\left(\frac{B, \varphi}{R}\right) = \left(\frac{a, b}{R}\right) = R \oplus Ri \oplus Rj \oplus Rij$, $i^2 = a$, $j^2 = b$ and ij = -ij.

Proof. If $\left(\frac{B, \varphi}{R}\right) \sim R$, by Theorem 4 φ is *B*-free, i.e. there is a unit *a* in *R* satisfying $\varphi = \langle a \rangle$, and $\left(\frac{B, \varphi}{R}\right) = B \oplus Bi$, $i^2 = a$. Since 2 is invertible, $B' = R[i] \cong R[X]/(X^2 - a)$ is a separable quadratic extension of *R*. By Proposition 2, we have $\left(\frac{B, \varphi}{R}\right) = \left(\frac{B', \varphi'}{R}\right)$ for some φ' , and φ' is also *B'*-free, i.e. $\varphi' = \langle b \rangle = (B'j, \varphi')$

for some unit b in R. This means $\left(\frac{B, \varphi}{R}\right) = \left(\frac{B', \varphi'}{R}\right) = B' \oplus B' j = R \oplus Ri \oplus Rj$ $\oplus Rij$, and $i^2 = a, j^2 = b, ji = ij = -ij$.

Theorem 6. For a quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$, the following conditions are equivalent;

1) $\left(\frac{B, \varphi}{R}\right) \simeq R_2,$

2) there is an element u in $\left(\frac{B, \varphi}{R}\right)$ such that $u^2 = 1$ and R[u] = R + Ru is a maximal commutative subring of $\left(\frac{B, \varphi}{R}\right)$,

3) there is a quadratic extension B' of R such that $\left(\frac{B, \varphi}{R}\right) \approx \left(\frac{B', \varphi'}{R}\right)$ and [B']=1 in $Q_s(R)$,

4) there is a unit a in R such that $\left(\frac{B, \varphi}{R}\right) \approx \left(\frac{B', a}{R}\right)$ for a separable quadratic extension B' and $a \in N(B')$,

5) $\left(\frac{B, \varphi}{R}\right) \simeq \left(\frac{b, 1}{R}\right)$ for some unit b in R.

Proof. 1) \Rightarrow 2): The element $\binom{0}{1} = u$ in R_2 satisfies the condition 2). 2) \Rightarrow 3): For a *u* satisfying the condition 2), B' = R[u] is a quadratic extension of *R*. Because, $D = \binom{B, \varphi}{R}$ is a finitely generated projective left $R[u] \otimes_R D^\circ$ module, defined by $(a \otimes d^\circ)y = ayd$ for $y \in D$, $a \otimes d^\circ \in R[u] \otimes_R D^\circ$, since R[u] $\otimes_R D^\circ$ is a separable *R*-algebra. And a maximal commutaive subring of *D* is $R[u] = \operatorname{Hom}_{R[u] \otimes_R D^\circ}(D, D)$. Therefore, every maximal ideal \mathfrak{p} of *R*, $R[u]_{\mathfrak{p}}$ is a maximal commutative subring of $D_{\mathfrak{p}}$. Hence $[R[u]_{\mathfrak{p}}: R_{\mathfrak{p}}] = 2$. B'R[u] is a separable qaudratic extension of *R* such that [B'] = 1 in $Q_s(R)$. By Proposition 2, we have $\left(\frac{B, \varphi}{R}\right) = \left(\frac{B', \varphi'}{R}\right)$ for some φ' . 3) \Rightarrow 1) and 2) \Rightarrow 5) are easily obtained from Theorem 5 and Proposition 3. 5) \Rightarrow 4) is clear. 4) \Rightarrow 2): Put $\left(\frac{B'a}{R}\right)$ $=B' \oplus B'v, v^2 = a$. Since $a \in N(B')$, there is a *b* in *B'* such that $a = N(b) = b\overline{b}$. Put $u = b^{-1}v$, then $u^2 = 1$ and R[u] is a maximal commutative subring of $\left(\frac{B', a}{P}\right)$.

Corollary 4. If [B] is any element of $Q_s(R)$, the twisted group ring $\Delta(G, B)$ of B and the Galois group G = G(B/R) is isomorphic to a matrix ring R_2 . Therefore we have $Hom_R(B, B) \cong R_2$.

Proof. Since $\Delta(G, B) = B \oplus B\tau \simeq \left(\frac{B, 1}{R}\right)$, (τ is the main involution of B),

by Theorem 6 we conclude $\operatorname{Hom}_{R}(B, B) \cong \Delta(G, B) \cong \left(\frac{B, 1}{R}\right) \cong R_{2}$.

Osaka Women's University

References

- S.U. Chase, D.K. Harrison and A. Rosenberg: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15-33.
- [2] A. Hattori: Certain cohomology associated with Galois extensions of commutative rings, Sci. Papers College Gen. Ed. Univ. Tokyo 24 (1974), 79-91.
- [3] T. Kanzaki: On non commutative quadratic extensions of a commutative ring, Osaka J. Math. 10 (1973), 597-604.

- [8] C. Small: The group of quadratic extensions, J. Pure Appl. Algebra 2 (1972), 83-105.