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Introduction

Let G be a finite group and p a prime. Let (K, R, k) be a p-modular sys-
tem. Let (z) be the maximal ideal of R. We assume that K contains the
| G | -th roots of unity and that k& is algebraically closed. Let v be the valuation
of K normalized so that »(p)=1. For an (R-free) RG-module U lying in a
block B of G, we define ht(U), the height of U, by ht(U)=wv(rank, U)—
v(|G|)+d(B), where d(B) is the defect of B. The heights of XG-modules are
defined in a similar way, and heights are always nonnegative. In this paper we
study indecomposable RG-(or kG-) modules of height zero, especially their
behaviors under the block induction. In section 1 we introduce, motivated
by Broué [7], the notion of linkage for arbitrary block pairs as a generalization
of the one for Brauer pairs, and establish fundamental properties about it. In
section 2 we give a condition for a block of a normal subgroup to be induced to
the whole group. Insection 3 a characterization of RG-(or kG-) modules of
height 0 via their vertices and sources is given, which generalizes a result of
Knorr [14].  Based on this result it is shown in section 4 that for any irreduci-
ble character X of height 0 in B and any normal subgroup N of G, X contains
an irreducible character of height 0. This is well-known when B is weakly regu-
lar with respect to N. An answer to the problem of determining which ir-
reducible (Brauer) characters of N appear as irreducible constituents of ir-
reducible (Brauer) characters of height 0 is also obtained (Theorem 4.4). In
section 5 a generalization of a theorem of Isaacs and Smith [11] is given. In
section 6 an alternative proof of a theorem of Berger and Knorr [1] is given.
Throughout this paper an RG-module is assumed to be R-free of finite rank.

1. Block induction and characters of height 0

Throughout this section H is a subgroup of G, and B and b are p-blocks
of G and H, respectively.

Let G be the set of p-regular elements of G, ZRG the center of RG, and
ZRGy be the R-submodule of ZRG spanned by p-regular conjugacy class sums.
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We let
Zy(B) = {aE(ZRGy) ep; wp(a)£0 (mod =)} ,

where e, is the block idempotent of B. An element a&€(ZRGy) e, is said to
be of height 0 ([7]) if a€Zy(B). Let sy be the R-linear map from RG to RH
defined by sy(x)=x if x€H, and sy(x)=0 if x &€ G—H.

DeFINITION 1.1.  We say that B and b are linked if s4(Zy(B)) e, < Zy(b).

Let Chr(G) be the R-module of R-linear combinations of irreducible cha-
racters of G and Chr(B) its submodule of R-linear combinations of irreducible
characters lying in B. Put

Chr*(B) = {#< Chr(B); ht(6) = 0} ,

where ht(0) is defined as before; so h#(0)=0 if and only if »(8(1))=»(|G|)—
d(B). Let Irr(B) (resp. IBr’(B)) be the set of irreducible characters (resp. irr-
educible Brauer characters) of height 0 in B. Let Bch(G) be the R-linear
combinations of irreducible Brauer characters of G. Bch(B) and Bch%(B) are
defined in a similar way. For §& Chr(G) (or Bch(G)), put 6*=3, 0(x~*) x, where
x runs through G,. So 0*€ZRG,.

The following lemma is well-known, cf. Broué [7]. Here we give a direct
proof, in this special case.

Lemma 1.2. We have
(ZRGy) ep = {9*; 6= Chr(B)} = {6*; 0=Bch(B)} .

Proof. It suffices to show the first equality. For =Chr(G) and X&
Irr (G), we have X (6% e5)=X(0%), where X is extended linearly over RG and 65
denotes the B-component of . Since X is arbitrary, we have 0*e;=0%. Thus
the assertion follows, since ZRG, = {6*; § € Chr(G)}.

The following theorem is important for our purpose. (It is a special case
of [7, Proposition 3.3.4].) Here we give an alternative proof.

Theorem 1.3. Let §€ Chr(B) (or Bch(B))). Then 6 is of height 0 if and
only if 6* is of height 0.

Proof. Let XEIrr’(B) and define the class function % as follows:
PEX(x) fxEGy,
0 otherwise.

”) = |

We know that 4t(0)=0 if and only if (8, 5)¢=E0 (mod p) ([6]). On the other
hand, 6* is of height 0 if and only if wz(6*)=%0 (mod z). Since wz(6*)={|G|/
X(1) p*®} (8, n)¢ (mod =), the assertion follows.
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Corollary 1.4. We have
Zy(B) = {6*; 6 Chr(B)} = {0*: 6=Bch(B)} .
Proof. This follows from Lemma 1.2 and Theorem 1.3.

For 8 Chr(G) (or Bch(G)), we denote by 6, the b-component of §,. For
an RG-(or kG-) module V, V; is defined in a similar way. Also for & Chr(H),
we denote by §% the B-component of €.

Corollary 1.5. The following are equivalent.

(i) B and b are linked.

(ii) For every §< Chr(B), §,& Chr(d).

(i) For every 6§ €Bch(B), 6, Bch(b).

In particular, if B and b are linked, for every RG-(or RG-) module V of height
0in B, V, is of height 0.

Proof. The equivalences follow from Corollary 1.4 and the fact that
sg(0%) e,=0¥ for every 0 Chr(G) (resp. Bch(G)). Let 6 be the character (resp.
Brauer character) afforded by V. If h(V)=0, then h#(6,)=0 by (ii) (resp. (iii)).
This completes the proof.

The following proposition shows, in particular, that there are many exam-
ples of linked pair of blocks in block theory.

Proposition 1.6. Assume that b° is defined. Then B and b are linked if
and only if b°=B.

Proof. Assume 6°=B. For aEZy(B), ws(su(a))=ws(a)=£0 (mod 7). So
sy(a) e, Zy(b) and “if part” follows. Conversely assume that B and b are linked.
We have w;¢(e3) = w4(su(ez) ;) =0 (mod 7), since ez Z(B). Hence 6°=B.

For the following, see also [3, Lemma A and Theorem B].

Corollary 1.7. Assume that b€ is defined and equal to B. Then
(i) For any RG-(or kG-) module V of height 0 in B, V, is of height 0, and
(ii) for 6 Chr(G) (or Bch(G)), ht(05)=0 if and only if ht(6,)=0.

Proof. (i) follows from Corollary 1.5 and Proposition 1.6. (ii) follows from
the fact that wz(0%) = ws(0*) = ws(sa(0*) &) = ws(07) (nod 7).

Let T§ denote the relative trace map when RG is considered as a G-
algebra in the usual way. The following will be needed later.

Proposition 1.8. Assume that B and b are linked and d(b)=d(B). We
have :
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() T5(Zyb)) exSZy(B), and
(ii) for any £ €Chr(b), ht(£)=0 if and only if ht(£5)=0.

Proof. Let XEIrt%(B). For §€Chr(b), (£2)*=TH(E*)es. From this it
follows that

ws((EB))={IG| EQ1)/|H| X(1)} wy((X;)*) (mod 7) .

Since At(X;)=0 by Corollary 1.5 (ii), (ii) follows. Then we get (i) by the above
equality and Corollary 1.4.

The following proposition (cf. also [18, Theorem 7]) shows that our ter-
minology is compatible with Brauer’s [5]. If (P, b,) is a Brauer pair (i.e. Pis a
p-subgroup of G and b, is a block of PC(P) with defect group P), let 8, be
the unique irreducible Brauer character in b, and 4% the block of C(P) covered
by bp.

Proposition 1.9. Let (P, by) and (Q, by) be Brauer pairs such that P>Q
and that by is P-invariant. Then by and b, are linked (in the sense of Brauer [5])
if and only if by and by are linked in our sense.

Proof. Put 6*=5b6°?, where C(Q)=C4(Q). Let ¢ be the unique irre-
ducible Brauer character in b*. We have ¢,,=e 6, for some integer e. Since
b5°@ is defined, Corollary 1.5 (iii) and Proposition 1.6 yield that b5°(@=p* if
and only if e£0 (mod p). On the other hand, we must have (0,),2,=evr, Where
\Jr=(0p)c(py is the unique irreducible Brauer character in %, since b, is the
unique block of PC(P) covering b%. By Corollary 1.5 (iii), 4% and % are linked
if and only if ¢%=0 (mod p). So the assertion follows.

Now we consider the case where H is normal in G. In this case linked
pair has a clear meaning, as the following theorem shows; it shows also that
the condition that B and & are linked does not always imply that 4¢ is defined
(and equal to B). See also Blau [4, Theorem 2].

Theorem 1.10. Assume that H is normal in G. The following conditions
are equivalent.

(i) B andb are linked.

(i) su(es) e is of height 0.

(iii) B is weakly regular with respect to H and B covers b.

Proof. (i)=(ii): This is obvious.
(i))=>(iii): Put ez=0%, 0 Chr(B). Since sy(e5) e,=0¥, we have in particular
0,=£0, so B covers b. Put sy(ez)=3; a; K, K;  being conjugacy classes of G
(contained in H). We have wy(sz(ez)) =3; a; w,,(K V=3 9; 0 B(K ) (mod =), since
B covers b. So we have a; w(K;)=%£0 (mod =) for some Z, which shows that B
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is weakly regular.

(ili)=>(i): Let {B;} be the blocks of G covering 5. We have = e5 =32 ef(gE
G|T}), so 2 sy(es,) e,=¢, and sg(es,) e; is of height 0 for some 7. For such 7, put
e5,=0%*, 0= Chr’(B;). We have 0,=% 05(g=G|T;), so we get that d(B;)=
v(|Ty|)—v(|H|)+d(b), because A#(6,)=0. Let »&Chr’(B). Similar argument
as above shows that d(B)=uv(| T}|)—v(|H|)+d(b)—ht(n;). So we have ht(n;)=
d(B;)—d(B). On the other hand, d(B)=d(B;), since B is weakly regular. 'This
proves that A#(7,)=0, so B and b are linked (by Corollary 1.5).

The following is [9, (V.3.15)].

Corollary 1.11. Assume that H is normal in G and that B covers b. Let B
be weakly regular with respect to H. For any XEIrt°(B), we have Xy—=e %, E;
with e| Ty|T¢,| 0 (mod p) and &,E Irr%(b), for some i.

Proof. By Theorem 1.10, X, is of height 0, so the assertion follows from
the equality X, =3, X§(g€ G/ T}).

By Theorem 1.10 (and Corollary 1.5), we get that when B is weakly regular
with respect to the normal subgroup H and B covers b, V;, has an indecomposable
summand of height 0 for any RG-(or kG-) module V of height 0 in B. It will
be proved in Theorem 4.1 that this is the case for arbitrary blocks covering &.

The rest of this section is devoted to giving alternative proofs of known
facts.

Let b be a block of an arbitrary subgroup H as before. For a group X,
let By(X) be the principal block of X. The following is the Third Main The-
orem (as extended by Okuyama [17]). (The present version is due to Blau
[3, Corollary 1].) See also Kawai [20, Corollary 2.2].

Proposition 1.12. Assume that there exists X E Irr%(B) such that Xy is an
irreducible character in b. Then

(1) If by is a block of H for which b§ is defined and equal to B, then by=b.

(i) If b€ is defined, then b°=B if and only if Xy < Irr%(d).

Proof. (i) By Corollary 1.7 (ii), X;, is of height 0, so b,=>b. (ii) “only if”
part follows similarly. ““if” part: Since A#(X,)=0, h#(X;#)=0 by Corollary 1.7
(ii). Hence b°=B.

A result similar to the following has appeared in Robinson [19].

Proposition 1.13. Let u be a central p-element of H. Assume that b°=B.
For X, X' in Chr(B), the following are evuivalent.

(i) At(X)=ht(X")=0.

(i) p!®|H| = Xy(us) Xj(w~' s1) %0 (mod =),
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where in the summation s runs through H,.

Proof. Define +r, »'EBch(d) by r(s)=X;(us) and +'(s)=X}(u"'s), for
s€EH,. Put X,=3;nE;, E;,€Irr(b). We have £,(u)=E,(1)¢&;, where &; is a
|u|-th root of unity. Then X,(¥)=3,; n,(§;—1) £:(1)+X,(1). Since &—1=0
(mod 7), ht(y)=0=v(X(u))=v(|H|)—d(b)= ht(X;)=0<ht(X)=0. (For the
last equivalence, cf. Corollary 1.7 (ii).) The same holds for +)»'(with ™! in place
of #). On the other hand, the number in (ii) is congruent (mod 7) to p?® | H |~
P'(1) ws(yr*), so the assertion follows.

2. Block induction and normal subgroups

Let N be a normal subgroup of G and b a block of N. If B is a block of
G covering b, then a defect group D of B is said to be an inertial defect group
of B if it is a defect group of the Fong-Reynolds correspondent of B in the iner-
tial group T} of b in G.

In this section we shall prove the following theorem, which settles, in a
special case, a question raised by Blau [2]. It has been obtained also by Fan
[8, Theorem 2.3] independently. See also Blau [4, Theorem 3].

Theorem 2.1. Let the notation be as above. The following conditions
are equivalent.

(1) &€ is defined.

(ii) (iia) There exists a unique weakly regular block of G covering b, say B,
and

(iib) for a defect group D of B, Z(D) is contained in N.

We begin with the following lemma, which is due to Berger and Knérr
[1, the proof of Corollary], cf. also Fan [8, Proposition 2.1]. Another proof
is included here for convenience.

Lemma 2.2. For a block B of G covering b, let D be an inertial defect
grogp of B and b the unique block of DN covering b. Then D is a defect group
of b.

Proof. We may assume that b is G-invariant. Put H=Ny(D) N. Let B
be the Brauer correspondent in H of B. Take a kG-module U in B and a kH-
module ¥ in B such that V is a direct sumand of Uy. Since b is G-invarnant,
any direct summand of Uy lies in b, so the same is true for Vy. Hence B covers
b. This implies that B covers b and a defect group of bis by Knérr’s theorem
(Knorr [13, Proposition 4.2], see also [20, Corollary 2.4]) DN N D=D, because
DN is normal in H and b is H-invariant.

We also need the following
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Lemma 2.3. (Blau [3, Lemma 2.5 (i)]) Let H be a subgroup of G and B
(resp. b) a block of G (resp. H). Let ¢ Irr(b). Suppose that ¢°=7+3i_1m; X,,
where m; is a nonnegative integer, X; € Irr(B) and v(m; X;(1)) = v(¢°(1)) for 1 <i=mn,
and 7 is a character of G such that for all g€G, v(7(g))>v(¢(1))+»(1Cs(g)])—
v(|H|) (T may be 0). Then b° is defined and equals B.

Proof of Theorem 2.1. (i)=>(iia): 'This is Lemma 2.6 in Blau [3].
()= (iib): This follows from (V.1.6) (i) in Feit [9] (ii)=(i): We may as-
sume that D is an inertial defect group of B Let b be the unique block of DN
covering b. Since D is a defect group of b by Lemma 2.2, (iib) implies 47V =b.
In fact, assume that w,(K)=0 (mod ) for a conjugacy class K of DN. Let
xEK and let # and s be the p-part and p’-part of x, respectively. Since b is
induced from a root of it, uE,y Z(D)<N. We get s€N, since DN|N is a p-
group. So KCSN, as required. Now let ¢ be an irreducible character of height
0in b. Any irreducible constituent X of ¢S lies in a block covering 4. So
v(X(1))=v(¢4(1)), and the lnequahty is strict if X does not lie in B by (iia).
From this it follows that 65=B by Lemma 2.3. So 4°=B, completing the

proof.

3. Characterization of modules of height 0

In this section we shall characterize RG-(or kG-) modules of height 0 via
their vertices and sources. In the following, let o denote either R or k.

Lemma 3.1. Let T be a subgroup of G and N a normal subgroup of T such
that TIN is a p'-group. Let Y be an indecomposable oT-module and W an in-
decomposable oN-module. If Yy=<eW for some integer e, then e is prime to p.

Proof. Since % is algebraically closed, e is equal to the dimension of some
projective indecomposable k*[T/N]-module for some a € Z* T/N, k*) (cf. The-
orem 7.8 in [12]). Since % is algebraically closed and T/N is a p’-group, e is
prime to p.

The following theorem generalizes Corollary 4.6 in Knorr [14].

Theorem 3.2. Let U be an indecomposable oG-module lying in a block B
with defect group D. The following are equivalent.

(i) A (U)=0.

(ii) vx(U)=¢D and the rank of a source of U is prime to p.

Proof. Since At(U)=0 implies vx(U)=¢D, it suffices to prove that for an
oG-module U with vertex D, ht(U)=0 if and only if the rank of a source
is prime to p. Let V' be the Green correspondent of U with respect to
(G, N¢(D), D).V lies in the Brauer correspondent B of B and A¢(V)=0 if and
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only if h#(U)=0. Let W be an indecomposable summand of Vy, where N=
DCy(D). W lies in a block b covered by B. Let T be the inertial group of W
in Ng(D). For some oT-module Y, W|Yy and V=Y, Since Y belongs
to &7, ht(V)=0 if and only if ht(Y)=0. Put Yy=~eW. Since T/N is a p'-
group, e%0 (modp) by Lemma 3.1. So ht(Y)=0if and only if ht(W)=0.
From the explicit Morita equivalence between b and oD (b is, as a ring, isomor-
phic to a full matrix ring over oD), it follows that 4t(W)=0 if and only if the
rank of the corresponding oD-module (which is a source of U) is prime to p.
This completes the proof.

Remark 3.3. Theorem 2.1 in Kawai [20] follows (in the special case when
the residue field % is algebraically closed, as we are assuming) from the above
theorem and Corollary 1.7(i).

4. Normal subgroups and characters of height 0

Throughout this section, we use the following notation: N is a normal

subgroup of G, B is a block of G with defect group D, and b is a block of N
covered by B.

Theorem 4.1. For any indecomposable 0G-module U of height O lying in B,
some indecomposable summand of U, is a module of height 0 lying in b.

Proof. We may assume that b is G-invariant. Let D be a defect group
of B, B the Brauer correspondent of B in Ng(D) N, and V the Green correspon-
dent of U with respect to (G, Ng(D) N, D). Since V lies in B, ht(U)=0 implies
ht(V)=0. Let b be the unique block of DN covering b. D is a defect group
of b by Lemma 2.2. Let W be an indecomposable summand of V) lying in b.
(Note that B covers b, cf. the proof of Lemma 2.2) Since V is DN-projective,
V and W have vertex and source in common, so kt(W)=0 by Theorem 3.2.
Since »(| DN l)——d(3)=v([N |)—d(b), some indecomposable summand of Wy
is of height O (in 4). This completes the proof.

Corollary 4.2.

(i) For any XEIrr°(B), EE Itr’(b) for some irreducible constituent € of X .

(ii) (Kawai [20, Corollary 2.5]) For any ¢ €1Br(B), € IBr(b) for some
irreducible constituent ) of Py.

Proof. It suffices to prove (i). Let U be an R-form of a KG-module
affording X. By Theorem 4.1 some indecomposable summand V of Uy is of
height 0 in b, so some irreducible constituent of K®, V is of height 0.

Let Irr°(b\B) be the set of irreducible characters in b appearing as an ir-
reducible constituent of X, for some XEIrr’(B). We define IBt°(4\B) in a
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similar way. To determine these sets, we need the following

Lemma 4.3. Assume that b is G-invariant. Let D and § be defect groups
of B and b, respectively, such that §<D. If £€Irr(b) extends to QN for some
subgroup Q with §<Q=D, then there is XEIrr(B) such that (X, &)y=+0 and that
h(X)=d(B)—v(|Q1)+ht(Z).

Proof. Let £ be an extension of £to QN. Let band B be as in the proof
of Theorem 4.1. Any irreducible constituent of £2¥ belongs to b. By the de-
gree comparison it follows that there is & Irr(6) such that (§°¥, 7),, =0 and
that ((1)),< | DN/QN| ,(£(1)),. There is X< Irr(B) such that (X, n¥e®V)y o)x
#+0. Then we have (X(1)),<|N¢(D)N/DN|,(»(1)),- Since B induces B,
(XE(1)),=(X(1)),, cf. [9, (V.1.3)]. Thus there is X&Irr(B) such that (X(1)),=
| G/N4(D) N|,(X (1)), and that (X6, X);=%0. Since @ N N=§ by Knorr’s theo-
rem, this X is a required character.

Theorem 4.4. With the notations as above, we have :

(1) Irr®(B\B)={EEIrt%bd); & extends to DN for some inertial defect group
D of B.}.

(i) IBr°(B\B)={y-€1IBr°(b); «» is D-invariant for some inertial defect group
D of B.}.

Proof. We may assume that b is G-invariant. To prove (i), let £E€Irr°
(\B) and take XEIrr(B) with (X, £)y=+0. Let U be an R-form of a KG-
module affording X. As in the proof of Theorem 4.1, some indecomposable
summand of Upy is of height 0 in b (with b as above). So there is y&Irr%(b)
with (X, n)on+0. Put yy=e>V_1 &. We have p(1)=en&,(1). Since &, is
G-conjugate to &, v(n(1))=v(E(1))=vr(&(1)). So ny=E&,, because e and 7 are
powers of p. If £,=E%, xEG, then £ extends to D! N, as required. The re-
verse inclusion follows from Lemma 4.3 (with D in place of Q). (ii) It is prov-
ed in a similar way that IBr%(6\B) is contained in the right side. Assume that
€ IBr%(b) is D-invariant for a defect group D of B. Let W be a kN-module
affording . Let band B be as in the proof of Theorem 4.1. Then W extends
to a kDN-module W. Let V be a kNg(D)N-module lying in B such that
W |Vy,y. Asin the proof of Theorem 4.1, h#(V)=0. Let U be the Green cor-
respondent of V' as before, so U lies in B and At(U)=0. From the above and
Mackey decomposition, Uy is a sum of G-conjugates of W. Some irreducible
constituent M of U is of height 0, because h#(U)=0, and we have W |M,.
This completes the proof.

Corollary 4.5. Let B, be a weakly regular block of G covering b. Then
Irt%(b\B,,) S Irt°(b\B) and I1Br’(b\B,)CSIBr(b\B). In particular, the sets Irr°
(6\B,,) and IBr°(b\B,,) do not depend on the choice of B,,.
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Proof. We may assume that b is G-invariant. Since there is a defect
group of B, containing a defect group of B, the assertion follows from Theorem
4.4.

Corollary 4.6. Assume that B covers By(N), then there is X< Irt%(B) such
that N < Ker (X).

Proof. Since 1y extends to any overgroups, this follows from Theorem
4.4 (or simply from Lemma 4.3).

ReMARK 4.7. 'The above corollary is the same as saying that if B covers
By(N), some block of G/N dominated by B has defect group DN/N. This fact
has been known for special N, cf. Chap. V, section 4 of Feit [9].

Put mod-Ker(B)= N Ker(¢), where ¢ runs through IBr(B). The follow-
ing corollary gives a characterization of mod-Ker(B) via the (ordinary) irre-
ducible characters in B, which extends Theorem 2.4 in [15]. Let J1(B) be the
set of normal subgroups IV of G such that By(NN) is covered by B and that for
any XEIrt%(B), Xy is a sum of linear characters.

Corollary 4.8. mod-Ker(B) is the unique maximal member of J1(B).

Proof. Put N=mod-Ker(B). For any X&Irr(B), Xy is a sum of irre-
ducible characters of height 0 in By(N), by Corollary 4.2. This shows that
Ne&JI1(B), since N is p-nilpotent. Now conversely let NEJI(B). Let Dbea
defect group of B and £EIrt%(By(NN)) be D-invariant and assume that the de-
terminantal order o(det &) is prime to p. Then & extends to DN (cf. [10]), so
by Theorem 4.4 there is XEIrr’(B) with (X, £)y=0. By definition of JI(B),
& must be linear, and then o(det £)=0 (mod p) implies that the decomposition
number d(&, 1y)=0 unless £=1,. This implies that N is p-nilpotent, cf. [15,
Lemma 2.1 (ii)]. Since B covers By(N), N=<Ker(X) for some X&Irr(B).
Then O,/(N)=0,(G) N Ker(X)=Ker(B), so N<mod-Ker(B). This completes
the proof.

In the rest of this section we prove the following theorem. Put &=
DN N for an inertial defect group D of B. (So 8 is a defect group of 4.)

Theorem 4.9. Assume that D=Cy(8) 8. Then we have Irr°(b\B)=1Irr(d),
if one of the following conditions holds.

(i) Cy(d) is abelian.

(ii) D is abelian.

(iil) There is a complement for & in D.

The condition (ii) above is quite natural in view of the height zero conjecture.
By Theorem 4.4, we have Irt®(6\B)=1Ir1(d), if there is an (inertial) defect
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group D of B with the following properties.

(I) Every £€Irr%b) is D-invariant, and

(IT) every D-invariant £ € Irr%(b) extends to DN.
We first consider the condition (II). For this purpose we may assume that
G=DN, where D is a defect group of B and b is G-invariant. We have:

Lemma 4.10. For a suitable root b, in & Cy(8) of b, the unique block B, of
DCy(8) covering b, has defect group D and b, is D-invariant.

Proof. Let & be the block of Ny(8) such that 5¥=5b. Since Ne(D)S Ny (3),
there is a block B of N(8) such that B°=B and that D is a defect group of B.
Since the block idempotents corresponding to B and b are the same, it follows
that B covers . By the First Main Theorem, b is Ny(8)-invariant. Put C=
8 Cy(8) and H=DCy(8). Let b, bz a block of C covered by 4 and B, the unique
block of H covering 4. Let V be an indecomposable 2N4(8)-module in B of
height 0. It is easy to see that C is normal in Ny(8) and that B is a unique
block of N4(8) covering b,.  So V,, is of height 0 by Theorem 1.10 (and Corol-
lary 1.5). Since V;,=(V3,)c and v(|H|)—d(B,)=v(|C|)—d(b,) (with equality
only when &, is H-invariant), consideration of dimension shows that &, is H-
invariant and that some indecomposable summand W of Vj is of height 0.
Hence vx (W) is a defect group of B, and |vx(W)|=|D|. Since vx(W)= s
D, we get that vx(W)=D" for some nEN(8). Then nEN(H), so by=>b""
is the required root of .

The following clarifies the condition (II) completely.

Proposition 4.11.  The following conditions are equivalent.
(i) Ewvery D-invariant £ € Irr°(b) extends to DN.

(ii) Every D-invariant linear character of 8 extends to D.
(iii) [D,8]=[D, DIN8é.

Proof. Let B, and b, be chosen as in Lemma 4.10 and H, C be as in the
proof of Lemma 4.10. We prove that (i) is equivalent to:

(iv) Every D-invariant £,€ Irr%(b,) extends to H.
(iv)=>(i): For any D-invariant £ € Irr%(d), there is &,EIrr%(d,) such that &, is
D-invariant and that (£, £):%0 (mod p), because &, is D-invariant and h¢(&;,)
=0. Now it is easy to see that £ extends to G if (and only if) &, extends to H.
So (iv) implies (i).
()= (iv): For any D-invariant &&Irr%(d,), & is D-invariant and of height 0,
cf. Proposition 1.8, so similar argument applies.

Next we show that (ii) and (iv) are equivalent. Note that every D-invariant
E,&Irr%(b,) is written as £=FE for a D-invariant linear character ¢ of §(and vice
versa), where £ is defined as in Feit [9, (V.4.7)]. We show that &, extends to H if
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and only if { extends to D. First assume that there is an extension % of &,
Since ht()=0, (3, A)p=+0 for some linear character A of D. (Apply Theorem
3.2). Since (&,); is a multiple of §, this implies As={. Conversely let A be an
extension of {. Let b, be a root of B, in DCy(D). We have A”a®)=37+-6 for
some character 8, where A€ Irt’%(d,) is defined as above. So {C=(\F).=(\%),
+-+J» for some character 4. Since {€ is a sum of a multiple of &, and characters
lying outside ,, it follows that (A%), is a multiple of &. Now ht(A%)=0 by
Proposition 1.8, so for some irreducible constituent X of A%, X=§,.
The equivalence of (ii) and (iii) is obvious.

REMARK 4.12. Theorem 8.26 in [10] reads: Let /N be a normal subgroup
of G with G/N a p-group. For a p-Sylow subgroup P of G, assume (a) PN.N
<Z(P), and (b) every irreducible character of PN N extends to P. 'Then every
G-invariant irreducible character of IV extends to G.

The above proposition is related to this theorem as follows: Let &€
Itr(N) be G-invariant. Let b be the block of N (with defect group &) con-
taining £. If At(£)=0, then (b) implies that £ extends to G by Proposition 4.11.
(On the other hand, § is abelian by (a). So ht(£)=0 would follow from the
height zero conjecture.)

To consider the condition (I), we let T7= N1y(£), where & runs through
Irr(b). T} is normal in T;. We first extend Lemma 2.2 as follows:

Lemma 4.13. Assume that b is G-invariant. Let Q be a subgroup such
that S=<Q=D and let b(Q) be the block of QN covering b. Then Q is a defect

group of b(Q).

Proof. By Lemma 2.2, D is a defect group of 5(D). By induction on
|D/Q|, we may assume | D/Q|=p. Since b(Q) is DN-invariant and covered by
b(D), DNQN=Q is a defect group of 5(Q) by Knorr’s theorem.

Lemma 4.14. Assume that b is G-invariant. Let B, be a block of T}
covered by B. Then we have

(i) Bf=B.

(it) & Cp(8) is contaired in a defect group of a G-conjugate of B,. In par-
ticular, Z(D)<T;.

Proof. Let & &Irr(b) and take &, Irr(I5(£,)| &) such that {fIr(B)N
Irr (G |&,). If b, is the block containing ¢;, then 6f =B, cf. [9, (V.1.2)]. Take
another &, Irr(b), if any, and take &,E Irr(I4(&,) N I(&,) | €,) such that {lve
Irr (b)) N Irr (Zg(€1) |€,). If b, is the block of I(€,) NIg(&,) containing &), then

le¢v=p. Hence b§=B. Repeating this process, we finally get a block B’ of
T} such that B’°=B. Then B’ is G-conjugate to B, so Bf=B. This implies
Z(D)=Tj}, cf. Theorem 2.1. Now for any x&Cp(3), put @=<x, 8> and let
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b(Q) be the block of QN covering b. By the above (with 4(Q), @N in place of
B, G) and Lemma 4.13, we get that x€Z(Q)<T;N@N, so C,(8)=T;. Let
D*, x€G, be a defect group of the Fong-Reynolds correspondent of B in the
inertial group of B, in G. Then 8 C»(8)<(D* N T}3)*™", which is a defect group
of Bi™" This completes the proof.

Proposition 4.15. Assume that b is G-invariant. Let A be a subgroup
of Cp(8) such that (1) A is abelian, or (2) § is complemented in AS. Then for
every E€1rr%(b),

(i) & extends to AN, and

(ii) thereis XE Irr (B) such that (X, &)y +0 and that ht(X)<d(B)—v(| 4 3]).

Proof. (i) Put Q=48 and let Q) be as in Lemma 4.13. So @ is a
defect group of #(Q). In either case, the condition (ii) in Proposition 4.11 is
satisfied (with @ in place of D; in case (2), use Wigner’s method.) and any
£€Irr’(b) is Q-invariant by Lemma 4.14, so the conclusion follows from Pro-
position 4.11. (ii) follows from (i) and Lemma 4.3.

Proof of Theorem 4.9. Since we may assume that b is G-invariant, the
assertion follows from Proposition 4.15 (ii) (with 4=Cy(3)).

5. A generalization of a theorem of Isaacs and Smith

In [11] Isaacs and Smith have given a characterization of groups of p-length
1 ([11], Theorem 2). Here we prove a generalization of their result.

For a block B of G, let mod-Ker(B) be as in section 4 and let Ker’(B)=
N Ker(X), where X runs through Irr°(B). Let Ker(B) be defined in the usual

way.

Lemma 5.1. Let B be a block of G with defect group D.
(1) If B covers the principal block of a normal subgroup N of G, D is a p-

Sylow subgroup of DN.
(i) Ker%B)=Ker(B) D and mod-Ker(B)<Ker(B) D.

Proof. If B covers the principal block of N, DN N is a p-Sylow subgroup
of N, by Knorr’s theorem. So (i) follows. By Corollary 4.8 (or more sim-
ply, by [15, Theorem 2.3]), Ker%(B)<mod-Ker(B). As is well-known, (mod-
Ker(B)) D is p-nilpotent and its normal p-complement is Ker(B). Since D is
a p-Sylow subgroup of (mod-Ker(B))D by (i), (mod-Ker(B)) D=XKer(B) D.
This completes the proof.

Let K be a normal subgroup of G such that B covers the principal block

of K, and put G=G/K and let {B;; 1=<i=<s} bz the blocks of G dominated by
B. Put D=DKJK. Then we have the following
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Proposition 5.2. Assume that there is a defect group D of B such that ®(D)
(the Frattini subgroup of D) contains a p-Sylow subgroup of K. Then for exactly
one value of i, B; has defect group D.

Proof. There is a block B; with defect group D by Remark 4.7. Let
b be the Brauer correspondent of B in Ny(D). Let b be a block of Ny (D)
dominated by b. (Since D is a p-Sylow subgroup of DK by Lemma 5.1, N(D)
=Ng(D), by the Frattini argument.) We claim that & is unique. Let @ be a
p-Sylow subgroup of K such that Q<®(D). Put L=N(D)NK. Then
N&(D)==Ny4(D)/L. We note that b covers By(L). In fact, there is XE Irr%(B)
such that Ker(X)=K by Corollary 4.6. Since 4¢(X;)=0, X,#0. So b covers
By(L). Thus it suffices to show that & does not ‘“decompose” in Ny(D)/L. We
see that L mod-Ker(b) is p-nilpotent and that L/L N mod-Ker () is a p’-group,
since @ =<D=mod-Ker(d). So the claim follows from [16, Problem 9 on p. 389],
since Q<®(D). Now assume that B; has defect group D. We show that
B;=b¢% with b as above, which proves the uniqueness of 7. Let U be a kG-
module in B; with vertex D and 7 the Green correspondent of U with respect
to (G, Ng(D), D). Let U(resp. V) be the inflation of U(resp. V) to G (resp.
Ng(D)). D isa vertex of U, since D is a p-Sylow subgroup of DK. Similarly D
is a vertex of V. So V is the Green correspondent of U with respect to (G,
Ng4(D), D). Hence V must lie in . So V lies in b, which shows that b induces
B;, as required.

Theorem 5.3. Let B be a block of G with defect group D. If every XE
Irr%(B) restricts irreducibly to No(D), then G=Ng(D) Ker (B).

Proof. We first consider the case where D is abelian. Let & be the Brauer
correspondent of B in Ng(D). For any £€Irt(b), ht(£%)=0 by Proposition
1.8, so it follows from the assumption that there is X&Irr%(B) such that
Xygm=E. Let I={¢€Ir%b); D=Ker(£)}. For each £€1, take X (£)EIrr%(B)
whose restriction to Ng(D) equals £ and let K= N Ker {X(§)}, where & runs
through I. Clearly K N Ny(D)=<=mod-Ker(d) and, by Lemma 5.1, mod-Ker(b) <
Ker(b) D. Since Ker(d) is a normal p’-subgroup, Ker(b)<Cy(D). Hence
KNNyD)=C¢D). On the other hand, D is a p-Sylow subgroup of K by
Lemma 5.1. Hence K is p-nilpotent, by Burnside’s theorem. By the Frattini
argument, G=N;(D) K. Since K=Q,(K) D<Ker(B) D, we get G=Ny(D)
Ker(B), as required. For the general case, put G=G/Ker’(B). We claim that
Ker’(B) satisfies the assumption of Proposition 5.2 with K=XKer(B). Put Q=
DNKel’(B). Then @ is a p-Sylow subgroup of Ker(B), cf. Lemma 5.1. For
any linear character A of D, define A& Irr(DC¢(D)) as in the proof of Proposition
4.11. Then ht(A%)=0, so there is X Irt’(B) such that A is an irreducible con-
stituent of X,. This shows Q=<Ker(\), and hence Q<[D, D]. So the claim
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follows. Now let B be the block of G as in Proposition 5.2. Since every
XEIrr(B) comes then from B, Ker’(B)=1. Since N (D)=Ng(D) by the
Frattini argument, B satisfies the same assumption as B. On the other hand,
since (by Corollary 1.7 (ii)) Xy 4p) € Irr’(b) for any X & Irr®(B), it follows that X,
is a sum of linear characters (by Corollary 4.2 (i)). Hence [D, D] <Ker%(B) and
D is abelian. So G=Ng(D) Ker(B), by the above. Thus G=Ng(D), since
Ker(B)<Ker’B)=1. Hence we get G=N4(D)Ker (B)=N4(D) Ker(B) D=
N¢(D) Ker(B), by Lemma 5.1. This completes the proof.

6. The height zero conjecture

The following is a well-known conjecture of Brauer:
(*) Blocks with abelian defect groups contain only characters of height 0.
Berger and Knorr [1] have proved the following

Theorem 6.1. If (*) is true for all quasi-simple groups, it is true for all
[finite groups.

We prove this theorem by applying some results in section 4 and a theorem
of Knorr [14, Corollary 3.7].

Lemma 6.2. If (*) is true for all quasi-simple groups, it is true for any
group H with H|C' simple for a central subgroup C of H.

Proof. The proof is done by induction on the group order. If H=[H, H],
then H is quasi-simple and (*) is true by assumption. If H=[H, H], let K
bz such that [H, H]<JK <{H with |H/K|=gq, a prime. Let B be a block of
H with abelian defect group D and let XEIrr(B). We consider the case
when g=p and Xxz=31%., §;, where all ¢; are distinct. If 4 is the block of K
containing &;, then 4°=B, since {f=X. So D is G-conjugate to a defect group
of b, cf. Theorem 2.1. Since ht(f,)=0 by induction, 42(X)=0. Other cases
are treated similarly. This completes the proof.

Proof of Theorem 6.1. 'The proof is done by induction on the group order.
Let B be a block of a group G with an abelian defect group D and let X Irr(B).
Let N be a maximal normal subgroup of G. So G/N is simple. Let {&Irr(V)
bz such that (X, ¢)y+0. Let & be the block of N containing ¢ and & a defect
group of b. We may assume that b is G-invariant. Let T be the inertial group
of tinG. If T=+G,let y€Irr(T|¢) be such that y°=X and let B’ be the block
of T to which % belongs and D’ a defect group of B’. Then D’'=<. D, since
B'¢=B. On the other hand, D'=; Z(D)=D. (In fact, the proof of Lemma
4.14 shows that B’ is induced from a G-conjugate of B,, B, being the same as in
Lemma 4.14. So the assertion follows.) Hence D'=; D. By induction At(n)=
0, so ht(X)=0. So we may assume { is G-invariant. Now take a central ex-
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tension of G,

1—>Z—>GA!Z>G—>1,

such that f"(N)=N,xZ, N;</G and that ¢ extends to a character of G, say
¢, under the identification of N; with N through f, and that Z is a finite cyclic
group. Here we note the following. Since & is abelian, 4#(¢)=0 by induc-
tion. So & extends to DN by Proposition 4.11, since D is abelian. Thus the
above central extension may be taken so that

(#) the subextension 1—Z— f~!(DN) L DN—1 ‘splits.

Let X be the inflation of X to G. Let B be the block of G to which X be-

longs. There is a unique irreducible character ) of Gzé/N such that X=¢ .
Let B be the block of G to which +» belongs. Let D and D be defect groups
of B and B, respectively. We have

(I) DZ|Z=;D.

Proof. Since B is dominated by B and G is a central extension of G, the
result follows.

(II) D is abelian.

Proof. We have f~(DN)=DZN=H X Z for a subgroup H by (#) and (I).
So DZ=KxZ for a subgroup K. Then K=DZ|Z=D is abelian, so D is
abelian.

(III) DN|N=;D.

Proof. We first show DN/N=zD. We have wi(K)=E&(x) w(x)| G |/E(1)
Jr(1)|Ce(x)|, where x€G and K is the conjugacy class of G containing .
From this we get that w3(K)=wy(L)m,(&(x) IN|/E(1) |Cy(x)]), where m,—
|C&(®): Ce(x) N/N| and L is the conjugacy class of G containing %, the image
of xin G. Here &(x) [N|/E(1) |Cy(x)| is an integer. In fact, let A be the Z-
linear combinations of the N-conjugacy class sums of G, where Z is the ring of
rational integers. If T is a matrix representation affording £, then T'(4) is a
commutative ring (with finite Z-rank), since {y is irreducible. If C is the N-
conjugacy class containing ¥, T(é):al, a scalar matrix; where a equals the
number in question. Hence the assertion follows. Hence, if wQ(K) %0 (mod 7),
then m, mq,(l‘;) #£0 (mod z). This implies DN, IN=5D. Hence D is abelian by
(II), and At(+r)=0 by assumption and Lemma 6.2. Let V(resp. W) be an R-
form of £ (resp. ¥). Thus V®j; Inf W is an R-form of X. Since ht(y)=0, D
is a vertex of W. So, if we let A be the inverse image of D in G, V @ Inf W
is A-projective. But D must be a vertex of it, by Knorr’s theorem [14]. Hence
D<¢A,and DNJN<zD. This completes the proof of (III).

Now we show h#(X)=0. Since X=E », X(1)=%(1), £(1)=& (1), and ke (¢)
—ht(y)=0, ht(X)=d(B)—d(b)+v(1Z|)—d(B). Since d(B)=d(B)—v(|DnN
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N|) by (III), and d(B)=d(B)+» (1D Z|) by (1), it follows that ht(X)=v(|DN
ND—d®)+v(|Z))—v(|1DNZ]). Since DN N is a defect group of b and a p-
Sylow subgroup of Z is contained in D, we get ht (X)=0, completing the proof.
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