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0. Introduction

The object of this paper is to establish some estimates for the second order
derivatives of the solution of the 0-Neumann problem. Similar estimates
were obtained by Greiner-Stein [2] when the Levi form is non-degenerate
and the metric is a Levi metric. In this article we derive such results merely
assuming that the basic estimate (0.2) below holds; the metric may be an ar-
bitrary hermitian metric and we permit some cases where the Levi form is
degenerate.

We begin with recalling what the 9-Neumann problem is. Let M be
a bounded domain in C" with C~-boundary bM. We denote the vector bundle
consisting of type (1,0) vectors by S, and the space of smooth (p, ¢)-forms on
M by ar(M). If we write a (p, q)-form ¢ as >V ; ¢; ; dz'AZ’, then the 0-
operator is defined by

0p = 2377 2% 65”1’-’ dz;Adz'Ad7 ,
2

where {z,, -+, 2,}={x,+v—1y,, -+, #,++/—1y,} is the canonical coordinate
system of C”, 8/62,—=% (8/0x;—+/—18/8y;), j=1, -, n, and the notation >}

means that the summation is taken over strictly increasing p-tuples I and g¢-
tuples J of (1, :--, ). Let D?? denote the totality of the smooth (p, ¢)-forms
¢ on M such that (yr, 9¢)=(0, ¢) holds for each e@?¢ (M), where &
is the formal adjoint of 8 and (, ) the L*-inner product on M. We consider
the following variational problem: given AEC and f&&”9M) arbitrarily,
find = D such that

Oy Q@ $)+rw $)=(f,¢) forany gD,
where Q(¢, ¥)=(0¢, 0y)+ (D¢, Y)+(¢, ¥). This problem is equivalent to

the following boundary value problem:

0.1)F  (O+r+1u=f in M, ucD?, GucDre+ |
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where []=89499 stands for the complex Laplacian. Observe that the solu-
tion u of (0.1),, which is required to satisfy the first boundary condition u& D?*,
satisfies automatically the second boundary condition dueD?**!. The case
A=—1 is the 9-Neumann problem. The solution operator N, called the 8-
Neumann operator, is defined in such a way that if f is orthogonal to the null
space of [] then Nf is the solution of (0.1)_, orthogonal to the null space of [J.
For precise definition of Nf, see Section 3. The case A=—1 is reduced to
the case A=0 via spectral theory. We thus first consider the case A=0.

It is easily seen that there exists a solution # of (0.1), in the completion
of D?* with respect to the norm Q(¢)=V Q(¢, ¢). The most difficult part
of this theory is to prove the smoothness of the solution up to the boundary; that
is, to verify that the generalized solution # in the completion of D?*¢ actually
belongs to D?¢. 'This problem has been solved by Kohn under the assumption
of the following “basic estimate” due to Morrey [11]:

(0.2) SbM|¢|2dS§CQ(¢)2 for any D,

where dS stands for the surface element of &M and C is a constant independent
of ¢. In this paper we often use C for different constants without notice.
Notice that the estimate (0.2) holds for each ¢=1 if M is a strongly pseudo-
convex domain. Assuming (0.2), Kohn obtained an L*-estimate with loss
of one derivative, see (2.0) below; in particular, the estimate of all the first
order derivatives of the solution u of (0.1), by f: [[u||,=C||fll. Notice that
it is impossible to estimate the L’-norms of all the second order derivatives of
u by that of f under the assumption (0.2) only, see Sweeney [15].

Recently an interest is focused on obtaining sharp estimates without loss
of derivatives for the solution. In particular, Greiner—Stein [2] obtained esti-
mates, in various function spaces, of the second order derivatives of the solu-
tion  in term of f, where the directions of the derivatives are specialized accord-
ing to the problem, cf. Sweeney’s result cited above. Our main concern is
to generalize their result in the case of “Levi metric” to the case of an arbitrary
hermitian metric. Though our result will be stated in the case of the standard
metric in C", it can be generalized easily to the case of an arbitrary hermitian
metric on a complex manifold, see Appendix.

In order to specify the directions for which we can estimate the second
order derivatives of the solution u, we define the function r by r(x)=—dis(x,
bM) for x€M and r(x)=dis(x, bM) for x&c M where dis(x, bM) denotes the
distance from x to bM; then r is smooth and satisfies |dr|=1 in a neighbor-
hood M’ of bM. We define the vector field 9/0n on M’ by

or 0 L, or 9
SIS
""\ox; ox; 8y; 0y;
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which is the unit exterior normal vector to M on bM. Then a vector field
of type (1,0) is defined by

Zy,= Vl’f {8/on—~/—1J 0/on} ,

where J is the complex structure tensor. Roughly speaking, Z; is the direc-
tion along which the estimate is lacking.

Let us state our sharp estimates more precisely. Since the second order
derivatives in the interior of M are estimated by using a standard interior
regularity theorem for elliptic equations, we need to work only near the bound-
ary. For an arbitrary boundary point, we take a neighborhood U of that point
in such a way that there exists an orthonormal frame {Z,, -+, Z,} of S restricted
to U with Z,=Z/. We set W,j-1=Re Z; and W,;=Im Z; for j=1, -+, n—1.
Let &, and &, be real smooth functions supported in U such that §,=1 in a
neighborhood of supp &;. Then our estimates for the solution u=32}; %, ;
dz'Adz’ of (0.1), are stated as follows:

Estimate A.  Sup |[W,W 5 /lle = ColllE Sl fIT}

for k=0, 1, 2, ..+, where the supremum is taken over 1=<i, <2n—2 and all
I, ], the norm is the L?-Sobolev norm and C, is a constant independent of f.

Estimate B. Srqu WZi% s fllesn < CollE Al A1} -

Greiner-Stein [2] established Estimates A and B under the conditions
that the Levi form is non-degenerate and the metric is a Levi metric, i.e., the
metric tensor g on S,®S, coincides with the Levi form 80r where S,=SN
CTbM. They considered only (0,1)-forms, but proved the results for more
general L'-(1<<t<Cco) Sobolev and Lipschitz norms.

In this paper we shall prove Estimates A and B for (p, g)-forms assuming
“basic estimate” (0.2) holds for D?¢. We shall also prove these estimates
for Nf instead of the solution u of (0.1), where IV is the 3-Neumann operator.

In addition, as an application of estimates for (0.1)_;, we give a sharp esti-
mate for the solution of the 9-problem, which is orthogonal to the null space
of 3. Such a solution v of the equation dv=0 with § €@**(M) has the following
estimate:

0.3)  Sup {IWtwr i H1Z18ws sl < CellIEN 11011}

for k=0, 1, 2, .-, where v=2) ;v,;d2'Adz/, the supremum is taken over
1<j=<2n—2 and all I, J and C, is a constant independent of 4.

Some remarks on allowable vector fields and estimates for them will be
treated in Section 4.

Estimate A is obtained from a few devices of the calculus for the commuta-
tors and for the integration by parts. For a real tangential differential operator
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D of order k+1, we shall show
O(Dtw)—Re(DS, f, D) = O(||t'ulli)  for feary(M),

where §’ is a real smooth function supported in {{,=1} with {'=1 in
a neighborhood of supp ¢;,. We use this commutator estimate for D of the
form W,D', where D’ is an arbitrary tangential differential operator of order &.
Since Q(W;D'Cu) dominates X3, ; ;I|W;W,;D'Cu; 5||, the tangential derivatives
of W;W i, ; up to order k are estimated, for the term O(||¢'ul|;.+.) can be
estimated by Kohn’s estimate (2.0), while the term Re(W;D'C,f, W;,D'C\u) is
treated by integration by parts. The estimates for the normal derivatives are
obtained as in the case of standard boundary value problems for elliptic equa-
tions.

Estimate B was suggested by Kohn (cf. foot note in pp. 7 of [2]). It is
obtained by using the second boundary condition, namely, dusD??*'. Let
u=w,Au'+1* be the decomposition of the solution of (0.1),, where @,=V2dr
=g(Z;. *) and 4, 4> do not contain w,. Then the first boundary condition
is written as %'=0 on M, while the second boundary condition implies Z—',’,u,, J
— By, j#’=0 on bM with an appropriate 0-th order operator B; ;. The estimate
of u' is easy. For #?, we estimate the second order derivatives of %’ containing
Z, by using the second boundary condition. Hence for the whole # we obtain
the desired estimate for the second order derivatives containing Z}.

The outline of this paper is as follows. In Section 1, we review some
elementary calculus for differential forms. All the formulae are known, but
arranged for the convenience of our use. In particular, expressions for the
complex Laplacian and for the second boundary condition are given. We
prove Estimates A and B for (0.1), in Section 2, and those for the 9-Neumann
solution in Section 3. In Section 4, we make Estimate A intrisic in terms of
allowable vector fields. An application to the 3-problem is given in Section
5. In Appendix, we suggest how to extend these results to a complex mani-
fold with an arbitrary hermitian metric.

1. Preliminaries

In this section we give some notations and known facts. We denote A?S*
®AS* by A?? where S* and S* are the duals of S and S respectively. The
canonical metric g in C” is given by g(8/dz;, 8/0Z;)=3$;;/2 and g(8/dz;, 0/0z;)
=g(0/0Z;, 8/0z;)=0 for 1=i,j<m. V stands for the flat connection in C”,
namely, Vyp=217,;(X¢, ;) dz'AdZz’ for ¢=211 ;¢p; ;42" AdZ’ and for a vector
field X.

1.1. The metric on the vector bundle A?¢
Let ¢'=2)} ;1. ;dz'AdZ’, i=1, 2 be (p, q)-forms. Then the inner product
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<p', $>> on A?1 is defined by
<P, D> =273 1197
where the summation 33’ is taken over all ordered p-tuples I=(z,, -+, 7,), 1=¢,

<+ <i,=n and g-tuples J=(j, =, j,), 1= i< - <j,=n. We set |p|=
V/<¢, ¢>. For this inner product we have the equality:

X!, ¢ = (Vxo!, ¢2+<P", Vz¢®>  for any vector field X.
In C", it means the obvious equality
X(SY ¢.s87.0) = 3 (Xoh.)) ot + 5 ohs(Xeh)).-
Let ¢ be a (p, g)-form and X&I(S). Then the (p, g—1)-form i(X)¢ is
defined by
HX)P) Xy, -+, Xyory Vi o+, V) = (X, Xiy o0y Xyoty Yy oo, V)

for X, -+, X,,,€8 and Y, -, Y,e8. i(*) is called the interior product.
The above norm on A? has the following property. Let ¢=&*%(M’) and
@=g(Zs, *¥). Then

LLY)  |$P= [dZ)e|*+ @Ad|* .
This equality will play an important role for Estimate B.

1.2. The boundary conditions

In this paragraph we rewrite the boundary condition ¢=D?? as a geo-
metrical condition on bM.

Let $=a»4M) and E&*"Y(M). Then the following integral formula
holds.

(12.) @, ) = (b, 991+ | <o iZi)gras”,

where dS’ stands for 1/V/ 2 times the volume element of bM.

In Folland—Kohn [1] the second term in the right side was represented as
Ssulyr a(B, dr)p>dS where o(d, £) denotes the symbol of ¢ and dS the surface
element of b6}. Hence we can see that the symbol (2, dr) is given by an inte-
rior product. Moreover we can see that

Dri = {pe@r(0)|i(Z,)p = O on bM} .

Tt is known that the solution u of (0.1), satisfies du< D?®+', namely, i(Z})0u
=0 on bM. This is called the second boundary condition.

1.3. Modified connection V
Let ¢=D?? and X be a vector field tangenital to bM. In general Vy¢
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does not satisfy the first boundary condition. Hence we modify Vy so as to
presetve the first boundary condition. Recall that the estimate in the interior
of M has been known, so that we may only work in the neighborhood M’ of
bM. As in Komatsu [8], we define the connection ¥V on M’ by

¥, Y = PV PY+(I—P)Vy(I—P)Y,

where P is the orthogonal projection from the tangent bundle to the subbundle
spanned by 8/0n and J8/dn, and we extend this connection to p-form ¢ by

(Vx9) (Xy, -+, Xp) = X($(X,, -+, X)) =221 (X, -+, Vi X, o0, X))
Then, Vyp < D?? whenever ¢ & D?? is supported in M'. In fact,
(Z)Vxp = Vx(i(Z1)$)—i(VxZ2)¢ ,

where both terms in the right side vanish on bM; the first term by the first
boundary condition and the second one by

ViZ, = pZ, with p= SN, 2g(Z}, 8/0Z,) Xg(3/0z;, Z1) .
As in the case of V, our connection V satisfies

(1.3.1) X<, v> = Vi, ¥D+<p, Vx> for ¢, pE»I(M').

In order to see (1.3.1), we set S(X)=Vx—Vy,. Then S(X) is an operator
of order zero and {S(X)@, y>=<¢, —S(X)y¥)> holds for ¢, y=&I(M’) (see
Appendix). Thus <V ch, ¥rd>-+<b, Vay>— (T xby p>+<b, Trd)—<(S(X)h, ¥>
+<, SRW>=0.

When we prove Estimates A and B, we first establish the estimates of the
tangential derivatives of the solution of (0.1), or (0.1)-;, and then those of its
derivatives containing the normal one. Let U and {Z,, ---, Z,} be as in the
introduction. Then the complex Laplacian has the local expression:

(1.3.2) D5519+195 = —2,{1 szﬁzj—}---- N

where -+ is at most first order terms. We often use this expression in the
following form:

(133) Vo Vzu= —f—3%7 Vo,V +r

where --- contains at most first order derivatives of u.
We also need the second boundary condition gu<D??*! in order to prove
Estimate B. We set

B, = —S(Z}))+Xict w,Md(Z1)S(Z))

where {@,, -+, @,} is the dual frame of {Z,, -+, Z,}, hence ®,=w,=g(Z,, *).
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Then for u< D?* satisfying dus D#**, we have

(1.34) @ A(Vzu—Bwu)=0 on bM.

2. Estimates

In this section we fix U, {Z,, ---, Z,}, {W,, -+, W,,_5}, &, and &, stated
in the introduction. Assuming that the basic estimate (0.2) holds for D9,
we shall prove Estimates A and B for (0.1),. Firstly we show them in the
case that the derivatives are restricted to tangential directions, namely, only
for J3/on and {W,, -+, W,,_,}. Secondly we show them for general case with
the aid of a usual method for elliptic boundary value problems.

We use the following estimate without not ce.

Kohn’s estimate. Let £ and &, be real smooth functions supported in U
with £,=1 in a neighborhood of supp . Then for each non-negative integer
m, there exists a constant C,, such that

2.0)  [lEullps = CodllEeflla+1IfI}  forany fear(i),
where u is the solution of (0.1), fqrf and || fl|=I| fllo-

We shall prove the following theorem, which is slightly stronger than
Estimate A, and will be used in the proof of Estimate B.

Theorem 1. Let &, and &, be as in Estimate A. Then
Sup IIVW,VW,EluHmLS}lP IV, V28l < CoAlIEA 1+ f1}
for f €@ 9(M), where u is the solution of (0.1), for f.

2.1. The proofs of Theorem 1 and Estimate A

The main tool for the proof of Theorem 1 is the following proposition,
whose proof is given in 2.2, and it is a part of Theorem 1 that the derivatives
are restricted to tangential directions. To state such cases we introduce a
few notations.

We set e;=W,; for j=1, .-, 2n—2 and e,,,=]J0/0n. {e,, -, ey-1} is a
local basis of tangential vectors on U. We denote ¥, * Veuen, by V.* and
set |a|=m where 1=a(l), -+, a(m)<2n—1.

O

Proposition 2.1. Let D=Vy,V,” with |a|=k. Then

ODtw) < CAILAA+AY  for any fear«(i),
where u s the solution of (0.1), for f.

Proof of Theorem 1. We denote \/17 8/on by N’ and JN' by T'. We
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shall prove the following inequality by induction on /.
#1; ) Sup ||V, Ve, V. Vi Ll +Sup ||V, V2,V Vi ul|
S CAIGALHIAY  0=isk,

where the supremums are taken over 1=7, j<2n—2 and |a|=k—1.
Let us prove (§1; I). (#1; 0) follows from Proposition 2.1 and the fact

Sup Vw9l +11Vz,0l| < KQ(¢p)  for gD nNa*(MNU).

Suppose that (#1; ) is known to hold for i</—1. Noticing N'=Z,—+/—1 T",
we get

”vW.'ijVa“va’Clu” =
”vw,vwl(vedvr')vll\pl;‘xﬂ‘+Ivaivig(ijvf)vll\lﬂ;l““‘f‘C“Cﬂl“Hl
S C{ILAll+IfI} by (2.0) and (41; I-1).

On the other hand, noting N'=Z,++/—1 T', we obtain
IVw, V2,V *Vitm|| <
“ijvfgvz;veavllﬁlglu[ [+ “ijvi’,,(vsavT’)v}V—’-lClM [4+CII88] 441
S|V, V.2 V8V 2V 2.8l |+ C I AL+ AT}

Now in view of (1.3.3), ||Vy;V,*Vi7'V 2,V 2, Ll | <

522 11(Vw, YV V2V Eul | H S Il ClIE sl =<
CUCAU+NA N} -

Thus the proof of the induction is complete, and hence so is that of Theorem 1.

Now we can show Estimate A. Since Vyp=2Y ;(X¢; ;)dz'AdZz’ for
=211 7¢;,1d2' AdZ’, we have only to show

[IVw, Vi, Sl < C{IE A+ F11}

The difference of the connections Vy and Vy, namely, S(X), contains no deri-
vatives. Therefore

”VW.-VW,- Cull, < va,vw,- Eaulli+ClIG e =
C{lI&.f1lx+I11f11} , by Theorem 1 and (2.0). q.e.d.

2.2. Proof of Proposition 2.1

The proof of Proposition 2.1 is a consequence of the following estimate:
for D=V,” with |a|=k-+}1,

(22)  O(Dtw, DEw)—Re(DL,f, Dt w) = O(|IE"ullir) »



















































