
Title A Study on Approaches for Stable Distributed
Systems in Unstable Network Environments

Author(s) 首藤, 裕一

Citation 大阪大学, 2015, 博士論文

Version Type VoR

URL https://doi.org/10.18910/52014

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



A Study on Approaches

for Stable Distributed Systems

in Unstable Network Environments

Submitted to

Graduate School of Information Science and Technology

Osaka University

January 2015

Yuichi SUDO





i

List of Related Publications

Journal Papers

1. Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kakugawa,

and Toshimitsu Masuzawa, “Loosely-stabilizing leader election in a population protocol

model,” Theoretical Computer Science, vol. 444, pp. 100-112, 2012.

2. Yuichi Sudo, Kunio Hato, Junichi Murayama, “Performance evaluation for cloud-computing

systems by audit measurement,” IEICE Transactions on Information and Systems , vol. J97-

D, No. 7, pp. 1148-1157, 2014.

3. Yuichi Sudo, Toshimitsu Masuzawa, Gen Motoyoshi, and Tutomu Murase, “Pseudo poly-

nomial time algorithms for optimal longcut route selection,” IEICE Transactions on Infor-

mation and Systems , vol. E98-D, No. 3, 2015 (to appear).

Conference Papers

4. Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kaku-

gawa, and Toshimitsu Masuzawa, “Loosely-stabilizing leader election in population protocol

model,” in Proceedings of the 16th International Conference on Structural Information and

Communication Complexity, SIROCCO ’09, pp. 295–308, 2009.

5. Yuichi Sudo, Daisuke Baba, Junya Nakamura, Fukuhito Ooshita, Hirotsugu Kakugawa, and

Toshimitsu Masuzawa, “An agent exploration in unknown undirected graphs with white-

boards,” in Proceedings of the Third International Workshop on Reliability, Availability,

and Security, WRAS ’10, pp. 8:1–8:6, 2010.

6. Gen Motoyoshi, Yuichi Sudo, Tutomu Murase, and Toshimitsu Masuzawa, “Advantages

of optimal longcut route for wireless mobile users,” in IEEE International Conference on

Communications , ICC ’11, pp. 1-6, 2011.

7. Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa, “Loosely-

stabilizing leader election on arbitrary graphs in population protocols,” in The 18th Inter-

national Conference on Principles of Distributed Systems , OPODIS ’14, 2014 (to appear).



ii

Technical Reports

8. Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kaku-

gawa, and Toshimitsu Masuzawa, “Loosely-stabilizing leader election in population protocol

model,” in IPSJ SIG Technical Report, vol. 2009-AL-124, no. 5, pp. 1-8, 2009.

9. Yuichi Sudo, Gen Motoyoshi, Tutomu Murase, and Toshimitsu Masuzawa, “Optimal longcut

route selection for wireless mobile user ,” in IEICE Technical Report, vol. 109, RCS2009-269,

pp. 71-76, 2010.

10. Yuichi Sudo, Daisuke Baba, Junya Nakamura, Fukuhito Ooshita, Hirotsugu Kakugawa, and

Toshimitsu Masuzawa, “Time and space efficient graph exploration by a mobile agent using

whiteboard,” in IEICE Technical Report, vol. 109, COMP2009-58, pp. 57-64, 2010.

11. Yuichi Sudo, Kunio Hato, Hidetsugu Kobayashi, and Eiji Kuwana, “Performance measure-

ment of cloud resources for inter-cloud computing,” in IEICE Technical Report, vol. 112,

IN2012-153, pp. 87-92, 2013.

12. Yuichi Sudo, Kunio Hato, Hidetsugu Kobayashi, and Eiji Kuwana, “Evaluation of per-

formance measurement method of cloud resources for inter-cloud computing,” in IEICE

Technical Report, vol. 112, IN2012-156, pp. 13-18, 2013.

13. Yuichi Sudo and Kunio Hato, “Performance analysis of public clouds,” in IEICE Technical

Report, vol. 113, IN2013-60, pp. 13-18, 2013.

List of Unrelated Publications

Conference Papers

14. Hu Bo, Yuichi Sudo, Kunio Hato, Yuuichi Murata, and Junichi Murayama, “Cost reduction

evaluation of sharing backup servers in inter-cloud,” in Proceedings of the 19th Asia-Pacific

Conference on Communications, APCC ’13, pp. 256-261, 2013

Technical Reports

15. Kunio Hato, Yuichi Sudo, Hu Bo, Tsuyoshi Kondoh, Yuuichi Murata, and Junichi Mu-

rayama, “Resource Information Exchange Scheme for Inter-Cloud Systems,” in Proceedings

of the Society Conference of IEICE, vol. 2012, Communicatoin(2), pp. 57-58, 2012.



iii

16. Tsuyoshi Kondoh, Yuichi Sudo, and Kunio Hato, “Memory Over Commitment Detection

Using Latency Measurement,” in Proceedings of the IEICE General Conference, vol. 2013,

Communicatoin(2), pp. 147, 2013.

17. Kunio Hato, Yuichi Sudo, Hu Bo, Tsuyoshi Kondoh, Yuuichi Murata, Junichi Murayama,

Hidetsugu Kobayashi, and Eiji Kuwana “Evaluation of Resource Information Exchange

Scheme for lnter-Cloud Systems,” in Proceedings of the IEICE General Conference, vol. 2013,

Communicatoin(2), pp. 94-95, 2013.

18. Yuichi Murata, Kunio Hato, Yuichi Sudo, Hu Bo, Tsuyoshi Kondoh, Junichi Murayama,

Hidetsugu Kobayashi, and Eiji Kuwana “Resource Data Model of Inter-cloud for Standard-

ization,” in Proceedings of the IEICE General Conference, vol. 2013, Communicatoin(2),

pp. 124-125, 2013.

19. Tsuyoshi Kondoh, Yuichi Sudo, and Kunio Hato, “Reduction of VM Lead Time in Massive

Scale Out,” in IEICE Technical Report, vol. 113, IN2013-30, pp. 29-32, 2013.

20. Yuichi Sudo and Kunio Hato, “Blocking off reflective DoS attacks by dynamic packet Filter,”

in IEICE Technical Report, vol. 113, IN2013-181, pp. 223-228, 2013.

21. Yuichi Sudo, Takahiro Hamada, Yuichi Murata, and Hideo Kitazume, “Detection of mali-

cious database queries based on matching with HTTP requests,” in IEICE Technical Report,

vol. 114, IN2014-65, pp. 99-104, 2014.





Abstract

Distributed systems consisting of numerous nodes and links such as the Internet, sensor networks,

and ad hoc networks are in wide spread use all over the world. Since distributed systems have

numerous nodes and links, there is always non-negligible possibility that some nodes or links are

crashed, or the performances of some nodes are drastically degraded. Hence, many distributed

systems are unstable in terms of functionality or performance. On the other hand, users of

distributed systems need stable services in most cases. Therefore, the author has tackled with

developing methods for the users to enjoy stable services of the systems. In this thesis, the author

presents four contributions to ensure fault-tolerance, communication performance, and computing

performance of distributed systems.

First, the author introduces a novel concept of loose stabilization, which is an extension of

self-stabilization. Self-stabilizing systems proposed by Dijkstra in 1974, refer to the distributed

systems satisfying that (i) starting from any configurations, the system eventually converges to

a safe configuration (convergence), and (ii) once the system reaches a safe configuration, the

system keeps its specification forever (closure). A self-stabilizing system has high fault-tolerance:

the system can recover from any transient fault (memory crash, topology change, and so on).

However, owing to the strict requirements of self-stabilization (convergence and closure), it is

known that there exists no self-stabilizing system for some problems. For example, no self-

stabilizing algorithm exists for the leader election problem in the population protocol model (the

PP model), which is a common model of mobile sensor networks unless the exact number of

nodes is available. To circumvent this difficulty, the author introduces the concept of loose-

stabilization, which relaxes the closure requirement without impairing the fault-tolerance. To

show effectiveness of loose-stabilization, the author presents loosely-stabilizing algorithms that

solve the leader election problem in the PP model. Specifically, the author presents a loosely-

stabilizing leader election algorithm on complete graphs in the PP model as the first contribution

(Chapter 2), and two loosely-stabilizing leader election algorithms on arbitrary graphs in the PP

v



vi

model as the second contribution (Chapter 3).

Next, the author introduces the study of finding the best route from the current location to the

destination location in terms of communication quality for mobile users. They use various mobile

networks such as cellar networks (e.g. W-CDMA and LTE) and wireless LANs (e.g. WiFi) in

urban areas, hence the wireless environments (communication speeds) of the users highly depend

on their routes. As the third contribution (Chapter 4), the author formulates this problem as

the optimal longcut route selection problem and proves its NP-hardness. Furthermore, the author

proposes two pseudo-polynomial algorithms for the problem, and evaluates their execution time

by a theoretical (asymptotical) analysis and an empirical (simulating) experiments.

Finally, the author introduces the study on a trustworthy measurement method of compu-

tational performance of virtual machines (VMs) in cloud computing systems. Virtual machines

in cloud computing systems generally show unstable and time-dependent performances. Hence,

frequent and continuous measurements of VM performance are necessary to understand the VM

performance of each cloud computing service. However, frequent and continuous measurements

of VM performance by each user impose a large cost on the user. On the other hand, if cloud

service providers measure VM performances of their own systems and publish the performance

information continuously, the user can avoid the measurement cost but may not be confident

with the performance information since the provider may fabricate it. As the fourth contribution

(Chapter 5), the author proposes a method for users to get trustworthy information about the

real performance of VMs with low costs. In this method, cloud service providers publish the per-

formance information of their VMs at regular intervals, and users of their services infrequently

measure the performance of VMs and try to detect the exaggeration of the published information.

The experimental results show that the users can detect, in most of the cases, the exaggeration

of several percentages on the performance the providers make.



Contents

1 Introduction 1

1.1 Loosely-stabilizing Leader Election on Complete Graphs . . . . . . . . . . . . . . . 2

1.2 Loosely-stabilizing Leader Election on Arbitrary Graphs . . . . . . . . . . . . . . . 3

1.3 Optimal Longcut Route Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Performance Evaluation for Cloud Computing Systems . . . . . . . . . . . . . . . . 4

2 Loose-stabilization on Complete Graphs 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Loose-stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Protocol PLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Analysis and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Epidemic and Virtual Agents . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Expected Holding Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Expected Convergence Time . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Complementary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Loosely-stabilization on Arbitrary Graphs 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Chernoff Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Leader Election with Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Leader Election with Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



viii CONTENTS

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Optimal Longcut Route Selection 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 NP-hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Algorithm OLRS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Algorithm OLRS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.1 Nonstop Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.2 Algorithm OLRS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.4 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Discussion about Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Performance Evaluation for Cloud Computing Systems 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2 Simple Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Assumed Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Hypothesis Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Evaluation of the Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Measurement Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 Trustworthiness of Performance Data . . . . . . . . . . . . . . . . . . . . . 77

5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Practical Examples of VMs’ Performance Evaluation . . . . . . . . . . . . . . . . . 83

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusion 85



List of Figures

2.1 The structure of the proof for (2.3): w.h.p. means “with high probability”. . . . . 17

4.1 A problem instance of OLRS obtained by the transformation from UKP to OLRS.

The first and the second elements of the label of each edge e represents P (e) and

T (e) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 The expanded communication amount of s - v walks . . . . . . . . . . . . . . . . . 56

4.3 ω >k ωv,i holds for any k ≥ j. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 The input graph with five access points. . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 The average execution time in Simulation 1. . . . . . . . . . . . . . . . . . . . . . . 65

4.6 The average execution time in Simulation 2 . . . . . . . . . . . . . . . . . . . . . . 66

5.1 The disk-read performance of the low specification VM in Cloud A . . . . . . . . 69

5.2 The model of cloud services and users . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 The proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Detectable fabrication levels for the uniformly increasing fabrication (low specifi-

cation, Cloud A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Detectable fabrication levels for the uniformly-increasing fabrication (α = 0.001) . 81

5.6 The correlation chart of detectable fabrication level (α = 0.001) and variation

coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Memory performance of the middle specification VM in Cloud D . . . . . . . . . . 83

5.8 Detectable fabrication level for the variability-reducing fabrications (α = 0.001) . . 84

ix





List of Tables

4.1 Expressions and notations we use in this chapter . . . . . . . . . . . . . . . . . . . 51

5.1 Comparison between the proposed method and the three simple methods (f =

taudit/TI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 The detail specification of VMs used for the measurement experiment . . . . . . . 77

5.3 The audited periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xi





List of Codes

2.1 Loosely-stabilizing Leader Election PLE . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Leader Election with Identifiers PID . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Leader Election with Random Numbers PRD . . . . . . . . . . . . . . . . . . . . . 37

4.1 Optimal Longcut Route Selection OLRS1 . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Optimal Longcut Route Selection OLRS2 . . . . . . . . . . . . . . . . . . . . . . . 57

xiii





Chapter 1

Introduction

Distributed systems consist of numerous nodes and communication links between nodes. For

example, the Internet, peer to peer networks, sensor networks, grid computing systems, and cloud

computing systems are examples of distributed systems. One of the major issues in this field is to

provide stable functions and performance of a distributed system. Since a distributed system has

numerous nodes, there is always non-negligible possibility that some nodes or links are crashed or

the performance of some nodes are drastically degraded, which causes unstability of the system in

terms of functionality or performance. For example, many applications for a distributed system

are implemented assuming the existence of a single leader node that coordinates the behavior of

all the nodes of the system. Hence, the applications cannot behave correctly when the leader

node is crashed.

So far, the author has tackled with providing stable services in unstable distributed systems

by realizing fault tolerance or guaranteeing communication performance or computational perfor-

mance. Specifically, to realize fault tolerance of a distributed system, the author proposed a novel

variation of self-stabilization that relaxes the closure requirements of the original self-stabilization

without impairing its fault tolerance in practice. The author also dealt with optimizing commu-

nication quality of mobile networks: the author formalizes and solves the problem to find the

route from the starting point to the destination point that maximizes communication quality of

a mobile user in an urban area. Furthermore, the author tackled with obtaining trustworthy

information of computational performance of virtual machines in cloud computing systems. The

author present a novel method by which the users can get trustworthy information about the

performance of virtual machines of each cloud computing system with low cost.

The rest of this chapter presents the overviews of these studies each of which corresponds to

1



2 CHAPTER 1. INTRODUCTION

Chapter 2, 3, 4, or 5.

1.1 Loosely-stabilizing Leader Election on Complete Graphs

in Population Protocols

Chapter 2 focuses on improving fault tolerance of distributed systems. To achieve high fault

tolerance, the author introduces a novel concept of loose-stabilization that is a variant of self-

stabilization.

Self-stabilization [1] is a property of a distributed system: Even when any number and any type

of transient faults (e.g. memory crash and topology changes) hit the system, it can autonomously

recover from the faults. The notion of self-stabilization is described as follows: (i) starting from

any arbitrary initial configuration, a self-stabilizing system eventually reaches a safe configuration

(convergence), and (ii) once a self-stabilizing system reaches a safe configuration, then it keeps its

specification forever (closure). Although self-stabilizing systems provide excellent fault-tolerance

as mentioned above, designing self-stabilizing protocols is difficult and, what is worse, might be

impossible due to the severe requirements of self-stabilization. To circumvent these difficulty and

impossibility, many researchers have tried to relax the severe requirement of self-stabilization and

proposed many variants such as probabilistic stabilization [2], quasi-stabilization [3], and weak

stabilization [4]. However, these variants of self-stabilization still have room for improvement.

There exists neither a probabilistic stabilizing protocol nor a weak-stabilizing protocol for some

problems (e.g. leader election in the population protocol model [5] introduced later). On the

other hand, quasi-stabilization heavily impairs fault tolerance of the original self-stabilization

since it needs a kind of initialization of a distributed system after transient faults happen.

In this chapter, the author introduces a novel concept of loose-stabilization, a new variant of

self-stabilization. All existing variants of self-stabilization relaxes the convergence requirement

to the best of the author’s knowledge. On the other hand, loose-stabilization relaxes the closure

requirement: loose-stabilization requires that, after the system reaches a safe configuration, the

system keeps its specification for a sufficiently long time, though not forever as in the original

self-stabilization. For example, if the system keeps its specification for an exponentially long

time with respect to the number of nodes, this relaxation does not impair the fault tolerance of

self-stabilization at all in practical perspective.

To verify the effectiveness of loose-stabilization, this chapter presents a loosely-stabilizing

algorithm for the leader election problem on complete graphs in the population protocol model



1.2. LOOSELY-STABILIZING LEADER ELECTION ON ARBITRARY GRAPHS 3

[5] (the PP model). The PP model is a common model of mobile sensor networks of anonymous

mobile sensing devices where two devices communicate with each other only when they come

sufficiently close to each other. Self-stabilizing leader election is a important problem in the PP

model partly because many population protocols in the literature work on the assumption that a

unique leader exists [5, 6, 7]. However, it was proved that no self-stabilizing algorithm exists for

the leader election problem on complete graphs in the PP model unless every node (i.e. mobile

devices) has a knowledge of the exact number of nodes [7]. Therefore, the proposed algorithm

shows effectiveness of loose-stabilization: loose-stabilization allows a solutions for the problem

that is known to have no self-stabilizing solution.

1.2 Loosely-stabilizing Leader Election on Arbitrary Graphs

in Population Protocols

Chapter 3 focuses on loosely-stabilizing leader election on arbitrary graphs in the PP model.

A new leader must be created when no leader exists in the system and the number of leaders

must be reduced to one when multiple leaders exist. On a complete graph where all nodes can

communicate with each other, every node can confirm the existence of a leader node since every

node directly communicates with the leader node if it exists. Furthermore, every leader node can

detect the existence of another leader node since any pair of leader nodes can communicate with

each other. However, on an arbitrary graph, detecting the absence or multiplicity of leader nodes

is harder because not every pair of nodes can communicate with each other directly.

Then, the author presents two loosely-stabilizing algorithms: one uses the unique node iden-

tifiers and the other uses random numbers to solve leader election on arbitrary graphs. The

algorithm using node-identifiers adopts the traditional“minimum ID selection” approach while

the algorithm using random numbers adopts a novel approach we call “virus war mechanism”.

Given upper bounds N of n and ∆ of the maximum degree of nodes, both algorithms keep the

unique leader for Ω(NeN ) expected steps after reaching a loosely-safe configuration. The former

algorithms reaches a loosely-safe configuration within O(mN∆log n) expected steps while the

latter algorithms does within O(mN3∆2 logN) expected steps where m is the number of edges

of the graph. These two algorithms also show another evidence of effectiveness of the loose-

stabilization since no self-stabilizing algorithm exists for the leader election problem on arbitrary

graphs in the PP model even if the unique node identifiers and random numbers are available.



4 CHAPTER 1. INTRODUCTION

1.3 Optimal Longcut Route Selection

Chapter 4 focuses on communication quality of mobile users who use mobile networks for con-

necting to the Internet. Users of wireless mobile devices (e.g. smart phones, tablets, and laptops)

need the Internet access not only when they are staying at home or office, but also when they

are traveling. Consequently, when such users search a route from their current location to their

destination, they may prefer the route with a good wireless communication environment to one

with the shortest travel time. In this chapter, the author formulates the above situation as

the optimization problem called optimal longcut route selection (OLRS), which requires to find

the route that maximizes the communication quality during travel subject to a travel time con-

straint. First, the author proves that OLRS is NP-hard. Therefore, it is impossible to devise a

polynomial time algorithm for this problem as long as P ̸= NP. Then, the author presents two

pseudo-polynomial time algorithms for OLRS. Based on the author’s theoretical (asymptotical)

analysis, one of the two is better in terms of the worst-case execution time, and the other one

is better for execution time of most inputs (i.e. a graph representing urban area, the starting

point, the destination point, and wireless environment of each point and edge). The simulation

experiment shows that both the two algorithms find the optimal solution within practically short

time for sufficiently large inputs, and the latter algorithm is far faster than the former algorithm

on average.

1.4 Performance Evaluation for Cloud Computing Systems

by Audit Measurements

Chapter 5 focuses on computational performance of virtual machines in cloud computing systems.

Recently, the market of cloud computing services that provide their users with virtual machines

through internet services has grown significantly. Although cloud service providers present the

specifications of their virtual machines (VMs), it is known that in many cases the real performance

of the VMs deviates far from the specification. To understand the VMs’ performance of cloud

computing services exactly, we need frequent and continuous benchmarking on the VMs of their

service. It requires high cost for users when the users directly measure the performance of the

services that they are interested in. On the other hand, when the cloud service providers measure

their services themselves and publish the result data, the trustworthiness of the result data is

not guaranteed for users since there may exist dishonest providers who fabricate the published

data to be overestimated. In this paper, we propose a method by which users get trustworthy



1.4. PERFORMANCE EVALUATION FOR CLOUD COMPUTING SYSTEMS 5

information about the real performance of VMs of each cloud computing service with low costs.

In the proposed method, cloud service providers publish the performance data of their VMs at

regular intervals while users of their services infrequently measure the performance of VMs and try

to detect the exaggeration of the published information. The experimental results show that the

users can detect, in most of the cases, the exaggeration of several percentages on the performance

the providers make.





Chapter 2

Loosely-stabilizing Leader

Election on Complete Graphs in

Population Protocols

2.1 Introduction

A distributed system is a collection of autonomous computational entities (processes) connected

by communication links. Fault tolerance of distributed systems has attracted more and more

attention since distributed systems are prone to faults. A self-stabilizing system [1, 8] has a

desirable property that, even when any transient fault (e.g. memory crash) hits the system, it can

autonomously recover from the fault. The notion of self-stabilization is described as follows: (i)

starting from any arbitrary initial configuration, a system eventually reaches a safe configuration

(convergence), and (ii) once a system reaches a safe configuration, then it keeps its specification

forever (closure). Although self-stabilizing systems provide excellent fault-tolerance as mentioned

above, designing self-stabilizing protocols is difficult and, what is worse, might be impossible due

to the severe requirements of self-stabilization.

Many researchers have tried to relax the severe requirement of self-stabilization and proposed

a lot of variants. Probabilistic self-stabilization [2] guarantees convergence to a safe configuration

with probability 1 starting from any arbitrary configuration. Quasi-stabilization [3] guarantees

convergence to a safe configuration only when all processes in the system start with the program

counters of value 0. Weak-stabilization [4] guarantees that starting from any arbitrary configura-

7



8 CHAPTER 2. LOOSE-STABILIZATION ON COMPLETE GRAPHS

tion, there exists an execution that reaches a safe configuration. Devismes et al. [9] investigated

the relations among self, probabilistic and weak stabilization. A notable characteristic common

to all the above variants is that they relax only the convergence requirement but not the closure

requirement of self-stabilization. As we shall see later, the author relaxes the closure requirement

to introduce a novel notion of loose-stabilization.

In this chapter, we adopt Population Protocol (PP) model [10, 5, 6, 7, 11, 12] as a distributed

system model. The PP model is one of the abstract models that represent wireless sensor networks

of anonymous mobile sensing devices. In this model, two devices communicate with each other

only when they come sufficiently close to each other (we call this event an interaction). For

example, population protocol model can represent a flock of birds such that each bird is equipped

with a sensing device of small transmission range. In such a sensor network, each device can

communicate with another device only when the corresponding birds come sufficiently close to

each other.

Self-stabilizing leader election in population protocol model of complete networks is an im-

portant problem and has been considered by several papers. Angluin et al. [7] prove that this

problem is unsolvable if we can use no information about the network size, in other words, if

a protocol must work on the complete networks of finite but any arbitrary size.1 Cai et al.

[11] prove that the exact information of the network size is necessary (and sufficient) to solve

the problem. In other words, for any two distinct positive integers n and n′, there exists no

self-stabilizing leader election protocol that works on both the complete network of size n and

the one of size n′. Fischer and Jiang [12] use external entity (a kind of failure detector) to solve

the problem with no knowledge of the network size.

Contribution of This Chapter To circumvent difficulty and impossibility in designing self-

stabilizing protocols, the author introduces a novel notion of loose-stabilization, which relaxes

the closure requirement of self-stabilization. To the best of the authors’ knowledge, this is the

first trial to relax the closure requirement and not the convergence requirement. Intuitively, the

notion of loose-stabilization is described as follows: (i) starting from any arbitrary configuration,

a system reaches a loosely-safe configuration within a short time (convergence), and (ii) once a

system reaches a loosely-safe configuration, then it keeps its specification for a long time (loose-

closure). In other words, we relaxes the closure requirement by allowing a system to deviate from

its specification even after a loosely-safe configuration but only after a long period satisfying the

1 They prove this impossibility for a certain class of topology, called non-simple class. This class includes

complete networks, directed line networks, and connected networks with a certain degree bound etc. .



2.2. PRELIMINARIES 9

specification. The requirement of fast convergence is added to guarantee that the specification

should be satisfied in most of the system running time. Actually, the loose-stabilization is prac-

tically equivalent to self-stabilization if the specification is kept for a significantly long time (e.g.

exponential order with the network size) after the loosely-safe configuration.

From a practical perspective, the notion of loose-stabilization suits to the purpose of fault-

tolerance better than self-stabilization. Self-stabilization has great importance for networks prone

to faults, where probability of fault occurrence is not negligible and faults occur repeatedly and

intermittently: self-stabilizing protocols can recover from faults and work correctly during the

fault-free periods. Since the length of the fault-free period is commonly estimated by, for example,

MTBF (mean time between faults), the permanent closure of self-stabilization (to permanently

satisfy the specification after convergence) seems to be an exaggerated requirement. To such a

situation, loose-stabilization satisfying the specification after convergence in a sufficiently long

period (compared to the MTBF) is particularly appropriate.

To show effectiveness and feasibility of loose-stabilization, a loosely-stabilizing leader election

protocol is presented in the PP model of complete networks. The protocol uses the knowledge of

an upper bound, say N , of the network size: the protocol works correctly on any complete network

of size N or less. Starting from any arbitrary configuration, the protocol elects a unique leader

within O(nN log n) expected steps, and then, keeps the unique leader for Ω(NeN ) expected steps

where n is the actual network size. This result discloses an evidence that introduction of the

loose-stabilization can circumvent impossibility results on self-stabilization; the self-stabilizing

leader election in the PP model of complete networks cannot be solved even in a probabilistic

way without knowledge of the exact network size (as mentioned above). The proposed protocol

uses O(logN) space per device while most of prior papers on population protocols usually do not

allow each devices to use more than constant space (with respect to n). However, the importance

of the proposed protocol is never impaired by this fact because the above impossibility holds even

if each device can use infinite space.

2.2 Preliminaries

In this section, the definitions of the population protocol model and the concept of loose-stabilization

are given. Throughout this chapter, we use the notation prel(s) for describing the prefix of se-

quence s with length l.

A population consists of a collection of finite state sensing devices called agents. Each agent

has its own state and updates the state by communication with other agents in pairs,2 called



10 CHAPTER 2. LOOSE-STABILIZATION ON COMPLETE GRAPHS

interactions. We represent a population by simple directed graph G(V,E): vertex set V =

{0, 1, . . . , n− 1} (n ≥ 2) represents the set of agents, and edge set E ⊆ V × V represents the set

of possible interactions. If (u, v) ∈ E, agents u and v can interact (or communicate) with each

other in such a way that u serves as an initiator and v serves as a responder. In this chapter, we

assume that a population G(V,E) is a directed complete graph, that is, the edge set E is equals

to {(u, v) | u, v ∈ V, u ̸= v}.

A protocol P (Q,Y,O, T ) consists of a finite set Q of states, a finite set Y of output symbols,

an output function O : Q → Y , and a transition function T : Q × Q → Q × Q. The output

of an agent is determined by O: when the state of an agent is p ∈ Q, the output of the agent

is O(p). When an interaction between two agents happens, T determines the next states of the

two agents, the initiator and the responder. For agent u with state p and agent v with state q,

the equation T (p, q) = (p′, q′) indicates that the states of u (the initiator) and v (the responder)

become p′ and q′ respectively after the interaction (u, v).

A configuration is a mapping C : V → Q that specifies the states of all agents in a population.

We denote by Call(P ) the set of all configurations of P . Let C and C ′ be configurations, and let

u and v be distinct agents. We say that C changes to C ′ by an interaction r = (u, v), denoted

by C
r→ C ′, if we have (C ′(u), C ′(v)) = T (C(u), C(v)) and C ′(w) = C(w) for all w ∈ V except u

and v.3

An interaction sequence γ = (u0, v0), (u1, v1), . . . is an infinite sequence of interactions. For

each t ≥ 0, we denote ut and vt by γ1(t) and γ2(t) respectively, and denote (ut, vt) by γ(t).

We call γ(t) the interaction at time t in γ. We say that agent v joins in interaction γ(t) when

v ∈ {γ1(t), γ2(t)}.

An execution is a infinite sequence of configurations. Given an interaction sequence γ and an

initial configuration C0, the execution of protocol P is uniquely defined as ΞP (C0, γ) = C0, C1, . . .

such that Ct
γ(t)→ Ct+1 for all t ≥ 0.

A scheduler determines which interaction happens at each time t (t ≥ 0). In this chapter,

we consider a uniformly random scheduler: the interaction at each time is chosen uniformly at

random from all possible interactions. We represent the choice of this scheduler by the interaction

sequence Γ: each Γ(t) is a random variable such that Pr(Γ(t) = (u, v)) = 1/|E| = 1/(n(n − 1))

for any arbitrary interactions (u, v) ∈ E and for any integer t ≥ 0.

2 This means that an agent can communicate simultaneously with only one agent.
3 This definition implies that interactions between two agents happen sequentially, that is, exactly one pair of

agents interact at any time.



2.2. PRELIMINARIES 11

2.2.1 Specification

In this section, we introduce the concept of specification and define the specification of leader

election problem.

For protocol P (Q,Y,O, T ) and configuration C ∈ Call(P ), we view the composite function

O ◦ C : V → Y as the output of C and denote it by O(C). For a sequence of configurations

T = C0, C1, . . . , we define output sequence OTP (T ) as O(C0), O(C1), . . . .

A specification SP(Y ) is a set consisting of sequences of functions V → Y (We omit Y from

the notation SP(Y ) when it is clear from the context). Let Ξ = C0, C1, . . . be an execution of

protocol P . We consider that execution Ξ satisfies specification SP if and only if OTP (Ξ) ∈ SP

holds. When OTP (pret+1(Ξ)) ∈ SP holds, Ξ is considered to satisfy SP until time t. (Note the

index: pret+1(Ξ) = C0, C1, . . . , Ct .) In this chapter, we assume that X ∈ SP ⇒ prel(X) ∈ SP

holds for any specification SP and any positive integer l.

Definition 1 (Leader Election Problem). We denote by le the set of all assignment ω : V →
{F,L} such that for some vl ∈ V, ω(vl) = L and for all v ̸= vl, ω(v) = F . The leader election

specification LE ({F,L}) is defined as LE ({F,L}) = {T = wk | w ∈ le, 1 ≤ k ≤ ∞} where wk is

the sequence of consecutive assignments w with length k, that is,

wk = w,w, . . . , w︸ ︷︷ ︸
k

.

Informally, LE{F,L} requires that any legitimate execution has one static leader agent with

the output symbol L and n − 1 non-leader (follower) agents with the output symbol F through

its all configurations. Here, “static” means that the leader must continue to be a leader and any

other agent must not become a leader during the execution.

This specification does not require termination detection because the population protocol

model lacks the concept of termination. Since interactions happen infinite times, the execution

continues forever and never terminates.

2.2.2 Loose-stabilization

In this section, we define the notion of loose-stabilization. For the proof of the impossibility result,

Firstly, we define holding time HTP (Ξ,SP) for protocol P (Q,Y,O, δ), execution Ξ of P and

specification SP(Y ). This represents how long Ξ satisfies SP from time 0. If OTP (Ξ) ∈ SP holds,

then we define HTP (Ξ,SP) =∞. If OTP (pre1(Ξ)) /∈ SP holds, then we define HTP (Ξ,SP) = 0.

Otherwise, we have some t such that OTP (pret(Ξ)) ∈ SP and OTP (pret+1(Ξ)) /∈ SP . (Such t is

unique.) Then we define HTP (Ξ,SP) = t.



12 CHAPTER 2. LOOSE-STABILIZATION ON COMPLETE GRAPHS

Secondly, we define convergence time CTP (Ξ, C) for a set C ⊆ Call(P ) of configurations. This
represents how long it takes for Ξ = C0, C1, . . . to reach a configuration in C. If C0 ∈ C holds,

then we define CTP (Ξ, C) = 0. If Ct ∈ C does not hold for any time t ≥ 0, then we define

CTP (Ξ, C) = ∞. Otherwise, we have some t such that Ct /∈ C and Ct ∈ C. (Such t is unique.)

Then, we define CTP (Ξ, C) = t.

We denote E[HTP (ΞP (C,Γ),SP)] by EHTP (C,SP) for any configuration C ∈ Call(P ), where
E[X] denotes the expected value of random variableX. Similarly, we denoteE[CTP (ΞP (D,Γ), C)]
by ECTP (D, C) for any configuration D ∈ Call(P ).

Definition 2 (Loose-stabilization). Let α and β be real numbers. A protocol P (Q,Y,O, T ) is

(α, β)-loosely-stabilizing for specification SP(Y ) if a nonempty set S of configurations exists such

that:

max
C∈Call(P )

ECTP (C,S) ≤ α,

min
C∈S

EHTP (C,SP) ≥ β .

Intuitively, loose-stabilization requires that any execution starting from any configuration

reaches a loosely-safe configuration (i.e. a configuration in S) within a short time, and after that,

the execution satisfies the specification for a long time. An (α, β)-loosely-stabilizing protocol is

quite useful if β is sufficiently large (e.g. exponential order with n) and α is relatively small (e.g.

low polynomial order with n).

2.3 Protocol PLE

In this section, the author presents a leader election protocol PLE (Q, {F,L}, O, T ), which uses

the knowledge of an upper bound N of the network size n. The protocol has a design parameter

s. When s is adequately set depending on N , it is (O(nN log n),Ω(NeN ))-loosely-stabilizing for

LE .

Each agent has one leader bit and a timer that takes an integer value in [0, s], i.e. Q =

{−, l} × {0, 1, . . . , s}. For state p, we denote the first element (leader bit) of p by p.leader and

the second element (timer) of p by p.time. The output function O is defined as follows: if the

leader bit of an agent is l, then the output of the agent is L, otherwise F . We call an agent with

the leader bit l (−) a leader (non-leader, respectively). We describe the transition function T by

pattern rules in Code 2.1. Given any pair of states (p, q), the pair of the next states T (p, q) is

defined as follows: (i) if (p, q) matches the left side of exactly one rule, T (p, q) is determined by



2.3. PROTOCOL PLE 13

Code 2.1 Loosely-stabilizing Leader Election PLE

R1. ((l, ∗), (l, ∗)) → ((l, s), (−, s))
R2. ((l, ∗), (−, ∗)) → ((l, s), (−, s))
R3. ((−, ∗), (l, ∗)) → ((−, s), (l, s))
R4. ((−, 0), (−, 0)) → ((l, s), (−, s))
R5. ((−, i), (−, j)) → ((−, f), (−, f))

(0 ≤ i, j ≤ s, f = max(i, j)− 1)

the right side of the rule, and (ii) if there are two or more matched rules, we apply the rule with

smallest rule number among them. The symbol ∗ means “don’t care”, that is, ∗ matches any

value of the timer. Note that this five rules are collectively exhaustive.

If two leaders interact, the initiator remains a leader and the responder becomes a non-leader

(R1). If a leader and a non-leader interact, the leader bits of both the agents do not change (R2,

R3). In every interaction in which one or two leaders join, the timers of both the agents are reset

to the full timer value s (R1, R2, and R3). We call this event timer reset. A new leader is created

only when two non-leaders with timer value 0 interact (R4). We call this event timeout. If two

non-leaders interact where either or both the agents have non-zero timer, then at least one of the

two agents decrements its timer value by 1 (R5). R5 plays another role of propagating the higher

timer value: intuitively, when two non-leaders interact, the timer of a lower value is set to the

other (higher) value (minus 1).

In a configuration containing at least one leader, timeout rarely happens because of frequent

occurrences of timer reset and propagation of higher timer value. On the other hand, in a

configuration containing no leader, timeout happens in a relatively short time because of no

possibility of timer reset. Hence, starting from any configuration, removing leaders by R1 or

creating a leader by R4 eventually bring the population to a configuration with exactly one

leader. The following two properties hold clearly.

Lemma 1. Once a configuration with one or more leaders is reached, the number of leaders

cannot become 0 thereafter.

Lemma 2. Once a unique leader is elected, specification LE holds until the next timeout happens.

As a set of loosely-safe configuration, we adopt Shalf , which consists of all the configurations in

which exactly one leader exists and the timer value of every agent is greater than or equal to s/2.

From the above explanation for PLE , one can intuitively observe the following two properties:



14 CHAPTER 2. LOOSE-STABILIZATION ON COMPLETE GRAPHS

starting from any configuration, the population reaches a configuration in Shalf within a relatively

short time (convergence), and once a configuration in Shalf is reached, the specification (the unique

and static leader) is kept for an extremely long time (loose-closure). In Section 2.4, the author

rigorously proves how fast PLE converges to a loosely-safe configuration, and how long PLE

maintains the specification of leader election after a loosely-safe configuration is reached.

2.4 Analysis and Proofs

Assume that we set design parameter s so that s is a multiple of 96 and s ≥ max(3n, 96(2 lnn+

ln 24)). (In what follows, we use the notation s∗ for s/96.) In this section, we prove that under

this assumption, PLE is (O(ns log n),Ω(ses
∗
))-loosely-stabilizing for LE and Shalf . To claim it,

we prove the following two expressions:

max
C∈Call(PLE )

ECTPLE (C,Shalf) = O(ns log n), (2.1)

min
C∈Shalf

EHTPLE (C,LE ) = Ω
(
s · es

∗
)
. (2.2)

In this section, we omit PLE from some expressions when the protocol under consideration is

clear from the context; for example we denote Call(PLE ), OTPLE and ECTPLE simply by Call, OT

and ECT respectively. And, we use the following four subsets Lone, L, Chalf and Lhalf of Call in
addition to Shalf ;

Lone = {C ∈ Call | #l(C) = 1} ,

L = {C ∈ Call | #l(C) ≥ 1} ,

Chalf =
{
C ∈ Call | ∀v ∈ V, C(v).time ≥ s

2

}
,

Lhalf = L ∩ Chalf ,

where #l(C) represents the number of leaders in configuration C, i.e. #l(C) = |{v ∈ V |v.leader =

l}|. The set Lone represents the set of all configurations in which exactly one leader exists while L
represents the set of all configurations in which one or more leaders exist. The set Chalf represents
the set of all configurations in which the timer value of every agent is greater than or equal to

s/2. Note that Shalf is equal to Lone ∩ Chalf .

In the rest of this section, we introduce the notion of epidemic (presented in [6]) and virtual

agents in Section 2.4.1. Using these tools, we prove (2.2) in Section 2.4.2 and (2.1) in Section

2.4.3.



2.4. ANALYSIS AND PROOFS 15

2.4.1 Epidemic and Virtual Agents

In this section, we introduce the notion of epidemic (presented in [6]) and virtual agents.

To begin with, the notion of epidemic is introduced. Let C0 be a configuration in Lone, and

let vl ∈ V be the unique leader in C0. Let γ be an interaction sequence. The epidemic function

IC0,γ(t) (t = 0, 1, . . . ) that returns a set of agents is defined as follows: IC0,γ(0) = {vl}, and
IC0,γ(t) = IC0,γ(t− 1) ∪AddC0,γ(t− 1) for any t ≥ 1 where we define

AddC0,γ(i) =

{γ1(i), γ2(i)} if γ1(i) ∈ IC0,γ(i) ∨ γ2(i) ∈ IC0,γ(i)

∅ otherwise

for any integer i ≥ 0. We say that if v ∈ IC0,γ(t), then v is infected at time t in the epidemic

starting from C0 and spreading under γ, otherwise v is infection-free at time t in the epidemic.

At time 0, only vl is infected. An infection-free agent becomes infected when it interacts with

an infected agent. Once an agent becomes infected, it remains infected thereafter. We define

the infected time TC0,γ(v) of agent v ̸= vl as an integer i ≥ 0 that satisfies v /∈ IC0,γ(i) and

v ∈ IC0,γ(i+ 1). We naturally define TC0,γ(vl) = 0.

In the following, we define the virtual agent VAC0,γ(v) of each agent v ∈ V . We assume that

all the agents eventually become infected, that is, IC0,γ(t
′) = V holds for some t′ ≥ 0. The virtual

agent VAC0,γ(v) is not defined if no such t′ exists for C0 and γ. Let v be any agent other than vl.

We define the parent of v as the agent that infects v in time TC0,γ(v). This parent-child relation

makes the rooted spanning tree uniquely, the root of which is vl. In this tree, the path from vl

to v, vl = w0 → w1 → w2 → · · · → wm = v, uniquely exists. The virtual agent VAC0,γ(v) is

a virtual entity that migrates from vl to v through the path. This notion is formalized as the

location of the virtual agent LC0,γ(v, t) (t ≥ 0), which is defined as follows:

LC0,γ(v, t) =


vl (0 ≤ t ≤ t1)

wi (ti + 1 ≤ t ≤ ti+1, 1 ≤ i ≤ m− 1)

v (t ≥ tm + 1 = TC0,γ(v) + 1),

where ti = TC0,γ(wi). For the leader agent vl, we define LC0,γ(vl, t) = vl for any t ≥ 0.

Let v be an agent in V .4 For simplicity, we denote the virtual agent VAC0,γ(v) by v
′ here. We

say that the virtual agent v′ joins in interaction γ(t) if agent LC0,γ(v, t) joins in γ(t), and we define

indicator variable VJC0,γ(v, t) for any t ≥ 0 as follows: if v′ joins in γ(t), then VJC0,γ(v, t) = 1,

4Note that v can be vl.



16 CHAPTER 2. LOOSE-STABILIZATION ON COMPLETE GRAPHS

otherwise VJC0,γ(v, t) = 0. The number of virtual interactions of v, denoted by VIC0,γ(v, t), is

defined as follows:

VIC0,γ(v, t) =
t−1∑
i=0

VJC0,γ(v, i) .

Intuitively, VIC0,γ(v, t) is the number of interactions in which v′ joins between time 0 and time

t− 1.

One can observe that the virtual agent v′ brings a large timer value to v with high probability

when v′ reaches v through the infecting path. Actually, the timer of v at time TC0,γ(v) + 1 (just

after v is infected) is at least s−VIC0,γ(v, TC0,γ(v) + 1). The following lemma trivially holds.

Lemma 3. Let C0 be a configuration in Lone and let γ be an interaction sequence. Let Ξ(C0, γ) =

C0, C1, . . . . The following predicate holds for any integer t ≥ 0:

IC0,γ(t) = V ⇒ ∀v ∈ V, Ct(v).time ≥ s−VIC0,γ(v, t).

If timeout happens, another new leader is created. This leader may change vl to be a non-

leader. Note that the above lemma holds even if such a situation happens, and vl becomes a

non-leader.

In addition to the number of virtual interactions, we define the number of real interactions of

v as RI γ(v, t) =
∑t−1

i=0 RJ γ(v, t), where RJ γ(v, t) is indicator variable such that if v joins in γ(t)

then RJ γ(v, t) = 1, otherwise RJ γ(v, t) = 0. Intuitively, RI γ(v, t) is the number of interactions

in which v joins between time 0 and time t− 1.

2.4.2 Expected Holding Time

In this section, we prove (2.2). For a positive integer t, a configuration C0 ∈ Call and an in-

teraction sequence γ, we define indicator variable TOC0,γ(t) as follows: if timeout happens in

execution ΞPLE (C0, γ) between time 0 and time t − 1, that is, at least one of the interactions

γ(0), γ(1), . . . , γ(t− 1) causes timeout in Ξ(C0, γ), then TOC0,γ(t) = 1, otherwise TOC0,γ(t) = 0.

For convenience, we define TOC0,γ(0) = 0. As a sufficient condition for (2.2), we focus on the

following inequality for any configuration C0 in Shalf :

Pr (TOC0,Γ(2ns
∗) = 0 ∧ C2ns∗ ∈ Shalf) ≥ 1− 2n · e−s∗ , (2.3)

where Ξ(C0,Γ) = C0, C1, . . . , C2ns∗ , . . . .

Lemma 4. Expression (2.2) holds if (2.3) holds for any configuration C0 in Shalf .



2.4. ANALYSIS AND PROOFS 17

holds w.h.p. 

holds w.h.p.

under the condition

holds w.h.p.

under the condition

holds w.h.p.

(Corollary 3)

(Lemma 7)(Lemma 8)

(Corollary 2)

By Lemma 3    

holds w.h.p. holds w.h.p.                         

(Lemma 5)(Corollary 1)

max
v∈V

RIΓ(v, 2ns
�) �

2

s

max
v∈V

VIC0,Γ(v, 2ns
�) �

2

s

IC0,Γ(2ns
�) = V

IC0,Γ(2ns
�) = V

IC0,Γ(2ns
�) = V

C2ns� ∈ Lhalf
C2ns� ∈ Lhalf

TOC0,Γ(2ns
�) = 0

Figure 2.1: The structure of the proof for (2.3): w.h.p. means “with high probability”.

Proof . Assume that (2.3) holds for any configuration C0 in Shalf . Then, from Lemma 2, the

following inequality holds:

EHT (C0,LE ) ≥
(
1− 2n · e−s∗

)(
2ns∗ + min

C∈Shalf

EHT (C,LE )

)
.

Since C0 is any configuration in Shalf , we have

min
C∈Shalf

EHT (C,LE ) ≥
(
1− 2n · e−s∗

)(
2ns∗ + min

C∈Shalf

EHT (C,LE )

)
.

Solving this inequality gives us (2.2).

In the following, we show that (2.3) holds for any configuration C0 ∈ Shalf . The structure

of the proof is shown in Figure 2.1. Firstly, we bound the number of real interactions proba-

bilistically (Lemma 5), from which we get the result that the probability of TOC0,Γ(2ns
∗) = 0

is sufficiently close to 1 (Corollary 1). Secondly, we bounds the number of virtual interaction

probabilistically (Lemma 7), from which and Lemma 3 together, we prove that C2ns∗ ∈ Lhalf

holds with sufficiently high probability under the condition IC0,Γ(2ns
∗) = V (Corollary 2). We

also prove that IC0,Γ(2ns
∗) = V holds with sufficiently high probability (Lemma 8). By Corollary

2 and Lemma 8, we get the result that the probability of C2ns∗ ∈ Lhalf is sufficiently close to 1

(Corollary 3). The combination of Corollaries 1 and 3 directly leads to (2.3).

Lemma 5. Pr(maxv∈V RI Γ(v, 2ns
∗) ≤ s

2 ) ≥ 1− n · exp(−16s∗) .

Proof . At each time t, any agent v joins in Γ(t) with probability 2
n . Hence, RI Γ (v, 2ns

∗) ∼
B(2ns∗, 2

n ). As one of Chernoff bounds, Pr(Y ≥ R) ≤ 2−R holds for any binomial random



18 CHAPTER 2. LOOSE-STABILIZATION ON COMPLETE GRAPHS

variable Y and any real number R ≥ 6 · E[Y ] [13, (4.3)]. Since s
2 ≥ 6E[RI Γ(v, 2ns

∗)] = s
4 and

2−1/2 < e−1/4 5, we obtain

Pr
(
RI Γ (v, 2ns

∗) ≥ s

2

)
≤ 2−s/2 < exp

(
−s
4

)
= exp(−16s∗) .

We achieve the lemma by summing up all the above probabilities with respect to v ∈ V .

Corollary 1. The inequality Pr(TOC0,Γ(2ns
∗) = 0) ≥ 1− n · exp(−16s∗) holds for any configu-

ration C0 in Chalf .

Proof . Since C0 ∈ Chalf , timeout happens by time 2ns∗ − 1 (i.e. TOC0,Γ(2ns
∗) = 1) only when

some agent joins in at least s
2 + 1 interactions between time 0 and time 2ns∗ − 1. Hence, the

corollary follows from Lemma 5.

Next, in Lemma 7, we bounds the number of virtual interactions probabilistically. Apparently,

it seems that VJC0,Γ(v, t) and RJΓ(v, t) have the same probability distribution for any v ∈ V
and t ≥ 0. However, this is not true. Surprisingly, the interaction at time t influence the

location of virtual agent of v at the same time t. Hence, Pr(VJC0,Γ(v, t) = 1) = Pr(LC0,Γ(v, t) ∈
{Γ1(t),Γ2(t)}) is not equal to 2

n and very hard to calculate. Therefore, we must take a different

approach for Lemma 7 from that of Lemma 5. To begin with, we introduce the following lemma

as a tool.

Lemma 6. Let C0 be a configuration in Lone and let X(i, p) be a binomial random variable such

that X(i, p) ∼ B(i, p). Then, the following expression holds for any v ∈ V and any integers t ≥ n
and j ≥ 0:

Pr(VIC0,Γ(v, t) ≥ j + n− 1 | IC0,Γ(t) = V ) ≤ Pr(X(t, 4/n) ≥ j) .

Proof . Assume IC0Γ(t) = V and let vl ∈ V be the unique leader in C0. We define the infecting

time set IT as
∪

v∈V \{vl}{TC0,Γ(v)}, and the non-infecting time set NIT as {0, 1, . . . , t− 1} \ IT .

Let v be any agent in V , and let NVI =
∑

t′∈NIT VJC0,Γ(v, t
′). Since |IT | = n−1, the inequality

VIC0,Γ(v, t) ≤ NVI + n− 1 immediately follows. Therefore, it is sufficient for our proof to show

Pr(NVI ≥ j | IC0,Γ(t) = V ) ≤ Pr(X(t, 4/n) ≥ j).

Let t′ be any integer in {0, 1, . . . , t − 1} and let m = |IC0,Γ(t
′)|. Consider the case t′ ∈ NIT .

Then, the interaction Γ(t′) must be an interaction such that both agents Γ1(t
′) and Γ2(t

′) belong

to IC0,Γ(t
′) or both the agents belong to V \ IC0,Γ(t

′) . Otherwise, some infection-free agent

5 2−1/2 ≈ 0.707 and e−1/4 ≈ 0.778



2.4. ANALYSIS AND PROOFS 19

becomes infected at time t′, contradicting t′ /∈ IT . And, LC0,Γ(v, t
′) ∈ IC0,Γ(t

′) clearly holds by

the definition of virtual agents. Thus, letting 0C2 = 1C2 = 0, we have

Pr(VJC0,Γ(v, t
′) = 1 | IC0,Γ(t) = V ∧ t′ ∈ NIT ) =

m− 1

mC2 +n−m C2

≤ 4

n
.

See Lemma 15 in Section 2.5 for the last inequality.

Note that this upper bound 4/n of the probability is independent from any interaction at any

time other than t′. Hence, for any set S consisting of t − n + 1 distinct integers in [0, t − 1], we

have

Pr (NVI ≥ j | IC0,Γ(t) = V ∧ NIT = S) ≤ Pr

(
X

(
t− n+ 1,

4

n

)
≥ j
)

.

Therefore, the following inequality holds and so does the lemma.

Pr(NVI ≥ j | IC0,Γ(t) = V ) ≤ Pr

(
X

(
t− n+ 1,

4

n

)
≥ j
)

≤ Pr

(
X

(
t,
4

n

)
≥ j
)

.

Lemma 7. Let C0 be a configuration in Lone. The following inequality holds:

Pr

(
max
v∈V

VIC0,Γ (v, 2ns
∗) ≤ s

2
| IC0,Γ (2ns

∗) = V

)
≥ 1− n · exp

(
−8s∗

3

)
. (2.4)

Proof . Let v be any agent, and let X(i, p) be an binomial variable such that X(i, p) ∼ B(i, p).

By Lemma 6 and the assumption s ≥ 3n, we have

Pr
(
VIC0,Γ (v, 2ns

∗) ≥ s

2
| IC0,Γ (2ns

∗) = V
)

≤Pr
(
VIC0,Γ (v, 2ns

∗) ≥ s

6
+ n− 1 | IC0,Γ (2ns

∗) = V
)

∵ s

2
≥ s

6
+ n− 1

≤Pr

(
X

(
2ns∗,

4

n

)
≥ s

6

)
.

As one of Chernoff bounds, Pr(Y ≥ (1+ϵ)E[Y ]) ≤ exp(−ϵ2E[Y ]/3) holds for any binomial random

variable Y and any real number ϵ (0 ≤ ϵ ≤ 1) [13, (4.2)]. It follows that Pr(X(2ns∗, 4/n) ≥
16s∗) ≤ exp(−8s∗/3). (We set ϵ = 1.) We obtain (2.4) by summing up all the probabilities with

respect to v ∈ V .

The following corollary is directly obtained from Lemmas 3 and Lemma 7.



20 CHAPTER 2. LOOSE-STABILIZATION ON COMPLETE GRAPHS

Corollary 2. Let C0 be a configuration in Lone and let Ξ(C0,Γ) = C0, C1, . . . . Then, Pr(C2ns∗ ∈
Lhalf | IC0,Γ(2ns

∗) = V ) ≥ 1− n · exp(−8s∗/3) holds.

Lemma 8. Pr(IC0,Γ (2ns
∗) = V ) ≥ 1− n · exp (−s∗) holds for any C0 ∈ Lone.

Proof . For each k (2 ≤ k ≤ n), we define T (k) as integer t such that |IC0,Γ(t − 1)| = k − 1

and |IC0,Γ(t)| = k, and define T (1) = 0. Intuitively, T (k) is the first time at which there exists k

infected agents in the population. Let Xpre = T (⌈n+1
2 ⌉) and Xpost = T (n) − T (n − ⌈n+1

2 ⌉ + 1).

Angluin et al. found in [6] that T (k) and T (n)−T (n−k+1) have the same probability distribution

for any k (1 ≤ k ≤ n). Hence, so do Xpre and Xpost. And, Xpre +Xpost ≥ T (n) holds because

⌈n+1
2 ⌉ ≥ n−⌈

n+1
2 ⌉+1. We denote T (n−⌈n+1

2 ⌉+1) by Thalf and let Xv = max(TC0,Γ(v)−Thalf , 0)
for any agent v. Informally, Xv is the number of interactions that occurs between time Thalf

and the time at which agent v becomes infected. Consider the case v /∈ IC0,Γ(Thalf). At any

time t ≥ Thalf , at least n − ⌈n+1
2 ⌉ + 1 (≥ n

2 ) agents are infected. Therefore, each interaction

at time t ≥ Thalf infects v with the probability of at least 1
nC2
· n

2 ≥
1
n , and hence, we have

Pr(Xv > ns∗) ≤ (1 − 1
n )

ns∗ ≤ e−s∗ . Since the number of infection-free agent at time Thalf is at

most n
2 , Pr(Xpost > ns∗) ≤ Pr(

∨
v∈V (Xv ≥ ns∗)) ≤ n

2 · exp(−s
∗) holds. By the equivalence of

the distribution of Xpre and Xpost, we have

Pr (IC0,Γ (2ns
∗) ̸= V ) ≤ Pr (Xpre > ns∗) + Pr (Xpost > ns∗) ≤ n · e−s∗ .

Corollary 2 and Lemma 8 together lead to the following corollary.

Corollary 3. Let C0 be a configuration in Lone and let Ξ(C0,Γ) = C0, C1, . . . ,

C2ns∗ , . . . . Then, Pr(C2ns∗ ∈ Lhalf) ≥ 1− n · exp(−8s∗/3)− n · exp(−s∗) holds.

Theorem 1. Expression (2.2) holds.

Proof . By the assumption s ≥ 96(2 lnn + ln 24), we have exp(− s
4 ) + exp(− s

36 ) ≤ exp(− s
96 ) .

Therefore, (2.3) holds for any configuration C0 ∈ Shalf from Corollaries 3 and 1. We achieve (2.2)

by Lemma 4.

2.4.3 Expected Convergence Time

Next, we show (2.1) to complete our proof. The following inequality clearly holds:

max
C∈Call

ECT (C,Shalf)

≤ max
C∈Call

ECT (C,L) + max
C∈L

ECT (C,Lhalf) + max
C∈Lhalf

ECT (C,Shalf).
(2.5)



2.4. ANALYSIS AND PROOFS 21

Therefore, it suffices to show that each term in the right side of (2.5) belongs to O(ns log n). We

show that the first term belongs to O(ns log n) in Lemma 9, and the second and the third term

belongs to O(ns) in Lemma 10 and Lemma 14 respectively.

Lemma 9. maxC∈Call
ECT (C,L) belongs to O(ns log n).

Proof . We define ν(C, i) (0 ≤ i ≤ s) as the number of agents with timer value i in configuration

C, i.e. ν(C, i) = |{v ∈ V | C(v).time = i}|. For any integer i, j (0 ≤ i ≤ s, 1 ≤ j ≤ n) we denote

by Wi,j the set of all configurations in which there exists no leader, the maximum timer value of

all agents is i, and ν(C, i) = j holds. Note that W0,j is empty when j ̸= n.

Let wi,j be maxC∈Wi,j ECT (C, Call \ Wi,j). The execution get out of Wi,j if one of j agents

with the largest timer value joins in an interaction. Furthermore, after that, the execution never

comes back to Wi,j again. Since one of j agent is selected with probability j(j−1)+2j(n−j)
n(n−1) ≥ j

n ,

we have wi,j ≤ n
j , and thus

max
C∈Call

ECT (C,L) ≤ w0,n +
s∑

i=1

n∑
j=1

wi,j ≤ 1 + ns ·H(n) = O(ns logn)

holds where H is the harmonic function.

In Section 2.4.1, the definitions of epidemic and virtual agents stand on the assumption that

there exists exactly one leader in the initial configuration C0 (i.e. C0 ∈ Lone). However, this

assumption can be relaxed as follows: there exists at least one leader in C0 (i.e. C0 ∈ L). With

defining vl as any arbitrary leader in C0, we can redefine IC0,γ(t) and VIC0,γ(v, t) for any C0 ∈ L
in the same manner as Section 2.4.1. Then, Corollary 3 holds not only for any C0 ∈ Lone but

also for any C0 ∈ L.

Lemma 10. maxC∈L ECT (C,Lhalf) belongs to O(ns).

Proof . Let C0 be an configuration in L and let Ξ(C0,Γ) = C0, C1, . . . . By Corollary 3, we have

Pr (C2ns∗ ∈ Lhalf) ≥ 1− 2n · exp (−s∗)

≥ 1− 2n

24n2
∵ s∗ ≥ 2 lnn+ ln 24

≥ 1

2
.

Since C2ns∗ ∈ L holds by Lemma 1, we have

max
C∈L

ECT (C,Lhalf) ≤ 2ns∗ +
1

2
max
C∈L

ECT (C,Lhalf).

Solving this inequality gives us maxC∈L ECT (C,Lhalf) ≤ 4ns∗ = O(ns).



22 CHAPTER 2. LOOSE-STABILIZATION ON COMPLETE GRAPHS

In the rest of this section, we prove Lemma 14. Informally, the lemma holds for the following

reason.

• When we can ignore occurrence of timeout, at most n leaders kill each other, and one unique

leader is elected within O(n2) expected interactions. (We shall see this fact in Lemma 12.)

• From Corollaries 1 and 3, one can observe that timeout happens only extremely rarely when

the execution starts from a configuration in Lhalf . Hence, the probability that timeout

happens by time O(n2) is negligible. Furthermore, although the execution may get out of

Lhalf , it comes back to Lhalf by time O(ns) with very high probability (Corollary 3).

In what follows, we show the formal proof. To avoid complicated analysis of conditional proba-

bility, we introduced a protocol P ′
LE , which eliminate timeout mechanism from PLE . Specifically,

P ′
LE is the protocol obtained from PLE by replacing rule R4 in the transition function T with the

following rule R4’:

R4’ ((−, 0), (−, 0)) → ((−, 0), (−, 0)) .

The state set of PLE and P ′
LE is identical, and hence, so do the Call(PLE ) and Call(P ′

LE ).

Lemma 11. Let C0 be a configuration in Call and let γ be an interaction sequence. Let ΞPLE (C0, γ) =

C0, C1, . . . and ΞP ′
LE
(C0, γ) = C0, D1, D2, . . . . The following predicate holds for any t ≥ 0:

Dt ∈ Lone ∧ Ct ∈ Chalf ∧ TOC0,γ(t) = 0 ⇒ Ct ∈ Shalf .

Proof . Assume that Dt ∈ Lone, Ct ∈ Chalf and TOC0,γ(t) = 0 holds. Note that execu-

tions ΞPLE
(C0, γ) and ΞP ′

LE
(C0, γ) have no difference until timeout happens. By the assumption

TOC0,γ(t) = 0, we have the equality Ct = Dt, and hence, Ct ∈ Lone ∩ Chalf = Shalf holds. 2

Lemma 12. maxC∈LECTP ′
LE
(C,Lone) = (n− 1)2 .

Proof . We prove this lemma in the almost same way as [5]. The number of leaders decrease by

1 when two leaders have an interaction. In each interaction, two of i leaders have an interaction

with probability iC2

nC2
. Hence, we have

max
C∈L

ECTP ′
LE
(C,Lone) =

n∑
i=2

nC2

iC2
= (n− 1)2

2

In what follows, we use an integer r = ⌈ 3n2

2ns∗ ⌉ · 2ns
∗.



2.4. ANALYSIS AND PROOFS 23

Lemma 13. Let C0 be an configuration in Lhalf and let ΞPLE (C0,Γ) = C0, C1, . . . . Then, the

following inequality holds:

Pr(Cr ∈ Shalf) ≥
1

2
.

Proof . Let ΞP ′
LE
(C0,Γ) = C0, D1, D2, . . . . By Lemma 11, it suffices to show Pr(Dr ∈ Lone∧Cr ∈

Chalf ∧ TOC0,Γ(r) = 0) ≥ 1
2 . By lemma 12 and Markov’s inequality, we have

Pr(Dr /∈ Lone) = Pr(CT (ΞP ′
LE
(C0,Γ),Lone) > r)

≤
ECTP ′

LE
(C0,Γ)

r
≤ (n− 1)2

3n2
≤ 1

3
.

Next, we show a lower bound of Pr(Cr ∈ Chalf ∧ TOC0,Γ(r) = 0). By Lemma 5 and Corollary 3,

we have the following inequality:

Pr (C2ns∗ ∈ Lhalf ∧ TOC0,Γ(2ns
∗) = 0) ≥ 1− 2n · e−s∗ .

Hence, we have

Pr (Cr ∈ Lhalf ∧ TOC0,Γ (r) = 0) ≥
(
1− 2n · e−s∗

)⌈3n2/2ns∗⌉

≥ 1− 2n · e−s∗ ·
⌈
3n2

2ns

⌉
(see Lemma 16 in Section 2.5)

≥ 1− 1

12n

(
3n

2s∗
+ 1

)
≥ 1− 1

12
(1 + 1) =

5

6
,

where we use the assumption s∗ ≥ 2 lnn+ ln 24 for the third inequality. Thus, we have Pr(Dr ∈
Lone ∧ Cr ∈ Chalf ∧ TOC0,Γ(r) = 0) ≥ 1− ( 13 + 1

6 ) =
1
2 . 2

Lemma 14. maxC∈Lhalf
ECT (C,Shalf) belongs to O(ns).

Proof . Let C0 be an configuration in Lhalf and let ΞPLE = C0, C1, . . . . By Lemmas 1 and 13,

we have

max
C∈Lhalf

ECT (C,Shalf) ≤ r +
1

2

(
max
C∈L

ECT (C,Lhalf) + max
C∈Lhalf

ECT (C,Shalf)
)
.

Solving this inequality gives maxC∈Lhalf
ECT (C,Shalf) ≤ 6n2 + 8ns∗ = O(ns). since we have

maxC∈L ECT (C,Lhalf) ≤ 4ns∗ in the proof of Lemma 10. 2

Thus, we obtain (2.1) from Lemmas 9, 10, 14 and (2.5). The following theorem is directly

derived from (2.1) and (2.2).

Theorem 2. PLE is (O(ns log n),Ω(ses/96))-loosely-stabilizing for behavior LE and Shalf if s ≥
max(3n, 96(2 lnn+ ln 24)) holds and s is a multiple of 96.



24 CHAPTER 2. LOOSE-STABILIZATION ON COMPLETE GRAPHS

Recall that PLE knows an upper bound N of n. When we set s to be max(96N, 96(2 lnN +

ln 24)), PLE realize (O(nN log n),Ω(NeN ))-loose-stabilization for behavior LE and Shalf . That

is, PLE realizes fast convergence to a loosely-safe configuration (low polynomial order time) and

extremely long maintenance of its specification (exponential order time).

2.5 Complementary Lemmas

Lemma 15. Let n and m be integers (0 ≤ m ≤ n) and let 0C2 = 1C2 = 0. Then, the following

inequality holds:

m− 1

mC2 +n−m C2
≤ 4

n
. (2.6)

Proof . If m ≥ n
2 , then (2.6) follows from m−1

mC2+n−mC2
≤ m−1

mC2
= 2

m ≤
4
n . If m < n

2 , then

n−m− 1 > m− 1 holds. Thus, the following inequalities hold:

m− 1

mC2 +n−m C2
=

2(m− 1)

m(m− 1) + (n−m)(n−m− 1)

<
2(m− 1)

m(m− 1) + (n−m)(m− 1)

=
2

n
<

4

n
.

Therefore, (2.6) holds in all cases. 2

Lemma 16. (1− p)r ≥ 1− rp holds for any real number p ≤ 1 and any integer r ≥ 1.

Proof . We show this lemma by induction with respect to r. If r = 1, the equality (1−p)r = 1−rp
trivially holds. Assume that (1− p)r ≥ 1− rp holds when r = k. Then, we have

(1− p)k+1 = (1− p)(1− p)k ≥ (1− p)(1− kp)

≥ 1− (k + 1)p+ kp2 ≥ 1− (k + 1)p.

Therefore, (1− p)r ≥ 1− rp holds for any integer r ≥ 1. 2

2.6 Conclusion

In this chapter, the author introduced a novel concept of loose-stabilization and presented a

loosely-stabilizing leader election protocol in the PP model of complete networks. The basic

strategy of this protocol is described as follows: if two leaders interact each other then one of the



2.6. CONCLUSION 25

two becomes a non-leader, and if two non-leaders with the timer value 0 interact each other then

one of the two becomes a leader. The timer value of each agent is controlled so that the timer value

of every agent keeps relatively high when at least one leader exists in the population, while the

highest timer value among all agents is monotonically non-increasing when no leader exists. Thus,

starting from any arbitrary configuration, the protocol reaches a configuration in Shalf within

O(nN log n) expected steps, and then, it keeps the unique leader for Ω(NeN ) expected steps,

where n is the actual network size and N is a known upper bound of n. The proposed protocol

has practical significance from the following reason: the protocol can be practically considered to

attain self-stabilization because of exponentially long time of keeping a unique leader while the

self-stabilizing leader election in the PP model of complete networks is impossible without the

knowledge of the exact network size [11].

The future work is to apply the notion of loose-stabilization to other problems that are known

unsolvable or too costly in a self-stabilizing fashion.





Chapter 3

Loosely-stabilizing Leader

Election on Arbitrary Graphs in

Population Protocols

3.1 Introduction

Self-stabilizing leader election (SS-LE) requires that starting from any configuration, a system

reaches a safe-configuration in which a unique leader is elected, and after that, the system has

the unique leader forever. Self-stabilizing leader election is important in the population protocol

model (the PP model) because (i) many population protocols in the literature work on the

assumption that a unique leader exists [5, 6, 7], and (ii) self-stabilization tolerates any finite

number of transient faults and this property suits systems consisting of numerous cheap and

unreliable nodes. (Such systems are the original motivation of the PP model.) However, there

exists strict impossibility of SS-LE in the PP model: no protocol can solve SS-LE for complete

graphs, arbitrary graphs, trees, lines, degree-bounded graphs and so on unless the exact size of

the graph (the number of agents n) is available [7]. This impossibility holds even if we strengthen

the PP model by assigning unique identifies to agents, allowing agents to use random numbers,

introducing memory of communication links (mediated population protocols [14]), or allowing

more than two agents (k agents) to interact at the same time (the PPk model [15]).

Accordingly, many studies of SS-LE took either one of the following two approaches. One

approach is to accept the assumption that the exact value of n is available and focus on the space

27



28 CHAPTER 3. LOOSELY-STABILIZATION ON ARBITRARY GRAPHS

complexity of the protocol. Cai et al. [11] proved that n states of each agent is necessary and

sufficient to solve SS-LE for a complete graph of n agents. Mizoguchi et al.[16] and Xu et al.

[17] improved the space-complexity by adopting the mediated population protocol model and the

PPk model respectively. The other approach is to use oracles, a kind of failure detectors. Fischer

and Jiang [12] took this approach for the first time. They introduced oracle Ω? that informs all

agents whether at least one leader exists or not and proposed two protocols that solve SS-LE for

rings and complete graphs by using Ω?. Beauquier et al. [18] presented an SS-LE protocol for

arbitrary graphs that uses two copies of Ω?. Canepa et al. [19] proposed two SS-LE protocols

that use Ω? and consume only 1 bit of each agent: one is a deterministic protocol for trees and

the other is a probabilistic protocol for arbitrary graphs although the position of the leader is not

static and moves among the agents.

In chapter 2, the author took a new approach to solve SS-LE. The author introduced the

concept of loose-stabilization, which relaxes the closure requirement of self-stabilization: we allow

protocols to deviate from the specification after following it for a sufficiently long time. Concretely,

starting from any initial configuration, the system must reach a loosely-safe configuration within a

relatively short time; after that, the specification of the problem (the unique leader) must be kept

for a sufficiently long time, though not forever. The author then proposed a loosely-stabilizing

protocol that solves leader election on complete graphs using only an upper bound N of n, not

using the exact value of n. Starting from any configuration, the protocol reaches a loosely-safe

configuration within O(nN log n) expected steps. After that, the unique leader is kept for Ω(NeN )

expected steps. Since the specification is kept for an exponentially long time, we can say this

loosely-stabilizing protocol is practically equivalent to a self-stabilizing leader election protocol.

Furthermore, this protocol works on any complete graph whose size is no more than N while

protocols using the exact value of n work only on the complete graph of size n.

Contribution of This Chapter In this chapter, we consider loosely-stabilizing leader election

for arbitrary undirected graphs. We consider two settings: (i) the population with agent-identifiers

where state-transition is deterministic (as in [20]1) and (ii) the population consisting of anonymous

agents where the agents can use random numbers for state-transition (as in [19]). As mentioned

above, no self-stabilizing protocol can solve SS-LE for arbitrary graphs, even in these settings,

unless the exact value of n is available. For each setting, we propose two protocols PID and

1 Strictly speaking, the model of this chapter with identifiers is stronger than the model in [20]. We use

identifiers to compare their values while Guerraoui et al. [20] only allow equality-test of identifiers and prohibited

any other calculation of identifiers such as value-comparing.



3.2. PRELIMINARIES 29

PRD respectively. The proposed protocols use just upper bounds N of n and ∆ of the maximum

degree of nodes, and does not use the exact number of n. To elect the unique leader, we take

“the minimum ID selection” approach for PID utilizing the identifiers of agents while we take a

novel approach we call “virus war mechanism” for PRD utilizing random numbers.

Given upper bounds N of n and ∆ of the maximum degree of nodes, both protocols keep the

unique leader for Ω(NeN ) expected steps after reaching a loosely-safe configuration. Protocol PID

reaches a loosely-safe configuration within O(mN∆log n) expected steps while PRD does within

O(mN3∆2 logN) expected steps where m is the number of edges of the graph. Both protocols

consume only O(logN) bits of each agent’s memory. We can say this space complexity is small

because even space optimal self-stabilizing protocols that use exact value of n consume O(log n)

bits of each agent [11, 16]. For simplicity, the proposed protocols are presented for undirected

graphs. However, they work on directed graphs with slight modification which is discussed in the

conclusion.

Angluin et al. [5] proves that for any population protocol P working on complete graphs,

there exists a protocol that simulates P on any arbitrary graph. However, this simulation can be

achieved assuming that all the agents have the common initial states at the start of the execution.

Since we cannot assume the specific initial states (This is the essence of self-stabilization), we

cannot translate the loosely-stabilizing algorithm for complete graphs presented in 2 to a loosely-

stabilizing algorithm that works for arbitrary graphs.

3.2 Preliminaries

This section defines the model of this chapter. The model includes both agent-identifiers and

random numbers while protocols PID and PRD use only one of them. In what follows, we denote

set {z ∈ N | x ≤ z ≤ y} by [x, y].

A population is a simple and weakly-connected directed graph G(V,E, id) where V (|V | ≥ 2)

is a set of agents, E ⊆ V × V is a set of directed edges and id defines unique identifiers of

agents. Each edge represents a possible interactions (or communication between two agents): If

(u, v) ∈ E, agents u and v can interact with each other where u serves as an initiator and v

serves as a responder. Each agent v has the unique identifier id(v) ∈ I (I = [0, idmax], idmax ∈
O(nc) for constant c). We say that G is undirected if it satisfies (u, v) ∈ E ⇔ (v, u) ∈ E. We

define n = |V | and m = |E|.

A protocol P (Q,Y, I, R, T,O) consists of a finite set Q of states, a finite set Y of output

symbols, a set of possible identifiers I, a range of random numbers R ⊂ N, transition function



30 CHAPTER 3. LOOSELY-STABILIZATION ON ARBITRARY GRAPHS

T : (Q× I)× (Q× I)×R→ Q×Q, and output function O : (Q× I)→ Y . When an interaction

between two agents occurs, T determines the next states of the two agents based on the current

states of the agents, identifiers of the two agents, and a random number r ∈ R generated at each

interaction. The output of an agent is determined by O: the output of agent v with state q ∈ Q is

O(q, id(v)). We assume that the set of possible identifiers I is a given parameter and not subject

to protocol design.

A configuration is a mapping C : V → Q that specifies the states of all the agents. We denote

the set of all configurations of protocol P by Call(P ). We say that configuration C changes to

C ′ by interaction e = (u, v) and integer r ∈ R, denoted by C
e,r→ C ′, if we have (C ′(u), C ′(v)) =

T (C(u), id(u), C(v), id(v), r) and C ′(w) = C(w) for all w ∈ V \ {u, v}. A scheduler determines

which interaction occurs at each time. In this chapter, we consider a uniformly random scheduler

Γ = Γ0,Γ1, . . . : each Γt ∈ E is a random variable such that Pr(Γt = (u, v)) = 1/m for any

t ≥ 0 and any (u, v) ∈ E. We also define the random number sequence as Λ = R1, R2, . . . :

each number Rt ∈ R is a random variable such that Pr(Rt = r) = 1/|R| for any t ≥ 0 and

r ∈ R. Given an initial configuration C0, Γ, and Λ, the execution of protocol P is defined as

ΞP (C0,Γ,Λ) = C0, C1, . . . such that Ct
Γt,Rt→ Ct+1 for all t ≥ 0. We denote ΞP (C0,Γ,Λ) simply

by ΞP (C0) when no misunderstanding can arise.

The leader election problem requires that every agent should output L or F which means

“leader” or “follower” respectively. We say that a finite or infinite sequence of configurations

ξ = C0, C1, . . . preserves a unique leader, denoted by ξ ∈ LE , if there exists v ∈ V such that

O(Ct(v), id(v)) = L and O(Ct(u), id(u)) = F for any t ≥ 0 and u ∈ V \ {v}. For ξ = C0, C1, . . . ,

the holding time of the leader HT (ξ,LE ) is defined as the maximum t ∈ N that satisfies

(C0, C1, . . . , Ct−1) ∈ LE . We define HT (ξ,LE ) = 0 if C0 /∈ LE . We denote E[HT (ΞP (C),LE )]

by EHTP (C,LE ). Intuitively, EHTP (C,LE ) is the expected number of interactions for which the

population keeps the unique leader after protocol P starts from configuration C. For configuration

sequence ξ = C0, C1, . . . and a set of configurations C, we define convergence time CT (ξ, C) as

the minimum t ∈ N that satisfies Ct ∈ C. We define CT (ξ, C) = |ξ| if Ct /∈ C for any t ≥ 0, where

|ξ| is the length of ξ. We denote E[CT (ΞP (C), C)] by ECTP (C, C). Intuitively, ECTP (C, C) is

the expected number of interactions by which the population reaches a configuration in C after

P starts from C.

Definition 3. Protocol P (Q,Y, I, R, T,O) is an (α, β)-loosely-stabilizing leader election protocol

if there exists set S of configurations satisfying two inequalities maxC∈Call(P ) ECTP (C,S) ≤ α

and minC∈S EHTP (C,LE ) ≥ β.



3.3. LEADER ELECTION WITH IDENTIFIERS 31

3.2.1 Chernoff Bounds

In this section, we quote the three variants of Chernoff bounds [13] used in several proofs of this

chapter.

Lemma 17 (from Eq. (4.2) in [13]). The following inequality holds for any binomial random

variable X:

Pr(X ≥ 2E[X]) ≤ e−E[X]/3.

Lemma 18 (from Eq. (4.5) in [13]). The following inequality holds for any binomial random

variable X:

Pr(X ≤ E[X]/2) ≤ e−E[X]/8.

Lemma 19 (from Eq. (4.5) in [13]). The following inequality holds for any binomial random

variable X:

Pr(X ≤ E[X]/4) ≤ e−9E[X]/32.

3.3 Leader Election with Identifiers

This section presents loosely-stabilizing leader election protocol PID, which works on arbitrary

undirected graphs with unique identifiers of agents (Code 3.1). In the protocol description, we

regard a state of agents as a collection of variables (e.g. timer), and denote a transition function

as pseudo code that updates variables of initiator x and responder y. We denote the value of

variable var of agent v ∈ V by v.var. We also denote the value of var in state q ∈ Q by q.var.

This protocol elects the agent with the minimum identifier, denoted by vmin, as the leader.

Each agent v tries to find the minimum identifier and stores it on v.lid. At interaction, two

agents x and y compare their lid and store the smaller value on their lid (Lines 3 and 6), by

which the smallest identifier id(vmin) eventually spreads to all the agents. Then, after some point,

vmin is the unique leader because output function O makes only agents v satisfying id(v) = v.lid

output L and other agents output F .

However, in the initial configuration, some agents may have false identifiers (or the integers

that are not identifiers of any agent in the population) on lid. A false identifier may spread to

the population instead of id(vmin) if it is smaller than id(vmin). We define ID = {id(v) | v ∈ V },
which is the correct identifiers set (Note that ID ⊆ I). Protocol PID removes false identifiers

i /∈ ID from lid of all the agents by the timeout mechanism. Specifically, if x.lid ̸= y.lid,



32 CHAPTER 3. LOOSELY-STABILIZATION ON ARBITRARY GRAPHS

we take the timer value of the agent with smaller lid, decrease it by one, and substitute the

decreased value into x.lid and y.lid (Lines 4 and 7). If x.lid = y.lid, we take the larger value

of x.timer and y.timer, decrease it by one, and substitute the decreased value into x.lid and

y.lid (Line 9). We call this event larger value propagation. If x or y is a leader, both timers are

reset to tmax (Line 12). We call this event timer reset. When a timer becomes zero, agents x

and y suspect that there exists no leader in the population. In this case, they elect the one with

a smaller identifier as a leader by substituting min(id(x), id(y)) into x.lid and y.lid (Line 14).

We call this event timeout. Agents with false identifiers never experience timer reset; thus, their

timers keep on decreasing. Hence, timeout eventually occurs and their lids satisfy lid ∈ ID.

This mechanism rarely ruins the stability of the unique leader because agents with lid ∈ ID keep

high value timers because of timer reset and lager value propagation.

Complexity Analysis The upper bound tmax of variable timer is the only parameter of PID,

which affects the correctness and complexities of the protocol. We assume tmax ≥ 8δmax(d, 2 +

log n) where δ is the maximum degree of the agents and d is the diameter of population G. (Note

that δ is an even number because G is undirected. ) We prove the following equations under this

assumption:

maxC∈Call
ECTPID(C,Sid) = O(mδτ log n), (3.1)

minC∈Sid
EHTPID(C,LE ) = Ω(τeτ ), (3.2)

where τ = tmax/(8δ) and Sid is the set of configurations in which v.lid = id(vmin) and v.timer >

tmax/2 hold for all v ∈ V and vmin.timer = tmax holds. When upper bounds N of n and ∆ of

δ are available and we assign tmax = 8N∆, protocol PID is an (O(m∆N log n),Ω(NeN ))-loosely-

stabilizing leader election protocol.

First, we analyze the expected holding time. Let C0 ∈ Sid and ΞPID(C0) = C0, C1, . . . . To

prove (3.2), it suffices to show that both C0, . . . , C2mτ ∈ LE and C2mτ ∈ Sid hold with probability

at least psuc = 1 − O(ne−τ ). Then, we have minC0∈Sid
EHTPID(C0,LE ) ≥ 2mτ/(1 − psuc) =

Ω(τeτ ).

Lemma 20. The probability that every v ∈ V joins only less than tmax/2 interactions among

Γ0, . . . ,Γ2mτ−1 is at least 1− ne−τ .

Proof . For any v ∈ V and t ≥ 0, v joins interaction Γt with probability at most δ/m. Thus,

the number of interactions v joins during the 2mτ interactions is bounded by binomial random



3.3. LEADER ELECTION WITH IDENTIFIERS 33

Code 3.1 Leader Election with Identifiers PID

Variables of each agent:

lid ∈ I, timer ∈ [0, tmax]

Output function O:

if v.lid = id(v) holds, then the output of agent v is L; Otherwise, F .

Interaction between initiator x and responder y:

1: if x.lid > id(x) then x.lid← id(x) endif

2: if x.lid < y.lid then

3: y.lid← x.lid

4: x.timer← y.timer← max(x.timer− 1, 0)

5: else if x.lid > y.lid then

6: x.lid← y.lid

7: x.timer← y.timer← max(y.timer− 1, 0)

8: else // x.lid = y.lid at this time

9: x.timer← y.timer← max(x.timer− 1, y.timer− 1, 0)

10: end if

11: if id(x) = x.lid or id(y) = y.lid then // a leader resets timers

12: x.timer← y.timer← tmax

13: else if x.timer = 0 then // a new leader is created at timeout

14: x.lid← y.lid← min(id(x), id(y))

15: x.timer← y.timer← tmax

16: end if

variable X ∼ B(2mτ, δ/m). Applying a variant of Chernoff bound (Lemma 17), we have

Pr(X ≥ tmax/2) = Pr(X ≥ 2E[X]) ∵ tmax = 8δτ

≤ e−E[X]/3

= e−2δτ/3 (By Chernoff Bound of Lemma 17)

≤ e−τ . ∵ δ ≥ 2

Summing up the probabilities for all v ∈ V gives the lemma.

Lemma 21. Let C0 ∈ Llid and ΞPID(C0) = C0, C1, . . . . Then, we have the following inequality:

Pr(∀v ∈ V, C2mτ (v).timer > tmax/2) ≥ 1− 2ne−τ .



34 CHAPTER 3. LOOSELY-STABILIZATION ON ARBITRARY GRAPHS

Proof . It suffices to show Pr(C2mτ (v).timer > tmax/2) ≥ 1 − 2e−τ for any agent v ∈ V . We

denote the shortest path from vmin to v by (v0, v1, . . . , vk) where v0 = vmin, vk = v, 0 ≤ k ≤ d

and (vi−1, vi) ∈ E for all i = 1, . . . , k. For any t ∈ [0, 2mτ ], we define vhead(t) as vl with

maximum l ∈ [1, k] such that there exist t1, t2, . . . , tl satisfying 0 ≤ t1 < t2 < · · · < tl < t

and Γti ∈ {(vi−1, vi), (vi, vi−1)} for i = 1, 2, . . . , l. We define vhead(t) = v0 if such l does not

exist. Intuitively, vhead(t) is the head of the agents in path (v0, v1, . . . , vk) to which a large timer

value is propagated from vmin. (Remember that vmin resets the timers to tmax.) We define

J(t) as the number of integers i ∈ [0, t] such that vhead(i) joins interaction Γi. Intuitively, J(t)

is the number of interactions that the head agent joins among Γ0, . . . ,Γt. Obviously, we have

Ct(vhead(t)).timer ≥ tmax − J(t) for any t ≥ 0.

In what follows, we prove Pr(vhead(2mτ) = v) ≥ 1−e−τ and Pr(J(2mτ) < tmax/2) ≥ 1−e−τ ,

which give Pr(C2mτ (v).timer > tmax/2) ≥ 1 − 2e−τ . For any i ∈ [1, k], a pair vi−1 and vi

interacts with probability 2/m at each interaction. Hence, we can say each interaction makes

vhead forward with probability 2/m. Therefore, by letting Z be a binomial random variable such

that Z ∼ B(2mτ, 2/m), we have

Pr(vhead(t) = v) = 1− Pr(Z < k)

≥ 1− Pr(Z < d)

≥ 1− Pr

(
Z <

1

4
·E[Z]

)
∵ d ≤ τ =

1

4
·E[Z]

≥ 1− e−9E[Z]/32 (By Chernoff bound of Lemma 19)

> 1− e−τ .

The probability that vhead(t) joins interaction Γt is at most δ/m regardless of t. Hence, by letting

Z ′ be a binomial random variable such that Z ′ ∼ B(2mτ, δ/m), we have

Pr(J(2mτ) < tmax/2) > 1− Pr(Z ′ ≥ tmax/2)

= 1− Pr(Z ′ ≥ 2E[Z ′])

> 1− e−E[Z′]/3 (By Chernoff bound of Lemma 17)

= 1− e−2δτ/3

> 1− e−τ . ∵ δ ≥ 2

Thus, we have shown Pr(C2mτ (v).timer > tmax/2) ≥ 1− 2e−τ .

Lemma 22. minC∈Sid
EHTPID(C,LE ) = Ω(τeτ ).



3.3. LEADER ELECTION WITH IDENTIFIERS 35

Proof . We have C0, . . . , C2mτ ∈ LE and C2mτ ∈ Sid if C0 ∈ Sid holds, no timeout happens,

and any agent interacts at most tmax/2 times during 2mτ interactions. Hence, probability psuc

discussed in the beginning of this section is at least 1− 3ne−τ by Lemmas 20 and 21, which leads

to the lemma.

Next, we analyze the expected convergence time. To prove (3.1), we define two sets of con-

figurations: Clid = {C ∈ Call(PID) | ∀v ∈ V,C(v).lid ∈ ID} and Llid = Clid ∩ {C ∈ Call(PID) |
C(vmin).lid = id(vmin) ∧ C(vmin).timer = tmax}.

Lemma 23. maxC∈Call(PID) ECTPID(C, Clid) = O(mδτ log n).

Proof . Let z be the maximum value of v.timer such that v.lid /∈ ID. This z decreases by one

every time all interactions of E occur. Thus, it takes at most m
m + m

m−1 + . . . m1 ≤ m(1 + logm)

expected steps to decrease z by one. Hence, maxC∈Call(PID) ECTPID(C, Clid) ≤ tmaxm(1+logm) =

O(mδτ log n).

Lemma 24. maxC∈Clid
ECTPID(C,Llid) = O(m).

Proof . We have vmin.lid = id(vmin) and vmin.timer = tmax just after vmin interacts in any

configuration of Clid. This takes O(m) expected interactions.

Lemma 25. maxC∈Llid
ECTPID(C,Sid) = O(mτ).

Proof . Let C0 ∈ Llid and ΞPID(C0) = C0, C1, . . . . Since Ct ∈ Llid holds for every t ≥ 0, identifier

id(vmin) is the smallest among lid of all the agents in any configuration C0, C1, . . . . Hence, once

agent v satisfies v.lid = id(vmin), then v.lid = id(vmin) always holds until a timeout occurs at

v. Lemma 21 has shown that, with probability at least 1− 2ne−τ , every agent v satisfies v.lid =

id(vmin) within 2mτ interactions, and after that, keeps on satisfying v.timer > tmax/2 at least

until Γ2mτ−1 finishes. Thus, the probability that C2mτ (v).lid = id(vmin) and C2mτ (v).timer >

tmax/2 hold for all v ∈ V is at least 1 − 2ne−τ . Note that C2mτ (vmin).timer = tmax holds with

probability 1. Hence, we have

max
C∈Llid

ECTPID(C,Sid) ≤ 2mτ + 2ne−τ · max
C∈Llid

ECTPID(C,Sid).

Solving this inequality gives maxC∈Llid
ECTPID(C,Sid) ∈ O(mτ).

The following lemma immediately follows from Lemmas 23, 24, and 25.

Lemma 26. maxC∈Call(PID) ECTPID(C,Sid) = O(mδτ log n).

Lemmas 22 and 26 gives the following theorem.



36 CHAPTER 3. LOOSELY-STABILIZATION ON ARBITRARY GRAPHS

Theorem 3. Protocol PID is a (O(mδτ log n),Ω(τeτ )) loosely-stabilizing leader election protocol

for arbitrary graphs when tmax ≥ 8δmax(d, 2 + log n).

Therefore, given upper boundN and ∆ of n and δ respectively, we get a (O(m∆N log n),Ω(NeN ))

loosely-stabilizing leader election protocol for arbitrary graphs by assigning tmax = 8N∆.

3.4 Leader Election with Random Numbers

This section presents loosely-stabilizing leader election protocol PRD. It works on arbitrary undi-

rected anonymous graphs with a random number generated at each interaction (Code 3.2). Ran-

dom numbers are used in Line 11: When the protocol enters Line 11, the code is executed with

probability p = 1/|R|. This is implemented as the code is executed only when a specific number

is generated. For example, p = 0.01 if we assign R = [0, 99] and treat 0 as a specific number.

Each agent has binary variable DoA ∈ {DEAD,ALIVE} and three timers timerL, timerV and

timerS. The output function defines leaders based on DoA : agent v is a leader if v is alive (or

v.DoA = ALIVE), and a follower if v is dead (or v.DoA = DEAD). Protocol PRD consists of a

timeout mechanism (Lines 1-7) and a virus-war mechanism (Lines 8-14). By using timerL, the

timeout mechanism creates a leader when it is suspected that no leader exists. By using timerV

and timerS, the virus-war mechanism reduces the number of leaders.

The timeout mechanism is almost the same as PID. By the timer reset and the larger value

propagation, timeout eventually occurs when no leader exists, and all agents keep high timer

values with high probability when one ore more leaders exist. At timeout, a dead agent becomes

a leader (Line 5).

In the virus-war mechanism, each leader tries to kill other leaders by viruses and become the

unique leader. We say that agent v has a virus if v.timerV > 0, and v wears a (head) shield if

v.timerS > 0. A leader creates a new virus with probability p when it interacts as an initiator

(Line 11). When creating a virus, the agent wears a shield so as not to be killed by the new virus

(Line 11). A virus spreads among agents by interactions (Line 8), and an agent is killed when it

has a virus without a shield (Lines 13-14). A virus has TTL (time to live), which is memorized

on timerV and decreased by one at each interaction of its owner (line 8). When timerV becomes

zero, the virus vanishes and looses the ability to kill agents. A shield also has TTL, which is

memorized on timerS and decreased by one at each interaction of its owner (Line 9). When

timerS becomes zero, the shield vanishes and looses the ability to protect its owner from viruses.

The virus-war mechanism correctly works if p is sufficiently small and tshld is sufficiently

greater than tvirus. Consider the case multiple leaders exist. Since p is small, all viruses and



3.4. LEADER ELECTION WITH RANDOM NUMBERS 37

Code 3.2 Leader Election with Random Numbers PRD

Variables of each agent:

DoA ∈ {DEAD, ALIVE}, timerL ∈ [0, tmax], timerV ∈ [0, tvirus], timerS ∈ [0, tshld]

Output function O:

if v.DoA = ALIVE holds, then the output of agent v is L, otherwise F .

Interaction between initiator x and responder y:

1: x.timerL ← y.timerL ← max(x.timerL − 1, y.timerL − 1, 0)

2: if x.DoA = ALIVE or y.DoA = ALIVE then

3: x.timerL ← y.timerL ← tmax // a leader resets timer

4: else if x.timerL = 0 then // a new leader is created at timeout

5: x.DoA← ALIVE

6: x.timerL ← y.timerL ← tmax

7: end if

8: x.timerV ← y.timerV ← max(x.timerV − 1, y.timerV − 1, 0)

9: x.timerS ← max(0, x.timerS − 1)

10: if x.DoA = ALIVE then

11: Execute (x.timerV ← tvirus, x.timerS ← tshld) with probability p

// An alive initiator creates a new virus and a new shield with probability p.

12: end if

13: if x.timerV > 0 and x.timerS = 0 then x.DoA← DEAD endif

14: if y.timerV > 0 and y.timerS = 0 then y.DoA← DEAD endif

shields eventually vanish. After that, some agent eventually creates a new virus and shield. The

created virus kills all other agents unless some of them also create a new virus and shield before

the virus reaches them. Since p is sufficiently small, the probability of the latter is small. Thus,

the unique leader is elected within a relatively short time. Even after that, the unique leader

keeps on creating new viruses, each of which may kill the leader. However, the leader is not

killed for an extremely long time: since tshld ≫ tvirus, the leader’s shield rarely vanishes before

all viruses vanish from the population.

Complexity Analysis We have four parameters in PRD: three upper bounds tmax, tvirus,

and tshld of the timers, and probability p. We assume tvirus = tmax/2, tmax ≥ 8δmax(d, 2 +

log(13nδ⌈log n⌉)), tshld ≥ 2δtmax⌈log n⌉ and p ≤ (4mtshld)
−1. We prove the following equations



38 CHAPTER 3. LOOSELY-STABILIZATION ON ARBITRARY GRAPHS

under this assumption:

maxC∈Call
ECTPRD(C,SRD) = O(mp−1), (3.3)

minC∈SRD EHTPRD(C,LE ) = Ω(τeτ ), (3.4)

where τ = tmax/(8δ) and SRD is the set of configurations we define later. When upper bounds N

and ∆ are available and we assign tmax = 8N∆, tshld = 2∆tmax⌈logN⌉ and p = (4N2tshld)
−1 (i.e., R =

[0, 4N2tshld − 1]), then PRD is an (O(m∆2N3 logN),Ω(NeN ))-loosely-stabilizing leader election

protocol.

Before proving equations (3.3) and (3.4), we define five sets of configurations:

Ghalf = {C ∈ Call(PRD) | ∃v ∈ V, C(v).DoA = ALIVE ∧ C(v).timerS > tshld/2},

Vclean = {C ∈ Call(PRD) | ∀v ∈ V, C(v).timerV = 0},

Lhalf = {C ∈ Call(PRD) | #L(C) ≥ 1 ∧ ∀v ∈ V, C(v).timerL > tmax/2},

Lone = {C ∈ Call(PRD) | #L(C) = 1},

SRD = (Ghalf ∪ Vclean) ∩ Lhalf ∩ Lone,

where #L(C) denotes the number of leaders in configuration C. Note that Ghalf requires that not
all agents but at least one leader has timerS more than tshld/2.

First, we analyze the expected holding time. Let C0 ∈ SRD and ΞPRD(C0) = C0, C1, . . . . To

prove (3.4), it suffices to show that both C0, . . . , C8mδτ⌈logn⌉ ∈ LE and C8mδτ⌈logn⌉ ∈ SRD hold

with probability no less than psuc = 1−O(nδ log n · e−τ ). Then, minC0∈SRD EHTPRD(C0,LE ) ≥
8mδτ⌈log n⌉τ/(1− psuc) = Ω(τeτ ).

We define two predicates PROPi and HALFi for any i ≥ 0: PROPi = 1 if C2mτ(i+1)(v).timerL >

ti − tmax/2 for all v ∈ V , otherwise PROPi = 0, where ti = maxv∈V C2mτi(v); HALFi = 1 if

every agent joins only less than tmax/2 interactions among Γ2mτi, . . . ,Γ2mτ(i+1)−1, otherwise

HALFi = 0. Intuitively, PROPi = 1 means the maximum value of timerL propagates to all the

agents well during the 2mτ interactions, and HALFi = 1 means every agent does not interact so

much during the 2mτ interactions.

Lemma 27. Let C0 ∈ SRD and ΞPRD(C0) = C0, C1, . . . . Then, we have both C0, . . . , C8mδτ⌈logn⌉ ∈
LE and C8mδτ⌈logn⌉ ∈ SRD if the following conditions hold:

(A) #L(Ct) ≥ 1 for all t = 0, . . . , 8mδτ⌈log n⌉,
(B) C8mδτ⌈logn⌉ ∈ Ghalf ∪ Vclean,
(C) PROPi = 1 for all i = 0, . . . , 4δ⌈log n⌉ − 1, and

(D) HALFi = 1 for all i = 0, . . . , 4δ⌈logn⌉ − 1.



3.4. LEADER ELECTION WITH RANDOM NUMBERS 39

Proof . We have C2mτi(v).timerL > tmax/2 for any i ∈ [0, 4δ⌈log n⌉] from (A) and (C). Since no

agent interacts more than tmax/2 times among each 2mτ interactions (i.e. (D)), timeout does not

occur at any interaction Γ0, . . . ,Γ8mδτ⌈logn⌉−1, by which we obtain C0, . . . , C8mδτ⌈logn⌉ ∈ LE .

We also obtain C8mδτ⌈logn⌉ ∈ Lhalf ∩ Lone ∩ (Ghalf ∪ Vclean) = SRD from above discussion and

(B).

Lemma 28. The probability that every agent joins only less than tshld/2 interactions as an

initiator among Γ0, . . . ,Γ8mδτ⌈logn⌉−1 is at least 1− ne−δτ .

Proof . For any v ∈ V and t ≥ 0, v joins interaction Γt as an initiator with probability at

most δ/(2m) since v has at most δ/2 outgoing edges. Thus, the number of interactions v joins

as an initiator during the 8mδτ⌈log n⌉ interactions is bounded by binomial random variable

X ∼ B(8mδτ⌈log n⌉, δ/(2m)). We have

Pr(X ≥ tshld/2) ≤ Pr(X ≥ 8δ2τ⌈log n⌉) ∵ tshld ≥ 16δ2τ⌈log n⌉

= Pr(X ≥ 2E[X])

≤ e−E[X]/3 (By Chernoff Bound of Lemma 18)

= e−4δ2τ⌈logn⌉/3

= e−δτ .

Summing up these probabilities gives the lemma.

Lemma 29. Let C0 ∈ SRD and ΞPRD(C0) = C0, C1, . . . .

Then, we have Pr(∀t ∈ [0, 8mδτ⌈log n⌉ − 1], #L(Ct) ≥ 1) ≥ 1− ne−δτ .

Proof . By Lemma 28, it suffices to show that #L(Ct) ≥ 1 holds for all t ∈ [0, 8mδτ⌈log n⌉]
when we assume every agent joins only less than tshld/2 interactions as an initiator among

Γ0, . . . ,Γ8mδτ⌈logn⌉−1. Since C0 ∈ SRD, we have C0 ∈ Ghalf ∪ Vclean. If C0 ∈ Ghalf , there ex-

ists a leader v such that C0(v).timerS > tshld/2. By the assumption, v decrease its timerS by at

most tshld/2; thus, v is never killed and remains a leader in C0, . . . , C8mδτ⌈logn⌉. If C0 ∈ Vclean,
no leader is killed before a new virus is created. Even if some leader u creates a new virus at

interaction Γt (0 ≤ t < 8mδτ⌈logn⌉), u wears a new shield at the same time. Hence, u remains

a leader in Ct, . . . , C8mδτ⌈logn⌉ by the assumption.

We define the first round time RTΓ(1) as the minimum t satisfying ∀e ∈ E, 0 ≤ ∃t′ ≤
t, Γt′ = e. For any i ≥ 2, we define the i-th round time RTΓ(i) as the minimum t satisfying

∀e ∈ E, RTΓ(i − 1) < ∃t′ ≤ t, Γt′ = e. Lemma 31 bounds RTΓ(i) from above with high

probability. To prove the lemma, we firstly prove Lemma 30.



40 CHAPTER 3. LOOSELY-STABILIZATION ON ARBITRARY GRAPHS

Lemma 30. Let v1, v2, . . . , vl be any l (l < n) agents in V . There exists at least 2l edges of E

that are incident to at least one of the l agents.

Proof . Since l < n, there exists agent r ∈ V that differs from any v1, v2, . . . , vl. Since G is

strongly connected, there exists a rooted spanning tree T on G where r is the root agent of T .

Then, every vi (i ∈ [1, k]) has two edges between vi and the parent agent of vi in T . (Remind

that G is undirected, that is, (u, v) ∈ E ⇔ (v, u) ∈ E for any u, v ∈ V .) These edges are mutually

exclusive. Thus, we have 2l edges of E that are incident to at least one of the l agents.

Lemma 31. Pr(RTΓ(i) < 2im⌈log n⌉) ≥ 1− ne−i/4 holds for any i ≥ 1.

Proof . Each round j (j ≥ 1) finishes when every agent v ∈ V interacts in round j. Consider

the case that k (k ≥ 1) agents have not yet interacted in round j and only n − k agents have

interacted in round j. We call the former uninvolved agents and the latter involved agents. If

k < n, one of the k uninvolved agents joins the next interaction and becomes an involved agent

with probability more than 2k/m by Lemma 30. If k = n, some uninvolved agent joins the next

interaction with probability 1. Let Xj,k (j ≥ 1, k ≥ 1) be the random variable that corresponds

to the number of trials to the first success in which the success probability of each trial is 2k/m.

From the above discussion, we obtain

Pr(RTΓ(i) ≥ 2im⌈log n⌉) ≤ Pr

 i∑
j=1

(
1 +

n−1∑
k=1

Xj,k

)
≥ 2im⌈log n⌉


≤ Pr

n−1∑
k=1

i∑
j=1

Xj,k ≥ 2im⌈logn⌉ − i

 .

(3.5)

For binomial random variable Yk ∼ B(⌈ imk ⌉,
2k
m ), we have Pr(

∑i
j=1Xj,k >

im
k ) ≤ Pr(

∑i
j=1Xj,k ≥

⌈ imk ⌉) ≤ Pr(Yk ≤ i). Hence, we have

Pr

 i∑
j=1

Xj,k >
im

k

 ≤ Pr(Yk ≤ i)

≤ Pr

(
Yk ≤

1

2
·E[YK ]

)
≤ e−E[Yk]/8 (By Chernoff Bound of Lemma 18)

≤ e−i/4.

(3.6)



3.4. LEADER ELECTION WITH RANDOM NUMBERS 41

From Inequalities (3.5) and (3.6), we have

Pr(RTΓ(i) ≥ 2im⌈log n⌉) ≤ Pr

n−1∑
k=1

i∑
j=1

Xj,k ≥ 2im⌈log n⌉ − i


≤ Pr

n−1∑
k=1

i∑
j=1

Xj,k >
n−1∑
k=1

im

k


≤

n−1∑
k=1

Pr

 i∑
j=1

Xj,k >
im

k


≤ ne−i/4,

where
∑n−1

k=1
im
k ≤ im(1 + log n) − i < 2im⌈log n⌉ − i is used for the second inequality. Thus,

Pr(RTΓ(i) < 2im⌈log n⌉) ≥ 1− ne−i/4 holds.

Lemma 32. Let C0 ∈ SRD and ΞPRD(C0) = C0, C1, . . . .

Then, we have Pr(C8mδτ⌈logn⌉ ∈ Ghalf ∪ Vclean) ≥ 1− 2ne−δτ .

Proof . Assume that RTΓ(tvirus) < 8mδτ⌈log n⌉ holds and every agent joins only less than

tshld/2 interactions as an initiator among Γ0, . . . ,Γ8mδτ⌈logn⌉−1. These assumptions lead to

C8mδτ⌈logn⌉ ∈ Ghalf ∪Vclean as follows. If a new virus is not created among Γ0, . . . ,Γ8mδτ⌈logn⌉−1,

then all viruses in the initial configuration vanish during the period since each round decreases the

maximum value of timerV by at least one. Thus, C8mδτ⌈logn⌉ ∈ Vclean holds. If some agent v cre-

ates a new virus at Γt, then v wears a new shield at the same time. Thus, Ct+1(v).timerS = tshld.

Since v interacts as an initiator only less than tshld/2 times among Γt+1, . . . ,Γ8mδτ⌈logn⌉−1, we

have C8mδτ⌈logn⌉(v).timerS > tshld/2, which means C8mδτ⌈logn⌉ ∈ Ghalf . By tvirus = 4δτ and

Lemmas 28 and 31, the probability that the two assumptions hold is at least 1− 2ne−δτ .

Lemma 33. Pr(PROPi = 1) ≥ 1− 2ne−τ for any i ≥ 0.

Proof . The same argument as the proof of Lemma 21 gives the lemma.

Lemma 34. Pr(HALFi = 1) ≥ 1− ne−τ for any i ≥ 0.

Proof . Each interaction is independent. Thus, Lemma 20 gives the lemma.

Lemma 35. minC∈SRD EHTPRD(C,LE ) = Ω(τeτ ).

Proof . Probability psuc, discussed in the beginning of this section, is at least 1 − 3ne−δτ −
4δ⌈log n⌉ · 3ne−τ ≥ 1 − 13nδ⌈log n⌉e−τ by Lemmas 27, 29, 32, 33 and 34, which leads to the

lemma.



42 CHAPTER 3. LOOSELY-STABILIZATION ON ARBITRARY GRAPHS

Next, we analyze the expected convergence time. We define two sets of configurations: NoVG =

{C ∈ Call(PRD) | ∀v ∈ V, C(v).timerV = C(v).timerS = 0} and L = {C ∈ Call(PRD) | #L(C) ≥
1}. The goal of the rest of this section is to prove maxC∈Call(PRD) ECTPRD(C,SRD) = O(mp−1)

(Lemma 41). To prove Lemma 41, we show Lemmas 37, 38 and 40. Lemma 37 (38, 40) gives the

lower bound of the probability that the population enters from Call(PRD) into NoVG (from NoVG

into NoVG ∩ L, from NoVG ∩ L into SRD, respectively) within a certain number of interactions.

We also show Lemmas 36 and 39 to prove Lemmas 37 and 40 respectively.

Lemma 36. The probability that every v ∈ V joins more than tshld interactions as an initiator

among Γ0, . . . ,Γ2mtshld is at least 1− ne−tshld/4.

Proof . For any v ∈ V and t ≥ 0, v joins interaction Γt as an initiator with probability at

least 1/m. Thus, the number of interactions v joins during the 2mtshld interactions is bounded

from below by binomial random variable X ∼ B(2mtshld, 1/m). Applying the Chernoff bound of

Lemma 18, we have

Pr(X ≤ tshld) = Pr(X ≤ E[X]/2)

≤ e−E[X]/8 (By Chernoff Bound of Lemma 18)

= e−tshld/4.

Summing up the probabilities for all v ∈ V gives the lemma.

Lemma 37. Let C0 ∈ Call(PRD) and ΞPRD(C0) = C0, C1, . . . . Then, we have Pr(C2mtshld ∈
NoVG) ≥ 1− 2ne−δτ − 2mtshld · p.

Proof . First, we show that C2mtshld ∈ NoVG holds when the following three conditions hold:

(A) every agent v ∈ V joins more than tshld interactions as an initiator among Γ0, . . . ,Γ2mtshld ,

(B) RT(tvirus) ≤ 2mtshld, and

(C) no new virus is created during Γ0, . . . ,Γ2mtshld .

Until a new virus is created, variable v.timerS for each v ∈ V is monotonically non-increasing

and it decreases by one every time v interacts as an initiator. Hence, no agent wears a shield

in configuration C2mtshld by (A) and (C). Until a new virus is created, the maximum value of

all v.timerV (i.e. maxv∈V v.timerV) is monotonically non-increasing during Γ0, . . . ,Γ2mtshld and

it decreases at least by one in each round. Hence, no agent has a virus in configuration C2mtshld

by (B) and (C). Thus, we have C2mtshld ∈ NoVG when (A),(B) and (C) hold.



3.4. LEADER ELECTION WITH RANDOM NUMBERS 43

Next we give lower bounds on probability of (A),(B) and (C). The probability of (A) is at least

1 − ne−tshld/4 > 1 − ne−δτ from Lemma 36. The probability of (B) is at least 1 − ne−tvirus/4 =

1−ne−δτ from Lemma 31. At each interaction, a new virus is created with probability at most p

(with probability exact p when a leader interacts as an initiator and with probability 0 otherwise).

Hence, the probability of (C) is at least 1 − 2mtshld · p. Thus, Conditions (A),(B) and (C) hold

with probability at least 1− 2ne−δτ − 2mtshld · p.

Lemma 38. Let C0 ∈ NoVG and ΞPRD(C0) = C0, C1, . . . . Then, we have

Pr(∃i ∈ [0, 16mδτ⌈log n⌉], Ci ∈ NoVG ∩ L) ≥ 1− 2ne−δτ .

Proof . The lemma trivially holds if C0 has one or more leaders. Therefore, we consider the case

C0 does not have any leader (i.e. C0 /∈ L). Since followers never create viruses or shields, there

exists neither a virus nor a shield until a leader is created. Therefore, the population reaches a

configuration of NoVG ∩ L at the first timeout of execution ΞPRD(C0) = C0, C1, . . . .

Thus, it suffices to show that a timeout occurs within 16mδτ⌈logn⌉ interactions with prob-

ability at least 1 − 2ne−δτ . During the period no leader exists, the maximum value of all

v.timerL (i.e. maxv∈V v.timerL) is monotonically non-increasing and decreases at least by one

in each round. This means a timeout occurs until tmax rounds finish. By Lemma 31, we have

Pr(RT(tmax) < 16mδτ⌈log n⌉) ≥ 1− ne−tmax/4 = 1− ne−2δτ .

Lemma 39. Let C0 ∈ Call(PRD) and ΞPRD(C0) = C0, C1, . . . . Let tinit be the maximum value

of all v.timerV in C0 (i.e. maxv∈V C(v).timerV). Then, we have Pr(∀v ∈ V, C2mτ (v).timerV >

tinit − tmax/2) > 1− 2ne−τ .

Proof . The same argument as the proof of Lemma 21 gives the lemma.

Lemma 40. Let C0 ∈ NoVG∩L and ΞPRD(C0) = C0, C1, . . . . Then, we have Pr(∃i ∈ [0, ⌈2mp−1⌉+
2mτ ], Ci ∈ SRD) ≥ 1− e−2 − 5ne−τ − 2mτ · p.

Proof . Let t be the minimum integer (i.e. the first time) such that configuration Ct has a virus.

During the period one or more leaders exist, each interaction makes a new virus with probability

at least p/m. Hence, the probability of t < ⌈2mp−1⌉ is at least 1− (1− p/m)⌈2mp−1⌉ > 1− e−2.

Therefore, it suffices to show that Ct+2mτ ∈ SRD holds with probability at least 1− 5ne−τ −
2mτ · p. We denote the leader that creates a virus at interaction Γt−1 by v. Note that, in

configuration Ct, only v has a virus and a shield while the other agents do not have viruses or

shields. Furthermore, the virus and the shield of v have the maximum TTL (tvirus and tshld

respectively in Ct. We have Ct+2mτ ∈ SRD if all the following conditions hold:



44 CHAPTER 3. LOOSELY-STABILIZATION ON ARBITRARY GRAPHS

(A) every agent has a virus in Ct+2mτ ,

(B) every agent except for v does not wear a shield in Ct+2mτ ,

(C) agent v joins only less than tshld/2 interactions as an initiator during Γt,Γt+1, . . . ,Γt+2mτ−1,

and

(D) every agent has timerL larger than tmax/2 in Ct+2mτ .

By (A) and (B), all agents except for v are dead in Ct+2mτ . By (C), v always has a shield

larger than tshld/2 during the 2mτ interactions, and hence, is alive (i.e. is a leader) in Ct+2mτ .

Therefore, Ct+2mτ ∈ Lone ∩ Ghalf holds. Moreover, Ct+2mτ ∈ Lhalf holds by (D). Thus, we have

Ct+2mτ ∈ Lone ∩ Ghalf ∩ Lhalf ⊂ SRD when (A),(B),(C) and (D) hold.

Therefore, it suffices to show that all (A),(B),(C) and (D) hold with probability 1− 5ne−τ −
2mτ · p. Since Ct(v).timerV = tvirus = tmax/2, the probability of (A) is at least 1 − 2ne−τ by

Lemma 39. The sufficient condition of (B) is that a new virus is not created during Γt,Γt+1, . . . ,

Γt+2mτ−1. The probability of this condition is at least 1− 2mτ · p. The probability of (C) is at

least 1−ne−δτ > 1−ne−τ by Lemma 28. Finally, The probability of (D) is at least 1−2ne−τ by

Lemma 33. Thus, all (A), (B), (C) and (D) hold with probability at least 1−5ne−τ −2mτ ·p.

Lemma 41. maxC∈Call(PRD) ECTPRD(C,SRD) = O(mp−1).

Proof . By Lemmas 37, 38 and 40, starting from any configuration of Call(PRD), the population

reaches a configuration of SRD within 2mtshld+16mδτ⌈log n⌉+⌈2mp−1⌉+2mτ interactions with

probability at least 1−2ne−δτ−2mtshld ·p−2ne−δτ−e−2−5ne−τ−2mτ ·p. The former expression

is at most ⌈(2m + 1) · p−1⌉ and the latter expression is at least 1 − 3mtshld · p − 6ne−τ − e−2 >

1− 3/4− 6e−2/26− e−2 > 0.08. Hence, we have

max
C∈Call(PRD)

ECTPRD(C,SRD)

≤ ⌈(2m+ 1)p−1⌉+ 0.92 · max
C∈Call(PRD)

ECTPRD(C,SRD).

Solving this inequality gives maxC∈Call(PRD) ECTPRD(C,SRD) = O(mp−1).

Lemmas 35 and 41 gives the following theorem.

Theorem 4. Protocol PRD is a (O(mp−1),Ω(τeτ )) loosely-stabilizing leader election protocol

for arbitrary graphs when tmax ≥ 8δmax(d, 2 + log(13nδ⌈log n⌉)), tvirus = tmax/2, tshld ≥
2δtmax⌈log n⌉ and p ≤ (4mtshld)

−1.



3.5. CONCLUSION 45

Therefore, given upper bounds N of n and ∆ of δ, we get a (O(m∆2N3 logN),Ω(NeN ))

loosely-stabilizing leader election protocol for arbitrary graphs by assigning tmax = 8N∆, tvirus =

tmax/2, tshld = 2∆tmax⌈logN⌉ and p = (4N2tshld)
−1.

3.5 Conclusion

The author has presented two loosely-stabilizing leader election protocols for arbitrary undirected

graphs in the PP model: one works with agent-identifiers and the other works with random

numbers. Both protocols keep a unique leader for an exponentially long expected time after

reaching a loosely-safe configuration. The protocols use only upper bounds N of n and ∆ of δ

while any self-stabilizing leader election protocol needs the exact knowledge of n. The restriction

of the protocols to undirected graph is only for simplicity of protocol description and complexity

analysis. The proposed protocols also work on arbitrary directed graphs with slight modification:

it is only necessary that a responder also executes some actions of an initiator (Line 1 of Protocol

1 and Lines 10-12 of Protocol 2). Both the two protocols use the timeout mechanism to detect

the absence of a leader agent. This mechanism can be regarded as an implementation of oracle

Ω? [12]. Although the oracle does not provide any guarantee about when it notify each agent

the absence of a leader, the timeout mechanism does within a certain time with high probability,

which leads to loosely-stabilizing solution.

The future work is to develop a loosely-stabilizing leader election protocol without agent-

identifiers or random numbers for arbitrary graphs. The author will also tackle with loosely-

stabilizing leader election for some classes of graphs (e.g. rings and trees). The author is also

interested in the empirical evaluation of the holding time of loosely-stabilizing protocols. Since

probabilistic evaluation of the holding time in this chapter is not tight, the actual holding time

of the protocols should be much longer. By simulation experiments, the author will empirically

evaluate the actual holding time (and convergence time) for various network sizes and graph

topologies.





Chapter 4

Optimal Longcut Route Selection

4.1 Introduction

The current adoption rate of wireless mobile devices such as smart phones, tablet computers,

and laptop computers is spectacular, and we see rapid spread of cloud computing services, which

require the Internet connection inherently. Thus, users of such devices and services need Internet

access not only when they stay at home or office, but also when they travel. However, at present,

users cannot enjoy fast wireless communication everywhere. The cellular network has wide radio

coverage, but it does not provide fast communication. On the other hand, Wireless LAN such as

WiFi achieves a high transmission rate, but its radio coverage is narrow. Thus, wireless signal

quality is highly dependent on the user’s location, and hence, quality of communication during

travel highly depends on the travel route that the users take. Therefore, it may be desirable for

such users to select a ”longcut route” to their destination that has larger travel time than the

shortest route, but provides better quality of wireless communication during travel.

In this chapter, the author formulates the above situation as the “optimal longcut route

problem”. We consider that a user of a wireless mobile device needs to travel from starting

location s to destination g within time ∆t while using the device in an urban area. Wireless

communication speeds differ at different locations. Therefore, the total amount of communication

during travel differs depending on the route taken from s to g. The goal of this problem is to

find the route with the maximum amount of communication subject to the constraint that the

travel time is within ∆t. We call this route an optimal longcut route. We define this problem as

the following graph problem:

47



48 CHAPTER 4. OPTIMAL LONGCUT ROUTE SELECTION

Optimal Longcut Route Selection（OLRS） 　
[Input]

• Directed graph G = (V,E) where self-loops are allowed but multiple edges are not allowed.

• Starting node s ∈ V and destination node g ∈ V .

• Travel time function T : E → N+ where T (e) = 1 holds for any self-loop e.

• Communication amount function P : E → N.

• Time limit ∆t ∈ N+.

[Output]

s - g walk 1 ω = (v0, e1, v1, . . . , el, vl) (v0 = s, vl = g) with the maximum amount of

communication P (ω) =
∑l

i=1 P (ei) subject to T (ω) =
∑l

i=1 T (ei) ≤ ∆t.

Self-loop (v, v) means that the user can stay at node v ∈ V . More specifically, we consider that

the user stays at v for k time units if the user follows walk ω which has k self-loops (v, v).

Generally, an optimal route of an OLRS instance is not a shortest route from s to g. To

achieve better quality of communication, it becomes a “longcut route” that makes a detour to the

destination. The improvement of communication quality by longcut has already been evaluated

by [21, 22]. The studies performed simulation experiments and evaluated the improvement in an

ideal communication model [21] and in a more practical model with network simulator NS2 [22].

Both studies show that a longcut route with a small increase of travel time greatly improves the

total amount of communication the user obtains. However, in these papers, we do not present

solutions or algorithms for calculating the optimal long-cut route.

Delay Constraint Least Cost problem(DCLC) is a problem closely related to OLRS. DCLC is

defined as follows.

Delay Constraint Least Cost(DCLC) 　
[Input]

• Simple graph G = (V,E).

• Starting node s ∈ V，destination node g ∈ V .

1 A walk is an alternating sequence of nodes and edges. A node (or an edge) may appear twice or more in a

walk.



4.1. INTRODUCTION 49

• Delay function D : E → N+.

• Cost function C : E → N.

• Acceptable delay time ∆d ∈ N+.

[Output]

s - g walk ω = (v0, e1, v1, . . . , el, vl) (v0 = s, vl = g) with least cost C(ω) =
∑l

i=1 C(ei)

subject to acceptable delay time ∆d.

The main difference between DCLC and OLRS is that we have to find the walk with the minimum

cost for DCLC while we have to find the walk with the maximum gain (communication amount)

for OLRS. It is known that DCLC is NP-hard [23]. Therefore, solutions for this problem are

classified to two types: One finds an optimal solution in an exponential time (in the worst-case)

[24], and the other finds an approximate solution in polynomial time [25, 26, 27, 28, 29]. Widyono

[24] proposed an algorithm called CBF(Constrained Bellman-Ford), which computes an optimal

solution with the branch and bound approach. This algorithm takes exponential time in the

worst case, but in practice, it takes a relatively short time. Lorenz et al. [25] proposed a fully

polynomial time approximation scheme (FPTAS) for DCLC: an 1 + ε-approximation algorithm

with O(|V ||E| log |V | log log |V | + |V ||E|/ε) time for any ε > 0. Most heuristic methods for

this problem use aggregation of the two metrics, delay and cost. They generate a new metric

M = f(D,C) [26, 27, 28, 29] by combining delay D and cost C and reduce DCLC to the shortest

path problem. Jüttner et al. [26] devised a fast algorithm that finds a nearly optimal solution for

DCLC by selecting appropriate f dynamically with Lagrange relaxation. Feng et al. introduced a

new method called non-linear Lagrange relaxation and presented an algorithm that finds a better

solution than that of [26]. Neve et al. [28] and Guo et al. [29] presented algorithms which obtain

solutions with excellent quality by storing multiple routes on each node v ∈ V .

Contribution of This Chapter In this chapter, we start proving that OLRS is NP-hard.

Next, we propose two pseudo-polynomial time algorithms named OLRS1 and OLRS2 for this

problem. The worst case time complexity of OLRS1 and OLRS2 are Θ(∆t · |E|) and O(∆2
t ·

|E| log(∆t · |E|)) respectively. Then, the author performs simulation experiments to evaluate the

execution time of the proposed algorithms in practical settings representing urban areas. From

the results, we observe that both algorithms solve the problem within a sufficiently short time

even for large graphs. Also, we find that the execution time of OLRS2 does not depend on time

limit ∆t, while that of OLRS1 strictly depends ∆t. Thus, OLRS2 is faster than OLRS1 in the

experiments whereas OLRS1 is asymptotically faster than OLRS2 for the worst-case inputs.



50 CHAPTER 4. OPTIMAL LONGCUT ROUTE SELECTION

4.2 Preliminaries

In this section, we introduce some expressions and notations. Some of them including those

defined in Section 4.5.1 are listed in Table 4.1.

We denote the number of nodes and the number of edges of G by n and m respectively. The

set of incoming and outgoing neighboring nodes of node v are defined as N+
in(v) = {u | (u, v) ∈ E}

and N+
out(v) = {u | (v, u) ∈ E} respectively. Furthermore, we define N−

in(v) = N+
in(v) \ {v} and

N−
out(v) = N+

out(v) \ {v}.

A walk ω = (v0, e1, v1, e2, . . . , el, vl) is an alternating sequence of nodes and edges of G where

ei = (vi−1, vi) for all i = 1, . . . , l. Since G has no multiple edges, we sometimes use simplified rep-

resentation ω = (v0, v1, . . . , vl), which omit the edges of ω. We denote the last node vl by ω.end.

For any node v ∈ N+
out(ω.end), we define ω + v as (v0, e1, . . . , vl, (vl, v), v). For any walk ω′ =

(u0, d1, . . . , dk, uk) satisfying u0 = ω.end (= vl), we define ω+ω
′ as (v0, e1, . . . , el, vl, d1, . . . , dk, uk).

We introduce null walk ϵ for convenience and define ϵ+ ω = ω + ϵ = ω for any walk ω.

We define the travel time of walk ω = (v0, e1, . . . , el, vl) and total amount of communication

of ω as T (ω) =
∑l

i=1 T (ei) and P (ω) =
∑l

i=1 P (ei) respectively. For any different two nodes u

and v, we denote by Tmin(u, v) the minimum travel time among all u - v walks. For convenience,

we define Tmin(v, v) = 0 for any v ∈ V . The set of s - v walks ω satisfying T (ω) ≤ t is denoted

by Swalk(v, t).

Let v be a node in V and t be a time in [0,∆t]. We define the maximum amount of com-

munication from s to v within time t as Popt(v, t) = max{P (ω) | ω ∈ Swalk(v, t)}. We define

Popt(v, t) = 0 when Swalk(v, t) = ∅ holds. We call a walk ω satisfying P (ω) = Popt(v, t) by an

optimal longcut route from s to v at time t. We denote the set of such walks by OPT(v, t). Giving

input (G, s, g, T, P,∆t), problem OLRS requires us to find any one of OPT(g,∆t).

4.3 NP-hardness

In this section, we prove that OLRS is NP-hard. To prove the NP-hardness, we show a polynomial-

time reduction from Unbounded Knapsack Problem (UKP), which is NP-hard [30], to OLRS. UKP

is a variant of the knapsack problem where the number of each item packed to a knapsack is not

restricted. The problem is formulated as follows.

Unbounded Knapsack Problem (UKP) 　
[Input]



4.3. NP-HARDNESS 51

Table 4.1: Expressions and notations we use in this chapter

N+
in(v) {u | (u, v) ∈ E}

N+
out(v) {u | (v, u) ∈ E}

N−
in(v) N+

in(v) \ {v}
N−

out(v) N+
out(v) \ {v}

ω.end the last node of walk ω

P (ω)
∑l

i=1 P (ei) (ω is a walk (v0, e1, . . . , el, vl).)

T (ω)
∑l

i=1 T (ei) (ω is a walk (v0, e1, . . . , el, vl).)

Tmin(u, v) min{T (ω) | ω is a u - v walk}
Swalk(v, t) The set of s - v walks satisfying T (ω) ≤ t
Popt(v, t) max{P (ω) | ω ∈ Swalk(v, t)}
OPT(v, t) {ω ∈ Swalk(v, t) | P (ω) = Popt(v, t)}
Pmax(ω) max0≤i≤l P (vi, vi) (ω is a nonstop walk (v0, e1, . . . , el, vl).)

Pex(ω, t) P (ω) + Pmax(ω) · (t− T (ω)) (ω is a nonstop walk.)

ω >i ω
′ (Pex(ω, i) = Pex(ω

′, i) ∧ Pmax(ω) > Pmax(ω
′)) ∨ Pex(ω, i) > Pex(ω

′, i)

Sns(v, t) the set of nonstop s - v walks ω satisfying T (ω) ≤ t
MX>(v, i) {ω ∈ Sns(v, i) | ∀ω′ ∈ Sns(v, i), ¬(ω′ >i ω)}
CT(v) {t ∈ [Tmin(s, v),∆t] | MX>(v, t− 1) ∩MX>(v, t) = ∅}

• A set of items A = {a1, . . . , ak}.

• Weight function W : A→ N+.

• Value function P ′ : A→ N.

• Maximum weight ∆w ∈ N+.

[Output]

k tuple (x1, . . . , xk) ∈ Nk with the maximum value P ′(x1, . . . , xk) =
∑k

i=1 xiP
′(ai)

subject to W (x1, . . . , xk) =
∑k

i=1 xiW (ai) ≤ ∆w.

Theorem 5. OLRS is NP-hard.

Proof . We present a polynomial time reduction from UKP to OLRS as follows.



52 CHAPTER 4. OPTIMAL LONGCUT ROUTE SELECTION

Input transformation from a UKP instance (A = (a1, . . . , ak),W, P
′,∆w) to an OLRS

instance (G(V,E), s, g, T, P,∆t)

• V = {v1, . . . , vk, s, g}．

• E =
∪k

i=1{(s, vi), (vi, s)} ∪ {(s, g)}

• T (s, vi) = T (vi, s) =W (ai) and T (s, g) = 1

• P (s, vi) = P (vi, s) = P ′(ai) and P (s, g) = 0.

• ∆t = 2∆w + 1

Output translation from an OLRS solution, walk ω, to a UKP solution (x1, . . . , xk) ∈
Nk Given walk ω, the solution of UKP is (x1, . . . , xk) = (#(ω, 1), . . . ,#(ω, k)) where #(ω, i)

is the number of occurrences of vi in ω. For example, we have (x1, x2, x3) = (2, 1, 3) when

ω = (s, v1, s, v1, s, v2, s, v3, s, v3, s, v3, s, g).

It is trivial that both the transformation can be performed within polynomial time. Hence, it

suffices to prove that the result (x1, . . . , xk) is the optimal solution of UKP with input instance

(A,W,P ′∆w).

Assume that (x1, . . . , xk) is not the optimal solution. Then, some k-tuple (y1, . . . , yk) exists

such that
∑k

i=1 yiW (ai) ≤ ∆w and
∑k

i=1 yiP (ai) >
∑k

i=1 xiP (ai). This contradicts the fact that

ω is the optimal solution of OLRS with input instance (G, s, g, T, P,∆t) by the following reason.

For walk ψ whose first and last nodes are the same, we define ψi as (i)ψ0 = ϵ and (ii) ψi =

ψi−1 +ψ (i ≥ 1). Let walk ω′
i be (s, vi, s)

yi for any i = 1, . . . , k. Then, ω′ = ω′
1 + · · ·+ω′

k +(s, g)

is a s - g walk and satisfies T (ω) = 2
∑k

i=1 yiW (ai) + 1 ≤ 2∆w + 1 = ∆t, which means ω′ is

a feasible solution. However, P (ω′) = 2
∑k

i=1 yiP (ai) > 2
∑k

i=1 xiP (ai) = P (ω) holds, which

contradicts the optimality of ω. Hence, (x1, . . . , xk) is optimal for UKP with input instance

(A,W,P ′∆w).

4.4 Algorithm OLRS1

In this section, we present OLRS1 and show its time complexity. In the following, we describe

as OPTjust(v, t) the set of s - v walks ω with travel time exactly t and with maximum amount

of communication. More specifically, OPTjust(v, t) = {ω ∈ Sjust(v, t) | ∀ψ ∈ Sjust(v, t), P (ω) ≥



4.4. ALGORITHM OLRS1 53

!!!

!"#

!

"

#′ %! "&$%!%

#′ %" "&$%"%

#′ %# "&$%#%

'! '" '#

Figure 4.1: A problem instance of OLRS obtained by the transformation from UKP to OLRS.

The first and the second elements of the label of each edge e represents P (e) and T (e) respectively.

P (ψ)} where Sjust(v, t) = Swalk(v, t) \ Swalk(v, t− 1). In addition, we denote the communication

amount of walks in OPTjust(v, t) as Pjust(v, t). We consider Pjust(v, t) = −∞ when OPTjust(v, t) =

∅.
Algorithm OLRS1 consists of ∆t+1 steps from Step 0 to Step ∆t (Code 4.1). At each Step i,

the algorithm computes, for each node v ∈ V , any one walk of OPTjust(v, i) and stores the walk on

variable v.opt(i). Step 0 exists for initialization. At Step 0, the algorithm set v.opt(i) = NULL for

any v ∈ V and i ∈ [0,∆t], and then, stores initial walk (s) on s.opt(0) (Lines 1-2). At Step i > 0,

the algorithm computes walk u.opt(i − T (u, v)) + v for every u ∈ N+
in(v), and then, stores walk

ω with maximum P (ω) among the computed walks on v.opt(i). The correctness of this step is

guaranteed by the following equation, which trivially holds for any positive integer i ≥ Tmin(s, v).

Pjust(v, i) = max{Pjust(u, i− T (u, v)) + P (u, v)

| u ∈ N+
in(v), i ≥ T (u, v)}

(4.1)

At the end of Step ∆t, we have Popt(g,∆t) = maxi∈[0,∆t] P (g.opt(i)). Therefore, we can obtain

the optimal solution by selecting the walk with the maximum amount of communication among

the walks stored on g.opt(i) for i = 0, . . . ,∆t (Line 11).

A walk is expressed by a linked list. Specifically, each variable v.opt(i) does not store the entire

walk ω = (v1, . . . , vl) (v1 = s, vl = v) but only have the pointer to variable vl−1.opt(i−T (vl−1, v))

and the value of P (ω). Thus, the comparing and the update of v.opt() at Lines 7-8 can be easily

executed within O(1) time.



54 CHAPTER 4. OPTIMAL LONGCUT ROUTE SELECTION

Code 4.1 Optimal Longcut Route Selection OLRS1

Step 0

1: v.opt(i) := NULL for every v ∈ V and i ∈ [0,∆t]

2: s.opt(0) := (s) // (s) is a walk composed of only node s.

Step i (1 ≤ i ≤ ∆t)

3: for each v ∈ V do

4: for each u ∈ N+
in(v) do

5: if i < T (u, v) then continue the for-loop

6: if u.opt(i− T (u, v)) = NULL then continue the for-loop

7: ω := u.opt(i− T (u, v)) + v

8: if v.opt(i) = NULL or P (ω) > P (v.opt(i))

then v.opt(i) := ω

9: end for

10: end for

11: if i = ∆t then return g.opt(t) such that P (g.opt(t)) = maxi∈[0,∆t] P (g.opt(i))

Theorem 6. Algorithm OLRS1 solves OLRS with time complexity of O(∆t ·m).

Proof . The correctness of the algorithm is trivial from expression (4.1). Step 0 takes O(∆t · n)
time. Each Step i > 0 takes O(m) time since one execution of the loop at Lines 4-9 takes O(1)

time, and the loop are executed at most
∑

v∈V |N
+
in(v)| = m times. Hence, the time complexity

of OLRS1 is O(∆t ·m).

For the simulation of Section 4.6, we modify OLRS1 so that it calculates Tmin(s, v) for all

v ∈ V at Step 0, and the loop of Lines 3-10 is executed only for v ∈ V satisfying i ≥ Tmin(s, v) at

Step i > 0. This modification reduces the execution time of OLRS1 to a certain extent.

4.5 Algorithm OLRS2

Algorithm OLRS1 spends O(|N+
in(v)| ·∆t) time for each v ∈ V because it stores one of OPT(v, i)

on v.opt(i) for every i = 0, . . . ,∆t. A walk stored on v.opt(i) is utilized later to compute

u.opt(i + T (v, u)) for some u ∈ N+
out(v). However, v.opt(i) are not necessary for all i ∈ [0,∆t].

For example, consider the situation that the walks stored on v.opt(21), v.opt(22), . . . , v.opt(50)

are the same except for the number of self-loops. Then, we need not store all the walks using 30



4.5. ALGORITHM OLRS2 55

variables. Instead, we can express this situation by only one walk that we obtain by removing all

self-loops from the walks. Algorithm OLRS2 uses this techniques to achieve time complexity that

does not depend on ∆t for some class of problem instances. In what follows, we define P (v, v) = 0

for convenience if node v does not have a self-loop.

4.5.1 Nonstop Walks

We introduce (maximal) nonstop walks as the key concept of OLRS2. The set of changing times

CT(v) for node v is also introduced, the size of which is utilized to bound the time complexity of

the algorithm.

A walk is called nonstop if the walk has no self-loop. For nonstop walk ω = (v0, v1, . . . , vl), we

define the stopping node of ω as the node vi with the maximum P (vi, vi). If multiple nodes have

the maximum P (vi, vi), we adopt the node vi with the minimum index i among the nodes. A walk

f(ω, k) is the walk obtained from ω by inserting k self-loops at the stopping node vi. For example,

f(ω, 3) is (v1, v2, v2, v2, v2, v3) when ω = (v1, v2, v3) and the stopping node of ω is v2. We define

as Pmax(ω) = P (vi, vi), that is, Pmax(ω) is the communication amount of the stopping node of

ω. If no node on ω has self-loop, we define f(ω, k) = ω and Pmax(ω) = 0. For any t ∈ [T (ω),∆t],

we define the expanded communication amount of ω as Pex(ω, t) = P (f(ω, t− T (ω))). Note that

Pex(ω, t) = P (ω) + Pmax(ω) · (t− T (ω)) holds.

We define binary relation >t for nonstop walks ω and ψ with travel times t or less as follows:

ω >t ψ ⇔ (Pex(ω, t) = Pex(ψ, t) ∧ Pmax(ω) > Pmax(ψ))

∨ Pex(ω, t) > Pex(ψ, t)

For set X of nonstop walks with travel time t or less, we say that ω ∈ X is maximal in X about

>t if ψ >t ω does not hold for any ψ ∈ X. We define MX>(v, t) as the set of maximal walks

in Sns(v, t) concerning >t where Sns(v, t) is the set of all s - v nonstop walks with travel time

t or less. Suppose that Sns(v,∆t) = {ωa, ωb, ωc, ωd} and the expanded communication amount

of the four walks are those depicted in Fig. 4.2. Then, ωa, ωb and ωc belongs to MX>(v, t) for

time t ∈ [4, 6], t ∈ [7, 9] and t ∈ [10, 17] respectively, while ωd is not maximal for any time.

The goal of OLRS2 is to find a walk ω ∈ MX>(g,∆t), by which we get the optimal solution

f(ω,∆t − T (ω)) ∈ OPT(g,∆t).

In Fig. 4.2, the maximal walk of node v changes at times 4, 7 and 10. We call such a time by

a changing time of v, and denote the set of the changing times by CT(v). More specifically, we

define as CT(v) = {t ∈ [Tmin(s, v),∆t] | MX>(v, t − 1) ∩MX>(v, t) = ∅}. Note that Tmin(s, v)



56 CHAPTER 4. OPTIMAL LONGCUT ROUTE SELECTION

0 

time � 

 ! 

 " 

 # 

Δ% 5 10 15 

 & 

c
o

m
m

. 
 a

m
o

u
n

t
 

 

Figure 4.2: The expanded communication amount of s - v walks

always belongs to CT(v). In Section 4.5.2, we design OLRS2 so that its time complexity is

bounded by a polynomial function of maxv∈V |CT(v)|. Note that CT(v) is uniquely determined

by a problem instance of OLRS and independent from algorithms.

4.5.2 Algorithm OLRS2

Algorithm OLRS2, shown in Code 4.2, finds walk ω ∈ MX>(g,∆t) and outputs f(ω,∆t − T (ω))
as the optimal solution of OLRS. To find a walk in MX>(g,∆t), the algorithm constructs nonstop

walks in the increasing order of their travel times by utilizing heap H that stores a set of nonstop

walks. First, the algorithm inserts the initial walk (s) to H (Line 4 ). Then, until H becomes

empty, it repeats the following: extract a nonstop walk ω with the minimum travel time from

H, expand ω to generate a nonstop walk ω + u for every u ∈ N−
out(ω.end), and insert it to

H if its travel time is ∆t or less (Lines 5-27 ). When H becomes empty, the algorithm just

selects the maximal walk about >∆t
among the s - g walks it ever generates, which must be a

walk of MX>(g,∆t). To reduce the execution time, the algorithm expands a nonstop walk ω

only if ω ∈ MX>(v, t) for some v and t. Thus, the number of walk-expansions is bounded by∑
v∈V (|CT(v)|) (Lemma 45 in Section 4.5.4).

A walk ω with the minimum travel time is extracted from H by invoking extract(H) (Line 5).



4.5. ALGORITHM OLRS2 57

Code 4.2 Optimal Longcut Route Selection OLRS2
1: {Initially, H = ∅ and v.max = NULL for every v ∈ V }
2: Create a new walk (s) that consists of only one node s.

3: (s).time := 0

4: insert(H, (s)) // insert the initial walk to H

5: while H ̸= ∅ do
6: ω := extract(H)

7: i := ω.time // n ow at Period i

8: v := ω.end

9: if v.max = NULL or ω >i v.max then

10: if ω is not marked as “already-expanded” then

11: Mark ω as “already-expanded”

12: for each u ∈ N−
out(v) s.t. i+ T (v, u) ≤ ∆t do

13: Create a new walk ω + u

14: (ω + u).time := i+ T (v, u)

15: insert(H,ω + u)

16: end for

17: end if

18: ωlost := v.max // t he old v.max is lost

19: v.max := ω // v.max is updated

20: else

21: ωlost := ω // ω is lost

22: end if

23: if ωlost ̸= NULL and ∃j ∈ [i+ 1,∆t], ωlost >j v.max then

24: ωlost.time := min{j ∈ [i+ 1,∆t] | ωlost >j v.max}
25: insert(H,ωlost)

26: end if

27: end while

28: return f(g.max,∆t − T (g.max))



58 CHAPTER 4. OPTIMAL LONGCUT ROUTE SELECTION

At this time, we do not use T (ω) as the travel time of ω. Instead, we use variable ω.time for every

generated nonstop walk ω. The value of ω.time may change during execution, but ω.time ≥ T (ω)
always holds. Let i be the minimum value of ω.time among all the walks in H. Heap H also

guarantees that the maximal walk concerning >i in the set of walks in H is extracted. From the

characteristic of heap H, ω.time ≤ ψ.time holds if ω is extracted before ψ, that is, the travel

times of the walks extracted from H are monotonically non-decreasing. In what follows, we call

the period from the time a walk with travel time i is extracted at the first time until the time a

walk with travel time j > i is extracted at the first time “Period i”. These period numbers can

be skipped: Period 5 can be immediately followed by Period 13 (not Period 6).

Algorithm OLRS2 uses variables v.max for every node v ∈ V . The initial values of them are

“NULL”. The goal of Period i is to find any one of MX>(v, i) and store it on v.max for every

v ∈ V . During Period i, the algorithm extracts all the non-stop walks with travel time i from H

in descending order of >i. It handles each ω of the walks as follows: if ω >i v.max holds where

v = ω.end, then store ω on v.max (Line 19 ) and expand ω unless the walk is already expanded

before (Lines 10-17 ). Furthermore, letting ωlost be the loser of the comparison at Line 9 , the

algorithm re-inserts ωlost to heap H if ωlost >j v.max holds for some j > i (Line 23-26 ). This is

because ωlost may be one of MX>(v, t) for some t, and if so, should be stored on v.max at Period

j. In the example of Fig. 4.2, ωc is lost by ωb at Period 9. After that, ωc is re-inserted to H

with update of T (ωc) = 10 because ωc >10 ωb holds and hence, ωc may be the unique walk of

MX>(v, 10). Thus, the algorithm at Period i can update v.max for every v ∈ V . At the same

time, it keeps at least one walk of MX>(v, j) for each j > i on either heap H or v.max. As a

result, g.max ∈ MX>(g,∆t) is guaranteed at the end of Period ∆t (Lemma 44).

A non-stop walk is expressed by a linked list. An object corresponding to walk ω has its last

node ω.end and the pointer to the object of the walk from which ω is expanded. An object of

ω also has the values of P (ω), Pmax(ω) and T (ω). When creating the initial walk (s) at Line

2, we set P ((s)) = 0, Pmax((s)) = P (s, s), and T ((s)) = 0. When constructing a walk ω + v

from walk ω at Line 13, we only set (ω + v).end to v, add the pointer from ω + v to ω, and

calculate P (ω + v), Pmax(ω + v), and T (ω + v). This expansion can be done within O(1) time

because it does not need to make a copy of entire ω, and P (ω + v), Pmax(ω + v), and T (ω + v)

are calculated by P (ω + v) = P (ω) + P (w.end, v), Pmax(ω + v) = max{Pmax(ω), P (v, v)}, and
T (ω + v) = T (ω) + T (ω.end, v), respectively. Also, comparison >i of two non-stop walks can be

done within O(1) time since every non-stop walk ω store the value of P (ω), Pmax(ω) and T (ω).

Thus, both creating a new walk and comparison >i of two non-stop walks can be done with O(1)

time.



4.5. ALGORITHM OLRS2 59

4.5.3 Correctness

In the following, Hi denotes the set of non-stop walks existing in heap H at the end of Period

i. Similarly, ωv,i denotes the value of v.max at the end of Period i. In this subsection, we prove

that ωv,i ∈ MX>(v, i) holds for any v ∈ V and i ∈ [Tmin(s, v),∆t], which guarantees correctness

of OLRS2.

Lemma 42. Let v be a node and i be an integer not greater than ∆t. If there exist ω and j (j < i)

such that ω ∈ Hj and ω ∈ MX>(v, i), then ωv,i ∈ MX>(v, i) holds.

Proof . We define predicate P (k) as P (k) ⇔ ”some ω ∈ (Hk ∪ {ωv,k}) belongs to MX>(v, i)”.

We prove the lemma by showing P (j) ⇒ (wv,i ∈ MX>(v, i)). Since P (i − 1) directly leads to

ωv,i ∈ MX>(v, i), it suffices to prove P (k) ⇒ P (k + 1) holds for any k ∈ [j, i − 2]. Assume that

P (k) holds and let ω be a walk in (Hk ∪ {ωv,k}) that belongs to MX>(v, i).

Case 1. ω ∈ Hk ∧ (ω.time > k + 1) Since ω.time is more than k + 1, ω is not extracted

from H during Period k + 1. Hence, ω also belongs to Hk+1.

Case 2. (ω = ωv,k) ∨ (ω.time = k + 1) If ωv,k+1 ∈ MX>(v, i), then P (k + 1) clearly holds.

Consider the case of ωv,k+1 /∈ MX>(v, i). This means that ω is lost by ωv,k+1 during Period k+1.

Then ω is re-inserted to heap H because ω >i ωv,k+1. Hence, we have ω ∈ Hk+1, that leads to

P (k + 1).

Lemma 43. Suppose that nonstop s - v walk ω = (v0, e1, . . . , el, vl) (l ≥ 1) belongs to MX>(v, i)

for some i > 0. Then, there exists integer j ≥ 0 such that ψ + v ∈ MX>(v, i) holds for any walk

ψ ∈ MX>(vl−1, j).

Proof . We prove the lemma by considering two cases Pmax(ω) = P (v, v) and Pmax(ω) > P (v, v).

In what follows, let ω − v = (v0, e1, . . . , el−1, vl−1).

Case 1. Pmax(ω) = P (v, v) Let j = T (ω − v) for this case. For any walk ψ ∈ MX>(vl−1, j),

we have

Pex(ω, i) = Pex(ω − v, j) + P (el) + P (v, v)(i− j − T (el))

≤ Pex(ψ, j) + P (el) + P (v, v)(i− j − T (el))

≤ Pex(ψ + v, i)

and Pmax(ω) ≤ Pmax(ψ + v). Since ω is maximal concerning >i, we obtain ψ + v ∈ MX>(v, i).



60 CHAPTER 4. OPTIMAL LONGCUT ROUTE SELECTION

Case 2. Pmax(ω) > P (v, v) Let j = i− T (el) for this case. For any walk ψ ∈ MX>(vl−1, j),

we have

Pex(ω, i) = Pex(ω − v, j) + P (el)

≤ Pex(ψ, j) + P (el)

≤ Pex(ψ + v, i) .

(4.2)

The maximality of ω brings Pex(ω, i) = Pex(ψ + v, i). Hence, “≤”s in expression (4.2) become

“=”s, by which we obtain Pex(ω − v, j) = Pex(ψ, j). This leads to Pmax(ω − v) ≤ Pmax(ψ) since

ψ belongs to MX>(vl−1, j). Hence we get Pmax(ω) ≤ Pmax(ψ + v). Thus, we have Pex(ω, i) =

Pex(ψ + v, i) and Pmax(ω) ≤ Pmax(ψ + v), which brings ψ + v ∈ MX>(v, i).

Lemma 44. Predicate MX>(v, t) ̸= ∅ ⇒ ωv,i ∈ MX>(v, i) holds for any i ∈ [0,∆t] and v ∈ V .

Proof . We prove the lemma by induction of i.

Initial Phase (i = 0) The initial walk (s) is only the walk with travel time 0. Hence, we have

ωs,0 = (s) ∈ MX>(s, 0). The predicate obviously holds for any node v other than s because of

MX>(v, 0) = ∅.

Induction Phase Let v be a node such that MX>(v, i) ̸= ∅. We prove ωv,i ∈ MX>(v, i)

holds under the inductive assumption that MX>(u, j) ̸= ∅ ⇒ ωu,j ∈ MX>(u, j) holds for any

j ≤ i − 1 and node u ∈ V . If v = s and MX>(v, i) = {(s)}, then ωv,i is clearly (s). Thus,

we have ωv,i ∈ MX>(v, i). Otherwise, at least one walk ω = (v0, . . . , vl) ∈ MX>(v, i) is not the

initial walk (s), and hence, has two or more nodes. Then, from Lemma 43, there exists integer

k < i such that ψ + v belongs to MX>(v, i) for any ψ ∈ MX>(vl−1, k). On the other hand,

ωvl−1,k ∈ MX>(vl−1, k) is obtained from the inductive assumption. Since ωvl−1,k is expanded

before the end of Period k, walk ωvl−1,k+v ∈ MX>(v, i) is inserted to H before the end of Period

k < i. By Lemma 42, we obtain ωv,i ∈ MX>(v, i).

Theorem 7. Algorithm OLRS2 solves OLRS, that is, it finds a walk in OPT(g,∆t).

Proof . By Lemma 44, g.max ∈ MX>(g,∆t) holds at the end of Period ∆t. Then, the output

f(g.max,∆t − T (g.max)) belongs to OPT(g,∆t).

4.5.4 Time Complexity

We denote the loop of Lines 5-27 as Loop X, and the loop of Lines 12-16 as Loop Y. Let Hmax be

the maximum size of heap H during execution of OLRS2. The time of one execution of Loop Y



4.5. ALGORITHM OLRS2 61

is O(logHmax ). Similarly, the time of one execution of Loop X that excludes the execution time

of Loop Y is O(logHmax ). (Note that finding (the minimum) j at Lines 23-24 can be executed

within O(1) time given P (ω), Pmax(ω), T (ω) , P (v.max),Pmax(v.max) and T (v.max) .) Hence,

letting A and B be the numbers of executions of Loop X and Loop Y respectively, the time

complexity is O((A + B) logHmax ). In the rest of this section, we show upper bounds of A, B

and Hmax .

Lemma 45. At most |CT(v)| nonstop s - v walks are expanded during execution of OLRS2.

Proof . A s - v walk is expanded only when v.max is updated. The update happens only at

Period i such that i ∈ CT(v). Furthermore, two or more updates of v.max never happen at

the same period because nonstop walks are extracted from heap H in descending order of >i at

Period i.

Corollary 4. The number of executions of Loop Y is at most
∑

v∈V |CT(v)| · |N
−
out(v)|.

Proof . Loop Y (lines 11-14) are executed only when a walk is expanded. When a s - v walk is

expanded, Loop Y is executed at most |N−
out(v)| times.

Corollary 5. The number of different s - v walks inserted to heap H is
∑

u∈N−
in(v)
|CT(u)| if

v ̸= s. It is 1 +
∑

u∈N−
in(v)
|CT(u)| if v = s.

Proof . A new s - v walk other than the initial walk (s) is inserted to H only when a s - u

walk is expanded for u ∈ N−
in(v). Therefore, at most

∑
u∈N−

in(v)
|CT(u)| different s - v walks are

inserted to H for node v ̸= s. In addition to these walks, the initial walk (s) is inserted to H in

the case of v = s.

Corollary 6. Hmax ≤
∑

v∈V |CT(v)| · |N
−
out(v)|

Proof . Clearly, Hmax is bounded by the total number of different generated walks. By Corollary

5, we have Hmax ≤
∑

v∈V

∑
u∈N−

in(v)
|CT(u)| =

∑
v∈V |CT(v)| · |N

−
out(v)|. (Note that walk (s)

is extracted at Period 0 and never included in H at the time H has the maximum number of

walks.)

Lemma 46. Any s - v walk is inserted to heap H at most |CT(v)| times.

Proof . Let ω be a nonstop s - v walk. We will prove that the number of re-insertions of ω is at

most |CT(v)| − 1. Suppose that ω is lost by ωv,i at Period i, and the algorithm updates ω.time

to j (i < j ≤ ∆t) and re-inserts ω to H. (Note that ω is never lost by walk other than ωv,i at

Period i.) Then, ω >k ωv,i holds for any k ≥ j (Fig. 4.3). This means that ω is never lost twice



62 CHAPTER 4. OPTIMAL LONGCUT ROUTE SELECTION

0 

time � 

  

 !," 

c
o

m
m

. 
 a

m
o

u
n

t
 

 

Δ$ % & 

Figure 4.3: ω >k ωv,i holds for any k ≥ j.

or more by the same walk. Thus, the number of re-insertions of ω is bounded by the number of

walks that ω is lost by. If ω ̸= ωv,∆t , the number of re-insertions of ω is at most |CT(v)|− 1 since

ω is discarded and never re-inserted when ω is lost by ωv,∆t . If ω = ωv,∆t , it is also bounded by

|CT(v)| − 1 because |{ωv,i | Tmin(s, v) ≤ i ≤ ∆t} \ {ω}| = |CT(v)| − 1.

We obtain the following corollary by Corollary 5 and Lemma 46.

Corollary 7. The total number of times nonstop walks are inserted to heap H is at most |CT(s)|+∑
(u,v)∈E |CT(u)| · |CT(v)|.

The number of executions of Loop X equals to the number of extractions of walks from

H, which also equals to the number of insertions of walks to H. Therefore, we have A ≤
|CT(s)|+

∑
(u,v)∈E |CT(u)| · |CT(v)|. We also see both B and Hmax are at most

∑
(u,v)∈E |CT(u)|

by Corollaries 4 and 6. Hence, the time complexity of OLRS2 is at most (A + B) logHmax =

O((
∑

(u,v)∈E |CT(u)||CT(v)|) · (log
∑

(u,v)∈E |CT(u)|)).

Theorem 8. Algorithm OLRS2 solves OLRS with time complexity of O((
∑

(u,v)∈E |CT(u)||CT(v)|)
· (log

∑
(u,v)∈E |CT(u)|)).

Let us express as CTmax = maxv∈V |CT(v)|. Then, the time complexity of the algorithm can

be expressed as O(mCTmax
2 logmCTmax) ⊆ O(m∆2

t · logm∆t).



4.6. SIMULATION RESULTS 63

4.6 Simulation Results

In this section, we show the simulation results of execution times of two proposed algorithms.

The simulation is executed for graphs modeling urban areas with WiFi access points.

4.6.1 Simulation 1

The execution time of OLRS1 strictly depends on time limit ∆t, while that of OLRS2 depends

on CTmax and does not necessarily depend on ∆t. To verify this, in Simulation 1, we evaluate

the execution times of the two algorithms with changing the value of ∆t.

We give a 30 × 30 square-grid G = (V,E) as the input graph (Fig. 4.4). The coordinates of

the starting node s and the goal node g is (15, 1) and (15, 30) respectively. We select five nodes

randomly from V as access points in G. We set the communication amount P (v, v) of self-loops

at node v ∈ V so that P (v, v) is inversely proportional to the biquadrate of distance d [meter]

between v and the closest access point. Specifically, letting the distance between every pair of

neighboring nodes be 20 meter, we set P (v, v) as follows:

P (v, v) = max

(
50, 20 log2

(
1 +

1.2× 107

(d2 + 32)2

))
[Mbps]

This expression simply models the communication speed where every access point is located at

three meters above the ground and the communication protocol is 802.11g. We also define the

communication amount of all edges e ∈ E other than self-loops as P (e) = T (e) · (P (u, u) +
P (v, v))/2. The travel time T (e) is uniformly chosen from integers of [1, x]. The upper limit x

is variable: we set x to 1, 2, 22, . . . , 29. The time limit ∆t is set to twice of the shortest time

Tmin(s, g). Since ∆t is almost proportional to x, we can observe how the execution time of the

two algorithms depend on ∆t by changing the value of x.

Fig. 4.5 shows the average execution time of the two algorithms. The average is evaluated

from one hundred executions for each x = 1, 2, . . . , 29. We randomly select five access points and

the travel times of edges for each execution. The execution time of OLRS1 increases linearly with

respect to x. On the other hand, the execution time of OLRS2 is almost stationary for x ≥ 4

whereas it is slightly increasing for 0 ≤ x ≤ 4. This confirms the hypothesis that the execution

time of OLRS2 does not necessarily depend on ∆t while the execution time of OLRS1 strictly

depends on ∆t.



64 CHAPTER 4. OPTIMAL LONGCUT ROUTE SELECTION

!""#$$%&'()*!

$! +!

Figure 4.4: The input graph with five access points.

4.6.2 Simulation 2

In Simulation 2, we evaluate the execution times of the two proposed algorithms with changing

the size of the input graph to verify the scalability of the algorithms.

We give a 30 × y square-grid G = (V,E) as the input graph where the coordinates of the

starting node s and the goal node g is (15, 1) and (15, y) respectively. The number of columns y

is variable: we set y to 30, 60, 90, . . . , 300. The time limit ∆t is set to twice of the shortest time

Tmin(s, g). We select y/6 nodes randomly from V as access points. The communication amount

of self-loops P (v, v) and other edges P (e) are defined in the same way as Simulation 1. We define

the travel time of all edges e as T (e) = 1.

Fig. 4.5 shows the average execution time of the two algorithms. The average is evaluated

from one hundred executions for each y = 30, 60, 90, . . . , 300. We randomly select y/6 access

points for each execution. The both algorithms solves OLRS within practical time: the execution

times of OLRS1 and OLRS2 are approximately 7.0 seconds and 0.46 seconds respectively even for

y = 300 (the number of nodes is 9000). As in Simulation 1, OLRS2 finishes its execution earlier

than OLRS1 for all y = 30, 60, 90, . . . , 300.



4.7. DISCUSSION ABOUT OBJECTIVE FUNCTION 65

!"!#$

!"#$

#$

#!$

#!!$

#$ %$ &$ '$ #($ )%$ (&$ #%'$ %*($ *#%$

+
,
-
./
0
1
2
$3
45

-
$6
7-
.1
2
8
79
!

3:-$;<<-=$>454?$1@$+A8-$3=BC-D$345-",!

EDA1=4?:5$#$ EDA1=4?:5$%$

Figure 4.5: The average execution time in Simulation 1.

4.7 Discussion about Objective Function

In this chapter, we focus on the maximization of the total amount of communication while travel-

ing. This goal fits the needs of the mobile users who require the large amount of communication

(e.g. downloading a huge file such as a video file or updating a large number of applications of

smart phones). Another candidate of the goal is the minimization of disconnection time while

traveling. This goal reflects more natural needs of the mobile users who require stable communi-

cation (e.g. surfing on the Internet or using IP telephone service). However, in this chapter, we

focus on the maximization of the total amount of communication for the following two reasons.

• The problem of minimizing the disconnection time is reduced to DCLC described in Sub-

section 1.1 by assigning the cost C(e) of each edge e = (v, u) to the disconnection time

while the user moves from node v to u. (0 ≤ C(e) ≤ D(e) ). Therefore, we can use many

exiting DCLC algorithms to minimize disconnection time of a route. On the other hand,

maximizing the total amount of communication (OLRS) has never been studied to the best



66 CHAPTER 4. OPTIMAL LONGCUT ROUTE SELECTION

!"

#"

$"

%"

&"

'"

("

)"

*"

!" $!!!" &!!!" (!!!" *!!!" #!!!!"

+
,
-
./
0
1
2
"3
45

-
"6
7-
.1
2
8
79
!

3:-";/5<-="1>";18-7!

?@A1=4B:5"#" ?@A1=4B:5"$"

Figure 4.6: The average execution time in Simulation 2

of the author’s knowledge. Hence, tackling with OLRS is of theoretical importance.

• Thanks to the progress of cellular networks, there is low possibility in urban area that

the mobile users get disconnected from the Internet. Hence, in such an area, selection

of a route does not make much difference on disconnection time. On the other hand,

selection of a route makes a large difference on the total amount of communication since

communication speed highly depends on the user’s location. Hence, maximizing the total

amount of communication is of practical importance.

4.8 Conclusion

In this chapter, the author introduced a new optimization problem OLRS (Optimal Longcut

Route Selection). The author proved that the problem is NP-hard. The author also presented two

pseudo-polynomial algorithms named OLRS1 and OLRS2. Their time complexities are O(m∆t)

and O(mCTmax
2 logmCTmax) ⊆ O(m∆t

2 logm∆t), respectively. Simulations proved that both

algorithms solves OLRS within practical time for graphs modeling urban area with WiFi access

points. In particular, for those graphs, OLRS2 is always faster than OLRS1, and its execution

time in independent from the size of the time limit ∆t.



Chapter 5

Performance Evaluation for Cloud

Computing Systems by Audit

Measurements

5.1 Introduction

Commercial use of cloud computing service [31] grows significantly thanks to progress of virtual-

ization technology and broad band networks. Especially, IaaS (Infrastructure as a Service) cloud

services, which provide their users with virtual machines (VMs) through networks, are widely

in use all over the world. Users of IaaS cloud service can create, manage, and operate VMs in

the cloud computing systems through networks. Users can create and delete VMs within a few

minutes and pay usage fee based on utilization time. Therefore, users can manage the number of

the used VMs according to the loads of their system, so that they can reduce the cost.

There are many providers that provide IaaS cloud services in the world and users select one or

more providers among them which best meet their requirements. The most important selection

criterion are the price and VMs’ performance. The most natural way for users is to select the

most inexpensive service satisfying desired performance or to select the service showing the best

cost-performance ratio. Therefore, though most cloud services are best-effort services and do

not provide performance guarantees [32], it is fairly important for users to evaluate the VMs’

performance of each cloud service (e.g. average performance and stability of performance).

However, there are no ways today to estimate the VMs’ performance of cloud services exactly.

67



68 CHAPTER 5. PERFORMANCE EVALUATION FOR CLOUD COMPUTING SYSTEMS

Most cloud service providers publish their VMs’ specification such as the number of CPU (Central

Processing Unit) cores and the amount of memory, but do not publish their VMs’ performance

in detail such as CPU processing speed and memory transfer speed. The VMs of the same speci-

fication may show far different performance according to different cloud service providers, hence

users cannot evaluate real performance of VMs from their specification. In fact, the author con-

ducted multiple benchmark tests for low, middle, and high specification VMs of five providers

(total fifteen services) described in Section 5.4.2, and showed that many VMs of the same specifi-

cation show large difference (more than double) in average and standard deviation (representing

unstability) of performance. Furthermore, it is known that even two VMs of the same service

(i.e., the same specification and the same providers) may show different performance according

to the hardware type of the host machine assigned to VMs when they are booted [33, 34].

Existing studies [33, 35, 34, 36] observed that the performances of VMs in cloud computing

systems show very different characteristics from those of physical computers. First, variability of

performance is significantly large. The variation coefficients1 of the benchmark scores of VMs in

cloud computing systems in terms of CPU performance, memory performance, disk read/write

performance, and communication performance is tens of times or hundreds of times as large as

those of physical machines [33]. In addition, performance distribution of VMs in cloud computing

systems sometimes changes in medium- to long-term. In one instance, Figure 5.1 shows that the

time series data of the score of disk-read benchmark for some cloud service [36]. One can see

that the variability of performance is significantly large and the performance distribution changes

temporally.

Therefore, it is insufficient to execute benchmarks several times in order to evaluate VMs’

performance of cloud services. Owing to large variability, a small number of measurements do

not suffice to evaluate VMs’ performances exactly. Owing to temporal changes of performance

distribution, measurement results at a specific time may give few information about the future

performance distribution. Thus, it is necessary to obtain the time series data of VMs’ perfor-

mances continuously.

The goal of this chapter is to devise the mechanism by which users can obtain such time series

data of each cloud service. There are some simple mechanisms for it but they have practical

issues. Consider the mechanism where each user continuously and periodically measures VMs’

performance of all the cloud services he or she is interested in. In this mechanism, each user has

to pay vast fee for VMs usage to execute benchmarks, hence this is not a practical mechanism.

1 A variation coefficient of samples is quotient of the standard deviation and the average of samples. It is

typically used to compare variabilities of sets of samples with different scales.



5.1. INTRODUCTION 69

!"

#!!!!"

$!!!!"

%!!!!"

&!!!!"

'!!!!!"

'#!!!!"

'$!!!!"

'%!!!!"

'#(#%" '(%" '(')" '(#&"

!"#$%&' ()%*'+,-.'/01230$34'

Figure 5.1: The disk-read performance of the low specification VM in Cloud A

Again, consider the mechanism where each cloud service provider measures the performance of

its VMs and publishes the result of the measurement continuously. In this case, the cost of

measurement is relatively low, but the trustworthiness of the published data is not guaranteed

because some providers may exaggerate its performance in its published data.

Contribution of This Chapter In this chapter, the author presents the method by which

each user can get trustworthy information about VMs’ performance of each cloud service with low

cost. This method consists of publication of VMs’ performance by cloud service providers and

auditing measurement by users. The measurement cost of this method is low because auditing

measurements by users are intermittent. The trustworthiness of the published information is

guaranteed statistically: the users conduct hypothesis test (e.g. t-test and Mood test) to verify

whether there is no significant difference between the published data and the performance data

obtained by auditing measurements. If some provider fabricates the published data of VMs’

performance to a certain extent, the users can detect the fabrication since the fabrication makes

significant difference between two data. One may concern that the users may detect significant

difference between published data and auditing data even if the providers does not make any

fabrication. However, the probability of such false detection is low and the users can adjust the



70 CHAPTER 5. PERFORMANCE EVALUATION FOR CLOUD COMPUTING SYSTEMS

probability as we shall see in Section 5.3.3.

5.2 Preliminaries

This section presents the model of cloud services and users. Three example methods are also

introduced, and merits and demerits of the methods are analyzed.

5.2.1 Model

This section presents the model of cloud services and users. There exist multiple cloud computing

systems and many users in the cloud computing market (Figure 5.2). Cloud computing systems

provide users with cloud computing services. In the following, cloud computing systems and

cloud computing services are called just clouds and services, respectively. A cloud has one or

more services where the specifications of VMs and the usage fees per hour differ depending on

the services. We denote all the services in the market by s1, s2, . . . , sn. A user is interested in

one or more services, and wants to evaluate the VMs’ performance of the services. We denote by

u(si) the number of users who are interested in service si. In the example of Figure 5.2, we have

u(s4) = 3. A cloud also wants to make its potential users evaluate the VMs’ performance of its

services correctly. However, some clouds make some sort of fabrication so that their services are

overestimated by users. These clouds are called dishonest clouds.

Each user tries to obtain the performance data of all the services he or she is interested in.

Performance data of a service is the set of time series data (an example is shown in Figure

5.1) and one graph of the set corresponds to the scores of a certain benchmark. Each benchmark

measures the VMs’ performance such as CPU performance, memory performance, disk read/write

performance, or LAN bandwidth. It is assumed that the common benchmark set is used for all

the services s1, s2, . . . , sn. Benchmarks are executed on VMs, hence benchmark execution for

a service requires some cost. We denote by C(si) the measurement cost needed to construct a

year’s performance data of service si
2.

5.2.2 Simple Methods

This subsection presents three naive methods to obtain the performance data of services, which

are compared with the proposed method presented in Section 5.3. The merits and demerits of

2 We assume the measurement cost C(si) is the same, whether the benchmark set is executed on service si by

a user or its provider. It is because the amount of resources (VMs) used for the measurements is the same in both

the cases.



5.2. PRELIMINARIES 71

�
�

�
�

�
�

�
�

�
�

�
���

�
�

	

	


��
��� 
��
��� 
��
���

Figure 5.2: The model of cloud services and users

the three methods are also discussed.

The Cloud-publish Method

In the cloud-publish method, each cloud constructs the performance data of all its services and

publish them for all the users. Each cloud periodically initiates VMs of its services, executes the

benchmark set on the VMs, and updates the published performance data of the services.

In this method, the performance of each service is measured by only one organization (i.e.,

the cloud that provides the service). Therefore, the total cost required to measure service si in

the whole market is just C(si) per a year. However, the trustworthiness of published performance

data is not guaranteed since the cloud that creates and publishes the performance data may be

dishonest. Then, the dishonest cloud may fabricate the performance data and publish them so

that its services are overestimated by users.

The Evaluation Organization Method

In the evaluation organization method, a third party called evaluation organization constructs

the performance data of all the services in the market and publishes them. To construct the

performance data of each service si, the evaluation organization initiates a VM of service si as a



72 CHAPTER 5. PERFORMANCE EVALUATION FOR CLOUD COMPUTING SYSTEMS

user of si, and executes the benchmark set on the VM.

The trustworthiness of the published data obtained by this method is higher than that of the

cloud-publish method, but still insufficient. First, it is possible for a dishonest cloud to assign rich

resources (CPUs and memory) specially only for VMs used by evaluation organizations. Then, the

performance data published by the evaluation organization are unreliable and the services of the

dishonest cloud are overestimated by users. Even if the evaluation organizations hide their role

to clouds, it may be possible for the clouds to identify the account used by the organization. For

example, consider the case a dishonest cloud provides service si that assigns several model of CPUs

to its VMs. The dishonest cloud can memorize the models of assigned CPUs for the VMs of each

account at every hour. Then, the cloud may identify the account of the evaluation organization

by comparing the assigned CPUs for VMs of each account at every hour and the benchmark

scores at every hour in the performance data published by the evaluation organization. Secondly,

it is hard to elect a completely neutral evaluation organization. Users cannot deny possibility of

the collusive relationship between a cloud and an evaluation organization. Thus, the additional

method to deny the possibility is required. If there are many evaluation organizations in the

market, then the risk of the collusive relationship is reduced since the published performance data

of unrightful evaluation organization show different distribution from those of honest evaluation

organizations. The total cost required to obtain the performance data of service si is aC(si) per

a year in the whole market where a is the number of evaluation organizations.

The User-Evaluation Method

In the user-evaluation method, each user directly creates the performance data of all the service he

or she is interested in. The user periodically initiates VMs of the services, executes the benchmark

set on the VMs, and updates the performance data of the services.

In this method, the trustworthiness of performance data is sufficiently high. Since users

directly measure the VMs’ performance of services, the users can create trustworthy performance

data even for services of dishonest clouds. However, the cost of this method is higher than the

above two methods. Since all the users who are interested in service si measure the performance

of si independently, the total cost required to obtain the performance of si is u(si) · C(si) per

a year. For example, when u(si) = 1000, the cost is thousand times as high as that of the

cloud-publish method, which is something unrealistic.



5.3. THE PROPOSED METHOD 73

5.3 The Proposed Method

The three simple methods presented in Section 5.2.2 have the demerit of cost or trustworthiness

of performance data. The trustworthiness of performance data is not guaranteed in the cloud-

publish method and the evaluation organization method, while the total cost required to obtain

performance data is high in the user-evaluation method. In this section, the author proposes a

novel method by which users can obtain trustworthy performance data of services with signifi-

cantly lower cost than the user-evaluation method. In the proposed method, clouds publish the

performance data of their services as in the cloud-publish method. On the other hand, users

infrequently conduct snap inspections to verify the correctness of the published performance data

statistically.

First, the proposed method is presented in Section 5.3.1. Next, the fabrications assumed by

this method are shown in Section5.3.2. Finally, the hypothesis tests used in this method are

explained in Section 5.3.3.

5.3.1 Method Description

The overview of the proposed method is illustrated in Figure 5.3. In the proposed method, each

cloud publishes the performance data of its services as in the cloud-publish method. In the

following, these published performance data are called just published data. The trustworthiness

of this published data is not guaranteed as is pointed out in Section 5.2.2 since dishonest cloud

may fabricate the published data. To complement this demerit, the proposed method introduces

the mechanism to detect such fabrication.

In this method, the users who are interested in service s measure the VMs’ performance of

s at irregular intervals. We refer this measurement as audit measurement and the performance

data obtained by this measurement as audited data. The audit measurement is conducted inter-

mittently. Specifically, the users conduct audit measurements only in consecutive taudit days at

every TI days, and does not measure the performance in other TI − taudit days. For example, the

users conduct audit measurements in consecutive seven days at every 365 days (i.e. every year).

Consecutive taudit days are randomly selected among TI days. We call these taudit days auditing

period.

The users verify the correctness of s’s published data utilizing the audited data of s. Specif-

ically, the users conducts hypothesis tests to detect significant difference between the published

data in the auditing period and audited data in terms of average, standard deviation, and dis-

tribution profile of the score of any benchmark. If significant difference is detected, the users



74 CHAPTER 5. PERFORMANCE EVALUATION FOR CLOUD COMPUTING SYSTEMS

!"#$%!

&$%'()*+,-&.$/-,-)0.+

1')2/-3$-)0+&)%+')0-/,'4-)05!

.-"26,-&.$/-,-)0.+

12/-3$-)0+&)%+!#)()$#$.5!

7-/'28+2&9/'!&(#).+

%$/')*+0:'.+;-/'#%+

.!

Figure 5.3: The proposed method

recognize that the cloud that provides service s is dishonest.

5.3.2 Assumed Fabrication

The proposed method detects fabrications by testing for significant difference between some statis-

tics of published data and audited data. What kind of fabrication we assume determines what

statistics we should conduct tests for. This section gives the assumed fabrication in this chapter.

Generally, users are interested in benchmark scores of VMs in terms of average value and

variability. Therefore, it is a natural assumption that dishonest clouds make fabrication to increase

the average value of benchmark scores or reduce the variability of benchmark scores. Thus, we

assume these two fabrications in the following. These fabrications are modeled in this section as

the uniformly-increasing fabrication and the variability-reducing fabrication.

The Uniformly-increasing Fabrication This fabrication increases all the benchmark scores

of some period [t1, t2] uniformly by some constant value. Specifically, for time series data

Di(t1, t2) = (di,t1 , di,t1+1, . . . , di,t2) of benchmark i, we define the fabricated data D′
i(t1, t2) =

(d′i,t1 , d
′
i,t1+1, . . . , d

′
i,t2

) as follows:

d′i,t = di,t +∆1Di(t1, t2),

where Di(t1, t2) =
1

t2−t1+1

∑
j∈[t1,t2]

di,j and ∆1 > 0. Owing to this fabrication, the average of

Di becomes 1+∆1 times as large as the original average. We call ∆1 the fabrication level of the



5.3. THE PROPOSED METHOD 75

uniformly-increasing fabrication. Meanwhile, the standard deviation of Diwhich represents the

variability are not changed by this fabrication.

The Variability-reducing Fabrication This fabrication reduces the variability (or standard

deviation) of the benchmarked scores of some period [t1, t2]. Specifically, for time series data

Di(t1, t2) = (di,t1 , di,t1+1, . . . , di,t2) of benchmark i, we define the fabricated data D′
i(t1, t2) =

(d′i,t1 , d
′
i,t1+1, . . . , d

′
i,t2

) as follows:

d′′i,t = (1−∆2)(di,t −Di(t1, t2)) +Di(t1, t2).

where 0 < ∆2 ≤ 1. Owing to this fabrication, the standard deviation of Di becomes 1−∆2 times

as large as the original variability. We call ∆2 the fabrication level of the variability-reducing

fabrication. Meanwhile, the average of Di are not changed by this fabrication.

5.3.3 Hypothesis Tests

The proposed method uses hypothesis tests to verify whether there is significant difference of the

average or variability between the published data and the audited data. Generally, hypothesis

test outputs a real number called p-value given the two data as an input. This p-value represents

the probability that the difference of the statistic (e.g. average and variance) between the two

data occurs if the difference occurs by chance (i.e. not on purpose). When p-value is smaller than

the given threshold α, then we have the conclusion that the two data has significant difference

about the statistic.

Threshold α gives the probability of false detection. In other words, even if no fabrication

are made on the published data, the hypothesis test detects significant difference between the

published data and the audited data with probability α. On the other hand, we set α to a higher

value, we can detect smaller level of fabrication. The author shows later (in Section 5.4.2) that

we can detect small level of fabrication made on published data even when we set α to sufficiently

small value (0.001).

There are many hypothesis tests established in the statistics field and these tests can be applied

to detect fabrication of published data. For example, Welch’s t-test, MannWhitney U test, and

Wilcoxon signed-rank test can be used to detect significant difference on average. Concerning

detection of difference in variability (or standard variance), F-test, Levene test, Ansari-Bradley

test, Mood test, and so on can be used. We use MannWhitney U test for the uniformly-increasing

fabrication and Mood test for the variability-reducing fabrication. (The reason of adopting these

tests will be described in Section 5.4.3.) In what follows, we call MannWhitney U test just U -test.



76 CHAPTER 5. PERFORMANCE EVALUATION FOR CLOUD COMPUTING SYSTEMS

Table 5.1: Comparison between the proposed method and the three simple methods (f =

taudit/TI)

!"#$%&'$(")*+ ,-."$./)#01#23.0)4./)#0 $*,2&,-."$./)#0 /+,1'#2'#*,%15,/+#%

/2$*/6#2/+)0,** 71 8
910#/1*$(:,!/1/#

1111;.(2)!./)#0*
<1.(",1/#1%,/,!/1;.(2)!./)#0*

!#*/ 119= 1111111< 7 <1C(s
i
) a ⋅C(s

i
) u(s

i
) ⋅C(s

i
) C(si )+ f ⋅u(si ) ⋅C(si )

5.4 Evaluation of the Proposed Method

Table 5.1 shows the summary of comparison between the proposed method and the three simple

methods in Section 5.2.2. The proposed method has higher trustworthiness of performance data

than the cloud-publish method and the evaluation organization method, and takes significantly

lower cost than the user-evaluation method.

This section shows the reason for these comparison results. In Section 5.4.1, the author shows

that the cost of the proposed method is significantly smaller than the user-evaluation method.

In Section 5.4.2, the author shows the performance data obtained in the proposed method are

trustworthy. Specifically, it is verified that users can detect fabrication of published data even

when the level of the fabrication is sufficiently small. Since this verification strongly depends

on the distribution of VMs’ performance, the author measures the actual VMs’ performance of

commercial cloud services to verify trustworthiness of the proposed method adequately.

5.4.1 Measurement Costs

The annual cost of the proposed method required to obtain performance data of service si is

C(si)+f ·u(si)C(si) where f = taudit/TI . The first and the second terms correspond to the costs

of the self-measurements by the cloud of service si and the auditing measurements by the users

who are interested in si, respectively. The cost of the proposed method is significantly smaller

than that of the user-evaluation method when f is sufficiently small, that is, the frequency of

audit measurement is small. For example, when u(si) = 500 and f = 7/365 holds (auditing

measurements are conducted seven days per year), the annual cost of the proposed method is

C(si)+f ·u(si)C(si) = 10.6C(si), which is only 2.1 percent of that of the user-evaluation method

(500C(si)).



5.4. EVALUATION OF THE PROPOSED METHOD 77

Table 5.2: The detail specification of VMs used for the measurement experiment

!"#$%&'#(#' ')* +,--'# .,/. ')* +,--'# .,/. ')* +,--'# .,/. ')* +,--'# .,/. ')* +,--'# .,/.

012 3(012 4(012 5(012 3(012 4(012 4(012 3(012 4(012 5(012 3(012 4(012 5(012 3(012 4(012 5(012

$')$6&78#9:#;$<

+#+)8< 4=> 5=> ?@=> 4=> 5=> ?@=> 4=> 5=> ?@=> A%BC=> B%C=> ?C=> A%C=> B=> ?4=>

0'):-&D 0'):-&> 0'):-&0 0'):-&E 0'):-&F

?(012G&?%@=.H ?(012G&3=.H ?(012G&?%@=.H ?(012G&?%IJ?%3=.H ?(012G&?%@=.H

5.4.2 Trustworthiness of Performance Data

The trustworthiness of the performance data in the proposed method is guaranteed by the auditing

mechanism to detect fabrication made on published data. However, it is hard to detect too small

fabrication since the detection is based on statistical analysis (hypothesis test). On the other

hand, we can say that the performance data is trustworthy if users can detect sufficiently small

level of fabrication in practical applications.

The goal of this section is to verify the trustworthiness of the proposed method by observing

how small fabrication can be detected by the proposed method. This verification strongly de-

pends on the distribution of VMs’ performance. Therefore, the author measures the actual VMs’

performance of five commercial cloud services, and evaluates trustworthiness of the proposed

method analyzing the measured data.

Measurement Experiment

The author measures the performance of services of five commercial cloud, Cloud A, Cloud B,

Cloud C, Cloud D, and Cloud E. This experiment measures the performance of three services of

low, middle, and high specification for each cloud. The detail specification of the services’ VM

is shown in Table 5.2. The specification of the same level (low, middle and high) of services are

almost the same among all the clouds except that clock frequency is relatively low in Cloud D

and the high level VMs of Cloud B have only four virtual CPU cores. (the high level VMs of the

other clouds have eight virtual CPU cores.) This experiments use two VMs for each specification

(low, middle and high) of each cloud. One is used to create the published data and the other is

used to create the audited data. Hence, we use six VMs to be benchmarked for each cloud.

This experiment uses the same benchmark set as Shad et al. [33], which is as follows.

• CPU performance：ubench(CPU) [37]

• Memory performance：ubench(memory)

• Disk read throughput：bonnie++(seq. input) [38]



78 CHAPTER 5. PERFORMANCE EVALUATION FOR CLOUD COMPUTING SYSTEMS

• Disk write throughput：bonnie++(seq. output)

• LAN bandwidth：iperf [39]

Benchmark iperf needs a destination host. Therefore, an additional VM is set for each cloud, and

the bandwidth between the additional VM and each of the six benchmarked VMs is measured by

iperf.

The measurements period is thirty six days from December 26th 2012 to January 30th 2013.

In the period, the benchmark set is executed on each VM every hour (total 864 executions for

each VM). Specifically, the experiment repeats the following processes every hour.

1. Create six VMs on each cloud,

2. Execute all the benchmark on each VM and upload the result scores to our storage,

3. Delete the six VMs.

The repetition of creation and deletion of VMs are necessary to obtain exact performance data

of the services. (Physical resources are assigned when VMs are created.)

Verification Methodology

In this verification, we regard the two performance data of each service, which are obtained

from the measurement experiment in Section 5.4.2, as published data and audited data. The

author makes the uniformly-increasing fabrication and the variability-reducing fabrication on

the published data, and conduct hypothesis tests (U-test and Mood test) to detect signifi-

cant difference between these two data. Then, we observe the fabrication level required to

decrease p-value less than threshold α. In the following, we refer to this fabrication level

as detectable fabrication level. We observes the detectable fabrication level in case of α =

0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001. As mentioned above, U-test and Mood test is used to

detect the uniformly-increasing fabrication and the variability-reducing fabrication, respectively.

The detectable fabrication level depends on the number of benchmarked scores in the audited

data, and this number depends on the audited period. In this verification, we adopt seven days

as audited period. Specifically, we divide the experiment period of thirty six days into the five

disjoint periods of seven days each, and regard the data in each period as a audited data (Table

5.3). Note that the number of benchmark scores of each audited data is 7× 24 = 168.



5.4. EVALUATION OF THE PROPOSED METHOD 79

Table 5.3: The audited periods

!"#$%&'( !"#$%&') !"#$%&'* !"#$%&'+ !"#$%',

()-).'/'(-) (-*'/'(-0 (-(1'/'(-(2 (-(.'/'(-)* (-)+'/'(-*1

Verification Results

This section shows the detectable fabrication level of each service (VMs of low, middle and

high specification of each cloud) and each type of performance (CPU performance, memory

performance, disk read/write throughput, and LAN bandwidth). The detectable fabrication level

shown in this section is the average of those of the five audited periods shown in Table 5.3.

Before showing the results on this verification, the author explains some troubles that occurred

in the measurement experiment. In Cloud A, the performance data between 16:00 January 14th

and 14:00 January 23rd are not obtained because VMs could not be created in this period owing

to failure of the cloud computing system. Hence, the detectable fabrication level in Cloud A is

shown as the average of three audited periods Period 1, Period 2, and Period 5. Furthermore, in

Cloud C and Cloud E, the creation and deletion of VMs failed with high probability so that the

author cannot get sufficient number of benchmark scores for these two clouds. Hence, we exclude

Cloud C and Cloud E from the objects of this verification.

Figure 5.4 represents the detectable fabrication levels for the service of low specification in

Cloud A when published data is modified by the uniformly-increasing fabrication. For all types of

performance, the smaller threshold brings the bigger detectable fabrication level. However, these

increase are gradual: the detectable fabrication levels increase linearly according to exponential

decrease of threshold α. For example, the detectable fabrication level of LAN bandwidth increases

one percent every time threshold α is reduced to one-tenth. This tendency is commonly observed

for all services (all specification of all clouds) and all types of performance. Furthermore, this

tendency is also common for the case of the variability-reducing fabrication.

In the following, we focus on the detectable fabrication levels in case of α = 0.001. However,

it does not loose generality because the detectable fabrication levels in case of other thresholds

have the same characteristics.

Figure 5.5 represents the detectable fabrication levels in case of the uniformly-increasing fabri-

cation. Even though we set a strict threshold α = 0.001, fabrications of less than ten percent level

can be detected in most cases. However, the detectable fabrication levels of disk write throughput



80 CHAPTER 5. PERFORMANCE EVALUATION FOR CLOUD COMPUTING SYSTEMS

!"

#"

$!"

$#"

%!"

%#"

&!"

$'!()!*$'!()!#$'!()!+$'!()!&$'!()!%$'!()!$

!
"
#
$
%

&'

,-.

/(/

012345

012346

789

!
"
#"
$
#%
&
'"
()
%
&
*
+$
%
,
-
.
('
"
/
"
'!

01*"21-'3!

Figure 5.4: Detectable fabrication levels for the uniformly increasing fabrication (low specification,

Cloud A)

and memory performance is relatively high, and exceeds 10 percent in some cases. This is because

the variabilities of these benchmark scores are high. Generally, the powers of hypothesis tests to

detect significant difference of averages decreases when variabilities of samples are large. In fact,

in every case (every specification of every clouds, every benchmarks), large variation co-efficients

(represent the degree of variability) bring large detectable fabrication levels (See Figure 5.6).

Extreme smallness of detectable fabrication levels for CPU performance and memory perfor-

mance in Cloud D is worthy of special mention. This is because the performance distribution

has multiple bands3 in these cases, and the variability of each band is extremely small (See the

case of memory performance of the middle specification shown in Figure 5.7). U-test focuses

on the order of each benchmark score in the published data and the audited data among all the

benchmark scores of both data. It calculates p-value by comparing the sum of the orders of all

benchmark scores in the published data and those of the audited data. In the above cases, since

the variability of each band is small, even slight fabrication such as 0.16 percent level (in case of

Cloud D, low specification, and CPU performance) changes the orders of the benchmark scores

heavily, which drastically decreases p-value of U-test. Hence detectable fabrication levels in these

3 As many studies [33, 34, 36] pointed out, performance distribution of commercial cloud computing services

may have multiple bands partly because multiple types of hardware can be assigned to VMs.



5.4. EVALUATION OF THE PROPOSED METHOD 81

!
"#
$
%

$
"&
'
%

$
"(
#
%

$
")
#
%

!
'
")
*
%

!
(
"(
&
%

(
"*
#
%

)
"+
&
%

'
")
(
%

!
+
"+
'
%

#
&
"(
*
%

!
&
"(
&
%

'
"+
#
%

)
"+
'
%

)
"*
*
%

&
"#
'
%

)
"#
#
%

$
"&
'
%

#
")
#
% (
",
&
%

*
"'
*
%

)
"$
'
%

!
",
+
%

!
"'
*
%

!
*
"+
+
%

'
"'
$
%

+
"!
$
%

&
"!
,
%

&
"&
'
%

&
"&
'
%

&
"!
,
%

&
"#
,
%

&
"!
'
%

&
")
&
%

&
"(
,
%

!
"!
&
%

#
"&
#
%

!
"&
(
%

&
")
)
% ,
"&
+
%

(
"*
)
%

'
",
*
%

&
"$
&
%

&
"'
'
%

&
")
&
%

&%

'%

!&%

!'%

#&%

#'%

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

678 9:9 21;<=> 21;<=? @AB 678 9:9 21;<=> 21;<=? @AB 678 9:9 21;<=> 21;<=? @AB

!"#$A !"#$C !"#$D

%
&
'
(
)

!"#$%&'!!"#$%&(! !"#$%&)!

)
*
+*
,
+-
.
"*
&/
-
.
0
1,
-
2
#
3
&"
*
4
*
"!

Figure 5.5: Detectable fabrication levels for the uniformly-increasing fabrication (α = 0.001)

cases are extremely small.

Figure 5.8 represents the detectable fabrication levels in case of the variability-reducing fab-

rication. It appears that detectable fabrication levels are higher than those of the cases of the

uniformly-increasing fabrication. This is just because detecting significant difference of variabili-

ties is difficult. In fact, the detectable fabrication level is 23.90 percent on average even when the

published data and the audited data follow Gaussian distribution perfectly.4 On the other hand,

detectable fabrication levels are small in some cases including CPU performance in Cloud D. This

is because the performance distribution of these cases have multiple bands. As in U-test, Mood

test focuses on the orders of each benchmark score to calculate p-value. Since slight fabrication

changes the orders of benchmark scores heavily in case that multiple bands exist in performance

distribution, the detectable fabrication levels for such cases are small.

5.4.3 Discussion

The verification of Section 5.4.2 observes how small fabrication the proposed method detects.

Even when the published data is modified by the uniformly-increasing fabrication (or by the

variability-reducing fabrication), fabrications of less than ten percent level (or less than thirty

percent level, respectively) can be detected in most cases. In case of the uniformly-increasing

fabrication, much smaller fabrication can be detected for performance data of CPU performance

and LAN bandwidth where variability of benchmark scores is small. In case of both the uniformly-

increasing fabrication and the variability-reducing fabrication, much smaller fabrication can be

detected if the performance distribution has multiple bands.

4 The author randomly creates thousand pairs of data that follows Gaussian distribution, and calculates de-

tectable fabrication levels for the pairs in the same way as the verification of this section.



82 CHAPTER 5. PERFORMANCE EVALUATION FOR CLOUD COMPUTING SYSTEMS

!"#

!$"#

!$$"#

$%$!"# $%!"# !"# !$"# !$$"#

&
'
()
'
*
+
,
#-
+
.
/
0
).
,
12
!

3.1.01'45.#6'4()0'*+,#7.8.5!

-5+9:#;# -5+9:#<# -5+9:#3#

Figure 5.6: The correlation chart of detectable fabrication level (α = 0.001) and variation coeffi-

cient

In what follows, we briefly look at using other tests to detect fabrication made for the per-

formance of cloud-computing services. Welch’s t-test and Wilcoxon signed-rank test can be used

to detect the uniformly-increasing fabrication. However, Welch’s t-test is unsuitable for the pro-

posed method since it premises Gaussian distribution: the power of the test is weak when the

performance distribution deviates from Gaussian distribution, especially when the performance

distribution has multiple bands. Wilcoxon signed-rank test can be used when sample values of

the two tested data have correspondence relation. We can consider that two benchmark scores

measured at the same time have correspondence relation for the published data and the audited

data. However, in case that the performance distribution has multiple bands, the correspondence

does not fit and the power of the test becomes low. F-test, Levene test, and Ansari-Bradley test



5.5. PRACTICAL EXAMPLES OF VMS’ PERFORMANCE EVALUATION 83

!"

#!!!!"

$!!!!!"

$#!!!!"

%!!!!!"

%#!!!!"

&!!!!!"

&#!!!!"

'!!!!!"

$%(%)" $()" $($*" $(%+"

!
"
#
$
%&
'(
%)
*#
!

+#,)*-'.#*/)*,0$%#'

,-./"0#1%)#!"

,-./"0#'&!"

,-./"0##!*"

,-./"0#)'#"

Figure 5.7: Memory performance of the middle specification VM in Cloud D

can be used to detect the variability-reducing fabrication. However, F-test is unsuitable since it

cannot calculate p-value when the performance distribution deviates from Gaussian distribution.

Although Levene test has robustness for deviation from Gaussian distribution to a certain ex-

tent, we confirm that it does not calculate exact p-value when the performance distribution has

multiple bands by a computer simulation. Ansari-Bradley test does not have a problem to detect

the variability-reducing fabrication. Deviation from Gaussian distribution or multiple bands in

performance distribution does not cause any problem for this test. However, in the verification in

Section 5.4.2, the author confirmed that this test can attain a lightly higher detectable fabrication

level than Mood test.

5.5 Practical Examples of VMs’ Performance Evaluation

There are some practical examples of VMs’ performance evaluation of cloud services. There

are two sites, CloudHarmony [40] and CloudClimae [41], which measure multiple cloud services

and publish the performance data obtained by the measurement. (We refer this kind of evalu-

ation method as the evaluation organization method in Section 5.2.2.) CloudHarmony executes

many benchmarks on the VM of more than tens of cloud services and memorize the score of the



84 CHAPTER 5. PERFORMANCE EVALUATION FOR CLOUD COMPUTING SYSTEMS

!
"
#$
"
%

!
&
#&
'
%

!
(
#"
'
%

)
*
#*
&
%

)
$
#+
"
%

)
)
#$
'
%

)
"
#,
'
%

"
&
#'
"
%

!
$
#$
'
%

!
*
#"
"
%

!
$
#(
'
% )
(
#,
"
%

)
'
#!
"
%

"
$
#'
&
%

"
)
#'
"
%

!
*
#&
&
%

"
#$
&
%

)
#)
+
% !
+
#$
,
%

(
#'
,
%

!
&
#'
(
% )
$
#'
&
%

)
+
#+
,
%

)
!
#,
,
%

!
"
#+
)
%

!
+
#*
)
%

!
"
#&
&
%

&
#!
&
%

&
#!
&
%

&
#!
&
%

&
#"
&
%

!
#&
)
%

"
#!
&
%

,
#&
+
%

+
#!
&
%

'
#'
+
%

)
"
#"
+
%

$
#"
&
% !
$
#"
+
%

)
+
#(
)
%

)
,
#!
)
%

)
(
#*
+
%

!
!
#$
&
% )
'
#&
&
%

!
"
#&
,
%

&%

!&%

)&%

"&%

+&%

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

-.
/

0
12
2
-3

4
15
4

678 9:9 21;<=> 21;<=? @AB 678 9:9 21;<=> 21;<=? @AB 678 9:9 21;<=> 21;<=? @AB

!"#$A !"#$C !"#$D

%
&
'
(
)

!"#$%&'!!"#$%&(! !"#$%&)!

)
*
+*
,
+-
.
"*
&/
-
.
0
1,
-
2
#
3
&"
*
4
*
"!

Figure 5.8: Detectable fabrication level for the variability-reducing fabrications (α = 0.001)

benchmarks in its system. Users of this site request benchmark scores by selecting cloud service

providers, VMs’ specifications (the specifications of services), and benchmarks (e.g. 7zip and

Unixbench), then the site offers the corresponding score memorized in the system. The shortage

point of this site is infrequency of benchmarking. The same benchmark for the same service

is executed by this system only a few times a year. Hence, the users cannot obtain the VMs’

performance of each service since the variability of VMs’ performance of cloud services is large

and the performance distributions vary temporally. CloudClimte publishes denser performance

information of each cloud which is measured every five minutes. However, the number of cloud

services and the number of benchmarks is small, hence the benefits of its users are limited.

5.6 Conclusion

In this chapter, the author presented the method by which users economically obtain trustworthy

performance data of cloud computing services. In this method, cloud service providers publish the

performance data of their services, and users infrequently conduct snap inspections to verify the

preciseness of the published performance data statistically. If users conduct a snap inspection for

seven days every year, the cost of the proposed method is one-fiftieth of that of the user evaluation

method. On the other hand, when the published performance data is fabricated, users can detect

the fabrication with high probability. From verification based on the performance distribution

of commercial cloud computing services, we confirmed that a snap inspection of 168 executions

of the benchmark set detects sufficiently small fabrication. To conclude, the proposed method

enables users to obtain trustworthy performance data of cloud computing services economically.



Chapter 6

Conclusion

This thesis introduced the author’s studies to provide stable services in unstable distributed sys-

tems by realizing fault-tolerance, communication performance, and computational performance.

Chapter 2 presented a novel concept of loose-stabilization, which brings distributed systems

high fault tolerance. Loose-stabilization is a variant of self-stabilization, which relaxes the clo-

sure requirement of the original self-stabilization without impairing its fault-tolerance at least in

practical perspective. Since the closure requirement is relaxed, loose-stabilization can be applied

to more models and more problems of distributed systems. For example, the author presents a

loosely-stabilizing algorithm that solves leader election problem on complete graphs in the popula-

tion protocol model (the PP model). This algorithm exemplifies the benefit of loose-stabilization

since its is impossible to devise self-stabilizing algorithm for this problem unless the exact number

of nodes is given.

Chapter 3 developed the study of Chapter 2 to present loosely-stabilizing algorithms that

solve the leader election problem on arbitrary graphs in the PP model. Unlike complete graphs

where all nodes can directly communicate with each other, each node has to detect the existence

or absence of a distant leader node in leader election on arbitrary graphs. The author presented

two loosely-stabilizing algorithms that create a new leader when no leader exists and keeps the

new leader for exponentially long time by utilizing the unique identifiers of nodes or random

numbers. These algorithms also exemplify the benefit of loose-stabilization since it is impossible

to devise a self-stabilizing algorithm for this problem even if node-identifiers or random numbers

is available.

In Chapter 4, the author focused on communication quality of mobile users in urban areas. The

communication quality (wireless communication bandwidth) of mobile networks differs depending

85



86 CHAPTER 6. CONCLUSION

on the location the user exists. The author tackled with a new problem to find the route that

maximizes the total amount of communication by which users can move from the given starting

point to the given destination point within the given limit time. First, the author proved that this

problem is NP-hard. Then, the author presented two pseudo-polynomial algorithms that solve

this problem. One of the two is better in terms of the worst-case execution time, and the other one

is better in terms of the average execution time. We observed from the simulation experiments

that both the two algorithms compute the optimal solution within practical execution time even

for a sufficiently large input (i.e. the topology of urban area) consisting of thousands of nodes.

In Chapter 5, the author developed the method by which users of cloud computing services

obtain trustworthy data of VMs’ performance of those services. It is known that the VMs’ per-

formances of commercial cloud computing services often deviate from their specifications. Then,

we need frequent and continuous performance measurements to recognize the VMs’ performance

of those services. If these measurements are conducted by the users (the user-evaluation method)

then the costs of users are impractically high, and if these measurements are conducted and

the obtained performance data are published by cloud computing providers (the cloud-publish

method) then we face no guarantee for the trustworthiness of the published data. The author pro-

posed the method where the providers continuously measure and publish the VMs’ performance

of their services while the users infrequently conduct snap inspections to guarantee the trustwor-

thiness of the published data. The costs of the proposed method is significantly lower than the

user-evaluation method. Furthermore, the users can obtain sufficiently trustworthy performance

data by the proposed method. In fact, the author observed from the performance distributions

of commercial cloud computing services that the snap inspections of the users detect fabrications

of less than several percent level in most cases.

From now on, the author is going to propel the study of loose-stabilization introduced in

Chapters 2 an 3. Although the proposed algorithms in Chapter 3 work on arbitrary graphs, they

need node identifiers or random numbers. One of the author’s future work is to remove these

requirements and devise a loosely-stabilizing leader election algorithm that works on arbitrary

graphs without node-identifiers and random numbers. While Chapters 2 and 3 focused on the

leader election in the PP model, the author is also going to apply the concept of loose-stabilization

to other models and other problems.



Acknowledgements

The author has been fortunate to receive assistance from many people. He would especially like

to express his gratitude to his supervisor Professor Toshimitsu Masuzawa for his guidance and

encouragement. The author has also received precious advice from Professors of the Graduate

School of Information Science and Technology, Osaka University. Among them, the author would

like to extend his gratitude to Professor Katsuro Inoue, Professor Kenichi Hagihara and Associate

Professor Hirotsugu Kakugawa for their valuable comments on this thesis.

The author would like to thank Dr. Tutomu Murase, Dr. Gen Motoyoshi, Professor Junichi

Murayama, Mr. Kunio Hato, Assistant Professor Yukiko Yamauchi, Assistant Professor Junya

Nakamura and Mr. Daisuke Baba for their useful comments on his work. The author also

thanks to Mrs. Fusae Nishioka and Mrs. Hisako Suzuki for their kind support. He is also

grateful to the staffs and students of Algorithm Engineering Laboratory, the Graduate School

of Information Science and Technology, Osaka University. In particular, he thanks to Assistant

Professor Fukuhito Ooshita for their time and kindness. He also thanks to Mr. Atsushi Takada,

Mr. Ryo Nakai, Mr. Shinji Kawai and Mr. Yonghwan Kim for their friendly supports and

discussions in the laboratory. The author expresses his gratitude to all members of his workplace

of Network Security Project in NTT Secure Platform Laboratories for their kind understanding

for his academic research.

Finally, the author wishes to thank his wife Yuki Sudo and his son Yutaro Sudo for their

support and kindness during his life at the university.

87





Bibliography

[1] E. Dijkstra, “Self-stabilizing systems in spite of distributed control,” Communications of the

ACM, vol. 17, no. 11, pp. 643–644, 1974.

[2] A. Israeli and M. Jalfon, “Token management schemes and random walks yield self-stabilizing

mutual exclusion,” in Proceedings of the ninth annual ACM symposium on Principles of

distributed computing, pp. 119–131, ACM New York, NY, USA, 1990.

[3] J. Lin, T. Huang, C. Yang, and N. Mou, “Quasi-self-stabilization of a distributed system

assuming read/write atomicity,” Computers and Mathematics with Applications, vol. 57,

no. 2, pp. 184–194, 2009.

[4] M. Gouda, “The Theory of Weak Stabilization,” in Proceedings of the 5th International

Workshop on Self-Stabilizing Systems, pp. 114–123, Springer, 2001.

[5] D. Angluin, J. Aspnes, Z. Diamadi, M. Fischer, and R. Peralta, “Computation in networks

of passively mobile finite-state sensors,” Distributed Computing, vol. 18, no. 4, pp. 235–253,

2006.

[6] D. Angluin, J. Aspnes, and D. Eisenstat, “fast computation by population protocols with a

leader,” in DISC, pp. 61–75, 2006.

[7] D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang, “Self-stabilizing population protocols,”

ACM Transactions on Autonomous and Adaptive Systems, vol. 3, no. 4, p. 13, 2008.

[8] S. Dolev, Self-stabilization. MIT Press, 2000.

[9] S. Devismes, S. Tixeuil, and M. Yamashita, “Weak vs. self vs. probabilistic stabilization,”

in Proceedings of the IEEE International Conference on Distributed Computing Systems

(ICDCS 2008), pp. 681–688, 2008.

89



90 BIBLIOGRAPHY

[10] D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, H. Jiang, and R. Peralta, “Stably computable

properties of network graphs,” in DCOSS, pp. 63–74, 2005.

[11] S. Cai, T. Izumi, and K. Wada, “How to prove impossibility under global fairness: On space

complexity of self-stabilizing leader election on a population protocol model,” Theory of

Computing Systems, vol. 50, no. 3, pp. 433–445, 2012.

[12] M. J. Fischer and H. Jiang, “Self-stabilizing leader election in networks of finite-state anony-

mous agents,” in OPODIS, pp. 395–409, 2006.

[13] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and

Probabilistic Analysis. Cambridge University Press, 2005.

[14] O. Michail, I. Chatzigiannakis, and P. G. Spirakis, “Mediated population protocols,” Theo-

retical Computer Science, vol. 412, no. 22, pp. 2434–2450, 2011.

[15] J. Beauquier, J. Burman, L. Rosaz, and B. Rozoy, “Non-deterministic population protocols,”

in OPODIS, pp. 61–75, Springer, 2012.

[16] R. Mizoguchi, H. Ono, S. Kijima, and M. Yamashita, “On space complexity of self-stabilizing

leader election in mediated population protocol,” Distributed Computing, vol. 25, no. 6,

pp. 451–460, 2012.

[17] X. Xu, Y. Yamauchi, S. Kijima, and M. Yamashita, “Space complexity of self-stabilizing

leader election in population protocol based on k-interaction,” in SSS, pp. 86–97, Springer,

2013.

[18] J. Beauquier, P. Blanchard, and J. Burman, “Self-stabilizing leader election in population

protocols over arbitrary communication graphs,” in OPODIS, pp. 38–52, Springer, 2013.

[19] D. Canepa and M. G. Potop-Butucaru, “Stabilizing leader election in population protocols,”

2007. http://hal.inria.fr/inria-00166632.

[20] R. Guerraoui and E. Ruppert, “Even small birds are unique: Population protocols with

identifiers,” Rapport de Recherche CSE-2007-04, Department of Computer Science and En-

gineering, York University, York, ON, Canada, 2007.

[21] Y. Sudo, G. Motoyoshi, T. Murase, and T. Masuzawa, “Optimal longcut route selection for

wireless mobile users,” in IEICE Technical Report(RCS2009-269), p. 71, 2010.



BIBLIOGRAPHY 91

[22] G. Motoyoshi, Y. Sudo, T. Murase, and T. Masuzawa, “Advantages of optimal longcut route

for wireless mobile users,” in Communications (ICC), 2011 IEEE International Conference

on, pp. 1–6, IEEE, 2011.

[23] M. R. Garey and D. S. Johnson, ”Computers and Intractability. A Guide to the Theory

of NP-completeness. A Series of Books in the Mathematical Sciences”. WH Freeman and

Company, San Francisco, Calif, 1979.

[24] R. Widyono, “The design and evaluation of routing algorithms for real-time channels,” tech.

rep., International Computer Science Institute, University of California at Berkley, 1994.

[25] D. H. Lorenz, A. Orda, D. Raz, and Y. Shavitt, “Efficient qos partition and routing of unicast

and multicast,” IEEE/ACM Trans. Netw., vol. 16, no. 6, pp. 1336–1347, 2006.

[26] A. Jüttner, B. Szviatovszki, I. Mécs, and Z. Rajkó, “Lagrange relaxation based method for

the qos routing problem,” in INFOCOM, pp. 859–868, 2001.

[27] G. Feng, C. Douligeris, K. Makki, and N. Pissinou, “Performance evaluation of delay-

constrained least-cost qos routing algorithms based on linear and nonlinear lagrange relax-

ation,” in IEEE International Conference on Communications (ICC 2002), vol. 4, pp. 2273–

2278, IEEE, 2002.

[28] H. de Neve and P. van Mieghem, “A multiple quality of service routing algorithm for pnni,”

in ATM Workshop Proceedings, 1998 IEEE, pp. 324–328, IEEE, 2002.

[29] L. Guo and I. Matta, “Search space reduction in qos routing,” Computer Networks, vol. 41,

no. 1, pp. 73–88, 2003.

[30] G.S.Lueker, “Two np-complete problems in nonnegative integer programming,” Tech. Rep.

178, Computer Science Laboratory, Princeton University, 1975.

[31] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, et al., “A view of cloud computing,” Communications of the ACM,

vol. 53, no. 4, pp. 50–58, 2010.

[32] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey, “Early observations on the

performance of windows azure,” in Proceedings of the 19th ACM International Symposium

on High Performance Distributed Computing, pp. 367–376, ACM, 2010.



92 BIBLIOGRAPHY

[33] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in the cloud: observ-

ing, analyzing, and reducing variance,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2,

pp. 460–471, 2010.

[34] A. Lenk, M. Menzel, J. Lipsky, S. Tai, and P. Offermann, “What are you paying for?

performance benchmarking for infrastructure-as-a-service offerings,” in Cloud Computing

(CLOUD), 2011 IEEE International Conference on, pp. 484–491, IEEE, 2011.

[35] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance variability of production cloud

services,” in Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM Inter-

national Symposium on, pp. 104–113, IEEE, 2011.

[36] Y. Sudo and K. Hato, “Peformance analysis of public clouds,” in IEICE Technical Report

IN2013-60, vol. 113, pp. 13–18, Sep. 2013.

[37] “Ubench 0.32.” http://www.phystech.com/download/ubench.html.

[38] “Bonnie++ now at 1.03e.” http://www.coker.com.au/bonnie++.

[39] “iperf.” https://code.google.com/p/iperf/.

[40] “Cloudharmony.” http://cloudharmony.com/benchmarks.

[41] “Cloudclimate.” http://www.cloudclimate.com.

http://www.phystech.com/download/ubench.html
http://www.coker.com.au/bonnie++
https://code.google.com/p/iperf/
http://cloudharmony.com/benchmarks
http://www.cloudclimate.com

	1 Introduction
	1.1 Loosely-stabilizing Leader Election on Complete Graphs
	1.2 Loosely-stabilizing Leader Election on Arbitrary Graphs
	1.3 Optimal Longcut Route Selection
	1.4 Performance Evaluation for Cloud Computing Systems

	2 Loose-stabilization on Complete Graphs
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Specification
	2.2.2 Loose-stabilization

	2.3 Protocol PLE
	2.4 Analysis and Proofs
	2.4.1 Epidemic and Virtual Agents
	2.4.2 Expected Holding Time
	2.4.3 Expected Convergence Time

	2.5 Complementary Lemmas
	2.6 Conclusion

	3 Loosely-stabilization on Arbitrary Graphs
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Chernoff Bounds

	3.3 Leader Election with Identifiers
	3.4 Leader Election with Random Numbers
	3.5 Conclusion

	4 Optimal Longcut Route Selection
	4.1 Introduction
	4.2 Preliminaries
	4.3 NP-hardness
	4.4 Algorithm OLRS1
	4.5 Algorithm OLRS2
	4.5.1 Nonstop Walks
	4.5.2 Algorithm OLRS2
	4.5.3 Correctness
	4.5.4 Time Complexity

	4.6 Simulation Results
	4.6.1 Simulation 1
	4.6.2 Simulation 2

	4.7 Discussion about Objective Function
	4.8 Conclusion

	5 Performance Evaluation for Cloud Computing Systems
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Model
	5.2.2 Simple Methods

	5.3 The Proposed Method
	5.3.1 Method Description
	5.3.2 Assumed Fabrication
	5.3.3 Hypothesis Tests

	5.4 Evaluation of the Proposed Method
	5.4.1 Measurement Costs
	5.4.2 Trustworthiness of Performance Data
	5.4.3 Discussion

	5.5 Practical Examples of VMs' Performance Evaluation
	5.6 Conclusion

	6 Conclusion

