|

) <

The University of Osaka
Institutional Knowledge Archive

Tl e A Study on Approaches for Stable Distributed
Systems in Unstable Network Environments

Author(s) |Eik, #B—

Citation |KFRKZ, 2015, HIHwX

Version Type|VoR

URL https://doi.org/10.18910/52014

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



A Study on Approaches
for Stable Distributed Systems

in Unstable Network Environments

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2015

Yuichi SUDO






List of Related Publications

Journal Papers

1. Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa, “Loosely-stabilizing leader election in a population protocol

model,” Theoretical Computer Science, vol. 444, pp. 100-112, 2012.

2. Yuichi Sudo, Kunio Hato, Junichi Murayama, “Performance evaluation for cloud-computing
systems by audit measurement,” IEICE Transactions on Information and Systems , vol. J97-

D, No. 7, pp. 1148-1157, 2014.

3. Yuichi Sudo, Toshimitsu Masuzawa, Gen Motoyoshi, and Tutomu Murase, “Pseudo poly-
nomial time algorithms for optimal longcut route selection,” IEICE Transactions on Infor-

mation and Systems , vol. E98-D, No. 3, 2015 (to appear).

Conference Papers

4. Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kaku-
gawa, and Toshimitsu Masuzawa, “Loosely-stabilizing leader election in population protocol

model,” in Proceedings of the 16th International Conference on Structural Information and

Communication Complexity, SIROCCO ’09, pp. 295-308, 2009.

5. Yuichi Sudo, Daisuke Baba, Junya Nakamura, Fukuhito Ooshita, Hirotsugu Kakugawa, and
Toshimitsu Masuzawa, “An agent exploration in unknown undirected graphs with white-
boards,” in Proceedings of the Third International Workshop on Reliability, Awvailability,
and Security, WRAS 10, pp. 8:1-8:6, 2010.

6. Gen Motoyoshi, Yuichi Sudo, Tutomu Murase, and Toshimitsu Masuzawa, “Advantages
of optimal longcut route for wireless mobile users,” in IEEE International Conference on

Communications , ICC ’11, pp. 1-6, 2011.

7. Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa, “Loosely-
stabilizing leader election on arbitrary graphs in population protocols,” in The 18th Inter-

national Conference on Principles of Distributed Systems , OPODIS ’14, 2014 (to appear).



ii

Technical Reports

8.

10.

11.

12.

13.

Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kaku-
gawa, and Toshimitsu Masuzawa, “Loosely-stabilizing leader election in population protocol

model,” in IPSJ SIG Technical Report, vol. 2009-AL-124, no. 5, pp. 1-8, 2009.

Yuichi Sudo, Gen Motoyoshi, Tutomu Murase, and Toshimitsu Masuzawa, “Optimal longcut
route selection for wireless mobile user ,” in IEICE Technical Report, vol. 109, RCS2009-269,
pp. 71-76, 2010.

Yuichi Sudo, Daisuke Baba, Junya Nakamura, Fukuhito Ooshita, Hirotsugu Kakugawa, and
Toshimitsu Masuzawa, “Time and space efficient graph exploration by a mobile agent using

whiteboard,” in IEICE Technical Report, vol. 109, COMP2009-58, pp. 57-64, 2010.

Yuichi Sudo, Kunio Hato, Hidetsugu Kobayashi, and Eiji Kuwana, “Performance measure-
ment of cloud resources for inter-cloud computing,” in IEICE Technical Report, vol. 112,

IN2012-153, pp. 87-92, 2013.

Yuichi Sudo, Kunio Hato, Hidetsugu Kobayashi, and Eiji Kuwana, “Evaluation of per-
formance measurement method of cloud resources for inter-cloud computing,” in IFICE

Technical Report, vol. 112, IN2012-156, pp. 13-18, 2013.

Yuichi Sudo and Kunio Hato, “Performance analysis of public clouds,” in IEICE Technical
Report, vol. 113, IN2013-60, pp. 13-18, 2013.

List of Unrelated Publications

Conference Papers

14.

Hu Bo, Yuichi Sudo, Kunio Hato, Yuuichi Murata, and Junichi Murayama, “Cost reduction
evaluation of sharing backup servers in inter-cloud,” in Proceedings of the 19th Asia-Pacific

Conference on Communications, APCC’ 13, pp. 256-261, 2013

Technical Reports

15.

Kunio Hato, Yuichi Sudo, Hu Bo, Tsuyoshi Kondoh, Yuuichi Murata, and Junichi Mu-

)

rayama, “Resource Information Exchange Scheme for Inter-Cloud Systems,” in Proceedings

of the Society Conference of IEICE, vol. 2012, Communicatoin(2), pp. 57-58, 2012.



16.

17.

18.

19.

20.

21.

iii

Tsuyoshi Kondoh, Yuichi Sudo, and Kunio Hato, “Memory Over Commitment Detection
Using Latency Measurement,” in Proceedings of the IEICE General Conference, vol. 2013,
Communicatoin(2), pp. 147, 2013.

Kunio Hato, Yuichi Sudo, Hu Bo, Tsuyoshi Kondoh, Yuuichi Murata, Junichi Murayama,
Hidetsugu Kobayashi, and Eiji Kuwana “Evaluation of Resource Information Exchange
Scheme for Inter-Cloud Systems,” in Proceedings of the IEICE General Conference, vol. 2013,
Communicatoin(2), pp. 94-95, 2013.

Yuichi Murata, Kunio Hato, Yuichi Sudo, Hu Bo, Tsuyoshi Kondoh, Junichi Murayama,
Hidetsugu Kobayashi, and Eiji Kuwana “Resource Data Model of Inter-cloud for Standard-
ization,” in Proceedings of the IEICE General Conference, vol. 2013, Communicatoin(2),
pp- 124-125, 2013.

Tsuyoshi Kondoh, Yuichi Sudo, and Kunio Hato, “Reduction of VM Lead Time in Massive
Scale Out,” in IFICE Technical Report, vol. 113, IN2013-30, pp. 29-32, 2013.

Yuichi Sudo and Kunio Hato, “Blocking off reflective DoS attacks by dynamic packet Filter,”
in IEICE Technical Report, vol. 113, IN2013-181, pp. 223-228, 2013.

Yuichi Sudo, Takahiro Hamada, Yuichi Murata, and Hideo Kitazume, “Detection of mali-
cious database queries based on matching with HTTP requests,” in IFICE Technical Report,
vol. 114, IN2014-65, pp. 99-104, 2014.






Abstract

Distributed systems consisting of numerous nodes and links such as the Internet, sensor networks,
and ad hoc networks are in wide spread use all over the world. Since distributed systems have
numerous nodes and links, there is always non-negligible possibility that some nodes or links are
crashed, or the performances of some nodes are drastically degraded. Hence, many distributed
systems are unstable in terms of functionality or performance. On the other hand, users of
distributed systems need stable services in most cases. Therefore, the author has tackled with
developing methods for the users to enjoy stable services of the systems. In this thesis, the author
presents four contributions to ensure fault-tolerance, communication performance, and computing

performance of distributed systems.

First, the author introduces a novel concept of loose stabilization, which is an extension of
self-stabilization. Self-stabilizing systems proposed by Dijkstra in 1974, refer to the distributed
systems satisfying that (i) starting from any configurations, the system eventually converges to
a safe configuration (convergence), and (ii) once the system reaches a safe configuration, the
system keeps its specification forever (closure). A self-stabilizing system has high fault-tolerance:
the system can recover from any transient fault (memory crash, topology change, and so on).
However, owing to the strict requirements of self-stabilization (convergence and closure), it is
known that there exists no self-stabilizing system for some problems. For example, no self-
stabilizing algorithm exists for the leader election problem in the population protocol model (the
PP model), which is a common model of mobile sensor networks unless the exact number of
nodes is available. To circumvent this difficulty, the author introduces the concept of loose-
stabilization, which relaxes the closure requirement without impairing the fault-tolerance. To
show effectiveness of loose-stabilization, the author presents loosely-stabilizing algorithms that
solve the leader election problem in the PP model. Specifically, the author presents a loosely-
stabilizing leader election algorithm on complete graphs in the PP model as the first contribution

(Chapter B), and two loosely-stabilizing leader election algorithms on arbitrary graphs in the PP



vi

model as the second contribution (Chapter B).

Next, the author introduces the study of finding the best route from the current location to the
destination location in terms of communication quality for mobile users. They use various mobile
networks such as cellar networks (e.g. W-CDMA and LTE) and wireless LANs (e.g. WiFi) in
urban areas, hence the wireless environments (communication speeds) of the users highly depend
on their routes. As the third contribution (Chapter @), the author formulates this problem as
the optimal longcut route selection problem and proves its NP-hardness. Furthermore, the author
proposes two pseudo-polynomial algorithms for the problem, and evaluates their execution time
by a theoretical (asymptotical) analysis and an empirical (simulating) experiments.

Finally, the author introduces the study on a trustworthy measurement method of compu-
tational performance of virtual machines (VMs) in cloud computing systems. Virtual machines
in cloud computing systems generally show unstable and time-dependent performances. Hence,
frequent and continuous measurements of VM performance are necessary to understand the VM
performance of each cloud computing service. However, frequent and continuous measurements
of VM performance by each user impose a large cost on the user. On the other hand, if cloud
service providers measure VM performances of their own systems and publish the performance
information continuously, the user can avoid the measurement cost but may not be confident
with the performance information since the provider may fabricate it. As the fourth contribution
(Chapter B), the author proposes a method for users to get trustworthy information about the
real performance of VMs with low costs. In this method, cloud service providers publish the per-
formance information of their VMs at regular intervals, and users of their services infrequently
measure the performance of VMs and try to detect the exaggeration of the published information.
The experimental results show that the users can detect, in most of the cases, the exaggeration

of several percentages on the performance the providers make.
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Chapter 1

Introduction

Distributed systems consist of numerous nodes and communication links between nodes. For
example, the Internet, peer to peer networks, sensor networks, grid computing systems, and cloud
computing systems are examples of distributed systems. One of the major issues in this field is to
provide stable functions and performance of a distributed system. Since a distributed system has
numerous nodes, there is always non-negligible possibility that some nodes or links are crashed or
the performance of some nodes are drastically degraded, which causes unstability of the system in
terms of functionality or performance. For example, many applications for a distributed system
are implemented assuming the existence of a single leader node that coordinates the behavior of
all the nodes of the system. Hence, the applications cannot behave correctly when the leader
node is crashed.

So far, the author has tackled with providing stable services in unstable distributed systems
by realizing fault tolerance or guaranteeing communication performance or computational perfor-
mance. Specifically, to realize fault tolerance of a distributed system, the author proposed a novel
variation of self-stabilization that relaxes the closure requirements of the original self-stabilization
without impairing its fault tolerance in practice. The author also dealt with optimizing commu-
nication quality of mobile networks: the author formalizes and solves the problem to find the
route from the starting point to the destination point that maximizes communication quality of
a mobile user in an urban area. Furthermore, the author tackled with obtaining trustworthy
information of computational performance of virtual machines in cloud computing systems. The
author present a novel method by which the users can get trustworthy information about the
performance of virtual machines of each cloud computing system with low cost.

The rest of this chapter presents the overviews of these studies each of which corresponds to



2 CHAPTER 1. INTRODUCTION

Chapter B, B, @, or B.

1.1 Loosely-stabilizing Leader Election on Complete Graphs

in Population Protocols

Chapter B focuses on improving fault tolerance of distributed systems. To achieve high fault
tolerance, the author introduces a novel concept of loose-stabilization that is a variant of self-
stabilization.

Self-stabilization [0 is a property of a distributed system: Even when any number and any type
of transient faults (e.g. memory crash and topology changes) hit the system, it can autonomously
recover from the faults. The notion of self-stabilization is described as follows: (i) starting from
any arbitrary initial configuration, a self-stabilizing system eventually reaches a safe configuration
(convergence), and (ii) once a self-stabilizing system reaches a safe configuration, then it keeps its
specification forever (closure). Although self-stabilizing systems provide excellent fault-tolerance
as mentioned above, designing self-stabilizing protocols is difficult and, what is worse, might be
impossible due to the severe requirements of self-stabilization. To circumvent these difficulty and
impossibility, many researchers have tried to relax the severe requirement of self-stabilization and
proposed many variants such as probabilistic stabilization [B], quasi-stabilization [8], and weak
stabilization [4]. However, these variants of self-stabilization still have room for improvement.
There exists neither a probabilistic stabilizing protocol nor a weak-stabilizing protocol for some
problems (e.g. leader election in the population protocol model [5] introduced later). On the
other hand, quasi-stabilization heavily impairs fault tolerance of the original self-stabilization
since it needs a kind of initialization of a distributed system after transient faults happen.

In this chapter, the author introduces a novel concept of loose-stabilization, a new variant of
self-stabilization. All existing variants of self-stabilization relaxes the convergence requirement
to the best of the author’s knowledge. On the other hand, loose-stabilization relaxes the closure
requirement: loose-stabilization requires that, after the system reaches a safe configuration, the
system keeps its specification for a sufficiently long time, though not forever as in the original
self-stabilization. For example, if the system keeps its specification for an exponentially long
time with respect to the number of nodes, this relaxation does not impair the fault tolerance of
self-stabilization at all in practical perspective.

To verify the effectiveness of loose-stabilization, this chapter presents a loosely-stabilizing

algorithm for the leader election problem on complete graphs in the population protocol model
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[5] (the PP model). The PP model is a common model of mobile sensor networks of anonymous
mobile sensing devices where two devices communicate with each other only when they come
sufficiently close to each other. Self-stabilizing leader election is a important problem in the PP
model partly because many population protocols in the literature work on the assumption that a
unique leader exists [B, B, []. However, it was proved that no self-stabilizing algorithm exists for
the leader election problem on complete graphs in the PP model unless every node (i.e. mobile
devices) has a knowledge of the exact number of nodes [[7]. Therefore, the proposed algorithm
shows effectiveness of loose-stabilization: loose-stabilization allows a solutions for the problem

that is known to have no self-stabilizing solution.

1.2 Loosely-stabilizing Leader Election on Arbitrary Graphs

in Population Protocols

Chapter B focuses on loosely-stabilizing leader election on arbitrary graphs in the PP model.
A new leader must be created when no leader exists in the system and the number of leaders
must be reduced to one when multiple leaders exist. On a complete graph where all nodes can
communicate with each other, every node can confirm the existence of a leader node since every
node directly communicates with the leader node if it exists. Furthermore, every leader node can
detect the existence of another leader node since any pair of leader nodes can communicate with
each other. However, on an arbitrary graph, detecting the absence or multiplicity of leader nodes

is harder because not every pair of nodes can communicate with each other directly.

Then, the author presents two loosely-stabilizing algorithms: one uses the unique node iden-
tifiers and the other uses random numbers to solve leader election on arbitrary graphs. The
algorithm using node-identifiers adopts the traditional “minimum ID selection” approach while
the algorithm using random numbers adopts a novel approach we call “virus war mechanism”.
Given upper bounds N of n and A of the maximum degree of nodes, both algorithms keep the
unique leader for Q(Ne”) expected steps after reaching a loosely-safe configuration. The former
algorithms reaches a loosely-safe configuration within O(mNAlogn) expected steps while the
latter algorithms does within O(mN3AZ%log N) expected steps where m is the number of edges
of the graph. These two algorithms also show another evidence of effectiveness of the loose-
stabilization since no self-stabilizing algorithm exists for the leader election problem on arbitrary

graphs in the PP model even if the unique node identifiers and random numbers are available.
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1.3 Optimal Longcut Route Selection

Chapter B focuses on communication quality of mobile users who use mobile networks for con-
necting to the Internet. Users of wireless mobile devices (e.g. smart phones, tablets, and laptops)
need the Internet access not only when they are staying at home or office, but also when they
are traveling. Consequently, when such users search a route from their current location to their
destination, they may prefer the route with a good wireless communication environment to one
with the shortest travel time. In this chapter, the author formulates the above situation as
the optimization problem called optimal longcut route selection (OLRS), which requires to find
the route that maximizes the communication quality during travel subject to a travel time con-
straint. First, the author proves that OLRS is NP-hard. Therefore, it is impossible to devise a
polynomial time algorithm for this problem as long as P # NP. Then, the author presents two
pseudo-polynomial time algorithms for OLRS. Based on the author’s theoretical (asymptotical)
analysis, one of the two is better in terms of the worst-case execution time, and the other one
is better for execution time of most inputs (i.e. a graph representing urban area, the starting
point, the destination point, and wireless environment of each point and edge). The simulation
experiment shows that both the two algorithms find the optimal solution within practically short
time for sufficiently large inputs, and the latter algorithm is far faster than the former algorithm

on average.

1.4 Performance Evaluation for Cloud Computing Systems

by Audit Measurements

Chapter B focuses on computational performance of virtual machines in cloud computing systems.
Recently, the market of cloud computing services that provide their users with virtual machines
through internet services has grown significantly. Although cloud service providers present the
specifications of their virtual machines (VMs), it is known that in many cases the real performance
of the VMs deviates far from the specification. To understand the VMs’ performance of cloud
computing services exactly, we need frequent and continuous benchmarking on the VMs of their
service. It requires high cost for users when the users directly measure the performance of the
services that they are interested in. On the other hand, when the cloud service providers measure
their services themselves and publish the result data, the trustworthiness of the result data is
not guaranteed for users since there may exist dishonest providers who fabricate the published

data to be overestimated. In this paper, we propose a method by which users get trustworthy
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information about the real performance of VMs of each cloud computing service with low costs.
In the proposed method, cloud service providers publish the performance data of their VMs at
regular intervals while users of their services infrequently measure the performance of VMs and try
to detect the exaggeration of the published information. The experimental results show that the
users can detect, in most of the cases, the exaggeration of several percentages on the performance

the providers make.






Chapter 2

Loosely-stabilizing Leader
Election on Complete Graphs in

Population Protocols

2.1 Introduction

A distributed system is a collection of autonomous computational entities (processes) connected
by communication links. Fault tolerance of distributed systems has attracted more and more
attention since distributed systems are prone to faults. A self-stabilizing system [0, 8] has a
desirable property that, even when any transient fault (e.g. memory crash) hits the system, it can
autonomously recover from the fault. The notion of self-stabilization is described as follows: (i)
starting from any arbitrary initial configuration, a system eventually reaches a safe configuration
(convergence), and (ii) once a system reaches a safe configuration, then it keeps its specification
forever (closure). Although self-stabilizing systems provide excellent fault-tolerance as mentioned
above, designing self-stabilizing protocols is difficult and, what is worse, might be impossible due
to the severe requirements of self-stabilization.

Many researchers have tried to relax the severe requirement of self-stabilization and proposed
a lot of variants. Probabilistic self-stabilization [?] guarantees convergence to a safe configuration
with probability 1 starting from any arbitrary configuration. Quasi-stabilization [8] guarantees
convergence to a safe configuration only when all processes in the system start with the program

counters of value 0. Weak-stabilization [A] guarantees that starting from any arbitrary configura-

7



8 CHAPTER 2. LOOSE-STABILIZATION ON COMPLETE GRAPHS

tion, there exists an execution that reaches a safe configuration. Devismes et al. [d] investigated
the relations among self, probabilistic and weak stabilization. A notable characteristic common
to all the above variants is that they relax only the convergence requirement but not the closure
requirement of self-stabilization. As we shall see later, the author relaxes the closure requirement
to introduce a novel notion of loose-stabilization.

In this chapter, we adopt Population Protocol (PP) model [0, 8, B, @, [T, 7] as a distributed
system model. The PP model is one of the abstract models that represent wireless sensor networks
of anonymous mobile sensing devices. In this model, two devices communicate with each other
only when they come sufficiently close to each other (we call this event an interaction). For
example, population protocol model can represent a flock of birds such that each bird is equipped
with a sensing device of small transmission range. In such a sensor network, each device can
communicate with another device only when the corresponding birds come sufficiently close to
each other.

Self-stabilizing leader election in population protocol model of complete networks is an im-
portant problem and has been considered by several papers. Angluin et al. [[@] prove that this
problem is unsolvable if we can use no information about the network size, in other words, if
a protocol must work on the complete networks of finite but any arbitrary size® Cai et al.
[[0] prove that the exact information of the network size is necessary (and sufficient) to solve
the problem. In other words, for any two distinct positive integers n and n', there exists no
self-stabilizing leader election protocol that works on both the complete network of size n and
the one of size n’. Fischer and Jiang [I7] use external entity (a kind of failure detector) to solve

the problem with no knowledge of the network size.

Contribution of This Chapter To circumvent difficulty and impossibility in designing self-
stabilizing protocols, the author introduces a novel notion of loose-stabilization, which relaxes
the closure requirement of self-stabilization. To the best of the authors’ knowledge, this is the
first trial to relax the closure requirement and not the convergence requirement. Intuitively, the
notion of loose-stabilization is described as follows: (i) starting from any arbitrary configuration,
a system reaches a loosely-safe configuration within a short time (convergence), and (ii) once a
system reaches a loosely-safe configuration, then it keeps its specification for a long time (loose-
closure). In other words, we relaxes the closure requirement by allowing a system to deviate from

its specification even after a loosely-safe configuration but only after a long period satisfying the

1 They prove this impossibility for a certain class of topology, called non-simple class. This class includes

complete networks, directed line networks, and connected networks with a certain degree bound etc. .
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specification. The requirement of fast convergence is added to guarantee that the specification
should be satisfied in most of the system running time. Actually, the loose-stabilization is prac-
tically equivalent to self-stabilization if the specification is kept for a significantly long time (e.g.
exponential order with the network size) after the loosely-safe configuration.

From a practical perspective, the notion of loose-stabilization suits to the purpose of fault-
tolerance better than self-stabilization. Self-stabilization has great importance for networks prone
to faults, where probability of fault occurrence is not negligible and faults occur repeatedly and
intermittently: self-stabilizing protocols can recover from faults and work correctly during the
fault-free periods. Since the length of the fault-free period is commonly estimated by, for example,
MTBF (mean time between faults), the permanent closure of self-stabilization (to permanently
satisfy the specification after convergence) seems to be an exaggerated requirement. To such a
situation, loose-stabilization satisfying the specification after convergence in a sufficiently long
period (compared to the MTBF) is particularly appropriate.

To show effectiveness and feasibility of loose-stabilization, a loosely-stabilizing leader election
protocol is presented in the PP model of complete networks. The protocol uses the knowledge of
an upper bound, say N, of the network size: the protocol works correctly on any complete network
of size N or less. Starting from any arbitrary configuration, the protocol elects a unique leader
within O(nN logn) expected steps, and then, keeps the unique leader for Q(Ne®) expected steps
where n is the actual network size. This result discloses an evidence that introduction of the
loose-stabilization can circumvent impossibility results on self-stabilization; the self-stabilizing
leader election in the PP model of complete networks cannot be solved even in a probabilistic
way without knowledge of the exact network size (as mentioned above). The proposed protocol
uses O(log N) space per device while most of prior papers on population protocols usually do not
allow each devices to use more than constant space (with respect to n). However, the importance
of the proposed protocol is never impaired by this fact because the above impossibility holds even

if each device can use infinite space.

2.2 Preliminaries

In this section, the definitions of the population protocol model and the concept of loose-stabilization
are given. Throughout this chapter, we use the notation pre;(s) for describing the prefix of se-
quence s with length [.

A population consists of a collection of finite state sensing devices called agents. Each agent

has its own state and updates the state by communication with other agents in pairs,? called
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interactions. ~ We represent a population by simple directed graph G(V, E): vertex set V =
{0,1,...,n— 1} (n > 2) represents the set of agents, and edge set E C V x V represents the set
of possible interactions. If (u,v) € E, agents v and v can interact (or communicate) with each
other in such a way that u serves as an initiator and v serves as a responder. In this chapter, we
assume that a population G(V, E) is a directed complete graph, that is, the edge set E is equals
to {(u,v) |u,v €V, u#v}.

A protocol P(Q,Y,0,T) consists of a finite set @ of states, a finite set Y of output symbols,
an output function O : Q — Y, and a transition function 7" : @ X Q@ — @ x Q. The output
of an agent is determined by O: when the state of an agent is p € @, the output of the agent
is O(p). When an interaction between two agents happens, T determines the next states of the
two agents, the initiator and the responder. For agent u with state p and agent v with state g,
the equation T'(p,q) = (p/,¢’) indicates that the states of u (the initiator) and v (the responder)

become p’ and ¢’ respectively after the interaction (u,v).

A configuration is a mapping C : V — @ that specifies the states of all agents in a population.
We denote by C.i(P) the set of all configurations of P. Let C' and C’ be configurations, and let
u and v be distinct agents. We say that C changes to C’ by an interaction r = (u,v), denoted
by C' 5 C', if we have (C'(u),C’(v)) = T(C(u),C(v)) and C'(w) = C(w) for all w € V except u
and v.8

An interaction sequence v = (ug,vp), (u1,v1),... is an infinite sequence of interactions. For
each t > 0, we denote u; and vy by 71(¢t) and ~2(t) respectively, and denote (us,v:) by ~(¢).
We call v(t) the interaction at time t in v. We say that agent v joins in interaction ~y(¢) when

v € {(t),72(t)}

An ezecution is a infinite sequence of configurations. Given an interaction sequence v and an
initial configuration Cj, the execution of protocol P is uniquely defined as Zp(Cp,v) = Co, C1, . ..
t
such that C, "% Cyyy for all ¢ > 0.

A scheduler determines which interaction happens at each time ¢ (¢ > 0). In this chapter,
we consider a uniformly random scheduler: the interaction at each time is chosen uniformly at
random from all possible interactions. We represent the choice of this scheduler by the interaction
sequence I': each T'(t) is a random variable such that Pr(I'(t) = (u,v)) = 1/|E| = 1/(n(n — 1))

for any arbitrary interactions (u,v) € E and for any integer ¢ > 0.

2 This means that an agent can communicate simultaneously with only one agent.
3 This definition implies that interactions between two agents happen sequentially, that is, exactly one pair of

agents interact at any time.
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2.2.1 Specification

In this section, we introduce the concept of specification and define the specification of leader
election problem.

For protocol P(Q,Y,0,T) and configuration C € C,y(P), we view the composite function
OoC :V — Y as the output of C' and denote it by O(C). For a sequence of configurations
T = Cy,C1, ..., we define output sequence OT p(T') as O(Cy),O0(C4),....

A specification SP(Y) is a set consisting of sequences of functions V.— Y (We omit Y from
the notation SP(Y’) when it is clear from the context). Let E = Cy,C1,... be an execution of
protocol P. We consider that execution = satisfies specification SP if and only if OTp(E) € SP
holds. When OT'p(pre,,(Z)) € SP holds, = is considered to satisfy SP until time ¢. (Note the
index: pre,, () = Cy,C1,...,C;.) In this chapter, we assume that X € SP = pre;(X) € SP

holds for any specification SP and any positive integer .

Definition 1 (Leader Election Problem). We denote by le the set of all assignment w : V —
{F, L} such that for some v; € V, w(v;) = L and for all v # v;, w(v) = F. The leader election
specification LE({F,L}) is defined as LE({F,L}) = {T = w* | w € le, 1 <k < oo} where w* is

the sequence of consecutive assignments w with length k, that is,

Informally, LE{F, L} requires that any legitimate execution has one static leader agent with
the output symbol L and n — 1 non-leader (follower) agents with the output symbol F' through
its all configurations. Here, “static” means that the leader must continue to be a leader and any
other agent must not become a leader during the execution.

This specification does not require termination detection because the population protocol
model lacks the concept of termination. Since interactions happen infinite times, the execution

continues forever and never terminates.

2.2.2 Loose-stabilization

In this section, we define the notion of loose-stabilization. For the proof of the impossibility result,

Firstly, we define holding time HT p(Z, SP) for protocol P(Q,Y,0,0), execution = of P and
specification SP(Y"). This represents how long Z satisfies SP from time 0. If OTp(Z) € SP holds,
then we define HT p(E, SP) = oo. If OTp(pre,(E)) ¢ SP holds, then we define HT p(=Z, SP) = 0.
Otherwise, we have some t such that OTp(pre,(Z)) € SP and OTp(pre;,,,(Z)) ¢ SP. (Such t is
unique.) Then we define HT p(Z, SP) = t.
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Secondly, we define convergence time CT p(Z,C) for a set C C Can(P) of configurations. This
represents how long it takes for = = Cy,C1,... to reach a configuration in C. If Cy € C holds,
then we define CTp(Z,C) = 0. If C; € C does not hold for any time ¢ > 0, then we define
CTp(E,C) = co. Otherwise, we have some ¢ such that C; ¢ C and C; € C. (Such ¢ is unique.)
Then, we define CTp(E,C) = t.

We denote E[HT p(Ep(C,T), SP)] by EHT p(C, SP) for any configuration C' € Coy(P), where
E[X] denotes the expected value of random variable X . Similarly, we denote E[CT p(Ep(D,T"),C)]
by ECTp(D,C) for any configuration D € Can(P).

Definition 2 (Loose-stabilization). Let « and § be real numbers. A protocol P(Q,Y,0,T) is
(a, B)-loosely-stabilizing for specification SP(Y') if a nonempty set S of configurations exists such
that:
max ECTp(C,S) < a,
CeCan(P)

i >p.
min EHTp(C,SP) > p

Intuitively, loose-stabilization requires that any execution starting from any configuration
reaches a loosely-safe configuration (i.e. a configuration in &) within a short time, and after that,
the execution satisfies the specification for a long time. An («, 8)-loosely-stabilizing protocol is
quite useful if § is sufficiently large (e.g. exponential order with n) and « is relatively small (e.g.

low polynomial order with n).

2.3 Protocol P;p

In this section, the author presents a leader election protocol Prg(Q,{F,L},O,T), which uses
the knowledge of an upper bound N of the network size n. The protocol has a design parameter
5. When s is adequately set depending on N, it is (O(nN logn), Q(NeV))-loosely-stabilizing for
LE.

Each agent has one leader bit and a timer that takes an integer value in [0,s], i.e. @ =
{—,1} x{0,1,...,s}. For state p, we denote the first element (leader bit) of p by p.leader and
the second element (timer) of p by p.time. The output function O is defined as follows: if the
leader bit of an agent is I, then the output of the agent is L, otherwise F'. We call an agent with
the leader bit I (—) a leader (non-leader, respectively). We describe the transition function T' by
pattern rules in Code EX. Given any pair of states (p, q), the pair of the next states T'(p, q) is
defined as follows: (i) if (p,q) matches the left side of exactly one rule, T'(p, q) is determined by
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Code 2.1 Loosely-stabilizing Leader Election Prg

RL (%), (L) = ((s),(=9))
R2. ((L#), (=) = ((Ls),(=9))
R3. ((=#),(L,%) = ((=9),(s)
Rd. ((=0),(=0)) = ((hs),(=9))
RS (=), (=) = (=) (=1)

(OSZMJ §S7 f:max(z,j)—l)

the right side of the rule, and (ii) if there are two or more matched rules, we apply the rule with
smallest rule number among them. The symbol * means “don’t care”, that is, * matches any
value of the timer. Note that this five rules are collectively exhaustive.

If two leaders interact, the initiator remains a leader and the responder becomes a non-leader
(R1). If a leader and a non-leader interact, the leader bits of both the agents do not change (R2,
R3). In every interaction in which one or two leaders join, the timers of both the agents are reset
to the full timer value s (R1, R2, and R3). We call this event timer reset. A new leader is created
only when two non-leaders with timer value 0 interact (R4). We call this event timeout. If two
non-leaders interact where either or both the agents have non-zero timer, then at least one of the
two agents decrements its timer value by 1 (R5). R5 plays another role of propagating the higher
timer value: intuitively, when two non-leaders interact, the timer of a lower value is set to the
other (higher) value (minus 1).

In a configuration containing at least one leader, timeout rarely happens because of frequent
occurrences of timer reset and propagation of higher timer value. On the other hand, in a
configuration containing no leader, timeout happens in a relatively short time because of no
possibility of timer reset. Hence, starting from any configuration, removing leaders by R1 or
creating a leader by R4 eventually bring the population to a configuration with exactly one

leader. The following two properties hold clearly.

Lemma 1. Once a configuration with one or more leaders is reached, the number of leaders

cannot become 0 thereafter.
Lemma 2. Once a unique leader is elected, specification LE holds until the next timeout happens.

As a set of loosely-safe configuration, we adopt Spai¢, which consists of all the configurations in
which exactly one leader exists and the timer value of every agent is greater than or equal to s/2.

From the above explanation for Ppg, one can intuitively observe the following two properties:
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starting from any configuration, the population reaches a configuration in Syaif within a relatively
short time (convergence), and once a configuration in Sy,yf is reached, the specification (the unique
and static leader) is kept for an extremely long time (loose-closure). In Section B, the author
rigorously proves how fast Prp converges to a loosely-safe configuration, and how long Prp

maintains the specification of leader election after a loosely-safe configuration is reached.

2.4 Analysis and Proofs

Assume that we set design parameter s so that s is a multiple of 96 and s > max(3n,96(2Inn +
In24)). (In what follows, we use the notation s* for s/96.) In this section, we prove that under
this assumption, P is (O(nslogn),Q(se®”))-loosely-stabilizing for LE and Spas. To claim it,

we prove the following two expressions:

ECT C, S =0O(nsl 2.1
Ceg:li)lgw) Pui (C, Shalt) (nslogn), (2.1)
o EHTp,, (C,LE) =Q (s -e ) . (2.2)

In this section, we omit P;g from some expressions when the protocol under consideration is
clear from the context; for example we denote Can(Prg), OT p,, and ECT p,,, simply by Cay, OT
and ECT respectively. And, we use the following four subsets Lope, £, Chair and Lyai¢ of Cap in

addition to Spaif;

Eone = {O S Call | #Z(C) = 1}7
L={C€e€C. | #(C) > 1},
Chalt = {C € Can | Vv €V, C(v).time > g} )

Lyar = LN Chat

where #{(C) represents the number of leaders in configuration C, i.e. #I(C) = |{v € Vv.leader =
[}|. The set Lone represents the set of all configurations in which exactly one leader exists while £
represents the set of all configurations in which one or more leaders exist. The set Cpq)¢ represents
the set of all configurations in which the timer value of every agent is greater than or equal to
s/2. Note that Shair is equal to Lone N Chalr -

In the rest of this section, we introduce the notion of epidemic (presented in [G]) and virtual
agents in Section ZZ1. Using these tools, we prove (E22) in Section ZZ2 and (ET0) in Section
ZZ3.
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2.4.1 Epidemic and Virtual Agents

In this section, we introduce the notion of epidemic (presented in [6]) and wirtual agents.

To begin with, the notion of epidemic is introduced. Let Cy be a configuration in Lyye, and
let v; € V be the unique leader in Cy. Let « be an interaction sequence. The epidemic function
Ic,~(t) (t = 0,1,...) that returns a set of agents is defined as follows: I¢, (0) = {v;}, and
Icy () = Icy~(t —1)U Addc, ~(t — 1) for any t > 1 where we define

{718,720} i 11(0) € Log A (1) V 72(i) € Loy 4 (4)

0 otherwise

Addc, 4(i) =

for any integer ¢ > 0. We say that if v € I, (), then v is infected at time ¢ in the epidemic
starting from Cj and spreading under v, otherwise v is infection-free at time ¢ in the epidemic.
At time 0, only v; is infected. An infection-free agent becomes infected when it interacts with
an infected agent. Once an agent becomes infected, it remains infected thereafter. We define
the infected time T, (v) of agent v # v; as an integer ¢ > 0 that satisfies v ¢ I, ,(¢) and
v € Ig, (i +1). We naturally define T¢, ~(v;) = 0.

In the following, we define the wvirtual agent VA¢, ,(v) of each agent v € V. We assume that
all the agents eventually become infected, that is, I, -(t') = V holds for some ¢’ > 0. The virtual
agent VAc, ~(v) is not defined if no such ¢’ exists for Cy and . Let v be any agent other than v;.
We define the parent of v as the agent that infects v in time T, ,(v). This parent-child relation
makes the rooted spanning tree uniquely, the root of which is v;. In this tree, the path from v,
to v, vy = wy = w1 — Wy — -+ — Wy, = v, uniquely exists. The virtual agent VAg, ,(v) is
a virtual entity that migrates from v; to v through the path. This notion is formalized as the

location of the virtual agent Lc, (v,t) (t > 0), which is defined as follows:

u (0<t<ty)
Logy(it) =Qw; (ti+1<t<tiq, 1<i<m—1)

v (2 1= Toyn () + 1),

where t; = T¢, (w;). For the leader agent v;, we define L¢, -, (vi,t) = v; for any t > 0.
Let v be an agent in V.? For simplicity, we denote the virtual agent VAc, ~(v) by v here. We
say that the virtual agent v’ joins in interaction v(¢) if agent L¢, (v, t) joins in v(t), and we define

indicator variable V.J¢, (v, t) for any ¢ > 0 as follows: if v’ joins in «(¢), then VJg, (v, t) =1,

4Note that v can be v;.
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otherwise V¢, ,(v,t) = 0. The number of virtual interactions of v, denoted by VI, (v,t), is

defined as follows:
t—1
VIg,(0,8) =Y Vi, (v,4)
i=0

Intuitively, VI¢, ~(v,t) is the number of interactions in which v’ joins between time 0 and time
t—1.

One can observe that the virtual agent v’ brings a large timer value to v with high probability
when v’ reaches v through the infecting path. Actually, the timer of v at time T, ~(v) + 1 (just
after v is infected) is at least s — VIg, (v, Ty (v) + 1). The following lemma trivially holds.

Lemma 3. Let Cy be a configuration in Lone and let v be an interaction sequence. Let Z(Cy, ) =

Cy,C1,.... The following predicate holds for any integer t > 0:
Ioy () =V = YveV, Civ).time>s— Vig, (v,1).

If timeout happens, another new leader is created. This leader may change v; to be a non-
leader. Note that the above lemma holds even if such a situation happens, and v; becomes a
non-leader.

In addition to the number of virtual interactions, we define the number of real interactions of
vas RI (v, t) = Zf;é RJ,(v,t), where RJ(v,t) is indicator variable such that if v joins in ()
then RJ,(v,t) = 1, otherwise RJ,(v,t) = 0. Intuitively, RI,(v,t) is the number of interactions

in which v joins between time 0 and time ¢ — 1.

2.4.2 Expected Holding Time

In this section, we prove (E32). For a positive integer ¢, a configuration Cy € C,; and an in-
teraction sequence v, we define indicator variable TO¢, (t) as follows: if timeout happens in
execution Zp,,(Cp,y) between time 0 and time t — 1, that is, at least one of the interactions
7(0),v(1),...,v(t—1) causes timeout in Z(Cy, v), then TO¢, ~(t) = 1, otherwise TO¢, () = 0.
For convenience, we define TO¢, ~(0) = 0. As a sufficient condition for (22), we focus on the

following inequality for any configuration Cy in Spa:
Pr(TOc,r(2ns") =0 A Coper € Spart) > 1—2n-¢7°, (2.3)
where E(Co, F) = Co, Cl, ey C2ns*a e

Lemma 4. Ezpression (E24) holds if (223) holds for any configuration Cqy in Shais.



TOc,r(2ns*) = 0 holds w.h.p. max, ., RIp(v,2ns*) <% holds w.h.p.

(Corollary 1) (Lemma 5)
max, i Vg, r(v, 2ns*) <% holds w.h.p.
I~ Ins*) =V vel 0 2
cur(2ns”) holds w.h.p. under the condition I¢,r(2ns*) =V
(Lemma 8) ' (Lemma 7)

By Lemma 3
L Cong € Lpary holds w.h.p.

ons € L ha, J1P. ..
Ce waif holds w.h.p under the condition I¢,r(2ns*) =V
(Corollary 2)

(Corollary 3)

Figure 2.1: The structure of the proof for (23): w.h.p. means “with high probability”.

Proof . Assume that (233) holds for any configuration Cy in Spar. Then, from Lemma B, the
following inequality holds:

EHT(Cy, LE) > (1 72n~675*) <2ns* + min EHT(C, LE))

CESnalr

Since Cj is any configuration in Sp,i¢, we have

CEShart

min EHT(C, LE) > (1 - 2n-e—s*) <2ns* + min EHT(C, LE))
CESnarr
Solving this inequality gives us (272). O

In the following, we show that (223) holds for any configuration Cy € Spar. The structure
of the proof is shown in Figure E70. Firstly, we bound the number of real interactions proba-
bilistically (Lemma B), from which we get the result that the probability of TO¢, r(2ns*) =0
is sufficiently close to 1 (Corollary mM). Secondly, we bounds the number of virtual interaction
probabilistically (Lemma @), from which and Lemma B together, we prove that Capex € Lpaie
holds with sufficiently high probability under the condition I¢, r(2ns*) = V (Corollary B). We
also prove that I¢, r(2ns*) = V holds with sufficiently high probability (Lemma B). By Corollary
@ and Lemma B, we get the result that the probability of Co, s+ € Lyar is sufficiently close to 1
(Corollary B). The combination of Corollaries M and B directly leads to (E23).

Lemma 5. Pr(max,cy RIp(v,2ns*) < 5) > 1 —n-exp(—16s*) .
Proof . At each time ¢, any agent v joins in I'(¢) with probability % Hence, RIt (v,2ns*) ~

B(2ns*,2). As one of Chernoff bounds, Pr(Y > R) < 27 holds for any binomial random

‘n
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variable Y and any real number R > 6 - E[Y] [I3, (4.3)]. Since § > 6E[RIr(v,2ns*)] = § and

271/2 < e=1/4 B we obtain
* S —s/2 S *
Pr (RIF (v,2ns*) > 5) <2 < exp (_Z) = exp(—16s").
We achieve the lemma by summing up all the above probabilities with respect to v € V. O

Corollary 1. The inequality Pr(TOc¢, r(2ns*) = 0) > 1 —n - exp(—16s*) holds for any configu-

ration Cy in Chais-

Proof . Since Cy € Cpar, timeout happens by time 2ns* — 1 (i.e. TO¢, r(2ns*) = 1) only when
some agent joins in at least 5 + 1 interactions between time 0 and time 2ns* — 1. Hence, the

corollary follows from Lemma B. O

Next, in Lemma [, we bounds the number of virtual interactions probabilistically. Apparently,
it seems that VJ¢, r(v,t) and RJr(v,t) have the same probability distribution for any v € V
and ¢ > 0. However, this is not true. Surprisingly, the interaction at time ¢ influence the
location of virtual agent of v at the same time ¢. Hence, Pr(VJ¢, r(v,t) =1) = Pr(Le, r(v,t) €
{I'1(t),T2(t)}) is not equal to 2 and very hard to calculate. Therefore, we must take a different

approach for Lemma @ from that of Lemma B. To begin with, we introduce the following lemma

as a tool.

Lemma 6. Let Cy be a configuration in Lone and let X (i,p) be a binomial random variable such
that X (i,p) ~ B(i,p). Then, the following expression holds for any v € V and any integers t > n
and j > 0:

Pr(Vig,r(v,t) > j+n—1]Ic,r(t) =V) < Pr(X(t,4/n) > j).

Proof . Assume I¢,r(t) =V and let v; € V' be the unique leader in Cy. We define the infecting
time set IT as U, ey (y,1{Tco,r(v)}, and the non-infecting time set NIT as {0,1,...,t =1} \ IT.
Let v be any agent in V', and let NVI =3, .y, Vg, r(v,t'). Since |IT| = n—1, the inequality
VI, r(v,t) < NVI 4+ n — 1 immediately follows. Therefore, it is sufficient for our proof to show
Pr(NVI = j | Ig,r(t) = V) < Pr(X(t,4/n) > j).

Let ¢’ be any integer in {0,1,...,t — 1} and let m = |I¢, r(¢')|. Consider the case t' € NIT.
Then, the interaction I'(#') must be an interaction such that both agents I'; (¢') and T'a(¢') belong

to Ic, r(t') or both the agents belong to V' \ Ig, r(t'). Otherwise, some infection-free agent

5

5 2-1/2 2 0.707 and e~ 1/4 = 0.778
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becomes infected at time t’, contradicting ¢’ ¢ IT. And, L¢, r(v,t') € Ig, r(t') clearly holds by
the definition of virtual agents. Thus, letting (Cy = 1Cy = 0, we have

1
Pr(VJ AV =1]Ior()=V At € NIT) = — 2"~
I'( CO,F(U ) | CO’F() ) mCQ +n—m 02
4
<=,
n

See Lemma @3 in Section 23 for the last inequality.
Note that this upper bound 4/n of the probability is independent from any interaction at any
time other than ¢'. Hence, for any set S consisting of ¢ — n + 1 distinct integers in [0, — 1], we

have
4
Pr(NVI>j|Ic,r(t)=V A NIT=S5)<Pr <X <t—n+1,) 2]’)
n
Therefore, the following inequality holds and so does the lemma.

4
Pr(NVI > j | Io,r(t) = V) < Pr (X (t —n+1, ) > j)
n

cn(x(:2)2)

O
Lemma 7. Let Cy be a configuration in Lone. The following inequality holds:
* S * 88*
Pr (ma‘} VIg,r (v,2ns*) < 3 | Ic,r (2ns™) = V> >1—mn-exp ( 3 ) . (2.4)
ve

Proof . Let v be any agent, and let X (i,p) be an binomial variable such that X (i,p) ~ B(i,p).

By Lemma B and the assumption s > 3n, we have

Pr (VICOI (v,2ns™) > % | Ic, r (2ns™) = V)
<Pr (V]Cm[‘ (v,2ns*) > g +n—1|Ic,r(2ns*) = V) ; > % +n—1
<Pr (X (Qns*, i) > Z) .
As one of Chernoff bounds, Pr(Y > (1+¢€)E[Y]) < exp(—€e?E[Y]/3) holds for any binomial random

variable Y and any real number € (0 < e < 1) [13, (4.2)]. It follows that Pr(X(2ns*,4/n) >
16s*) < exp(—8s*/3). (We set € = 1.) We obtain (E3) by summing up all the probabilities with
respect to v € V. O

The following corollary is directly obtained from Lemmas B and Lemma .
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Corollary 2. Let Cy be a configuration in Lone and let 2(Co,T') = Co, C1,... . Then, Pr(Caops+ €
Lhait | Ie,r(2ns*) =V) > 1 —n-exp(—8s*/3) holds.

Lemma 8. Pr(I¢, 1 (2ns*) =V) > 1—n-exp(—s*) holds for any Cy € Lone.-

Proof . For each k (2 < k < n), we define T(k) as integer ¢ such that |Ic,r(t —1)] =k —1
and |Ic, r(t)| = k, and define T'(1) = 0. Intuitively, T'(k) is the first time at which there exists k
infected agents in the population. Let Xpre = T([25]) and Xpost = T'(n) — T(n — [245L] + 1).
Angluin et al. found in [6] that T'(k) and T'(n) —T'(n—k-+1) have the same probability distribution
for any k (1 < k < n). Hence, so do Xpre and Xpos. And, Xpre + Xpost > T'(n) holds because
(23] > n—[2H]+1. We denote T'(n— [21]+1) by Thar and let X, = max(Tc,,r(v) — Thair, 0)
for any agent v. Informally, X, is the number of interactions that occurs between time Th ¢
and the time at which agent v becomes infected. Consider the case v ¢ Ic, r(Thair). At any

time ¢ > Tharr, at least n — f%ﬂ] + 1 (> 2) agents are infected. Therefore, each interaction

2
at time ¢ > Ty infects v with the probability of at least %2 5> %, and hence, we have
Pr(X, > ns*) < (1-— %)”S* < e~%". Since the number of infection-free agent at time T,i¢ is at
most §, Pr(Xpost > ns*) < Pr(\, o (Xy > ns*)) < § - exp(—s*) holds. By the equivalence of
the distribution of X, and Xp0e, we have

*

Pr(Ig,r (2ns*) # V) < Pr(Xpre > n5") + Pr(Xpost > ns*) <n-e”*

Corollary B and Lemma B together lead to the following corollary.

Corollary 3. Let Cy be a configuration in Lone and let Z(Co,T") = Co, Ch, .. .,
Cons*y... . Then, Pr(Cops« € Lpaif) > 1 —n-exp(—8s*/3) — n - exp(—s*) holds.

Theorem 1. Ezpression (E22) holds.

Proof . By the assumption s > 96(2Inn + In24), we have exp(—3) + exp(—z5) < exp(—gg) -
Therefore, (233) holds for any configuration Cy € Sy from Corollaries B and M. We achieve (22)
by Lemma B. O

2.4.3 Expected Convergence Time

Next, we show () to complete our proof. The following inequality clearly holds:

Cl'Tel%fu ECT(C, Shalf) (2 5)

< ECT(C, L ECT(C, Lpa ECT(C, Shait)-
< poax (C, )+Igg§ (C, Lyair) + Jmax (C, Shart)
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Therefore, it suffices to show that each term in the right side of (E75) belongs to O(nslogn). We
show that the first term belongs to O(nslogn) in Lemma B, and the second and the third term

belongs to O(ns) in Lemma M and Lemma [ respectively.

Lemma 9. maxcec,, ECT(C, L) belongs to O(nslogn).

Proof . We define v(C,i) (0 < i < s) as the number of agents with timer value ¢ in configuration
C,ie v(C,i) =|{v eV |C(v).time = i}|. For any integer ¢,7 (0 <i<s, 1 <j<n)we denote
by W; ; the set of all configurations in which there exists no leader, the maximum timer value of
all agents is 4, and v(C,4) = j holds. Note that W, ; is empty when j # n.

Let w; ; be maxcew, ; ECT(C,Can \ Wi j). The execution get out of W; ; if one of j agents

with the largest timer value joins in an interaction. Furthermore, after that, the execution never

comes back to W; ; again. Since one of j agent is selected with probability % > 7%,

we have w; ; < ?, and thus

S n
ECT(C, L) < wo.n <1 “H(n) = O(nsl
Jasx. (C, L) <wgp + ;;w i <1l+4+mns-H(n) (nslogn)

holds where H is the harmonic function. O

In Section 221, the definitions of epidemic and virtual agents stand on the assumption that
there exists ezactly one leader in the initial configuration Cy (i.e. Cy € Lone). However, this
assumption can be relaxed as follows: there exists at least one leader in Cy (i.e. Cy € L£). With
defining v; as any arbitrary leader in Cy, we can redefine I¢, ~(t) and VIg, ~(v,t) for any Cp € £
in the same manner as Section 2. Then, Corollary B holds not only for any Cy € Lopne but
also for any Cy € L.

Lemma 10. maxcep ECT(C, L) belongs to O(ns).

Proof . Let Cy be an configuration in £ and let Z(Cy,T') = Cy, C1, . ... By Corollary B, we have

Pr (Copse € Lhaif) > 1—2n-exp(—s")

P

21—ﬁ%r s >2Inn -+ In24
1

> —

=3

Since Cyps« € L holds by Lemma [, we have
1
< 2ns* + = .
rcr}g% ECT(C, Lyax) < 2ns™ + 5 %122( ECT(C, Lyaxr)

Solving this inequality gives us maxcer ECT(C, Lyar) < 4ns* = O(ns). O
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In the rest of this section, we prove Lemma . Informally, the lemma holds for the following

reason.

e When we can ignore occurrence of timeout, at most n leaders kill each other, and one unique

leader is elected within O(n?) expected interactions. (We shall see this fact in Lemma [2.)

e From Corollaries [ and B, one can observe that timeout happens only extremely rarely when
the execution starts from a configuration in Ly,. Hence, the probability that timeout
happens by time O(n?) is negligible. Furthermore, although the execution may get out of
Lhaie, it comes back to Lyaye by time O(ns) with very high probability (Corollary B).

In what follows, we show the formal proof. To avoid complicated analysis of conditional proba-
bility, we introduced a protocol P} 5, which eliminate timeout mechanism from Py g. Specifically,
P; ; is the protocol obtained from Prg by replacing rule R4 in the transition function T" with the

following rule R4’

R4’ ((=,0),(=,0) = ((=0),(=0) .
The state set of Prg and Pj 5 is identical, and hence, so do the Can(Prg) and Can (P g)-

Lemma 11. Let Cy be a configuration in Cay and let vy be an interaction sequence. Let Ep, ,(Co,7y) =

Co,Ch,... and Ep; (Co,7) = Co, D1, Da, ... The following predicate holds for any t > 0:
D; € Lone NCy € Chais A TOCO,W(t) =0 = C;e€ S

Proof . Assume that D, € Lone, Ct € Chair and TO¢, ~(t) = 0 holds. Note that execu-
tions Ep,,(Co,7) and Zp; (Cp,7) have no difference until timeout happens. By the assumption

TO¢,,~(t) =0, we have the equality C; = Dy, and hence, C; € Lone N Chalf = Shair holds. O
Lemma 12. maxcer ECTp; (C, Lone) = (n — 1)?% .

Proof . We prove this lemma in the almost same way as [G]. The number of leaders decrease by
1 when two leaders have an interaction. In each interaction, two of ¢ leaders have an interaction
with probability n%; Hence, we have

- nC2
%122( ECTP]’F (07 ‘Cone) = Z

=2

In what follows, we use an integer r = [23:52*] - 2ns*.
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Lemma 13. Let Cy be an configuration in Lyar and let Ep, . (Co,T) = Cy,C4,.... Then, the
following inequality holds:

Pr(C;, € Shait) > %
Proof . Let EerE(CO, I') = Cy, D1, Do, . ... By Lemma [, it suffices to show Pr(D, € LonAC, €
Chait AN TO¢, () =0) > % By lemma [ and Markov’s inequality, we have

Pr(Dy ¢ Lone) = Pr(CT(Ep; (Co,T), Lone) > 7)
ECTp: (Co,T _ )2
S PLE( 0 ) < (TL ]')

r —  3n?

1
<.
-3

Next, we show a lower bound of Pr(C; € Chair A TO¢, r(r) = 0). By Lemma B and Corollary B,

we have the following inequality:
Pr(Cons € Lyais A TOgyr(2ns*) =0) >1—2n-e~°

Hence, we have

A\ | 3n?/2ns*
Pr(Cy € Lot A TOcy () = 0) > (1 —2n-e )( 1

3n?

2ns

1 3n 1 5
>1 - — 1) >1——(14+1)= =
- 12n <25*+ >_ 12( +1) 6’

where we use the assumption s* > 2Inn + In 24 for the third inequality. Thus, we have Pr(D, €
Lone A Cr € Chatt A TOc,0(r) = 0) 2 1= (5 +3) = 3. -

>1—2n-e"° . [ w (see Lemma [@ in Section EF)

Lemma 14. maxceg,,, ECT(C, Shair) belongs to O(ns).

Proof . Let Cy be an configuration in Lyay¢ and let Zp,, = Co, C1,... . By Lemmas [ and I3,

we have

1
< — .
Clél»g}ilf ECT(C’7 Shalf) <r+ 9 <ICI'168%( ECT(C, Ehalf) + Iengilf ECT(O, Shalf))

Solving this inequality gives maxcer,,,, ECT(C,Shar) < 6n2 + 8ns* = O(ns). since we have

maxcer ECT(C, Lyae) < 4ns* in the proof of Lemma IT. O

Thus, we obtain (E) from Lemmas @, [, 0 and (25). The following theorem is directly
derived from (1) and (232).

Theorem 2. P is (O(nslogn), Q(ses/%))—loosely—stabilz’zing for behavior LE and Sya if s >
max(3n,96(21lnn +In24)) holds and s is a multiple of 96.
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Recall that P knows an upper bound N of n. When we set s to be max(96N,96(21ln N +
In24)), Prp realize (O(nN logn), Q(Ne!))-loose-stabilization for behavior LE and Spai. That
is, P realizes fast convergence to a loosely-safe configuration (low polynomial order time) and

extremely long maintenance of its specification (exponential order time).

2.5 Complementary Lemmas

Lemma 15. Let n and m be integers (0 < m < n) and let ¢Cy = 1Cy = 0. Then, the following
inequality holds:

m—1 4

_ < —. 2.6

mCZ +n-m CQ n ( )
Proof . If m > %, then (ZB) follows from wz’f_im < ’:—Ei = % < %. If m < %, then
n —m —1>m — 1 holds. Thus, the following inequalities hold:

m—1 B 2(m —1)
mCo +pn_mCy  m(m—1)+(n—m)(n—m—1)
- 2(m—1)
m(m—1)+ (n—m)(m—1)

_2_1

non
Therefore, (E8) holds in all cases. o

Lemma 16. (1 —p)" > 1 —rp holds for any real number p <1 and any integer r > 1.

Proof . We show this lemma by induction with respect to r. If r = 1, the equality (1—p)” = 1—rp
trivially holds. Assume that (1 —p)” > 1 — rp holds when r = k. Then, we have

(1—p*t =1-p)(1-p*>1-p)1-kp)
>1—(k+1Dp+kp*>1—(k+1)p.

Therefore, (1 — p)” > 1 — rp holds for any integer r > 1. O

2.6 Conclusion

In this chapter, the author introduced a novel concept of loose-stabilization and presented a
loosely-stabilizing leader election protocol in the PP model of complete networks. The basic

strategy of this protocol is described as follows: if two leaders interact each other then one of the
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two becomes a non-leader, and if two non-leaders with the timer value 0 interact each other then
one of the two becomes a leader. The timer value of each agent is controlled so that the timer value
of every agent keeps relatively high when at least one leader exists in the population, while the
highest timer value among all agents is monotonically non-increasing when no leader exists. Thus,
starting from any arbitrary configuration, the protocol reaches a configuration in Spar within
O(nNlogn) expected steps, and then, it keeps the unique leader for Q(Ne™) expected steps,
where n is the actual network size and N is a known upper bound of n. The proposed protocol
has practical significance from the following reason: the protocol can be practically considered to
attain self-stabilization because of exponentially long time of keeping a unique leader while the
self-stabilizing leader election in the PP model of complete networks is impossible without the
knowledge of the exact network size [I1].

The future work is to apply the notion of loose-stabilization to other problems that are known

unsolvable or too costly in a self-stabilizing fashion.






Chapter 3

Loosely-stabilizing Leader
Election on Arbitrary Graphs in

Population Protocols

3.1 Introduction

Self-stabilizing leader election (SS-LE) requires that starting from any configuration, a system
reaches a safe-configuration in which a unique leader is elected, and after that, the system has
the unique leader forever. Self-stabilizing leader election is important in the population protocol
model (the PP model) because (i) many population protocols in the literature work on the
assumption that a unique leader exists [8, B, [d], and (ii) self-stabilization tolerates any finite
number of transient faults and this property suits systems consisting of numerous cheap and
unreliable nodes. (Such systems are the original motivation of the PP model.) However, there
exists strict impossibility of SS-LE in the PP model: no protocol can solve SS-LE for complete
graphs, arbitrary graphs, trees, lines, degree-bounded graphs and so on unless the exact size of
the graph (the number of agents n) is available [7]. This impossibility holds even if we strengthen
the PP model by assigning unique identifies to agents, allowing agents to use random numbers,
introducing memory of communication links (mediated population protocols [Id]), or allowing
more than two agents (k agents) to interact at the same time (the PPj model [IH]).
Accordingly, many studies of SS-LE took either one of the following two approaches. One

approach is to accept the assumption that the exact value of n is available and focus on the space

27
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complexity of the protocol. Cai et al. [I1] proved that n states of each agent is necessary and
sufficient to solve SS-LE for a complete graph of n agents. Mizoguchi et al.[I6] and Xu et al.
[T7] improved the space-complexity by adopting the mediated population protocol model and the
P P;; model respectively. The other approach is to use oracles, a kind of failure detectors. Fischer
and Jiang [I2] took this approach for the first time. They introduced oracle £2? that informs all
agents whether at least one leader exists or not and proposed two protocols that solve SS-LE for
rings and complete graphs by using Q7. Beauquier et al. [IR] presented an SS-LE protocol for
arbitrary graphs that uses two copies of Q7. Canepa et al. [I9] proposed two SS-LE protocols
that use Q7 and consume only 1 bit of each agent: one is a deterministic protocol for trees and
the other is a probabilistic protocol for arbitrary graphs although the position of the leader is not
static and moves among the agents.

In chapter B, the author took a new approach to solve SS-LE. The author introduced the
concept of loose-stabilization, which relaxes the closure requirement of self-stabilization: we allow
protocols to deviate from the specification after following it for a sufficiently long time. Concretely,
starting from any initial configuration, the system must reach a loosely-safe configuration within a
relatively short time; after that, the specification of the problem (the unique leader) must be kept
for a sufficiently long time, though not forever. The author then proposed a loosely-stabilizing
protocol that solves leader election on complete graphs using only an upper bound N of n, not
using the exact value of n. Starting from any configuration, the protocol reaches a loosely-safe
configuration within O(nN logn) expected steps. After that, the unique leader is kept for Q(Ne™)
expected steps. Since the specification is kept for an exponentially long time, we can say this
loosely-stabilizing protocol is practically equivalent to a self-stabilizing leader election protocol.
Furthermore, this protocol works on any complete graph whose size is no more than N while

protocols using the exact value of n work only on the complete graph of size n.

Contribution of This Chapter In this chapter, we consider loosely-stabilizing leader election
for arbitrary undirected graphs. We consider two settings: (i) the population with agent-identifiers
where state-transition is deterministic (as in [20]%) and (ii) the population consisting of anonymous
agents where the agents can use random numbers for state-transition (as in [I9]). As mentioned
above, no self-stabilizing protocol can solve SS-LE for arbitrary graphs, even in these settings,

unless the exact value of n is available. For each setting, we propose two protocols Pip and

L Strictly speaking, the model of this chapter with identifiers is stronger than the model in [20]. We use
identifiers to compare their values while Guerraoui et al. [20] only allow equality-test of identifiers and prohibited

any other calculation of identifiers such as value-comparing.
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Pgrp respectively. The proposed protocols use just upper bounds N of n and A of the maximum
degree of nodes, and does not use the exact number of n. To elect the unique leader, we take
“the minimum ID selection” approach for Pip utilizing the identifiers of agents while we take a
novel approach we call “virus war mechanism” for Pgrp utilizing random numbers.

Given upper bounds N of n and A of the maximum degree of nodes, both protocols keep the
unique leader for Q(Ne®) expected steps after reaching a loosely-safe configuration. Protocol Prp
reaches a loosely-safe configuration within O(mNAlogn) expected steps while Prp does within
O(mN3AZ%log N) expected steps where m is the number of edges of the graph. Both protocols
consume only O(log N) bits of each agent’s memory. We can say this space complexity is small
because even space optimal self-stabilizing protocols that use exact value of n consume O(logn)
bits of each agent [0, 06]. For simplicity, the proposed protocols are presented for undirected
graphs. However, they work on directed graphs with slight modification which is discussed in the
conclusion.

Angluin et al. [6] proves that for any population protocol P working on complete graphs,
there exists a protocol that simulates P on any arbitrary graph. However, this simulation can be
achieved assuming that all the agents have the common initial states at the start of the execution.
Since we cannot assume the specific initial states (This is the essence of self-stabilization), we
cannot translate the loosely-stabilizing algorithm for complete graphs presented in B to a loosely-

stabilizing algorithm that works for arbitrary graphs.

3.2 Preliminaries

This section defines the model of this chapter. The model includes both agent-identifiers and
random numbers while protocols Pip and Pgrp use only one of them. In what follows, we denote
set {z e N|z <z<y} by [z,y].

A population is a simple and weakly-connected directed graph G(V, E,id) where V' (|V| > 2)
is a set of agents, E C V x V is a set of directed edges and id defines unique identifiers of
agents. Each edge represents a possible interactions (or communication between two agents): If
(u,v) € E, agents u and v can interact with each other where u serves as an initiator and v
serves as a responder. Each agent v has the unique identifier id(v) € I (I = [0,idmax); idmax €
O(n®) for constant ¢). We say that G is undirected if it satisfies (u,v) € E < (v,u) € E. We
define n = |V| and m = |E]|.

A protocol P(Q,Y,I,R,T,O) counsists of a finite set @ of states, a finite set ¥ of output

symbols, a set of possible identifiers I, a range of random numbers R C N, transition function
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T:(Q@xI)x(QxI)xR— QxQ,and output function O : (Q x I) — Y. When an interaction
between two agents occurs, 1" determines the next states of the two agents based on the current
states of the agents, identifiers of the two agents, and a random number r € R generated at each
interaction. The output of an agent is determined by O: the output of agent v with state ¢ € @ is
0O(g¢,1d(v)). We assume that the set of possible identifiers I is a given parameter and not subject

to protocol design.

A configuration is a mapping C : V — @ that specifies the states of all the agents. We denote
the set of all configurations of protocol P by C,;(P). We say that configuration C' changes to
C’ by interaction e = (u,v) and integer € R, denoted by C <% C”, if we have (C'(u),C'(v)) =
T(C(u),id(u), C(v),id(v),r) and C'(w) = C(w) for all w € V' \ {u,v}. A scheduler determines
which interaction occurs at each time. In this chapter, we consider a uniformly random scheduler
I =Ty,I'1,...: each Ty € F is a random variable such that Pr(T'y = (u,v)) = 1/m for any
t > 0 and any (u,v) € E. We also define the random number sequence as A = Ry, Ra, .. .:
each number R, € R is a random variable such that Pr(R;, = r) = 1/|R| for any ¢ > 0 and
r € R. Given an initial configuration Cy, I', and A, the execution of protocol P is defined as
=Zp(Co, T, A) = Cy, Cy, ... such that Cy Fedt Cyyq for all t > 0. We denote Zp(Cp, T, A) simply
by Ep(Cp) when no misunderstanding can arise.

The leader election problem requires that every agent should output L or F which means
“leader” or “follower” respectively. We say that a finite or infinite sequence of configurations
& = (Cy,Ch,... preserves a unique leader, denoted by £ € LE, if there exists v € V such that
O(C¢(v),id(v)) = L and O(C¢(u),id(u)) = F for any t > 0 and v € V' \ {v}. For £ = Cy, Cy, ...,
the holding time of the leader HT({,LE) is defined as the maximum ¢ € N that satisfies
(Co,C1,...,Ci—1) € LE. We define HT(¢,LE) =0 if Cy ¢ LE. We denote E[HT (Ep(C), LE))
by EHT p(C, LE). Intuitively, EHT p(C, LE) is the expected number of interactions for which the
population keeps the unique leader after protocol P starts from configuration C. For configuration
sequence £ = Cp,Cq,... and a set of configurations C, we define convergence time CT(§,C) as
the minimum ¢ € N that satisfies C; € C. We define CT(,C) = || if C; ¢ C for any t > 0, where
|€] is the length of £&. We denote E[CT(Ep(C),C)] by ECTp(C,C). Intuitively, ECTp(C,C) is
the expected number of interactions by which the population reaches a configuration in C after

P starts from C.

Definition 3. Protocol P(Q,Y,I,R,T,0) is an («, 3)-loosely-stabilizing leader election protocol
if there ewists set S of configurations satisfying two inequalities maxcec,,(py ECTp(C,S) < a
and minges EHTp(C, LE) > 5.
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3.2.1 Chernoff Bounds

In this section, we quote the three variants of Chernoff bounds [I23] used in several proofs of this

chapter.

Lemma 17 (from Eq. (4.2) in [13]). The following inequality holds for any binomial random

variable X :
Pr(X > 2E[X]) < e BIXI/3,

Lemma 18 (from Eq. (4.5) in [I3]). The following inequality holds for any binomial random

variable X :
Pr(X < E[X]/2) < e BXI/8,

Lemma 19 (from Eq. (4.5) in [13]). The following inequality holds for any binomial random

variable X :

Pr(X < E[X]/4) < e YEIX]/32,

3.3 Leader Election with Identifiers

This section presents loosely-stabilizing leader election protocol Pip, which works on arbitrary
undirected graphs with unique identifiers of agents (Code B). In the protocol description, we
regard a state of agents as a collection of variables (e.g. timer), and denote a transition function
as pseudo code that updates variables of initiator = and responder y. We denote the value of
variable var of agent v € V' by v.var. We also denote the value of var in state ¢ € Q by g.var.

This protocol elects the agent with the minimum identifier, denoted by vy, as the leader.
Each agent v tries to find the minimum identifier and stores it on v.1id. At interaction, two
agents x and y compare their 1id and store the smaller value on their 1id (Lines 3 and 6), by
which the smallest identifier id(vmin) eventually spreads to all the agents. Then, after some point,
Umin 18 the unique leader because output function O makes only agents v satisfying id(v) = v.1id
output L and other agents output F.

However, in the initial configuration, some agents may have false identifiers (or the integers
that are not identifiers of any agent in the population) on 1id. A false identifier may spread to
the population instead of id(vpiy) if it is smaller than id(vmin). We define ID = {id(v) | v € V'},
which is the correct identifiers set (Note that ID C I). Protocol Pip removes false identifiers

i ¢ ID from 1id of all the agents by the timeout mechanism. Specifically, if x.1id # y.lid,



32 CHAPTER 3. LOOSELY-STABILIZATION ON ARBITRARY GRAPHS

we take the timer value of the agent with smaller 1id, decrease it by one, and substitute the
decreased value into x.1id and y.1id (Lines 4 and 7). If .1id = y.1id, we take the larger value
of x.timer and y.timer, decrease it by one, and substitute the decreased value into z.1id and
y.1lid (Line 9). We call this event larger value propagation. If x or y is a leader, both timers are
reset t0 tmax (Line 12). We call this event timer reset. When a timer becomes zero, agents x
and y suspect that there exists no leader in the population. In this case, they elect the one with
a smaller identifier as a leader by substituting min(id(z),id(y)) into z.1id and y.1id (Line 14).
We call this event timeout. Agents with false identifiers never experience timer reset; thus, their
timers keep on decreasing. Hence, timeout eventually occurs and their 1ids satisfy 1id € ID.
This mechanism rarely ruins the stability of the unique leader because agents with 1id € ID keep

high value timers because of timer reset and lager value propagation.

Complexity Analysis The upper bound t,,.y of variable timer is the only parameter of Pip,
which affects the correctness and complexities of the protocol. We assume tp,.y > 86 max(d, 2 +
logn) where 0 is the maximum degree of the agents and d is the diameter of population G. (Note
that J is an even number because G is undirected. ) We prove the following equations under this

assumption:

maxcee,; ECTpy (C,Sia) = O(mdTlogn), (3.1)

minces,, EHTp, (C, LE) = Q(7e"), (3.2)

where T = tiax/(89) and Siq is the set of configurations in which v.1id = id(vpin) and v.timer >
tmax/2 hold for all v € V and vy .timer = tpay holds. When upper bounds N of n and A of
§ are available and we assign tpa, = SNA, protocol Pip is an (O(mAN logn), Q(Ne™))-loosely-
stabilizing leader election protocol.

First, we analyze the expected holding time. Let Cy € Siq and Zp, (Cy) = Cp,C1,.... To
prove (B32), it suffices to show that both Cy, ..., Caopr € LE and Coyy,r € Siq hold with probability
at least psyc = 1 — O(ne~ 7). Then, we have ming,es,, EHT p, (Co, LE) > 2m7/(1 — psue) =
Q(reT).

Lemma 20. The probability that every v € V joins only less than tmax/2 interactions among

To,...,Tomr_1 is at least 1 — ne™ 7.

Proof . For any v € V and ¢t > 0, v joins interaction I'; with probability at most §/m. Thus,

the number of interactions v joins during the 2m7 interactions is bounded by binomial random
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Code 3.1 Leader Election with Identifiers Pip

Variables of each agent:

1lid € I, timer € [0, tmax]

Output function O:

if v.1id = id(v) holds, then the output of agent v is L; Otherwise, F.

Interaction between initiator  and responder y:

1:

10:

11:

12:

13:

14:

15:

16:

if 2.1id > id(z) then z.1id + id(x) endif

. if 2.1id < y.1id then

y.1id < x.1id

x.timer ¢— y.timer < max(x.timer — 1, 0)

. else if 2.1id > y.1id then

2.1id + y.1id
x.timer <« y.timer + max(y.timer — 1, 0)

else // x.1id = y.1id at this time
x.timer < y.timer + max(x.timer — 1, y.timer — 1, 0)

end if

if id(z) = #.1id or id(y) = y.1id then // aleader resets timers
z.timer < y.timer < {yax

else if z.timer = 0 then // a new leader is created at timeout
x.1id - y.1id < min(id(z), id(y))
r.timer < y.timer < {yax

end if

variable X ~ B(2mr,d/m). Applying a variant of Chernoff bound (Lemma [7), we have

Pr(X > tmax/2) = Pr(X > 2E[X]) . tmax = 80T
< ¢ EXI/3
=~ 207/3 (By Chernoff Bound of Lemma [7)
<e . 0> 2
Summing up the probabilities for all v € V' gives the lemma. O
Lemma 21. Let Cy € Lyq and Zp,(Co) = Co, Ch,.... Then, we have the following inequality:

Pr(Vv € V, Copr(v).timer > tax/2) > 1 —2ne 7.
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Proof . It suffices to show Pr(Cop,,(v).timer > ty0x/2) > 1 — 2e~7 for any agent v € V. We
denote the shortest path from vy, to v by (vo,v1,...,v;) where vg = vyin, v = v, 0 < k < d
and (v;_1,v;) € E for all i = 1,...,k. For any ¢t € [0,2m7], we define vpeaq(t) as v; with
maximum [ € [1,k] such that there exist t1,¢a,...,% satisfying 0 < ¢t; < ty < - < 8 < ¢
and Ty, € {(vi—1,v;), (v, v;-1)} for i = 1,2,...,1. We define vpeaq(t) = vo if such I does not
exist. Intuitively, vpead(t) is the head of the agents in path (vg,v1,...,vx) to which a large timer
value is propagated from vpi,. (Remember that vy, resets the timers to tmax.) We define
J(t) as the number of integers ¢ € [0,t] such that vnhead(?) joins interaction I';. Intuitively, J(t)
is the number of interactions that the head agent joins among I'y,..., ;. Obviously, we have
Ct(Vhead (t)). timer > tiax — J(t) for any ¢ > 0.

In what follows, we prove Pr(vpeaq(2m7) =v) > 1—e™ 7 and Pr(J(2m7) < tmax/2) > 1—€7 7,
which give Pr(Capr(v).timer > tpax/2) > 1 — 2e~ 7. For any i € [1,k], a pair v;—1 and v;
interacts with probability 2/m at each interaction. Hence, we can say each interaction makes
Uhead forward with probability 2/m. Therefore, by letting Z be a binomial random variable such

that Z ~ B(2mr,2/m), we have

Pr(vhead(t) =v) =1—Pr(Z < k)
>1-Pr(Z <d)
1

1
>1—m<z<4-mm> d<T =1 E[Z]
>1— e EZ/32 (By Chernoff bound of Lemma [9)
>1—e .

The probability that vpeaq(t) joins interaction I'y is at most §/m regardless of ¢t. Hence, by letting

Z' be a binomial random variable such that Z’ ~ B(2mr,d/m), we have
Pr(J(2m7) < tmax/2) > 1 = Pr(Z' > tmax/2)

=1-Pr(Z' > 2E[Z"))
>1—e EZ1/3 By Chernoff bound of Lemma [C2)

-1 6—257'/3
>1—e 7. 0> 2
Thus, we have shown Pr(Capp,r(v).timer > tpax/2) > 1 —2e7 7. O

Lemma 22. minces, EHTp, (C, LE) = Q(7e").
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Proof . We have Cy,...,Cs,,, € LE and Cy,,, € Siq if Cy € Siq holds, no timeout happens,
and any agent interacts at most tyax/2 times during 2m7 interactions. Hence, probability pgyc
discussed in the beginning of this section is at least 1 —3ne™" by Lemmas PO and £, which leads

to the lemma. O

Next, we analyze the expected convergence time. To prove (Bl), we define two sets of con-
figurations: Cyq = {C € Call(PID) | Yv € V,C(U).lid S ID} and Liiqg = Ciig N {C € Call(PID) |
C'(Vmin)-1id = id(Vmin) A C(Vmin)-timer = tpax }-

Lemma 23. maxcec,,(pp) ECT Ry (C,Clia) = O(mdTlogn).

Proof . Let z be the maximum value of v.timer such that v.1id ¢ ID. This z decreases by one
every time all interactions of £/ occur. Thus, it takes at most 7 + = 4 ... 2 < m(1 + logm)
expected steps to decrease z by one. Hence, maxcec,, (pp) ECTryp (C,Clia) < tmaxm(1+logm) =
O(mérlogn). O

Lemma 24. maxcec,, ECTp,, (C, Liia) = O(m).

Proof . We have vyin.1id = id(vmin) and vmin.timer = tyax just after vy, interacts in any

configuration of Cj;q. This takes O(m) expected interactions. O
Lemma 25. maxcer,, ECTp, (C, Siq) = O(m7).

Proof . Let Cy € Lyiq and Zp,, (Cp) = Cp, C4, . ... Since C; € Ly;q holds for every ¢ > 0, identifier
id(vpmin) is the smallest among 1id of all the agents in any configuration Cy, C1,. ... Hence, once
agent v satisfies v.1id = id(vmin), then v.1id = id(vmin) always holds until a timeout occurs at

T

v. Lemma I has shown that, with probability at least 1 —2ne™7, every agent v satisfies v.1id =

id(vmin) within 2m7 interactions, and after that, keeps on satisfying v.timer > tax/2 at least
until I'g,,-—1 finishes. Thus, the probability that Cay,r(v).1id = id(vimin) and Copyr(v).timer >
tmax/2 hold for all v € V is at least 1 — 2ne™". Note that Copyr(Umin).timer = tnax holds with
probability 1. Hence, we have

max ECTp(C,S4) < 2m7 +2ne” " - max ECTp (C,Sia).

CeLya C€eLiia
Solving this inequality gives maxcer,,, ECTpy, (C,Sia) € O(mT). O
The following lemma immediately follows from Lemmas E3, 24, and 3.
Lemma 26. maxcec,,(pp) ECThy (C, Sia) = O(mdTlogn).

Lemmas 22 and B8 gives the following theorem.
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Theorem 3. Protocol Pip is a (O(mdTlogn), Q(re™)) loosely-stabilizing leader election protocol

for arbitrary graphs when ty.x > 85 max(d, 2 + logn).

Therefore, given upper bound N and A of n and § respectively, we get a (O(mAN logn), Q(Ne™V))

loosely-stabilizing leader election protocol for arbitrary graphs by assigning ¢,,.x = 8NA.

3.4 Leader Election with Random Numbers

This section presents loosely-stabilizing leader election protocol Prp. It works on arbitrary undi-
rected anonymous graphs with a random number generated at each interaction (Code BX). Ran-
dom numbers are used in Line 11: When the protocol enters Line 11, the code is executed with
probability p = 1/|R|. This is implemented as the code is executed only when a specific number
is generated. For example, p = 0.01 if we assign R = [0,99] and treat 0 as a specific number.

Each agent has binary variable DoA € {DEAD, ALIVE} and three timers timery, timery and
timerg. The output function defines leaders based on DoA : agent v is a leader if v is alive (or
v.DoA = ALIVE), and a follower if v is dead (or v.DoA = DEAD). Protocol Prp consists of a
timeout mechanism (Lines 1-7) and a virus-war mechanism (Lines 8-14). By using timery, the
timeout mechanism creates a leader when it is suspected that no leader exists. By using timery
and timerg, the virus-war mechanism reduces the number of leaders.

The timeout mechanism is almost the same as Pip. By the timer reset and the larger value
propagation, timeout eventually occurs when no leader exists, and all agents keep high timer
values with high probability when one ore more leaders exist. At timeout, a dead agent becomes
a leader (Line 5).

In the virus-war mechanism, each leader tries to kill other leaders by viruses and become the
unique leader. We say that agent v has a virus if v.timery > 0, and v wears a (head) shield if
v.timerg > 0. A leader creates a new virus with probability p when it interacts as an initiator
(Line 11). When creating a virus, the agent wears a shield so as not to be killed by the new virus
(Line 11). A virus spreads among agents by interactions (Line 8), and an agent is killed when it
has a virus without a shield (Lines 13-14). A virus has TTL (time to live), which is memorized
on timery and decreased by one at each interaction of its owner (line 8). When timery becomes
zero, the virus vanishes and looses the ability to kill agents. A shield also has TTL, which is
memorized on timerg and decreased by one at each interaction of its owner (Line 9). When
timerg becomes zero, the shield vanishes and looses the ability to protect its owner from viruses.

The virus-war mechanism correctly works if p is sufficiently small and tg,1q is sufficiently

greater than tyins. Consider the case multiple leaders exist. Since p is small, all viruses and
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Code 3.2 Leader Election with Random Numbers Prp
Variables of each agent:

DoA € {DEAD, ALIVE}, timery € [0, tmax], timery € [0, tyirus), timers € [0, tshid]
Output function O:
if v.0oA = ALIVE holds, then the output of agent v is L, otherwise F.
Interaction between initiator  and responder y:
1: z.timery ¢ y.timer; < max(z.timery — 1, y.timer; — 1, 0)
2: if z.DoA = ALIVE or y.DoA = ALIVE then
3:  x.timerp < y.timerp < tpax // aleader resets timer
4: else if z.timer; = 0 then // a new leader is created at timeout
5:  xz.DoA + ALIVE
6: r.timery < y.timery < tmax
7: end if
8 x.timery < y.timery < max(z.timery — 1, y.timery — 1, 0)
9: z.timers < max (0, z.timers — 1)
10: if x.DoA = ALIVE then
11:  Execute (z.timery < tyirus, £.timers < tgpq) with probability p
// An alive initiator creates a new virus and a new shield with probability p.
12: end if
13: if z.timery > 0 and z.timers = 0 then z.DoA <~ DEAD endif
14: if y.timery > 0 and y.timers = 0 then y.DoA < DEAD endif

shields eventually vanish. After that, some agent eventually creates a new virus and shield. The
created virus Kkills all other agents unless some of them also create a new virus and shield before
the virus reaches them. Since p is sufficiently small, the probability of the latter is small. Thus,
the unique leader is elected within a relatively short time. Even after that, the unique leader
keeps on creating new viruses, each of which may kill the leader. However, the leader is not
killed for an extremely long time: since tgh1q > tyirus, the leader’s shield rarely vanishes before

all viruses vanish from the population.

Complexity Analysis We have four parameters in Prp: three upper bounds tmax, tvirus
and tgpq of the timers, and probability p. We assume tyirus = tmax/2, tmax > 80 max(d, 2 +
log(13nd[logn])), tsnia > 20tmax[logn] and p < (dmtguq)~ . We prove the following equations
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under this assumption:

maxcec,; ECT pyp, (C,Srp) = O(mp_l), (3.3)
mincesy, EHT pyp, (C, LE) = Q(7€7), (3.4)

where T = tinax/(89) and Sgp is the set of configurations we define later. When upper bounds N
and A are available and we assign tyax = SNA, tanq = 2Atmax[log N] and p = (4N?tgq) ! (i.e., R =
[0,4N%tg1a — 1]), then Pgrp is an (O(mA2N3log N), Q(NelV))-loosely-stabilizing leader election
protocol.

Before proving equations (B3) and (BH), we define five sets of configurations:

Ghatt = {C € Can(Prp) | Fv € V, C(v).DoA = ALIVE A C(v).timers > tsna/2},
Velean = {C € Can(Prp) | Vv € V, C(v).timery = 0},

Luar ={C € Can(Prp) | #(C) >1 A Yv €V, C(v).timery > tmax/2},

Lone = {C € Can(Prp) | #0(C) =1},

SRD - (ghalf U Vclean) N Ehalf N Eone7

where #,(C) denotes the number of leaders in configuration C. Note that G, requires that not
all agents but at least one leader has timerg more than tgpq/2.

First, we analyze the expected holding time. Let Cy € Sgp and Zp,, (Co) = Co, C1,.... To
prove (B3), it suffices to show that both Co, ..., Cgmsrfiogn] € LE and Cgpsriiogn] € Srp hold
with probability no less than pg,e = 1 — O(ndlogn - e~7). Then, ming,esy, EHT pyp, (Co, LE) >
8mdT[logn]7/(1 — psuc) = Q(7eT).

We define two predicates PROP; and HALF; for any ¢ > 0: PROP; = 1if Cy,,7(541)(v).timery >
t; — tmax/2 for all v € V, otherwise PROP; = 0, where t; = max,cy Comri(v); HALF; = 1 if
every agent joins only less than fy../2 interactions among I'opriy ..., Domr(iy1)—1, Otherwise
HALF; = 0. Intuitively, PROP; = 1 means the maximum value of timer; propagates to all the
agents well during the 2m7 interactions, and HALF; = 1 means every agent does not interact so

much during the 2mr interactions.

Lemma 27. Let Cy € Spp and Ep,, (Co) = Co, Ch, . ... Then, we have both Co, ..., Cypsriogn] €
LE and Cgys-fiogn] € Srp if the following conditions hold:

(A) #0(Cy) > 1 for allt =0,...,8mdét[logn],

(B) Csmsriiogn] € Gnalt U Velean,

(C) PROP; =1 for alli=0,...,46[logn] — 1, and

(D) HALF; =1 for alli =0,...,46[logn] — 1.
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Proof . We have Coy,7;(v).timery > tiax/2 for any i € [0,40[logn]] from (A) and (C). Since no
agent interacts more than ¢,y /2 times among each 2mr interactions (i.e. (D)), timeout does not
occur at any interaction ', ..., T'gmsr[iogn]—1, by which we obtain Co,...,Cgmsriogn] € LE.

We also obtain Cgpsrfiogn] € Lhalf N Lone N (Ghatt U Velean) = Srp from above discussion and
(B). O

Lemma 28. The probability that every agent joins only less than tgna/2 interactions as an

initiator among Lo, ..., Usymsriogn]—1 15 at least 1 — ne o7,

Proof . For any v € V and t > 0, v joins interaction I'; as an initiator with probability at
most §/(2m) since v has at most §/2 outgoing edges. Thus, the number of interactions v joins
as an initiator during the 8md7[logn] interactions is bounded by binomial random variable

X ~ B(8mdt[logn],d/(2m)). We have

Pr(X > tsna/2) < Pr(X > 8(527f10g n]) . tshld > 16527f10g n|
= Pr(X > 2E[X])
< e BIXI/3 (By Chernoff Bound of Lemma IR)

— 674527|'log n]/3

— 6_6T.

Summing up these probabilities gives the lemma. O

Lemma 29. Let Cy € Sgp and ZEp, (Co) = Co, Ch, .. ..
Then, we have Pr(Vt € [0,8md7[logn] — 1], #5(Cy) > 1) > 1 —ne 7.

Proof . By Lemma B8, it suffices to show that #(C;) > 1 holds for all ¢ € [0,8md7[logn]]
when we assume every agent joins only less than tgq/2 interactions as an initiator among
Lo, .. Psmorfiogn]—1- Since Cy € Srp, we have Cy € Ghait U Velean- If Co € Ghair, there ex-
ists a leader v such that Cy(v).timers > tgn1q/2. By the assumption, v decrease its timers by at
most tsnia/2; thus, v is never killed and remains a leader in Co, ..., Csnsrriogn]- If Co € Velean,
no leader is killed before a new virus is created. Even if some leader u creates a new virus at
interaction T’y (0 <t < 8md7[logn]), u wears a new shield at the same time. Hence, u remains

a leader in Cy, ..., Cgysriiogn] by the assumption. O

We define the first round time RTr(1) as the minimum ¢ satisfying Ve € E, 0 < 3’ <
t, I'y = e. For any i > 2, we define the i-th round time RTr(i) as the minimum ¢ satisfying
Ve € E, RTr(i — 1) < 3’ < t, T'y = e. Lemma BI bounds RTr (i) from above with high

probability. To prove the lemma, we firstly prove Lemma B0.
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Lemma 30. Let vy,vs,...,u be any l (I < n) agents in V. There exists at least 21 edges of E

that are incident to at least one of the | agents.

Proof . Since | < n, there exists agent r € V that differs from any vy, vs,...,v;. Since G is
strongly connected, there exists a rooted spanning tree T' on G where r is the root agent of T
Then, every v; (i € [1,k]) has two edges between v; and the parent agent of v; in T. (Remind
that G is undirected, that is, (u,v) € E < (v,u) € E for any u,v € V.) These edges are mutually

exclusive. Thus, we have 2l edges of ¥ that are incident to at least one of the [ agents. O
Lemma 31. Pr(RTr(i) < 2im[logn]) > 1 —ne~"/* holds for any i > 1.

Proof . Each round j (j > 1) finishes when every agent v € V interacts in round j. Consider
the case that &k (k > 1) agents have not yet interacted in round j and only n — k agents have
interacted in round j. We call the former uninvolved agents and the latter involved agents. If
k < n, one of the k uninvolved agents joins the next interaction and becomes an involved agent
with probability more than 2k/m by Lemma BO. If k¥ = n, some uninvolved agent joins the next
interaction with probability 1. Let X, (j > 1, k > 1) be the random variable that corresponds
to the number of trials to the first success in which the success probability of each trial is 2k/m.

From the above discussion, we obtain

[

Pr(RTr (i) > 2im[logn]) < Pr Z <1 + ZXJ k) > 2im[logn|

j=1

n—1 1

Z X,k > 2tm[logn] —1
k=1 j=1

For binomial random variable Yj, ~ B([22], 2£) we have Pr(z X > 1) < Pr(zj 1 Xk >
[427) < Pr(Yy < 4). Hence, we have

3 X > % < Pr(Yy <)
j=1
< Pr (Y E[YK]) (3.6)

< e EM:/8 (By Chernoff Bound of Lemma [8)

l\JM—\

< e i/4,
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From Inequalities (B4) and (BM), we have

n—1 1
Pr(RTr(i) > 2im[logn]) < Pr Z ZXJ"’“ > 2im[logn] — i

k=1 j=1

n—1 1 n—1 .
<pr| Y x> 2

k=1 j=1 =k

n—

1 i .
<Y Pr leﬁk > %
=

k=1
< ne /4,
where Z:;ll < im(1+logn) — i < 2im[logn] — i is used for the second inequality. Thus,
Pr(RTr (i) < 2im[logn]) > 1 —ne~*/* holds. 0

Lemma 32. Let Cy € Sgp and ZEp,, (Co) = Co, Ch, .. ..
Then, we have Pr(Cgmsriiogn] € Ghatt U Velean) > 1 — 2ne 07,

Proof . Assume that RTr(tyirus) < 8mdT[logn] holds and every agent joins only less than
tsnia/2 interactions as an initiator among I'o,...,Tgmsrniognj—1- These assumptions lead to
CsmérTlogn] € Ynatt U Velean as follows. If a new virus is not created among Lo, . .., U'symsriogn]—15
then all viruses in the initial configuration vanish during the period since each round decreases the
maximum value of timery by at least one. Thus, Cgy,s5r[10gn] € Velean holds. If some agent v cre-
ates a new virus at I'y, then v wears a new shield at the same time. Thus, Cy11(v).timers = tgpiq.
Since v interacts as an initiator only less than tg,1q/2 times among I'yy1, ..., Ismsrfiogn]—1, We
have Cgy5r10g 1] (V) timers > tgna/2, which means Cgpsrriogn] € Ghatr: BY tyirus = 407 and

Lemmas P8 and B, the probability that the two assumptions hold is at least 1 — 2ne™07. O
Lemma 33. Pr(PROP; =1) > 1—2ne " for any i > 0.

Proof . The same argument as the proof of Lemma P11 gives the lemma. 0
Lemma 34. Pr(HALF; =1) > 1 —ne™7 for any i > 0.

Proof . Each interaction is independent. Thus, Lemma B0 gives the lemma. O
Lemma 35. mincesy, EHT gy, (C, LE) = Q(7e7).

Proof . Probability pec, discussed in the beginning of this section, is at least 1 — 3ne= %7 —

46[logn] - 3ne”™ > 1 — 13nd[logn]e~ " by Lemmas 24, 29, B2, B3 and B4, which leads to the

lemma. O
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Next, we analyze the expected convergence time. We define two sets of configurations: Noyg =
{C € Can(Prp) | Yv € V, C(v).timery = C(v).timers = 0} and £ = {C € Can(Prp) | #.(C) >
yECT pyp, (C, Srp) = O(mp™)
(Lemma ET). To prove Lemma B, we show Lemmas B2, B and B0. Lemma B2 (BR, B0) gives the

1}. The goal of the rest of this section is to prove maxcec,, (Pup
lower bound of the probability that the population enters from Ca;(Prp) into Nyva (from Myva
into AVoyg N L, from Noyg N £ into Srp, respectively) within a certain number of interactions.

We also show Lemmas BB and BY to prove Lemmas B4 and B0 respectively.

Lemma 36. The probability that every v € V' joins more than tgng interactions as an initiator

among To, ..., Tome.,,, is at least 1 —ne~tema/4,

Proof . For any v € V and t > 0, v joins interaction I'; as an initiator with probability at
least 1/m. Thus, the number of interactions v joins during the 2mtyyq interactions is bounded
from below by binomial random variable X ~ B(2mtgpa, 1/m). Applying the Chernoff bound of

Lemma [®, we have

PI‘(X S tshld) = PT(X § E[X]/Q)

< e EIXI/8 (By Chernoff Bound of Lemma [X)

— o~ tsma/4
Summing up the probabilities for all v € V' gives the lemma. O
Lemma 37. Let Cy € Cui(Prp) and Ep,, (Co) = Co,Ch,.... Then, we have Pr(Copme,,,, €

Nova) > 1 —2ne™°" — 2migngq - p-

Proof . First, we show that Copy,,, € Nove holds when the following three conditions hold:
(A) every agent v € V joins more than tg,q interactions as an initiator among Lo, ..., Tameqs
(B) RT(tyirus) < 2mitgng, and

(C) no new virus is created during Iy, ..., Tome,-

Until a new virus is created, variable v.timerg for each v € V is monotonically non-increasing
and it decreases by one every time v interacts as an initiator. Hence, no agent wears a shield

in configuration Cape,,,, by (A) and (C). Until a new virus is created, the maximum value of

shld
all v.timery (i.e. max,ecy v.timery) is monotonically non-increasing during I, ..., ame,,,, and
it decreases at least by one in each round. Hence, no agent has a virus in configuration Coy,y

by (B) and (C). Thus, we have Cop,,, € Novg when (A),(B) and (C) hold.

shld
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Next we give lower bounds on probability of (A),(B) and (C). The probability of (A) is at least
1 —ne~tma/t > 1 — ne™97 from Lemma BB. The probability of (B) is at least 1 — ne~tvirs/4 =
1 —ne %" from Lemma BI. At each interaction, a new virus is created with probability at most p
(with probability exact p when a leader interacts as an initiator and with probability 0 otherwise).
Hence, the probability of (C) is at least 1 — 2mitgpiq - p. Thus, Conditions (A),(B) and (C) hold

T

with probability at least 1 — 2ne™%" — 2mtgq - p. O

Lemma 38. Let Cy € Nyyg and Ep,, (Co) = Co, C1,. ... Then, we have
Pr(3i € [0, 16md7[logn]], C; € Novg N L) > 1 —2ne 0.

Proof . The lemma trivially holds if Cjy has one or more leaders. Therefore, we consider the case
Cy does not have any leader (i.e. Cy ¢ L£). Since followers never create viruses or shields, there
exists neither a virus nor a shield until a leader is created. Therefore, the population reaches a
configuration of Nyyg N L at the first timeout of execution Zp,, (Co) = Co, C1, - ...

Thus, it suffices to show that a timeout occurs within 16mdr[logn] interactions with prob-
ability at least 1 — 2ne%7. During the period no leader exists, the maximum value of all
v.timery (i.e. max,cy v.timery) is monotonically non-increasing and decreases at least by one
in each round. This means a timeout occurs until ¢,,x rounds finish. By Lemma BI, we have

Pr(RT (tmax) < 16md7[logn]) > 1 — netmax/4 =1 — ne=207, O

Lemma 39. Let Cy € Can(Prp) and Zp,, (Co) = Co,Ch,.... Let tinit be the mazimum value
of all v.timery in Cy (i.e. maxy,ey C(v).timery). Then, we have Pr(Yv € V, Copyr(v).timery >

tinit - tmax/2) >1—2ne 7.
Proof . The same argument as the proof of Lemma I gives the lemma. O

Lemma 40. Let Cy € NovgNL and Ep,,, (Co) = Co, Ch, . ... Then, we have Pr(Ji € [0, [2mp~ 1]+
2mr], C; € Sgp) > 1—e72 —5ne™ 7 — 2mr7 - p.

Proof . Let ¢ be the minimum integer (i.e. the first time) such that configuration C; has a virus.
During the period one or more leaders exist, each interaction makes a new virus with probability
at least p/m. Hence, the probability of ¢ < [2mp~1] is at least 1 — (1 — p/m)[2mP™" 1 > 1 — ¢=2,

Therefore, it suffices to show that Cyyom: € Srp holds with probability at least 1 — 5ne™" —
2mT - p. We denote the leader that creates a virus at interaction I't_; by v. Note that, in
configuration Ct, only v has a virus and a shield while the other agents do not have viruses or
shields. Furthermore, the virus and the shield of v have the maximum TTL (tyiyus and tghia

respectively in Cy. We have Cy 1o, € Sgrp if all the following conditions hold:
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(A) every agent has a virus in Ciyomr,
(B) every agent except for v does not wear a shield in Ciyomr,

(C) agent v joins only less than tg,14/2 interactions as an initiator during T'y, Te11, ..., Tigomr—1,

and
(D) every agent has timer; larger than timax/2 in Cipomr-

By (A) and (B), all agents except for v are dead in Cipom,. By (C), v always has a shield
larger than tg,14/2 during the 2m7 interactions, and hence, is alive (i.e. is a leader) in Ciiomr.
Therefore, Citomr € Lone N Gnair holds. Moreover, Ciiomr € Luarr holds by (D). Thus, we have
Ciromr € Lone N Ghalt N Lhair € Srp when (A),(B),(C) and (D) hold.

Therefore, it suffices to show that all (A),(B),(C) and (D) hold with probability 1 — 5ne™" —
2m7 - p. Since Ci(v).timery = tyirus = tmax/2, the probability of (A) is at least 1 — 2ne™" by
Lemma BY. The sufficient condition of (B) is that a new virus is not created during 'y, T¢ 41, .. .,
Liyomr—1. The probability of this condition is at least 1 — 2m7 - p. The probability of (C) is at
least 1 —ne %" > 1 —ne " by Lemma E8. Finally, The probability of (D) is at least 1 —2ne™" by
Lemma B3. Thus, all (A), (B), (C) and (D) hold with probability at least 1 —5ne™" —2m7-p. O

Lemma 41. maxcec,, (pup) ECTPrp (C,Srp) = O(mp™1).

Proof . By Lemmas B7, B8 and B0, starting from any configuration of C.;(Prp), the population

reaches a configuration of Sgp within 2mtgq + 16md7[logn] + [2mp~1] + 2m7 interactions with

T T

probability at least 1—2ne ™" —2mtgiq-p—2ne 9" —e =2 —5ne~ " —2m7-p. The former expression
is at most [(2m + 1) - p~1] and the latter expression is at least 1 — 3mtgq - p — 6ne ™ —e=2 >

1—3/4—6e72/26 —e~2 > 0.08. Hence, we have

max ECTp,,(C,Srp)

C€eCan(Prp)
<[@2m+1)p 114092 max ECTp,,(C,Srp).
C€Can(Prp)
Solving this inequality gives maxcec,, (Prp) ECT pep (C; Srp) = O(mp~1). O

Lemmas B3 and B gives the following theorem.

Theorem 4. Protocol Prp is a (O(mp~1t),Q(reT)) loosely-stabilizing leader election protocol
for arbitrary graphs when ty.x > 8max(d,2 + log(13nd[logn])), tvirus = tmax/2, tsnid >
26t max [logn] and p < (dmtguq) .
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Therefore, given upper bounds N of n and A of §, we get a (O(mA2N3log N), Q(NelV))
loosely-stabilizing leader election protocol for arbitrary graphs by assigning ¢, = 8NA, tyirus =

tmax/27 tshld = 2Atmax |—10g N—| and b= (4N2tshld)_1-

3.5 Conclusion

The author has presented two loosely-stabilizing leader election protocols for arbitrary undirected
graphs in the PP model: one works with agent-identifiers and the other works with random
numbers. Both protocols keep a unique leader for an exponentially long expected time after
reaching a loosely-safe configuration. The protocols use only upper bounds N of n and A of ¢
while any self-stabilizing leader election protocol needs the exact knowledge of n. The restriction
of the protocols to undirected graph is only for simplicity of protocol description and complexity
analysis. The proposed protocols also work on arbitrary directed graphs with slight modification:
it is only necessary that a responder also executes some actions of an initiator (Line 1 of Protocol
1 and Lines 10-12 of Protocol 2). Both the two protocols use the timeout mechanism to detect
the absence of a leader agent. This mechanism can be regarded as an implementation of oracle
Q7 [2]. Although the oracle does not provide any guarantee about when it notify each agent
the absence of a leader, the timeout mechanism does within a certain time with high probability,
which leads to loosely-stabilizing solution.

The future work is to develop a loosely-stabilizing leader election protocol without agent-
identifiers or random numbers for arbitrary graphs. The author will also tackle with loosely-
stabilizing leader election for some classes of graphs (e.g. rings and trees). The author is also
interested in the empirical evaluation of the holding time of loosely-stabilizing protocols. Since
probabilistic evaluation of the holding time in this chapter is not tight, the actual holding time
of the protocols should be much longer. By simulation experiments, the author will empirically
evaluate the actual holding time (and convergence time) for various network sizes and graph

topologies.






Chapter 4

Optimal Longcut Route Selection

4.1 Introduction

The current adoption rate of wireless mobile devices such as smart phones, tablet computers,
and laptop computers is spectacular, and we see rapid spread of cloud computing services, which
require the Internet connection inherently. Thus, users of such devices and services need Internet
access not only when they stay at home or office, but also when they travel. However, at present,
users cannot enjoy fast wireless communication everywhere. The cellular network has wide radio
coverage, but it does not provide fast communication. On the other hand, Wireless LAN such as
WiFi achieves a high transmission rate, but its radio coverage is narrow. Thus, wireless signal
quality is highly dependent on the user’s location, and hence, quality of communication during
travel highly depends on the travel route that the users take. Therefore, it may be desirable for
such users to select a ”"longcut route” to their destination that has larger travel time than the
shortest route, but provides better quality of wireless communication during travel.

In this chapter, the author formulates the above situation as the “optimal longcut route
problem”. We consider that a user of a wireless mobile device needs to travel from starting
location s to destination g within time A; while using the device in an urban area. Wireless
communication speeds differ at different locations. Therefore, the total amount of communication
during travel differs depending on the route taken from s to g. The goal of this problem is to
find the route with the maximum amount of communication subject to the constraint that the
travel time is within A;. We call this route an optimal longcut route. We define this problem as

the following graph problem:

47
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Optimal Longcut Route Selection[] OLRSO O
[Input]

e Directed graph G = (V, E') where self-loops are allowed but multiple edges are not allowed.
e Starting node s € V and destination node g € V.
e Travel time function T': E — Nt where T'(e) = 1 holds for any self-loop e.
e Communication amount function P : £ — N.
e Time limit A, € NT.
[Output]

s-gwak®w=(vy,e1,v1,...,e,v) (vg =8, vy = g) with the maximum amount of

communication P(w) = 22:1 P(e;) subject to T(w) = 22:1 T(e;) < Ag.

Self-loop (v,v) means that the user can stay at node v € V.. More specifically, we consider that
the user stays at v for k time units if the user follows walk w which has & self-loops (v, v).

Generally, an optimal route of an OLRS instance is not a shortest route from s to g. To
achieve better quality of communication, it becomes a “longcut route” that makes a detour to the
destination. The improvement of communication quality by longcut has already been evaluated
by [, 2Z]. The studies performed simulation experiments and evaluated the improvement in an
ideal communication model [21] and in a more practical model with network simulator NS2 [22].
Both studies show that a longcut route with a small increase of travel time greatly improves the
total amount of communication the user obtains. However, in these papers, we do not present
solutions or algorithms for calculating the optimal long-cut route.

Delay Constraint Least Cost problem(DCLC) is a problem closely related to OLRS. DCLC is

defined as follows.

Delay Constraint Least Cost(DCLC) O
[Input]

e Simple graph G = (V, E).

e Starting node s € V[ destination node g € V.

L A walk is an alternating sequence of nodes and edges. A node (or an edge) may appear twice or more in a

walk.
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e Delay function D : F — NT.

e Cost function C': E — N.

e Acceptable delay time Ay € NT.
[Output]

s-gwalkw = (vg,e1,v1,...,e,0;) (vo = 8, v, = g) with least cost C'(w) = 22:1 Cle;)
subject to acceptable delay time Ay.

The main difference between DCLC and OLRS is that we have to find the walk with the minimum
cost for DCLC while we have to find the walk with the maximum gain (communication amount)
for OLRS. It is known that DCLC is NP-hard [23]. Therefore, solutions for this problem are
classified to two types: One finds an optimal solution in an exponential time (in the worst-case)
[74], and the other finds an approximate solution in polynomial time [25, 26, 27, P8, 29]. Widyono
[74] proposed an algorithm called CBF(Constrained Bellman-Ford), which computes an optimal
solution with the branch and bound approach. This algorithm takes exponential time in the
worst case, but in practice, it takes a relatively short time. Lorenz et al. [25] proposed a fully
polynomial time approximation scheme (FPTAS) for DCLC: an 1 + e-approximation algorithm
with O(|V||E|log |V |loglog|V| + |V||E|/e) time for any ¢ > 0. Most heuristic methods for
this problem use aggregation of the two metrics, delay and cost. They generate a new metric
M = f(D,C) |26, 217, 2R, 29] by combining delay D and cost C and reduce DCLC to the shortest
path problem. Jiittner et al. [26] devised a fast algorithm that finds a nearly optimal solution for
DCLC by selecting appropriate f dynamically with Lagrange relaxation. Feng et al. introduced a
new method called non-linear Lagrange relaxation and presented an algorithm that finds a better
solution than that of [26]. Neve et al. [28] and Guo et al. [29] presented algorithms which obtain

solutions with excellent quality by storing multiple routes on each node v € V.

Contribution of This Chapter In this chapter, we start proving that OLRS is NP-hard.
Next, we propose two pseudo-polynomial time algorithms named OLRS; and OLRS, for this
problem. The worst case time complexity of OLRS; and OLRSy are O(A; - |E|) and O(A? -
|E|log(A¢ - |E|)) respectively. Then, the author performs simulation experiments to evaluate the
execution time of the proposed algorithms in practical settings representing urban areas. From
the results, we observe that both algorithms solve the problem within a sufficiently short time
even for large graphs. Also, we find that the execution time of OLRSs does not depend on time
limit A;, while that of OLRS; strictly depends A;. Thus, OLRS; is faster than OLRS; in the

experiments whereas OLRS; is asymptotically faster than OLRSs for the worst-case inputs.
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4.2 Preliminaries

In this section, we introduce some expressions and notations. Some of them including those
defined in Section BZ51 are listed in Table B
We denote the number of nodes and the number of edges of G by n and m respectively. The

set of incoming and outgoing neighboring nodes of node v are defined as N;' (v) = {u | (u,v) € E}

and N (v) = {u | (v,u) € E} respectively. Furthermore, we define N, (v) = N;"(v) \ {v} and
Nana(0) = Niy () {0}

A walk w = (vg, e1,v1,e€2,...,€e,v;) is an alternating sequence of nodes and edges of G where
e; = (v;—1,v;) for all 4 = 1,...,1. Since G has no multiple edges, we sometimes use simplified rep-
resentation w = (vg, v1, ..., v;), which omit the edges of w. We denote the last node v; by w.end.
For any node v € N\, (w.end), we define w + v as (vo, e1,...,vy, (v,v),v). For any walk w' =
(ug,dy, ..., dg,u) satisfying ug = w.end (= v;), we define w+w’ as (vg, e1, ..., e, v, dy, ..., dg, ug).

We introduce null walk e for convenience and define € + w = w + € = w for any walk w.

We define the travel time of walk w = (v, e1,...,e;,v) and total amount of communication
of was T(w) = 22:1 T(e;) and P(w) = 22:1 P(e;) respectively. For any different two nodes u
and v, we denote by Tiin (¢, v) the minimum travel time among all u - v walks. For convenience,
we define Thin(v,v) = 0 for any v € V. The set of s - v walks w satisfying T'(w) < ¢t is denoted
by Swaik(v, ).

Let v be a node in V' and ¢ be a time in [0, A;]. We define the maximum amount of com-
munication from s to v within time t as Popi(v,t) = max{P(w) | w € Swai(v,t)}. We define
Popt(v,t) = 0 when Syai(v,t) = 0 holds. We call a walk w satisfying P(w) = Popi(v,t) by an
optimal longcut route from s to v at time t. We denote the set of such walks by OPT (v, t). Giving
input (G, s,g,T, P,A¢), problem OLRS requires us to find any one of OPT(g, A).

4.3 NP-hardness

In this section, we prove that OLRS is NP-hard. To prove the NP-hardness, we show a polynomial-
time reduction from Unbounded Knapsack Problem (UKP), which is NP-hard [30], to OLRS. UKP
is a variant of the knapsack problem where the number of each item packed to a knapsack is not

restricted. The problem is formulated as follows.

Unbounded Knapsack Problem (UKP) [
[Input]
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Table 4.1: Expressions and notations we use in this chapter

. ael7vl)-)

(Pox(w, 1) = Pox(w', ) A Prax(w) > Prax(w')) V Pex(w, 1) > Pex(w', 1)
the set of nonstop s - v walks w satisfying T'(w) < ¢

Niw)  {ul(wv)eE}

Ni(w)  {u](wu)€E}

Ni, (v) Nij () \ {v}

Noyt (v) Ngut(v) \ {0}

w.end the last node of walk w

P(w) S Ple;) (wis a walk (vg,eq,. .., e, 0).)

T (w) Zi:l T(e;) (wis a walk (vg,eq,...,e5,v1).)
Tiin(u,v) min{T(w) |w isa u-v walk}

Swalk(v,t)  The set of s - v walks satisfying T'(w) < ¢
Popi(v,t)  max{P(w) | w € Syac(v,t)}

OPT(v,t) {w € Swai(v,t) | P(w) = Popt(v, 1)}

Prax(w) maxo<;<; P(v;,v;) (w is a nonstop walk (v, e, ..
P (w,t)  P(w) + Ppax(w) - (t = T(w)) (w is a nonstop walk.)
w>; W

Shs(v, 1)

MXs (v,1)  {w € Sus(v,1) | VW' € Sus(v,1), ~(w' >; w)}
CT(v)

{t € [Tmin(s,v),A¢] | MXs (v, t — 1) N MXs (v, t) = 0}

e A set of items A = {aq,...,ax}.
e Weight function W : A — NT.
e Value function P’ : A — N.

e Maximum weight A,, € N*.

[Output]

k tuple (z1,...
subject to W (xy, ..

Theorem 5. OLRS is NP-hard.

,7x) € N¥ with the maximum value P’(z1,...

Lag) = 8 2 W(a) < Ay

JTy) =D

k .
i=1%i

Proof . We present a polynomial time reduction from UKP to OLRS as follows.

P'(as)

o1
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Input transformation from a UKP instance (A = (a1,...,ax), W, P, A,) to an OLRS
instance (G(V, E),s,g,T, P, A;)

o V={vy,...,0,8g}0

E=UiL{(s,03), (vi,9)} U{(s,9)}

o T(s,v;) =T (vi,8) =W(a;) and T(s,g) =1

e P(s,v;) = P(v;,8) = P'(a;) and P(s,g) = 0.

A =2A,+1

Output translation from an OLRS solution, walk w, to a UKP solution (xi,...,z%) €
N*  Given walk w, the solution of UKP is (x1,...,2%) = (#(w,1),...,#(w,k)) where #(w,1)
is the number of occurrences of v; in w. For example, we have (r1,x2,23) = (2,1,3) when

w = (S7U17 s, V1, S,02, S,V3, S, Vs, S, U3, 879)'

It is trivial that both the transformation can be performed within polynomial time. Hence, it

suffices to prove that the result (z1,...,xx) is the optimal solution of UKP with input instance
(A, W, P'Ay).
Assume that (z1,...,2) is not the optimal solution. Then, some k-tuple (y1,...,yr) exists

such that Zle yiW(a;) < A, and Zle y; P(a;) > Zle x;P(a;). This contradicts the fact that
w is the optimal solution of OLRS with input instance (G, s, g, T, P, A;) by the following reason.
For walk 9 whose first and last nodes are the same, we define ¥ as (i)y° = € and (ii) ¥ =
Y1+ (i > 1). Let walk w] be (s,v;,s)¥ for any i = 1,...,k. Then, ' = w} + -+ w}, + (s, 9)
is a s - g walk and satisfies T'(w) = 221?:1 yiW(a;) +1 < 2A,, + 1 = A4, which means w’ is
a feasible solution. However, P(w') = 22?21 yiP(a;) > 22521 x;P(a;) = P(w) holds, which
contradicts the optimality of w. Hence, (z1,...,2x) is optimal for UKP with input instance
(A, W, P'Ay). O

4.4 Algorithm OLRS,

In this section, we present OLRS; and show its time complexity. In the following, we describe
as OPTjyst(v,t) the set of s - v walks w with travel time exactly ¢ and with maximum amount

of communication. More specifically, OPTjust(v,t) = {w € Sjust(v, 1) | V¢ € Sjust(v,t), Plw) >
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P'(al), W(al) P’(Clk), W(ak)
0,1

Figure 4.1: A problem instance of OLRS obtained by the transformation from UKP to OLRS.
The first and the second elements of the label of each edge e represents P(e) and T'(e) respectively.

P(1))} where Sjust(v,t) = Swaik(v,t) \ Swaik(v,t — 1). In addition, we denote the communication
amount of walks in OPT;,s (v, t) as Pyyst (v, t). We consider Py (v,t) = —oo when OP Ty (v, t) =
0.

Algorithm OLRS; consists of A; + 1 steps from Step 0 to Step A; (Code B). At each Step 1,
the algorithm computes, for each node v € V', any one walk of OP Ty (v, 7) and stores the walk on
variable v.opt(i). Step 0 exists for initialization. At Step 0, the algorithm set v.opt(i) = NULL for
any v € V and i € [0, A], and then, stores initial walk (s) on s.opt(0) (Lines 1-2). At Step ¢ > 0,
the algorithm computes walk w.opt(i — T'(u,v)) + v for every u € N;f(v), and then, stores walk
w with maximum P(w) among the computed walks on v.opt(i). The correctness of this step is
guaranteed by the following equation, which trivially holds for any positive integer 4 > Tiin (s, v).

Piust (v,1) = max{Piyst(u, i — T(u,v)) + P(u,v) (4.1)
| u € N;f(v), i > T(u,v)}
At the end of Step A¢, we have Pyui(g, At) = max;eo,a,) P(g.0pt(i)). Therefore, we can obtain
the optimal solution by selecting the walk with the maximum amount of communication among
the walks stored on g.opt(é) for i =0,...,A; (Line 11).

A walk is expressed by a linked list. Specifically, each variable v.opt(7) does not store the entire
walk w = (vy,...,v) (v1 = s, v; = v) but only have the pointer to variable v;_1.opt(i—T(v;_1,v))
and the value of P(w). Thus, the comparing and the update of v.opt() at Lines 7-8 can be easily

executed within O(1) time.
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Code 4.1 Optimal Longcut Route Selection OLRS;
Step 0

1: v.opt(i) := NULL for every v € V and i € [0, A¢]

2: s.0pt(0) := (s) // (s) is a walk composed of only node s.
Step i (1 <i<Ay)

3: for each v € V do

4. for each u € N (v) do

in

5: if ¢ < T'(u,v) then continue the for-loop

6: if w.opt(i — T'(u,v)) = NULL then continue the for-loop
7: w :=w.opt(i — T'(u,v)) + v

8: if v.opt(¢) = NULL or P(w) > P(v.opt(7))

then v.opt(i) :=w
9: end for
10: end for

11: if 4 = A; then return g.opt(t) such that P(g.opt(t)) = max;cio,a,) P(g-0pt(7))

Theorem 6. Algorithm OLRS; solves OLRS with time complezity of O(A; - m).

Proof . The correctness of the algorithm is trivial from expression (E). Step 0 takes O(A¢ - n)
time. Each Step i > 0 takes O(m) time since one execution of the loop at Lines 4-9 takes O(1)
time, and the loop are executed at most Y, o\, |N;f (v)| = m times. Hence, the time complexity

of OLRS; is O(A; - m). O

For the simulation of Section B8, we modify OLRS; so that it calculates Tiin(s,v) for all
v € V at Step 0, and the loop of Lines 3-10 is executed only for v € V satisfying ¢ > Tiin(s,v) at

Step ¢ > 0. This modification reduces the execution time of OLRS; to a certain extent.

4.5 Algorithm OLRS,

Algorithm OLRS; spends O(|N;(v)| - A;) time for each v € V' because it stores one of OPT (v, )
on v.opt(i) for every i = 0,...,A;. A walk stored on v.opt(i) is utilized later to compute

u.opt(i + T'(v,u)) for some u € N

ot (V). However, v.opt(i) are not necessary for all i € [0, Ay].

For example, consider the situation that the walks stored on v.opt(21),v.0pt(22),...,v.0pt(50)

are the same except for the number of self-loops. Then, we need not store all the walks using 30
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variables. Instead, we can express this situation by only one walk that we obtain by removing all
self-loops from the walks. Algorithm OLRS; uses this techniques to achieve time complexity that
does not depend on A; for some class of problem instances. In what follows, we define P(v,v) =0

for convenience if node v does not have a self-loop.

4.5.1 Nonstop Walks

We introduce (maximal) nonstop walks as the key concept of OLRSy. The set of changing times
CT(v) for node v is also introduced, the size of which is utilized to bound the time complexity of
the algorithm.

A walk is called nonstop if the walk has no self-loop. For nonstop walk w = (vg, v1,...,v;), we
define the stopping node of w as the node v; with the maximum P(v;,v;). If multiple nodes have
the maximum P(v;, v;), we adopt the node v; with the minimum index ¢ among the nodes. A walk
f(w, k) is the walk obtained from w by inserting k self-loops at the stopping node v;. For example,
f(w,3) is (v, ve, va, v2,v9,v3) when w = (v1,v9,v3) and the stopping node of w is vo. We define
as Ppax(w) = P(v;,v;), that is, Ppax(w) is the communication amount of the stopping node of
w. If no node on w has self-loop, we define f(w, k) = w and Ppax(w) = 0. For any ¢ € [T'(w), Ay],
we define the expanded communication amount of w as Pex(w,t) = P(f(w,t — T(w))). Note that
Poyx(w,t) = P(w) + Pmax(w) - (t — T(w)) holds.

We define binary relation >; for nonstop walks w and v with travel times ¢ or less as follows:

w >t ) & (Pox(w,t) = Pex (1, t) A Ppax(w) > Prax(¥))
V Pox(w,t) > Pox (1, 1)

For set X of nonstop walks with travel time t or less, we say that w € X is mazimal in X about
>, if ¥ >; w does not hold for any ¢ € X. We define MX (v,t) as the set of maximal walks
in Sps(v,t) concerning >; where Sps(v,t) is the set of all s - v nonstop walks with travel time
t or less. Suppose that Sps(v, Ay) = {wa,ws, we,wq} and the expanded communication amount
of the four walks are those depicted in Fig. B2. Then, w,, wp and w. belongs to MXs (v, t) for
time ¢t € [4,6], t € [7,9] and t € [10,17] respectively, while wy is not maximal for any time.
The goal of OLRS; is to find a walk w € MXx(g,A;), by which we get the optimal solution
flw, Ay —T'(w)) € OPT(g, Ay).

In Fig. B2, the maximal walk of node v changes at times 4, 7 and 10. We call such a time by
a changing time of v, and denote the set of the changing times by CT(v). More specifically, we
define as CT(v) = {t € [Tmin(s,v), A¢] | MXs (v,t — 1) N MXs (v,t) = 0}. Note that Tiin(s,v)
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Figure 4.2: The expanded communication amount of s - v walks

always belongs to CT(v). In Section E52, we design OLRS; so that its time complexity is
bounded by a polynomial function of max,cy |CT(v)|. Note that CT(v) is uniquely determined
by a problem instance of OLRS and independent from algorithms.

4.5.2 Algorithm OLRS,

Algorithm OLRSs, shown in Code B2, finds walk w € MXs (g, A;) and outputs f(w, Ay — T'(w))
as the optimal solution of OLRS. To find a walk in MXx (g, A¢), the algorithm constructs nonstop
walks in the increasing order of their travel times by utilizing heap H that stores a set of nonstop
walks. First, the algorithm inserts the initial walk (s) to H (Line 4 ). Then, until H becomes
empty, it repeats the following: extract a nonstop walk w with the minimum travel time from

H, expand w to generate a nonstop walk w + u for every u € N, (w.end), and insert it to

out
H if its travel time is A; or less (Lines 5-27 ). When H becomes empty, the algorithm just
selects the maximal walk about >a, among the s - g walks it ever generates, which must be a
walk of MX< (g,A;). To reduce the execution time, the algorithm expands a nonstop walk w
only if w € MXs (v,t) for some v and t. Thus, the number of walk-expansions is bounded by
> vev ([CT(v)|) (Lemma B3 in Section E54).

A walk w with the minimum travel time is extracted from H by invoking extract(H) (Line 5).
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Code 4.2 Optimal Longcut Route Selection OLRS2
1: {Initially, H = § and v.max = NULL for every v € V'}

2: Create a new walk (s) that consists of only one node s.

3: (s).time := 0

4: insert(H, (s)) // insert the initial walk to H
5: while H # () do

6: w:=extract(H)

7. i:= w.time // n ow at Period i
8 v :=w.end

9: if v.max = NULL or w >; v.max then

10: if w is not marked as “already-expanded” then

11: Mark w as “already-expanded”

12: for each u € N, (v) s.t. i+ T(v,u) < A; do

13: Create a new walk w + u

14: (w~+ u).time := i 4+ T'(v, u)

15: insert(H,w + u)

16: end for

17: end if

18: Wiest 1= v.max // t he old v.max is lost
19: v.max = w // v.max is updated
20: else

21: Wiost 1= W // w is lost
22:  end if

23:  if wipsy # NULL and 3j € [i + 1, Ay], wiosy >; v.max then

24: Wiost-time := min{j € [i + 1, Ay] | wiost >; v.max}
25: insert(H, wiost)
26: end if

27: end while

28: return f(g.max, A; — T'(g.max))
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At this time, we do not use T'(w) as the travel time of w. Instead, we use variable w.time for every
generated nonstop walk w. The value of w.time may change during execution, but w.time > T'(w)
always holds. Let ¢ be the minimum value of w.time among all the walks in H. Heap H also
guarantees that the maximal walk concerning >; in the set of walks in H is extracted. From the
characteristic of heap H, w.time < .time holds if w is extracted before 1, that is, the travel
times of the walks extracted from H are monotonically non-decreasing. In what follows, we call
the period from the time a walk with travel time ¢ is extracted at the first time until the time a
walk with travel time j > i is extracted at the first time “Period ¢”. These period numbers can

be skipped: Period 5 can be immediately followed by Period 13 (not Period 6).

Algorithm OLRS, uses variables v.max for every node v € V. The initial values of them are
“NULL”. The goal of Period i is to find any one of MX. (v,4) and store it on v.max for every
v € V. During Period i, the algorithm extracts all the non-stop walks with travel time ¢ from H
in descending order of >;. It handles each w of the walks as follows: if w >; v.max holds where
v = w.end, then store w on v.max (Line 19 ) and expand w unless the walk is already expanded
before (Lines 10-17 ). Furthermore, letting wiest be the loser of the comparison at Line 9 , the
algorithm re-inserts wios; to heap H if wigst >; v.max holds for some j > ¢ (Line 23-26 ). This is
because wost may be one of MXs (v, t) for some ¢, and if so, should be stored on v.max at Period
j. In the example of Fig. B4, w,. is lost by w; at Period 9. After that, w. is re-inserted to H
with update of T(w.) = 10 because w. >19 wp holds and hence, w. may be the unique walk of
MX. (v,10). Thus, the algorithm at Period i can update v.max for every v € V. At the same
time, it keeps at least one walk of MXs (v,7) for each j > i on either heap H or v.max. As a

result, g.max € MXs (g, A;) is guaranteed at the end of Period A; (Lemma B4).

A non-stop walk is expressed by a linked list. An object corresponding to walk w has its last
node w.end and the pointer to the object of the walk from which w is expanded. An object of
w also has the values of P(w), Ppax(w) and T(w). When creating the initial walk (s) at Line
2, we set P((s)) = 0, Ppnax((s)) = P(s,s), and T((s)) = 0. When constructing a walk w + v
from walk w at Line 13, we only set (w + v).end to v, add the pointer from w + v to w, and
calculate P(w + v), Ppax(w + v), and T(w + v). This expansion can be done within O(1) time
because it does not need to make a copy of entire w, and P(w + v), Ppax(w + v), and T'(w + v)
are calculated by P(w + v) = P(w) + P(w.end,v), Ppax(w + v) = max{Ppax(w), P(v,v)}, and
T(w+v) = T(w) + T(w.end, v), respectively. Also, comparison >; of two non-stop walks can be
done within O(1) time since every non-stop walk w store the value of P(w), Ppax(w) and T'(w).
Thus, both creating a new walk and comparison >; of two non-stop walks can be done with O(1)

time.
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4.5.3 Correctness

In the following, H; denotes the set of non-stop walks existing in heap H at the end of Period
i. Similarly, w, ; denotes the value of v.max at the end of Period ¢. In this subsection, we prove
that w, ; € MXs (v, %) holds for any v € V and i € [Tiin(s,v), Ay], which guarantees correctness
of OLRSs.

Lemma 42. Let v be a node and i be an integer not greater than Ay. If there exist w and j (j < 7)

such that w € H; and w € MX (v,1), then w,; € MXs (v,4) holds.

Proof . We define predicate P(k) as P(k) < "some w € (Hj U {w, }) belongs to MX (v,7)”.
We prove the lemma by showing P(j) = (w,,; € MXs (v,4)). Since P(i — 1) directly leads to
wy,i € MXs (v,1), it suffices to prove P(k) = P(k + 1) holds for any k € [j,7 — 2]. Assume that
P(k) holds and let w be a walk in (Hj U {w, }) that belongs to MXs (v,1).

Case 1. w € Hy A (w.time > k 4+ 1) Since w.time is more than k + 1, w is not extracted
from H during Period k + 1. Hence, w also belongs to Hy1.

Case 2. (W =wyi)V (wtime =k+1) Ifw,rr1 € MXs(v,i), then P(k+ 1) clearly holds.
Consider the case of wy, ;11 ¢ MXs (v,7). This means that w is lost by wy, x4+1 during Period k+1.
Then w is re-inserted to heap H because w >; w, k+1. Hence, we have w € Hj 1, that leads to
P(k+1). O

Lemma 43. Suppose that nonstop s - v walk w = (vo, e1,...,e;,v;) (I > 1) belongs to MXs (v, 1)
for some i > 0. Then, there exists integer j > 0 such that ) + v € MX< (v,4) holds for any walk
¥ € MXs (vi-1, ).

Proof . We prove the lemma by considering two cases Pyax(w) = P(v,v) and Pyax(w) > P(v,v).

In what follows, let w — v = (vg,€1,...,€1-1,V;—1).

Case 1. Ppax(w) = P(v,v) Let j =T(w —v) for this case. For any walk ¢ € MXs (v;-1,7),

we have
Poy(w,i) = Pox(w —v,5) + Ple)) + P(v,v)(i —j — T(er))
S Pex(wvj) + P(el) + P(U’U)(i - .7 - T(el))
< Pex (Y 4 v,4)

and Ppax(w) < Ppax(¢ 4 v). Since w is maximal concerning >;, we obtain ¢ + v € MX (v, ).
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Case 2. Ppax(w) > P(v,v) Let j=1i—T(e) for this case. For any walk ¢ € MXs (v;-1,7),

we have
Pex(w, 1) = Pex(w — v,5) + P(er)
< Pex(3h,5) + P(er) (4.2)
Pex (¢ +v,1) .

IN

The maximality of w brings Pey(w,?) = Pex(¥) + v,4). Hence, “<”s in expression (E=2) become
“="3, by which we obtain Puy(w — v,j) = Pex(%, j). This leads to Ppax(w — v) < Ppax(¥) since
1 belongs to MXs (v;—1, 7). Hence we get Ppax(w) < Pmax(¥ +v). Thus, we have Pey(w,i) =
Pox (¥ +v,i) and Pyax(w) < Ppax(¢ 4+ v), which brings ¢ + v € MXs (v, 7). O

Lemma 44. Predicate MXx (v,t) # 0 = w,; € MX (v,i) holds for any i € [0,A] and v € V.

Proof . We prove the lemma by induction of i.

Initial Phase (¢ = 0) The initial walk (s) is only the walk with travel time 0. Hence, we have
ws,0 = (s) € MXs(s,0). The predicate obviously holds for any node v other than s because of
MX> ('U7 0) = @

Induction Phase Let v be a node such that MXs (v,i) # 0. We prove w,; € MXs(v,i)
holds under the inductive assumption that MXs (u,j) # 0 = w,,; € MXs (u,j) holds for any
j<i—1landnodeu € V. If v = s and MXs (v,4) = {(s)}, then w,; is clearly (s). Thus,
we have w, ; € MXs (v,4). Otherwise, at least one walk w = (vg,...,v;) € MXs (v,4) is not the
initial walk (s), and hence, has two or more nodes. Then, from Lemma B3, there exists integer
k < i such that ¢ + v belongs to MX< (v,4) for any ¢» € MXs (v;—1,k). On the other hand,
Wy, 1k € MXs (vi-1, k) is obtained from the inductive assumption. Since w,, ,  is expanded
before the end of Period k, walk w,, , x +v € MXs (v,14) is inserted to H before the end of Period
k < i. By Lemma B2, we obtain w, ; € MXs (v, ). O

Theorem 7. Algorithm OLRSs solves OLRS, that is, it finds a walk in OPT(g, As).

Proof . By Lemma B4, g.max € MX. (g, A;) holds at the end of Period A;. Then, the output
f(g.max, Ay — T'(g.max)) belongs to OPT(g, A).

4.5.4 Time Complexity

We denote the loop of Lines 5-27 as Loop X, and the loop of Lines 12-16 as Loop Y. Let Hyax be

the maximum size of heap H during execution of OLRS,. The time of one execution of Loop Y
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is O(log Hpax ). Similarly, the time of one execution of Loop X that excludes the execution time
of Loop Y is O(log Hpax )- (Note that finding (the minimum) j at Lines 23-24 can be executed
within O(1) time given P(w), Ppax(w), T(w) , P(v.max),Ppax(v.max) and T(v.max) .) Hence,
letting A and B be the numbers of executions of Loop X and Loop Y respectively, the time
complexity is O((A + B)log Hyax ). In the rest of this section, we show upper bounds of A, B
and Hpax -

Lemma 45. At most |CT(v)| nonstop s - v walks are expanded during execution of OLRSs.

Proof . A s - v walk is expanded only when v.max is updated. The update happens only at
Period 4 such that ¢ € CT(v). Furthermore, two or more updates of v.max never happen at
the same period because nonstop walks are extracted from heap H in descending order of >; at

Period i. 3
Corollary 4. The number of executions of Loop Y is at most _ \, |CT(v)] - [Ngy(v)].

Proof . Loop Y (lines 11-14) are executed only when a walk is expanded. When a s - v walk is

expanded, Loop Y is executed at most | N, (v)| times. O

Corollary 5. The number of different s - v walks inserted to heap H is 3>, -, |CT(u)| if
vFESs Itis 1+ 30,y [CTW)] if v=s.

Proof . A new s - v walk other than the initial walk (s) is inserted to H only when a s - u
walk is expanded for u € Ny (v). Therefore, at most } -, n—(, [CT(u)| different s - v walks are
inserted to H for node v # s. In addition to these walks, the initial walk (s) is inserted to H in

the case of v = s. O
Corollary 6. Hy.x < ZUGV |CT(v)| - [Ngye (v)]

Proof . Clearly, Hy,x is bounded by the total number of different generated walks. By Corollary
B, we have Hmax < D ey Dyen= (o) [CTW)] = 22,ey [CT ()] - [Ny (v)]. (Note that walk (s)
is extracted at Period 0 and never included in H at the time H has the maximum number of

walks.) O
Lemma 46. Any s - v walk is inserted to heap H at most |CT(v)| times.

Proof . Let w be a nonstop s - v walk. We will prove that the number of re-insertions of w is at
most |CT(v)| — 1. Suppose that w is lost by w,; at Period 4, and the algorithm updates w.time
to j (1 < j < Ay) and re-inserts w to H. (Note that w is never lost by walk other than w, ; at
Period 4.) Then, w > w,; holds for any & > j (Fig. B33). This means that w is never lost twice
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Figure 4.3: w >} w,; holds for any £ > j.

or more by the same walk. Thus, the number of re-insertions of w is bounded by the number of
walks that w is lost by. If w # wy a,, the number of re-insertions of w is at most |CT(v)| — 1 since
w is discarded and never re-inserted when w is lost by wy a,. If w = w, a,, it is also bounded by

ICT(v)] — 1 because [{wy.i | Tin(5,v) < i < A} \ {w}| = [CT(v)] — 1. O

We obtain the following corollary by Corollary B and Lemma EB.

Corollary 7. The total number of times nonstop walks are inserted to heap H is at most |CT(s)|+
Z(u,v)EE |CT(U‘)| ’ |CT(U)|

The number of executions of Loop X equals to the number of extractions of walks from
H, which also equals to the number of insertions of walks to H. Therefore, we have A <
[CT(s)|+ X (u,0)er |CT(w)]-|CT(v)|. We also see both B and Hyax are at most 3, , cp |CT(u)]
by Corollaries B and B. Hence, the time complexity of OLRSs is at most (A + B)log Hyax =

O((X (uwyer [CT@ICT()]) - (log 3, vyer ICT(W)]))-

Theorem 8. Algorithm OLRS; solves OLRS with time complexity of O((3_,, e [CT(u)||[CT(v)])
~(log 32 (uvyes [CT@W)]))-

Let us express as CTyax = maz,cy|CT(v)|. Then, the time complexity of the algorithm can

be expressed as O(mMCT pax? log MCTax) € O(mA2 - log mA,).
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4.6 Simulation Results

In this section, we show the simulation results of execution times of two proposed algorithms.

The simulation is executed for graphs modeling urban areas with WiFi access points.

4.6.1 Simulation 1

The execution time of OLRS; strictly depends on time limit A;, while that of OLRS, depends
on CTp.x and does not necessarily depend on A;. To verify this, in Simulation 1, we evaluate
the execution times of the two algorithms with changing the value of A;.

We give a 30 x 30 square-grid G = (V, E) as the input graph (Fig. E4). The coordinates of
the starting node s and the goal node g is (15,1) and (15,30) respectively. We select five nodes
randomly from V' as access points in G. We set the communication amount P(v,v) of self-loops
at node v € V so that P(v,v) is inversely proportional to the biquadrate of distance d [meter]
between v and the closest access point. Specifically, letting the distance between every pair of

neighboring nodes be 20 meter, we set P(v,v) as follows:

P(v,v) = max <50, 201og, (1 + m>> [Mbps]
This expression simply models the communication speed where every access point is located at
three meters above the ground and the communication protocol is 802.11g. We also define the
communication amount of all edges e € E other than self-loops as P(e) = T'(e) - (P(u,u) +
P(v,v))/2. The travel time T'(e) is uniformly chosen from integers of [1,z]. The upper limit
is variable: we set  to 1,2,22,...,2% The time limit A, is set to twice of the shortest time
Timin(s,g). Since A; is almost proportional to x, we can observe how the execution time of the

two algorithms depend on A; by changing the value of x.

Fig. B03 shows the average execution time of the two algorithms. The average is evaluated
from one hundred executions for each z = 1,2,...,2% We randomly select five access points and
the travel times of edges for each execution. The execution time of OLRS; increases linearly with
respect to . On the other hand, the execution time of OLRS, is almost stationary for x > 4
whereas it is slightly increasing for 0 < x < 4. This confirms the hypothesis that the execution
time of OLRSs does not necessarily depend on A; while the execution time of OLRS; strictly
depends on A;.
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Figure 4.4: The input graph with five access points.

4.6.2 Simulation 2

In Simulation 2, we evaluate the execution times of the two proposed algorithms with changing

the size of the input graph to verify the scalability of the algorithms.

We give a 30 x y square-grid G = (V, E) as the input graph where the coordinates of the
starting node s and the goal node g is (15,1) and (15, y) respectively. The number of columns y
is variable: we set y to 30,60, 90,...,300. The time limit A; is set to twice of the shortest time
Tmin (s, g). We select y/6 nodes randomly from V' as access points. The communication amount
of self-loops P(v,v) and other edges P(e) are defined in the same way as Simulation 1. We define

the travel time of all edges e as T'(e) = 1.

Fig. 03 shows the average execution time of the two algorithms. The average is evaluated
from one hundred executions for each y = 30,60,90,...,300. We randomly select y/6 access
points for each execution. The both algorithms solves OLRS within practical time: the execution
times of OLRS; and OLRS, are approximately 7.0 seconds and 0.46 seconds respectively even for
y = 300 (the number of nodes is 9000). As in Simulation 1, OLRS; finishes its execution earlier
than OLRS; for all y = 30, 60,90, ..., 300.
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Figure 4.5: The average execution time in Simulation 1.

4.7 Discussion about Objective Function

In this chapter, we focus on the maximization of the total amount of communication while travel-
ing. This goal fits the needs of the mobile users who require the large amount of communication
(e.g. downloading a huge file such as a video file or updating a large number of applications of
smart phones). Another candidate of the goal is the minimization of disconnection time while
traveling. This goal reflects more natural needs of the mobile users who require stable communi-
cation (e.g. surfing on the Internet or using IP telephone service). However, in this chapter, we

focus on the maximization of the total amount of communication for the following two reasons.

e The problem of minimizing the disconnection time is reduced to DCLC described in Sub-
section 1.1 by assigning the cost C'(e) of each edge e = (v,u) to the disconnection time
while the user moves from node v to u. (0 < C(e) < D(e) ). Therefore, we can use many
exiting DCLC algorithms to minimize disconnection time of a route. On the other hand,

maximizing the total amount of communication (OLRS) has never been studied to the best
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Figure 4.6: The average execution time in Simulation 2

of the author’s knowledge. Hence, tackling with OLRS is of theoretical importance.

e Thanks to the progress of cellular networks, there is low possibility in urban area that
the mobile users get disconnected from the Internet. Hence, in such an area, selection
of a route does not make much difference on disconnection time. On the other hand,
selection of a route makes a large difference on the total amount of communication since
communication speed highly depends on the user’s location. Hence, maximizing the total

amount of communication is of practical importance.

4.8 Conclusion

In this chapter, the author introduced a new optimization problem OLRS (Optimal Longcut
Route Selection). The author proved that the problem is NP-hard. The author also presented two
pseudo-polynomial algorithms named OLRS; and OLRSs. Their time complexities are O(mA,)
and O(mCTpax?log mMCThax) € O(mA2logmAy), respectively. Simulations proved that both
algorithms solves OLRS within practical time for graphs modeling urban area with WiFi access
points. In particular, for those graphs, OLRS; is always faster than OLRS;, and its execution

time in independent from the size of the time limit A;.



Chapter 5

Performance Evaluation for Cloud
Computing Systems by Audit

Measurements

5.1 Introduction

Commercial use of cloud computing service [B1] grows significantly thanks to progress of virtual-
ization technology and broad band networks. Especially, IaaS (Infrastructure as a Service) cloud
services, which provide their users with virtual machines (VMs) through networks, are widely
in use all over the world. Users of IaaS cloud service can create, manage, and operate VMs in
the cloud computing systems through networks. Users can create and delete VMs within a few
minutes and pay usage fee based on utilization time. Therefore, users can manage the number of
the used VMs according to the loads of their system, so that they can reduce the cost.

There are many providers that provide TaaS cloud services in the world and users select one or
more providers among them which best meet their requirements. The most important selection
criterion are the price and VMs’ performance. The most natural way for users is to select the
most inexpensive service satisfying desired performance or to select the service showing the best
cost-performance ratio. Therefore, though most cloud services are best-effort services and do
not provide performance guarantees [32], it is fairly important for users to evaluate the VMs’
performance of each cloud service (e.g. average performance and stability of performance).

However, there are no ways today to estimate the VMs’ performance of cloud services exactly.

67
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Most cloud service providers publish their VMs’ specification such as the number of CPU (Central
Processing Unit) cores and the amount of memory, but do not publish their VMs’ performance
in detail such as CPU processing speed and memory transfer speed. The VMs of the same speci-
fication may show far different performance according to different cloud service providers, hence
users cannot evaluate real performance of VMs from their specification. In fact, the author con-
ducted multiple benchmark tests for low, middle, and high specification VMs of five providers
(total fifteen services) described in Section B4, and showed that many VMs of the same specifi-
cation show large difference (more than double) in average and standard deviation (representing
unstability) of performance. Furthermore, it is known that even two VMs of the same service
(i.e., the same specification and the same providers) may show different performance according
to the hardware type of the host machine assigned to VMs when they are booted [33, B4].

Existing studies [33, B85, B4, 36] observed that the performances of VMs in cloud computing
systems show very different characteristics from those of physical computers. First, variability of
performance is significantly large. The variation coefficients® of the benchmark scores of VMs in
cloud computing systems in terms of CPU performance, memory performance, disk read/write
performance, and communication performance is tens of times or hundreds of times as large as
those of physical machines [83]. In addition, performance distribution of VMs in cloud computing
systems sometimes changes in medium- to long-term. In one instance, Figure Bl shows that the
time series data of the score of disk-read benchmark for some cloud service [86]. One can see
that the variability of performance is significantly large and the performance distribution changes
temporally.

Therefore, it is insufficient to execute benchmarks several times in order to evaluate VMs’
performance of cloud services. Owing to large variability, a small number of measurements do
not suffice to evaluate VMs’ performances exactly. Owing to temporal changes of performance
distribution, measurement results at a specific time may give few information about the future
performance distribution. Thus, it is necessary to obtain the time series data of VMs’ perfor-
mances continuously.

The goal of this chapter is to devise the mechanism by which users can obtain such time series
data of each cloud service. There are some simple mechanisms for it but they have practical
issues. Consider the mechanism where each user continuously and periodically measures VMs’
performance of all the cloud services he or she is interested in. In this mechanism, each user has

to pay vast fee for VMs usage to execute benchmarks, hence this is not a practical mechanism.

1 A variation coefficient of samples is quotient of the standard deviation and the average of samples. It is

typically used to compare variabilities of sets of samples with different scales.
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Figure 5.1: The disk-read performance of the low specification VM in Cloud A

Again, consider the mechanism where each cloud service provider measures the performance of
its VMs and publishes the result of the measurement continuously. In this case, the cost of
measurement is relatively low, but the trustworthiness of the published data is not guaranteed

because some providers may exaggerate its performance in its published data.

Contribution of This Chapter In this chapter, the author presents the method by which
each user can get trustworthy information about VMs’ performance of each cloud service with low
cost. This method consists of publication of VMs’ performance by cloud service providers and
auditing measurement by users. The measurement cost of this method is low because auditing
measurements by users are intermittent. The trustworthiness of the published information is
guaranteed statistically: the users conduct hypothesis test (e.g. t-test and Mood test) to verify
whether there is no significant difference between the published data and the performance data
obtained by auditing measurements. If some provider fabricates the published data of VMs’
performance to a certain extent, the users can detect the fabrication since the fabrication makes
significant difference between two data. One may concern that the users may detect significant
difference between published data and auditing data even if the providers does not make any

fabrication. However, the probability of such false detection is low and the users can adjust the
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probability as we shall see in Section b=33.

5.2 Preliminaries

This section presents the model of cloud services and users. Three example methods are also

introduced, and merits and demerits of the methods are analyzed.

5.2.1 Model

This section presents the model of cloud services and users. There exist multiple cloud computing
systems and many users in the cloud computing market (Figure 52). Cloud computing systems
provide users with cloud computing services. In the following, cloud computing systems and
cloud computing services are called just clouds and services, respectively. A cloud has one or
more services where the specifications of VMs and the usage fees per hour differ depending on
the services. We denote all the services in the market by s1,s2,...,8,. A user is interested in
one or more services, and wants to evaluate the VMs’ performance of the services. We denote by
u(s;) the number of users who are interested in service s;. In the example of Figure B2, we have
u(s4) = 3. A cloud also wants to make its potential users evaluate the VMs’ performance of its
services correctly. However, some clouds make some sort of fabrication so that their services are
overestimated by users. These clouds are called dishonest clouds.

Each user tries to obtain the performance data of all the services he or she is interested in.
Performance data of a service is the set of time series data (an example is shown in Figure
5) and one graph of the set corresponds to the scores of a certain benchmark. Each benchmark
measures the VMs’ performance such as CPU performance, memory performance, disk read /write
performance, or LAN bandwidth. It is assumed that the common benchmark set is used for all
the services s1,s2,...,8,. Benchmarks are executed on VMs, hence benchmark execution for
a service requires some cost. We denote by C(s;) the measurement cost needed to construct a

year’s performance data, of service s;2.

5.2.2 Simple Methods

This subsection presents three naive methods to obtain the performance data of services, which

are compared with the proposed method presented in Section BZ3. The merits and demerits of

2 We assume the measurement cost C(s;) is the same, whether the benchmark set is executed on service s; by
a user or its provider. It is because the amount of resources (VMs) used for the measurements is the same in both

the cases.
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Figure 5.2: The model of cloud services and users

the three methods are also discussed.

The Cloud-publish Method

In the cloud-publish method, each cloud constructs the performance data of all its services and
publish them for all the users. Each cloud periodically initiates VMs of its services, executes the
benchmark set on the VMs, and updates the published performance data of the services.

In this method, the performance of each service is measured by only one organization (i.e.,
the cloud that provides the service). Therefore, the total cost required to measure service s; in
the whole market is just C(s;) per a year. However, the trustworthiness of published performance
data is not guaranteed since the cloud that creates and publishes the performance data may be
dishonest. Then, the dishonest cloud may fabricate the performance data and publish them so

that its services are overestimated by users.

The Evaluation Organization Method

In the evaluation organization method, a third party called evaluation organization constructs
the performance data of all the services in the market and publishes them. To construct the

performance data of each service s;, the evaluation organization initiates a VM of service s; as a
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user of s;, and executes the benchmark set on the VM.

The trustworthiness of the published data obtained by this method is higher than that of the
cloud-publish method, but still insufficient. First, it is possible for a dishonest cloud to assign rich
resources (CPUs and memory) specially only for VMs used by evaluation organizations. Then, the
performance data published by the evaluation organization are unreliable and the services of the
dishonest cloud are overestimated by users. Even if the evaluation organizations hide their role
to clouds, it may be possible for the clouds to identify the account used by the organization. For
example, consider the case a dishonest cloud provides service s; that assigns several model of CPUs
to its VMs. The dishonest cloud can memorize the models of assigned CPUs for the VMs of each
account at every hour. Then, the cloud may identify the account of the evaluation organization
by comparing the assigned CPUs for VMs of each account at every hour and the benchmark
scores at every hour in the performance data published by the evaluation organization. Secondly,
it is hard to elect a completely neutral evaluation organization. Users cannot deny possibility of
the collusive relationship between a cloud and an evaluation organization. Thus, the additional
method to deny the possibility is required. If there are many evaluation organizations in the
market, then the risk of the collusive relationship is reduced since the published performance data
of unrightful evaluation organization show different distribution from those of honest evaluation
organizations. The total cost required to obtain the performance data of service s; is aC(s;) per

a year in the whole market where a is the number of evaluation organizations.

The User-Evaluation Method

In the user-evaluation method, each user directly creates the performance data of all the service he
or she is interested in. The user periodically initiates VMs of the services, executes the benchmark

set on the VMSs, and updates the performance data of the services.

In this method, the trustworthiness of performance data is sufficiently high. Since users
directly measure the VMs’ performance of services, the users can create trustworthy performance
data even for services of dishonest clouds. However, the cost of this method is higher than the
above two methods. Since all the users who are interested in service s; measure the performance
of s; independently, the total cost required to obtain the performance of s; is u(s;) - C(s;) per
a year. For example, when u(s;) = 1000, the cost is thousand times as high as that of the

cloud-publish method, which is something unrealistic.
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5.3 The Proposed Method

The three simple methods presented in Section B2 have the demerit of cost or trustworthiness
of performance data. The trustworthiness of performance data is not guaranteed in the cloud-
publish method and the evaluation organization method, while the total cost required to obtain
performance data is high in the user-evaluation method. In this section, the author proposes a
novel method by which users can obtain trustworthy performance data of services with signifi-
cantly lower cost than the user-evaluation method. In the proposed method, clouds publish the
performance data of their services as in the cloud-publish method. On the other hand, users
infrequently conduct snap inspections to verify the correctness of the published performance data
statistically.

First, the proposed method is presented in Section 63. Next, the fabrications assumed by
this method are shown in Sectionb32. Finally, the hypothesis tests used in this method are
explained in Section BZ33.

5.3.1 Method Description

The overview of the proposed method is illustrated in Figure b=3. In the proposed method, each
cloud publishes the performance data of its services as in the cloud-publish method. In the
following, these published performance data are called just published data. The trustworthiness
of this published data is not guaranteed as is pointed out in Section B2 since dishonest cloud
may fabricate the published data. To complement this demerit, the proposed method introduces
the mechanism to detect such fabrication.

In this method, the users who are interested in service s measure the VMs’ performance of
s at irregular intervals. We refer this measurement as audit measurement and the performance
data obtained by this measurement as audited data. The audit measurement is conducted inter-
mittently. Specifically, the users conduct audit measurements only in consecutive t,,4i¢ days at
every Ty days, and does not measure the performance in other Tt — t,uqit days. For example, the
users conduct audit measurements in consecutive seven days at every 365 days (i.e. every year).
Consecutive t,uqi¢ days are randomly selected among T days. We call these t,uqit days auditing
period.

The users verify the correctness of s’s published data utilizing the audited data of s. Specif-
ically, the users conducts hypothesis tests to detect significant difference between the published
data in the auditing period and audited data in terms of average, standard deviation, and dis-

tribution profile of the score of any benchmark. If significant difference is detected, the users
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Figure 5.3: The proposed method

recognize that the cloud that provides service s is dishonest.

5.3.2 Assumed Fabrication

The proposed method detects fabrications by testing for significant difference between some statis-
tics of published data and audited data. What kind of fabrication we assume determines what
statistics we should conduct tests for. This section gives the assumed fabrication in this chapter.

Generally, users are interested in benchmark scores of VMs in terms of average value and
variability. Therefore, it is a natural assumption that dishonest clouds make fabrication to increase
the average value of benchmark scores or reduce the variability of benchmark scores. Thus, we
assume these two fabrications in the following. These fabrications are modeled in this section as

the uniformly-increasing fabrication and the variability-reducing fabrication.

The Uniformly-increasing Fabrication This fabrication increases all the benchmark scores
of some period [t1,¢s] uniformly by some constant value. Specifically, for time series data
D;(t1,t2) = (dity,dity+1,---,dit,) of benchmark ¢, we define the fabricated data Dj(t1,t2) =

! / ! .
(d} 4> di gy 4155 diy,) as follows:

di y = diy + A1Di(t1,12),

where D;(t1,t) = ﬁ Zje[t1,t2] d; ; and A; > 0. Owing to this fabrication, the average of

D; becomes 1+ A; times as large as the original average. We call A the fabrication level of the
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uniformly-increasing fabrication. Meanwhile, the standard deviation of D;which represents the

variability are not changed by this fabrication.

The Variability-reducing Fabrication This fabrication reduces the variability (or standard
deviation) of the benchmarked scores of some period [t1,t2]. Specifically, for time series data
D;(t1,t2) = (dity,dity41,---,dit,) of benchmark i, we define the fabricated data Di(t1,t2) =

/ ! / < .
(di 4y iy, 4155 d;y,) as follows:

diy = (1= Ag)(diy — Di(t1,t2)) + Dj(t1,to).

where 0 < Ay < 1. Owing to this fabrication, the standard deviation of D; becomes 1 — A, times
as large as the original variability. We call Ay the fabrication level of the variability-reducing

fabrication. Meanwhile, the average of D; are not changed by this fabrication.

5.3.3 Hypothesis Tests

The proposed method uses hypothesis tests to verify whether there is significant difference of the
average or variability between the published data and the audited data. Generally, hypothesis
test outputs a real number called p-value given the two data as an input. This p-value represents
the probability that the difference of the statistic (e.g. average and variance) between the two
data occurs if the difference occurs by chance (i.e. not on purpose). When p-value is smaller than
the given threshold «, then we have the conclusion that the two data has significant difference
about the statistic.

Threshold « gives the probability of false detection. In other words, even if no fabrication
are made on the published data, the hypothesis test detects significant difference between the
published data and the audited data with probability . On the other hand, we set « to a higher
value, we can detect smaller level of fabrication. The author shows later (in Section 5472) that
we can detect small level of fabrication made on published data even when we set « to sufficiently
small value (0.001).

There are many hypothesis tests established in the statistics field and these tests can be applied
to detect fabrication of published data. For example, Welch’s t-test, MannWhitney U test, and
Wilcoxon signed-rank test can be used to detect significant difference on average. Concerning
detection of difference in variability (or standard variance), F-test, Levene test, Ansari-Bradley
test, Mood test, and so on can be used. We use MannWhitney U test for the uniformly-increasing
fabrication and Mood test for the variability-reducing fabrication. (The reason of adopting these

tests will be described in Section 5273.) In what follows, we call MannWhitney U test just U-test.
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Table 5.1: Comparison between the proposed method and the three simple methods (f =
tauait/TT)

cloud—publish | evaluation organization| user—evaluation the porposed method

© not subject to
fabrications

cost © C(s) O a-C(s,) x u(s) C(s) [O C(s)+f-u(s) C(s,)

trustworthiness X A QO able to detect fabrications

5.4 Evaluation of the Proposed Method

Table 6 shows the summary of comparison between the proposed method and the three simple
methods in Section B2, The proposed method has higher trustworthiness of performance data
than the cloud-publish method and the evaluation organization method, and takes significantly

lower cost than the user-evaluation method.

This section shows the reason for these comparison results. In Section B2, the author shows
that the cost of the proposed method is significantly smaller than the user-evaluation method.
In Section B272, the author shows the performance data obtained in the proposed method are
trustworthy. Specifically, it is verified that users can detect fabrication of published data even
when the level of the fabrication is sufficiently small. Since this verification strongly depends
on the distribution of VMs’ performance, the author measures the actual VMs’ performance of

commercial cloud services to verify trustworthiness of the proposed method adequately.

5.4.1 Measurement Costs

The annual cost of the proposed method required to obtain performance data of service s; is
C(si)+ f-u(s;)C(s;) where f = tauait/Tr. The first and the second terms correspond to the costs
of the self-measurements by the cloud of service s; and the auditing measurements by the users
who are interested in s;, respectively. The cost of the proposed method is significantly smaller
than that of the user-evaluation method when f is sufficiently small, that is, the frequency of
audit measurement is small. For example, when u(s;) = 500 and f = 7/365 holds (auditing
measurements are conducted seven days per year), the annual cost of the proposed method is
C(si)+ f-u(s;)C(s;) = 10.6C(s;), which is only 2.1 percent of that of the user-evaluation method
(500C(s;))-
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Table 5.2: The detail specification of VMs used for the measurement experiment

Cloud A Cloud B Cloud C Cloud D Cloud E
spec. level low | middle | high low | middie | high low | middle | high low | middle | high low | middie | high
cPU 2vcPU_| 4vepu | svepu | 2vepu | avepu [ avepu | avepu [ avepu [ svepu | 2vepu [ avepu | svopu | 2vopu | 4vcPu | svePu
clock frequency 1vCPU: 1.6Ghz 1vCPU: 2Ghz 1vCPU: 1.6Ghz 1vCPU: 1.0-1.2Ghz 1vCPU: 1.6Ghz
memory 4B | 8aB [ 1eaB | 4B | saB | 1eaB | 4GB | 8aB | 16GB | 37568 | 756B | 1568 | 3568 | 76B [ 14GB

5.4.2 Trustworthiness of Performance Data

The trustworthiness of the performance data in the proposed method is guaranteed by the auditing
mechanism to detect fabrication made on published data. However, it is hard to detect too small
fabrication since the detection is based on statistical analysis (hypothesis test). On the other
hand, we can say that the performance data is trustworthy if users can detect sufficiently small
level of fabrication in practical applications.

The goal of this section is to verify the trustworthiness of the proposed method by observing
how small fabrication can be detected by the proposed method. This verification strongly de-
pends on the distribution of VMs’ performance. Therefore, the author measures the actual VMs’
performance of five commercial cloud services, and evaluates trustworthiness of the proposed

method analyzing the measured data.

Measurement Experiment

The author measures the performance of services of five commercial cloud, Cloud A, Cloud B,
Cloud C, Cloud D, and Cloud E. This experiment measures the performance of three services of
low, middle, and high specification for each cloud. The detail specification of the services’ VM
is shown in Table B2. The specification of the same level (low, middle and high) of services are
almost the same among all the clouds except that clock frequency is relatively low in Cloud D
and the high level VMs of Cloud B have only four virtual CPU cores. (the high level VMs of the
other clouds have eight virtual CPU cores.) This experiments use two VMs for each specification
(low, middle and high) of each cloud. One is used to create the published data and the other is
used to create the audited data. Hence, we use six VMs to be benchmarked for each cloud.

This experiment uses the same benchmark set as Shad et al. [33], which is as follows.
e CPU performancel ubench(CPU) [37]
e Memory performancel ubench(memory)

e Disk read throughputO bonnie++(seq. input) [33]
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e Disk write throughputOd bonnie++(seq. output)
e LAN bandwidth iperf [39]

Benchmark iperf needs a destination host. Therefore, an additional VM is set for each cloud, and
the bandwidth between the additional VM and each of the six benchmarked VMs is measured by
iperf.

The measurements period is thirty six days from December 26th 2012 to January 30th 2013.
In the period, the benchmark set is executed on each VM every hour (total 864 executions for

each VM). Specifically, the experiment repeats the following processes every hour.
1. Create six VMs on each cloud,
2. Execute all the benchmark on each VM and upload the result scores to our storage,
3. Delete the six VMs.

The repetition of creation and deletion of VMs are necessary to obtain exact performance data

of the services. (Physical resources are assigned when VMs are created.)

Verification Methodology

In this verification, we regard the two performance data of each service, which are obtained
from the measurement experiment in Section B2, as published data and audited data. The
author makes the uniformly-increasing fabrication and the variability-reducing fabrication on
the published data, and conduct hypothesis tests (U-test and Mood test) to detect signifi-
cant difference between these two data. Then, we observe the fabrication level required to
decrease p-value less than threshold «. In the following, we refer to this fabrication level
as detectable fabrication level. We observes the detectable fabrication level in case of a =
0.1,0.01,0.001, 0.0001, 0.00001, 0.000001. As mentioned above, U-test and Mood test is used to
detect the uniformly-increasing fabrication and the variability-reducing fabrication, respectively.

The detectable fabrication level depends on the number of benchmarked scores in the audited
data, and this number depends on the audited period. In this verification, we adopt seven days
as audited period. Specifically, we divide the experiment period of thirty six days into the five
disjoint periods of seven days each, and regard the data in each period as a audited data (Table

53). Note that the number of benchmark scores of each audited data is 7 x 24 = 168.
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Table 5.3: The audited periods

Period 1 Period 2 Period 3 Period 4 Perio 5
12/27 - 1/2 1/3-1/9 1/10-1/16 1/17 - 1/23 1/24 - 1/30

Verification Results

This section shows the detectable fabrication level of each service (VMs of low, middle and
high specification of each cloud) and each type of performance (CPU performance, memory
performance, disk read/write throughput, and LAN bandwidth). The detectable fabrication level
shown in this section is the average of those of the five audited periods shown in Table B=3.

Before showing the results on this verification, the author explains some troubles that occurred
in the measurement experiment. In Cloud A, the performance data between 16:00 January 14th
and 14:00 January 23rd are not obtained because VMs could not be created in this period owing
to failure of the cloud computing system. Hence, the detectable fabrication level in Cloud A is
shown as the average of three audited periods Period 1, Period 2, and Period 5. Furthermore, in
Cloud C and Cloud E, the creation and deletion of VMs failed with high probability so that the
author cannot get sufficient number of benchmark scores for these two clouds. Hence, we exclude
Cloud C and Cloud E from the objects of this verification.

Figure B4 represents the detectable fabrication levels for the service of low specification in
Cloud A when published data is modified by the uniformly-increasing fabrication. For all types of
performance, the smaller threshold brings the bigger detectable fabrication level. However, these
increase are gradual: the detectable fabrication levels increase linearly according to exponential
decrease of threshold «.. For example, the detectable fabrication level of LAN bandwidth increases
one percent every time threshold « is reduced to one-tenth. This tendency is commonly observed
for all services (all specification of all clouds) and all types of performance. Furthermore, this
tendency is also common for the case of the variability-reducing fabrication.

In the following, we focus on the detectable fabrication levels in case of o = 0.001. However,
it does not loose generality because the detectable fabrication levels in case of other thresholds
have the same characteristics.

Figure B represents the detectable fabrication levels in case of the uniformly-increasing fabri-
cation. Even though we set a strict threshold a = 0.001, fabrications of less than ten percent level

can be detected in most cases. However, the detectable fabrication levels of disk write throughput
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Figure 5.4: Detectable fabrication levels for the uniformly increasing fabrication (low specification,

Cloud A)

and memory performance is relatively high, and exceeds 10 percent in some cases. This is because
the variabilities of these benchmark scores are high. Generally, the powers of hypothesis tests to
detect significant difference of averages decreases when variabilities of samples are large. In fact,
in every case (every specification of every clouds, every benchmarks), large variation co-efficients
(represent the degree of variability) bring large detectable fabrication levels (See Figure B8).
Extreme smallness of detectable fabrication levels for CPU performance and memory perfor-
mance in Cloud D is worthy of special mention. This is because the performance distribution
has multiple bands® in these cases, and the variability of each band is extremely small (See the
case of memory performance of the middle specification shown in Figure B22). U-test focuses
on the order of each benchmark score in the published data and the audited data among all the
benchmark scores of both data. It calculates p-value by comparing the sum of the orders of all
benchmark scores in the published data and those of the audited data. In the above cases, since
the variability of each band is small, even slight fabrication such as 0.16 percent level (in case of
Cloud D, low specification, and CPU performance) changes the orders of the benchmark scores

heavily, which drastically decreases p-value of U-test. Hence detectable fabrication levels in these

3 As many studies [83, B4, B8] pointed out, performance distribution of commercial cloud computing services

may have multiple bands partly because multiple types of hardware can be assigned to VMs.
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Figure 5.5: Detectable fabrication levels for the uniformly-increasing fabrication (o = 0.001)

cases are extremely small.

Figure B8 represents the detectable fabrication levels in case of the variability-reducing fab-
rication. It appears that detectable fabrication levels are higher than those of the cases of the
uniformly-increasing fabrication. This is just because detecting significant difference of variabili-
ties is difficult. In fact, the detectable fabrication level is 23.90 percent on average even when the
published data and the audited data follow Gaussian distribution perfectly.? On the other hand,
detectable fabrication levels are small in some cases including CPU performance in Cloud D. This
is because the performance distribution of these cases have multiple bands. As in U-test, Mood
test focuses on the orders of each benchmark score to calculate p-value. Since slight fabrication
changes the orders of benchmark scores heavily in case that multiple bands exist in performance

distribution, the detectable fabrication levels for such cases are small.

5.4.3 Discussion

The verification of Section B472 observes how small fabrication the proposed method detects.
Even when the published data is modified by the uniformly-increasing fabrication (or by the
variability-reducing fabrication), fabrications of less than ten percent level (or less than thirty
percent level, respectively) can be detected in most cases. In case of the uniformly-increasing
fabrication, much smaller fabrication can be detected for performance data of CPU performance
and LAN bandwidth where variability of benchmark scores is small. In case of both the uniformly-
increasing fabrication and the variability-reducing fabrication, much smaller fabrication can be

detected if the performance distribution has multiple bands.

4 The author randomly creates thousand pairs of data that follows Gaussian distribution, and calculates de-

tectable fabrication levels for the pairs in the same way as the verification of this section.
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Figure 5.6: The correlation chart of detectable fabrication level (aw = 0.001) and variation coeffi-

cient

In what follows, we briefly look at using other tests to detect fabrication made for the per-
formance of cloud-computing services. Welch’s t-test and Wilcoxon signed-rank test can be used
to detect the uniformly-increasing fabrication. However, Welch’s ¢-test is unsuitable for the pro-
posed method since it premises Gaussian distribution: the power of the test is weak when the
performance distribution deviates from Gaussian distribution, especially when the performance
distribution has multiple bands. Wilcoxon signed-rank test can be used when sample values of
the two tested data have correspondence relation. We can consider that two benchmark scores
measured at the same time have correspondence relation for the published data and the audited
data. However, in case that the performance distribution has multiple bands, the correspondence

does not fit and the power of the test becomes low. F-test, Levene test, and Ansari-Bradley test
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Figure 5.7: Memory performance of the middle specification VM in Cloud D

can be used to detect the variability-reducing fabrication. However, F-test is unsuitable since it
cannot calculate p-value when the performance distribution deviates from Gaussian distribution.
Although Levene test has robustness for deviation from Gaussian distribution to a certain ex-
tent, we confirm that it does not calculate exact p-value when the performance distribution has
multiple bands by a computer simulation. Ansari-Bradley test does not have a problem to detect
the variability-reducing fabrication. Deviation from Gaussian distribution or multiple bands in
performance distribution does not cause any problem for this test. However, in the verification in
Section 5272, the author confirmed that this test can attain a lightly higher detectable fabrication
level than Mood test.

5.5 Practical Examples of VMs’ Performance Evaluation

There are some practical examples of VMs’ performance evaluation of cloud services. There
are two sites, CloudHarmony [40] and CloudClimae [A1], which measure multiple cloud services
and publish the performance data obtained by the measurement. (We refer this kind of evalu-
ation method as the evaluation organization method in Section 522.) CloudHarmony executes

many benchmarks on the VM of more than tens of cloud services and memorize the score of the
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Figure 5.8: Detectable fabrication level for the variability-reducing fabrications (o = 0.001)

benchmarks in its system. Users of this site request benchmark scores by selecting cloud service
providers, VMs’ specifications (the specifications of services), and benchmarks (e.g. 7zip and
Unixbench), then the site offers the corresponding score memorized in the system. The shortage
point of this site is infrequency of benchmarking. The same benchmark for the same service
is executed by this system only a few times a year. Hence, the users cannot obtain the VMs’
performance of each service since the variability of VMs’ performance of cloud services is large
and the performance distributions vary temporally. CloudClimte publishes denser performance
information of each cloud which is measured every five minutes. However, the number of cloud

services and the number of benchmarks is small, hence the benefits of its users are limited.

5.6 Conclusion

In this chapter, the author presented the method by which users economically obtain trustworthy
performance data of cloud computing services. In this method, cloud service providers publish the
performance data of their services, and users infrequently conduct snap inspections to verify the
preciseness of the published performance data statistically. If users conduct a snap inspection for
seven days every year, the cost of the proposed method is one-fiftieth of that of the user evaluation
method. On the other hand, when the published performance data is fabricated, users can detect
the fabrication with high probability. From verification based on the performance distribution
of commercial cloud computing services, we confirmed that a snap inspection of 168 executions
of the benchmark set detects sufficiently small fabrication. To conclude, the proposed method

enables users to obtain trustworthy performance data of cloud computing services economically.



Chapter 6

Conclusion

This thesis introduced the author’s studies to provide stable services in unstable distributed sys-
tems by realizing fault-tolerance, communication performance, and computational performance.

Chapter B presented a novel concept of loose-stabilization, which brings distributed systems
high fault tolerance. Loose-stabilization is a variant of self-stabilization, which relaxes the clo-
sure requirement of the original self-stabilization without impairing its fault-tolerance at least in
practical perspective. Since the closure requirement is relaxed, loose-stabilization can be applied
to more models and more problems of distributed systems. For example, the author presents a
loosely-stabilizing algorithm that solves leader election problem on complete graphs in the popula-
tion protocol model (the PP model). This algorithm exemplifies the benefit of loose-stabilization
since its is impossible to devise self-stabilizing algorithm for this problem unless the exact number
of nodes is given.

Chapter B developed the study of Chapter B to present loosely-stabilizing algorithms that
solve the leader election problem on arbitrary graphs in the PP model. Unlike complete graphs
where all nodes can directly communicate with each other, each node has to detect the existence
or absence of a distant leader node in leader election on arbitrary graphs. The author presented
two loosely-stabilizing algorithms that create a new leader when no leader exists and keeps the
new leader for exponentially long time by utilizing the unique identifiers of nodes or random
numbers. These algorithms also exemplify the benefit of loose-stabilization since it is impossible
to devise a self-stabilizing algorithm for this problem even if node-identifiers or random numbers
is available.

In Chapter B, the author focused on communication quality of mobile users in urban areas. The

communication quality (wireless communication bandwidth) of mobile networks differs depending

85
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on the location the user exists. The author tackled with a new problem to find the route that
maximizes the total amount of communication by which users can move from the given starting
point to the given destination point within the given limit time. First, the author proved that this
problem is NP-hard. Then, the author presented two pseudo-polynomial algorithms that solve
this problem. One of the two is better in terms of the worst-case execution time, and the other one
is better in terms of the average execution time. We observed from the simulation experiments
that both the two algorithms compute the optimal solution within practical execution time even
for a sufficiently large input (i.e. the topology of urban area) consisting of thousands of nodes.

In Chapter B, the author developed the method by which users of cloud computing services
obtain trustworthy data of VMs’ performance of those services. It is known that the VMs’ per-
formances of commercial cloud computing services often deviate from their specifications. Then,
we need frequent and continuous performance measurements to recognize the VMs’ performance
of those services. If these measurements are conducted by the users (the user-evaluation method)
then the costs of users are impractically high, and if these measurements are conducted and
the obtained performance data are published by cloud computing providers (the cloud-publish
method) then we face no guarantee for the trustworthiness of the published data. The author pro-
posed the method where the providers continuously measure and publish the VMs’ performance
of their services while the users infrequently conduct snap inspections to guarantee the trustwor-
thiness of the published data. The costs of the proposed method is significantly lower than the
user-evaluation method. Furthermore, the users can obtain sufficiently trustworthy performance
data by the proposed method. In fact, the author observed from the performance distributions
of commercial cloud computing services that the snap inspections of the users detect fabrications
of less than several percent level in most cases.

From now on, the author is going to propel the study of loose-stabilization introduced in
Chapters B an B. Although the proposed algorithms in Chapter B work on arbitrary graphs, they
need node identifiers or random numbers. One of the author’s future work is to remove these
requirements and devise a loosely-stabilizing leader election algorithm that works on arbitrary
graphs without node-identifiers and random numbers. While Chapters B and B focused on the
leader election in the PP model, the author is also going to apply the concept of loose-stabilization

to other models and other problems.
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