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Abstract

The acquisition of object shapes has various industrial applications, such as the visual inspec-

tion of industrial products, reverse engineering of free-form products, and modeling of object

shapes in computer graphics. A variety of measurement methods have been proposed to obtain

object shapes with high accuracy for any material. However, it remains difficult to measure

the shape of translucent objects reliably because scattering and transmitted light in the media

degrades the observation. To solve this problem, we proposeshape from scatteringto estimate

the shapes of translucent objects from the observed scattering itself.

We aim to model the relationship between the object shape and scattering in a simple model.

While the actual scattering effect is a complicated phenomenon, scattering can be approximated

by making assumptions of the target material. In this thesis, we first sample and analyze light

transport in a real scene to select an appropriate scattering model for shape estimation. Light

transport is described by an eight-dimensional BSSRDF that completely represents light trans-

ports with the directions and positions of incident and outgoing light. Although it is difficult

to sample an eight-dimensional BSSRDF because illuminations and observations are required

from every direction, we sample the high-dimensional BSSRDF using a polyhedral mirror sys-

tem to place multiple virtual cameras and projectors. We also analyze the sampled BSSRDF

by the visualization of low-dimensional sliced data and decompose the sampled BSSRDF into

basic directional components. From the analysis of the BSSRDF, we summarize empirical

characteristics of light scattering inside a real translucent medium.

From the analysis of the BSSRDF, we propose shape estimation methods for optically thin

and optically thick translucent objects. Scattering in an optically thin translucent object is

characterized by light attenuation along the refracted light. Refracted light is relatively easily

modeled because it corresponds to single scattering, which is a one-bounce collision of light

with a particle in a medium. Hence, we can determine the shape of an object from the ob-

served intensity of single scattering and its attenuation, and develop a solution method that

simultaneously determines scattering parameters and the shape according to energy minimiza-

tion. Scattering in an optically thick translucent object distributes around the incident point and
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loses its directionality. Such distributed scattering can be approximated as convolution with a

blurring kernel. We extend this observation in our experimental setting, and obtain the shape

of a target object without the effect of scattering using deconvolution. We demonstrate the

effectiveness of our proposed approach in extensive experiments using synthetic and real data.

Scattering has been regarded as a nuisance and eliminated employing various approaches in

the field of computer vision. In contrast, ourshape from scatteringframework is a novel shape

estimation framework that uses the scattering effect as a cue for the object shape.
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Chapter 1

Introduction

1.1 Background

Recent advances in sensing technologies let us measure an object shape easily [1]. Shape mea-

surement techniques are used in various situations such as visual inspection for controlling the

surface quality of industrial products, reverse engineering of free-form products, digital archiv-

ing of world heritage, obtaining object models for computer graphics, and scanning human

bodies for the virtual fitting of clothes [2, 3]. As the acquisition of object shapes broadens the

application of computer vision techniques, shape measurement methods have been advanced to

record the shape of any type of material with a high degree of accuracy.

Shape measurement methods are classified into two types: active and passive methods. An

active method uses the reflections of projected light, electromagnetic waves or other energy to

infer the shape of the target object in triangulation;e.g., sensing using a laser scanner, time-of-

flight camera, and structured light. A passive method estimates the shape of objects from ob-

served images without any energy projection;e.g., methods that use multi-view stereo and sil-

houette volume intersection. For industrial application, active methods are often used because

they can accurately measure a target shape with geometric calibration. Meanwhile, it is diffi-

cult to apply an active method to translucent objects within which propagating light scatters.

As pointed out by Godinet al. [4], the brightest observation of light incident on a translucent

object is shifted by scattering. Therefore, we often fail to obtain the shape of translucent ob-

jects because scattering degrades a direct projection on the target surface. Figure1.1shows an

example of failure in measuring translucent objects that generate scattering using a commercial

three-dimensional laser scanner, the Konica-Minolta Vivid 9i. While the scanner works well

for observing human skin, it cannot accurately estimate the shape of translucent objects owing

to strong scattering. Besides the object in Fig.1.1, there are many translucent objects around
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(a) Translucent blocks on the hand (b) Shape measurement result 
by a laser range finder 

(c) Close up of translucent blocks (d) Strong scattering 

in translucent object 

Figure 1.1:Failure of the shape measurement of translucent objects using a laser scanner.

us such as most fruits, wax, marble, plastic products, and precious stones. Shape estimation of

translucent objects remains an open problem.

While scattering is well studied in the computer graphics field to render realistic images, it

is less discussed in the field of computer vision because complicated light interactions on the

object surface generated by scattering render inverse problems unsolvable. Scattering has thus

been regarded as a nuisance and eliminated by various approaches in applications of computer

vision. Polarization [5, 6, 7, 8] and coating with diffuse powder [9] reduce the subsurface scat-

tering effect. High-frequency illumination [10, 11] separates directly illuminated light (e.g.,

surface reflection, specularity and transmittance) and globally propagated light (e.g., scattering

and interreflection). Analysis of the light field [12, 13] extracts scattering components accord-

ing to their spatial and angular characteristics. The phase-shift method [14, 15, 16] robustly

measures the object shape with the existence of scattering. However, these methods need an

additional preprocessing stage and it remains difficult to completely ignore the effect of strong

scattering [17]; e.g., the phase-shift method requires modulation of the projection pattern de-

pending on the translucency of the target material [18]. Consequently, shape estimation without
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(a) Optically thin translucent object (b) Optically thick translucent object

Figure 1.2:Examples of translucent appearance. Although the shape and illumination are the
same, the observed translucent appearances differ in terms of the optical thickness.

the reduction of scattering phenomena is required.

1.2 Contributions of the thesis

This thesis proposes a new shape estimation framework named theshape from scatteringframe-

work, where the shape of a translucent object is estimated from the observed scattering itself.

While scattering is often analyzed for the estimation of the spatial distributions of smoke or

milk drops [19, 20], it has not been analyzed for the measurement of the surface shape of

translucent objects. Shape estimation from an observed image is considered to be the inverse

rendering of a realistic scene appearance in the field of computer graphics. As a realistic image

is rendered with known object shapes, illumination, and light transport on the object surface,

the object shape is inversely estimated from observed images with known illumination and light

transport. Illumination can be obtained from the calibration or controls of the experimental set-

ting. However, it is not easy to obtain arbitrary light transport within a measurement target

owing to intricate representations of light transport. Light transport only depends on the optical

properties of measurement targets. Figure1.2shows that the scene appearances of translucent

objects that differ only in optical thickness. While shading in Fig.1.2 (a) is greatly smoothed,

that in (b) is only slightly smoothed. To deal with the difference in light transport, we need to

choose or obtain an optimal observation model of material for shape estimation.

We develop a shape measurement method for translucent objects in the following steps.

1. Measurement and analysis of light transport on a translucent surface:In terms of

analysis of light transport at a surface point, surface reflection has been well studied
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in both the fields of computer graphics and computer vision. A variety of models that

approximate the reflection by a parametric function have been proposed [21, 22], and

dense sampling of the reflection is possible using optical devices [23, 24]. However, in

the case of scattering, standard parametric models and sampling methods are restricted

to homogeneous media [25] or isotropic scattering [26] because scattering itself is a

complicated phenomenon. In this part, we present a novel sampling and analysis method

for complicated general light transport in a real scene. To observe light transport on a

surface, we need to place many cameras and projectors around the target object. Instead

of constructing such an impractical observation setting, we sample the light transport

using spherically distributed virtual cameras and projectors using a polyhedral mirror

system. We also analyze the sampled light transport to show the relationship between the

light transport and optical properties of translucent media. In analysis, we visualize light

transport in spherical distributions along outgoing directions. Additionally, we propose

a method of decomposing light transport into isotropic and anisotropic components for

scattering analysis.

2. Development of a shape estimation algorithm based on an appropriate scattering

model: The framework of shape estimation using the observed intensity is referred to

as the shape-from-intensity framework. Except for scattering, many types of light trans-

port have been used for shape estimation;e.g., diffuse reflection [27, 28, 29], specular

reflection [30, 31, 32, 33, 34], and refracted transmission [35]. These methods model

the relationship between observed intensities and the object shape to inversely estimate

the object shape according to light transport on a surface. Taking the same approach,

we develop appropriate observation models for a translucent object based on the result

of light transport analysis. In this thesis, we propose two estimation methods, one for

optically thin objects and the other for optically thick translucent objects, because the

appropriate observation models of scattering are completely different for these different

types of objects.

1.3 Organization of thesis

The thesis is organized as follows. Chapter 2 presents related work to show the contribution of

our research. We present research on the measurement and analysis of light transport in scatter-

ing media and shape measurement for various models of light transport. Chapter 3 summarizes
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the basic theory of light transport. We explain typical modes of light transport focusing on scat-

tering effects and how to represent light transports in a mathematical expression. Chapters 4 to

6 describe in the main contribution of this thesis. First, we sample and analyze light transport in

various materials to obtain characteristics of light transport that is determined by optical prop-

erties. From the analysis in Chapter 4, we develop the shape estimation methods for optically

thin and optically thick translucent objects from observed scattered light in Chapters 5 and 6,

respectively. The final chapter concludes the thesis with a discussion of the proposed method

and future works.
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Chapter 2

Related work

We summarize related work focusing on the measurement and analysis of light transport in

scattering media and shape measurement under various light transports on object surfaces.

2.1 Measurement and analysis of light transport in scatter-
ing media

Light transport in known scattering media has been traditionally studied in the field of computer

graphics to render realistic images [36, 37, 38]. More recently, the characteristics of scattering

media in terms of light transport from scene appearance have been actively studied in the field

of computer vision.

Although general scattering is a complex phenomenon, a single scattering event can easily

be modeled because it is a simple one-bounce collision of a light with a particle in a medium.

Hence, single scattering is often used to analyze scattering media. Mukaigawaet al. [39] es-

timated the optical parameters of scattering media from results for separate single scattering

events and then analyzed the light transport by visualizing each bounce scattering component

inspired by light transport analysis of interreflections [40]. Narasimhanet al. [41] also ob-

tained scattering parameters by observing single scattering in a diluted scattering medium.

Florescuet al. [42] applied optical tomography using observed single scattering and a radiative

transfer equation and reconstructed the attenuation parameters of the three-dimensional vol-

ume. The spatial distributions of scattering media, such as smoke or milk drops, have also been

studied [19, 20].

General scatterings have also been analyzed by employing approximated scattering distri-

butions and graphics-processing-unit computing. Jensenet al. [26] approximated scattering

as a dipole model under the assumption of an infinite homogeneous medium and then fitted

7



scattering parameters. Mukaigawaet al. [43] also estimated scattering parameters of homoge-

neous media by fitting the dipole model [26] in a known environment of arbitrary illumination.

Gkioulekaset al. [44] analyzed the effects of the shape of the scattering distribution param-

eterized by a phase function on object appearance. In the field of medical imaging, optical

tomography [45] has been developed to obtain the distribution of optical properties in body tis-

sue from captured surface appearances. Because optical tomography estimates the properties of

body tissue by simulating light propagation in media, a graphics-processing-unit is employed

to reduce the computation time.

As described above, scattering has been analyzed from the measured spatial distribution.

However, recent research has developed an imaging system that captures light propagation

at approximately one-half of a trillion frames per second [46]. This ultrafast camera makes it

possible to analyze propagating light on a temporal scale. Wuet al. [47] estimated the scattering

parameter of scattering media employing a light attenuation model and identified the type of

light interaction in a scene. Analysis of extended light transport on a temporal scale has also

been proposed [48]. Despite the fact that time-scale image sequences can be used to analyze

light transport in scattering media, the technique requires an expensive imaging system. We

thus analyze the spatial distribution of scattering light and develop a method based on the

scattering characteristics.

2.2 Shape measurement for various light transports

2.2.1 Shape-from-intensity

Shape-from-intensity is a generic framework for shape measurement based on observed inten-

sities. While traditional shape-from-intensity estimates the object shape from diffuse reflec-

tion [27, 28, 29] or specular reflection [30, 31, 32, 33, 34], other types of light transport on an

object surface are also used.

A convex shape tends to cast shadow on its surface because illumination is obstructed by an

object itself. We cannot obtain photometric information on shadow areas but a shadow bound-

ary shows the shape of obstructing object. Shafar and Kanade [49] proposed a basic constraint

for a surface orientation, which casts the shadow on other surface. Yu and Chang estimated ob-

ject shape in integrated information of shadow and shading in graph based representation [50].

Savareseet al. [51] proposedshadow carving, which carves three-dimensional volume based

on shadow areas.
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On a concave shape, the intensity of the unilluminated surface is often increased by inter-

reflections;i.e., repeated reflection between two surfaces. Nayaret al. [52] iteratively estimated

the shape of a concave surface by explicitly modeling the interreflection according to radiosity.

Liu et al. [53] showed that the light transport of the interreflection itself can be used as a cue for

shape estimation. Treibitzet al. [54] focused on the characteristics of fluorescence. The fluo-

rescence emission is closer to ideal diffuse reflection even if the shape of the target is concave.

They estimated the surface shape as the shape obtained using traditional shape from shading

method to capture fluorescence.

Thin-film objects have iridescence along the view and lighting directions. Kobayashiet

al. [55] modeled the appearance of iridescence and estimated the surface direction. In terms of

physics, the light intensity attenuates inversely proportionally to the square of the distance from

the light source. Liaoet al. [56] used this inverse-square law to estimate object shape from light

attenuation. Because polarization relates to a refraction on object surfaces, Huynhet al. [57]

used multi-spectral polarization to simultaneously obtain refractive indices and an object shape.

While the method proposed in this thesis does not use light characteristics raised above to

estimate shape, it is related to the described methods from the point of view of the shape-from-

intensity framework.

2.2.2 Shape measurement of transparent objects

Translucent and transparent objects transmit incident light into the medium. As light is pre-

vented from spreading in a transparent object, the path of the refracted light itself is used to

estimate the shape of the transparent object.

Most existing methods use pixel correspondence between the observed appearance and

known background texture to obtain the light path in transparent media. Murase [58] analyzed

the optical flow of distorted images to establish correspondence between an unknown original

background image and distorted appearance. Yeet al. [59] used Bokode [60], which enumer-

ates a pinhole projector as background texture, to obtain a unique refracted light path. Dinget

al. [61] captured a fluid surface using a camera array and estimated its shape according to the

light path derived from pixel correspondence and camera calibration. Simultaneous estima-

tion of a fluid surface and immersed scene depth has also been proposed [62] by combining

distortion and defocus analysis.

Although background distortion is useful in obtaining refracted light in transparent media,

it is difficult to know or estimate the original background from the appearance of solid objects.

9



Hence, other types of tractable light are used in shape estimation [63]. Kutulakos and Ste-

ger [35] performed triangulation of the transmitted light path analyzed according to specular

reflection and transmission. Chari and Sturm [64] extended the method of Kutulakos and Ste-

ger [35] using photometric information. Wetzsteinet al. [65] used a light field probe to analyze

the transmitted light path. Miyazaki and Ikeuchi [66] estimated the shape of an object sur-

face by analyzing multiple interreflections in the object employing a polarization ray-tracing

method. Hullinet al. [67] immersed transparent objects in fluorescent fluid and obtained a

surface shape from visualized scan-line illumination.

While the described methods use refracted light, Morris and Kutulakos [68] proposed

scatter-trace photography focusing on a transparent object that partially reflects incident light.

Trifonov et al.’s method [69] immerses target objects in fluid whose refractive index is the same

as that of the target and applies tomography to obtain the target shape. Maet al. [70] introduce

the transport of intensity equation for phase imaging with coherent illumination to estimation

of two and three-dimensional refractive phenomena.

Even though our target object is not transparent object, refracted light is an informative cue

in shape estimation. In fact, we estimate the shapes of optically thin translucent objects using

light refracted in the target objects.

2.2.3 Shape measurement under scattering effects

Scattering has been removed in shape estimation by including an additional preprocessing stage

as described in Section1.1. In contrast, underwater imaging techniques analyze target scenes in

the presence of scattering. The scattering of light under water is described by simple attenuation

because most light does not spread in the medium. Narasimhanet al. [71] modeled the appear-

ance of an object in a scattering medium using attenuation of a light stripe pattern and estimated

the target shape from the obtained reflectance of the target object. Tsiotsioset al. [72] modeled

the backscattering of a light source in scattering media employing a photometric stereo tech-

nique. Treibitz and Schechner [73] estimated the scene depth from the backscattering falloff.

However, these methods cannot be directly applied to estimate the shape of translucent objects

because incident light spreads in translucent objects.

While shape estimation from scattering effects remains a challenging problem, Donget

al. [74] estimated the shapes of translucent objects from observed intensity that includes scat-

tering effects under the assumption of an optically thick homogeneous medium. An exact

model of scattering that traces light transport is complex. Conversely, scattering can be de-

scribed by a simple model when the optical characteristics of the target material are limited to

10



optical thickness or spatial homogeneity. Our proposal is similar to this approach, where we

model simple scattering while constraining the target material according to analysis of light

transport in translucent media.
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Chapter 3

Basic theory of light transport

Before beginning the main discussion, we describe the basic theory of light transport with

emphasis on a translucent surface. We first present typical light phenomena on a translucent

surface and then discuss the representation framework of light transport.

3.1 Light transport on a translucent surface

When a light ray incidents on a translucent surface, the light partially reflects on the surface,

and partially transmits and scatters in the medium as shown in Fig.3.1. The ratio of the surface

reflection and subsurface scattering is physically determined by the Fresnel reflectance and

transmittance [75]. Although distributions of reflected and scattered light are complicated, they

can be simply categorized into several elementary components.

Surface reflection is categorized into two basic types: diffuse and specular reflection. Dif-

fuse reflection is the light that reflects in all directions uniformly from a microscopically rough

surface. Diffusely reflected light has the same intensity in all observation directions because

light randomly reflects from locally rough surface. Ideal diffuse reflection is well known as

Lambertian reflection [76]. Most computer vision techniques assume Lambertian reflection for

analyzing an observed image simply. The light of ideal specular reflection reflects into the only

direction of mirror reflection. In actual, ideal specular reflection does not exist in a real scene,

because there is no completely smoothed or clean surfaces. Thus, the light of specular reflec-

tion reflects from smooth surface and distributes around the direction of mirror reflection. Such

reflection gives an object a glossy or shiny appearance depending on the observation angle.

Subsurface scattering is also categorized into two types: single and multiple scattering. This

categorization depends on the number of collisions between light and particles in the medium.

While single scattering is the single collision of light with a particle in the medium, multiple

scattering is the collision of light with particles more than once in the medium before being
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Figure 3.1:Overview of light transport on a translucent surface. Incident light not only reflects
on a surface but also travels into the medium. The direction of a light ray changes on a surface
because of refraction.

observed. The light path of single scattering is determined by refraction on an object surface,

because the single scattering changes its traveling direction only once in the medium. The

light of single scattering distributes around the refracted light in the media and exits into a

refracted direction. Thus, the single scattering preserves directional distribution in the media

and outgoing direction. In contrast, the light path of multiple scattering cannot be identified

because repeated scattering produces an uncountable number of light paths. As a result, the

light paths of multiple scattering are completely random and the light of multiple scattering

randomly distributes in the media and exit into various directions. This random distribution

loses directionality of the incident light and attenuates around the incident point according to

the distance from the incident point and an optical characteristic.

Light transport on a translucent object is simply modeled by a combination of these reflec-

tions and scattering components. The next section introduces a representation framework for

reflection and scattering models generally.

3.2 Representation of light transport

As described in Section3.1, light transport can be characterized as outgoing distributions of

light produced by varying incident light. This means that light transport can be represented by
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𝒙 = (𝑥, 𝑦) 

Figure 3.2:Notion of thebidirectional reflectance distribution function(BRDF). Incident light
ray coming from the directionωi is reflected into the directionωo at pointx.

a relationship between the incident light ray and outgoing light ray. Abidirectional reflectance

distribution function(BRDF) and abidirectional scattering surface reflectance distribution

function(BSSRDF) provides a framework with which to express the light transport on an object

surface [77] with the incident and outgoing light ray. Figure3.2 and3.3 illustrate the notions

of the BRDF and BSSRDF, respectively.

BRDF fBRDF describes any type of reflection with a ratio of light reflected in a direction

ωo = (θo, ϕo) to light arriving from a directionωi = (θi, ϕi) at a surface pointx = (x, y), and

is thus denoted

fBRDF (x, ωi, ωo). (3.1)

As four-dimensional function with fixed surface pointx, various BRDF models have been

designed according to physical or empirical phenomena [78, 22] such as Lambertian reflec-

tion [76] for the diffuse reflection, Phong model [79] for a glossy surface, and Torrance-

Sparrow model [80] for rough surface. Alternatively, some researchers made database of re-

flection by measuring BRDF in real scenes [81, 82, 83, 84, 85]. The obtained BRDF has also

been used to analyze the characteristics of reflection in real scenes [86, 87, 88, 89]. Reflection

on an optical inhomogeneous material is easily represented by suitable independent BRDFs at
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Figure 3.3: Notion of thebidirectional scattering surface reflectance distribution function
(BSSRDF). When a light ray coming fromωi incidents at pointxi, part of the light scatters
into the subsurface. After scattering in the medium, light outputs from a different pointxo and
is distributed in the directionωo.

each surface pointx. Hence, recent research has fabricated arbitrary BRDFs employing wave

optics [90], a dynamic display with liquid [91], a programmable liquid-crystal spatial light

modulator [92], and by controlling specular highlights on the printing surface [93].

BSSRDFfBSSRDF is an extended framework of the BRDF that expresses subsurface scat-

tering effects. The BSSRDF represents the ratio of outgoing light from pointxo = (xo, yo) in

directionωo = (θo, ϕo) to incident light at pointxi = (xi, yi) from directionωi = (θi, ϕi), and

is thus expressed

fBSSRDF (xi, ωi, xo,ωo). (3.2)

Although BRDF models and sampling methods have been well studied, there are neither stan-

dard parametric models nor sampled raw data for the eight-dimensional BSSRDF because of

its high dimensionality. To sample the eight-dimensional BSSRDF, we need to control not only

the direction but also the position of incident and outgoing light ray. Hence, researchers often

approximate the BSSRDF as a low-dimensional function by considering only a homogeneous

medium [25, 94, 95] or assuming isotropic scattering based on diffusion theory [26, 96, 97] to

shrink information of absolute incident and outgoing points. To represent the spatial varying

scattering effect, the BSSRDF needs absolute points of the incident and outgoing light. The
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use of a full-dimensional BSSRDF to express general scattering effect remains a challenging

task in light transport analysis.
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Chapter 4

Measurement and Analysis of Light
Transport Employing a Full-dimensional
BSSRDF

From this chapter, we present the main contribution of our research. Firstly, we analyze the

light transport in translucent objects to obtain an appropriate appearance model that reflects

analyzed characteristics.

4.1 Introduction

Reflection, which is light transport at a surface point, has been well analyzed as a BRDF. A

variety of parametric BRDF models have been proposed [78], and a raw BRDF database has

been constructed [81]. Alternatively, dense sampling of the BRDF using optical devices has

become possible [24, 23]. However, reflection alone is not enough to represent the translucent

appearance owing to the occurrence of subsurface scattering [98].

To analyze light transport on translucent objects, we need to measure the full-dimensional

BSSRDF that represents general light transport in real scenes. However, researchers have mea-

sured only low-dimensional BSSRDFs for the analysis of isotropic scattering or propagating

light in optically homogeneous media [25, 94, 95]. Sampling of the full-dimensional BSSRDF

is simply achieved by capturing the intensity for all possible illumination and observation di-

rections via surrounding illumination and observation of the target medium. As this simple

sampling takes an enormous time and requires large numbers of devices, we need to develop

an appropriate sampling method.

In this chapter, we present a novel sampling and analysis method for the full-dimensional

BSSRDF. We sample this full-dimensional BSSRDF using a polyhedral mirror system to place

many virtual cameras and projectors around the target medium. We also analyze the sampled

19



BSSRDF by visualizing four-dimensional slices to observe the characteristics of light transport.

In addition, we propose a method of decomposing the BSSRDF into isotropic and anisotropic

components for scattering analysis. This research is the first attempt to sample and analyze a

full eight-dimensional BSSRDF for both homogeneous and inhomogeneous translucent mate-

rials such as rubber and marble. Because the sampled full-dimensional BSSRDF permits the

analysis of the scattering distribution in both spatial and angular domains, we decompose the

BSSRDF into isotropic and anisotropic components to analyze characteristics of the directional

distribution of the BSSRDF.

4.2 Sampling the full-dimensional BSSRDF using a polyhe-
dral mirror system

4.2.1 Polyhedral mirror system

To sample the BSSRDF, we need to surround the target object with many cameras and pro-

jectors. Obviously, such large numbers of devices are impractical. Therefore, mirror systems

[99, 100] are often used to produce many virtual cameras and projectors. Figure4.1 shows

the principle of creating a virtual camera with a planar mirror. A camera observes a target

object as reflections on the mirror. Each reflected image mimics an observation from the back

of mirrors. While existing mirror systems [99, 100] are designed for special imaging methods

such as shallow depth-of-field imaging and confocal imaging, these systems can observe target

scenes from various directions with controlled illuminations. In fact, we have already devel-

oped theTurtleback reflectoras shown in Fig.4.2 (a) in previous research [100]. The reflector

was designed to distribute many virtual cameras and projectors on a hemisphere with uniform

density and constant distance. Combining the reflector with a camera and a projector, we can

observe and illuminate from a wide area of a hemisphere. We reuse this system to sample the

full-dimensional BSSRDF.

The sampling densities of the incident positionxi and outgoing positionxo are 20 by 20

and 100 by 100, respectively. The number of sampling directions ofωi andωo is 48. Figure4.3

shows the position of the virtual cameras and projectors. In total, 19,200 (48 incident directions

× 20 by 20 resolution) images are captured for BSSRDF sampling. If the shutter speed is set

to 100ms, the total sampling time becomes 32 minutes. Although the sampling is sparse, the

full-dimensional (eight-dimensional) BSSRDF can be obtained using our optical device.
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Camera 

Target scene 
Mirror 

Virtual 
camera 

Figure 4.1:Virtual camera with mirror. A camera captures the target scene as a reflection on
the mirror.

(a)Turtleback reflector (b) System overview

Figure 4.2:Turtleback Reflector[100]. The combination of the reflector with a camera and a
projector. Many virtual cameras and projectors can be distributed on a hemisphere.

4.2.2 Sampled BSSRDF

We sampled BSSRDFs of three different materials, namely (a) epoxy resin, (b) rubber eraser,

and (c) marble, as shown in Fig.4.4. These materials have different properties of translucency.

The epoxy resin is optically thin, while the rubber eraser is optically dense. The marble is

a typical inhomogeneous material. Square regions indicated by red broken lines show the
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Figure 4.3: Sampling positions on a hemisphere. Left: virtual cameras and projectors are
placed uniformly in a spherical coordinate system. Right: sampling positions correspond to the
vertexes of the geodesic dome.

(a) epoxy resin (b) rubber eraser (c) marble

Figure 4.4:Target translucent materials. The epoxy resin is optically thin, while the rubber
eraser is optically dense. The marble is a typical inhomogeneous material. Square regions
indicated by red broken lines show the sampling areas.

sampling areas. Figure4.5 shows examples of images captured by virtual cameras that are

enhanced by gamma correction (γ = 2.0). The left column of Fig.4.5shows images captured

by different virtual cameras under the same incident light. These are four-dimensional(xo, ωo)

slices of the sampled BSSRDFs under fixed illuminationxi = (0, 0) andωi = (2.2◦, 154.3◦).

Each small block shows the brightness at each outgoing positionxo from a particular outgoing

directionωo. The right column of Fig.4.5shows images captured by the same virtual camera

under different incident lights. These are four-dimensional(xo,ωi) slices sampled from the

fixed incident pointxi = (0, 0) and outgoing directionωo = (2.2◦, 154.3◦). As there is color

bleeding in the captured images owing to the color filter pattern of the projector, we analyze the
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(a) epoxy resin 

(b) rubber eraser 

(c) marble 

Figure 4.5:Examples of images captured by virtual cameras. The left column shows images
captured by different virtual cameras under the same incident light. The right column shows
images captured by the same virtual camera under different incident lights. These images are
enhanced by gamma correction (γ = 2.0).
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scattering intensities in grayscale. Figure4.5 shows different light distributions on the epoxy

resin and almost the same light distributions on the rubber eraser for both fixed illumination

and observation. These distributions show that the light distribution in the epoxy resin changes

with the incident and outgoing directions, while the distribution in the rubber eraser does not

change with outgoing direction. The marble has spatially varying scattering because of its

inhomogeneous structure, including both optically thin and dense parts. Although such simple

analysis of the spatially distributed light with fixed illumination and observation directions is

possible, it is difficult to observe the directionally distributed light for the outgoing direction

from measurements in Fig.4.5. In the next section, we analyze the sampled BSSRDFs in terms

of both directional and spatial distributions.

4.3 Analysis of the Sampled BSSRDF

4.3.1 Visualization of the BSSRDF

Visualization is an effective method of analyzing sampled data. In the case of BRDFf(x,ωi,ωo),

the directional distributionf(ωo) for several incident directionsωi and positionsx is often vi-

sualized for reflection analysis. Here, we also analyze sampled BSSRDFsf(xi,ωi,xo, ωo) by

the visualization of the low-dimensional BSSRDFf(xo, ωo) with fixed incident light.

First, we compare the visualized low-dimensional BSSRDFs with fixed incident direction

ωi to observe the change in the BSSRDF with incident positionxi. Figure4.6 shows illu-

minated positionsxi on each material. Figure4.7shows four-dimensional slicesf(xo, ωo) =

f(xo, yo, θo, ϕo) of the BSSRDF at a couple of incident positionsxi = (xi, yi) as six-dimensional

slicesf(xi,xo, ωo) = (xi, yi, xo, yo, θo, ϕo) of the BSSRDF. The direction of illumination is

(a) epoxy resin (b) rubber eraser (c) marble

Figure 4.6:Illuminated positions for the visualization of each material
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fixed atωi = (44.9◦, 74.8◦). We plot the value of the BSSRDF atxo from −30 to 30 in 10

intervals for all viewing directions in log-scale pseudo color on a spherical coordinate system

at each outgoing position. The left and right columns in Fig.4.7show four-dimensional slices

of the BSSRDF obtained with illumination at the red and blue points in Fig.4.6, respectively.

Figure4.7(a) shows slices of the BSSRDF of epoxy resin in which there is a straight light dis-

tribution. Visualized directional distributions at each position have a peak value for a specific

direction and BSSRDFs have large values along the azimuth angle of the direction of illumi-

nation. This shows that scattering in epoxy resin is accounted for by single scattering because

single scattering preserves the directionality of incident light. Additionally, slices of BSSRDFs

are similar despite having different incident positions because epoxy resin is a homogeneous

medium. Figure4.7 (b) shows a visualized slice of the BSSRDF of rubber eraser. BSSRDF

slices obtained for different incident points are also similar owing to the homogeneity. The

directional distribution at each position has an almost constant value that decreases with dis-

tance from the incident point. This shows that multiple scattering loses the directionality of the

incident light and is distributed uniformly among the outgoing directions. Figure4.7(c) shows

the visualized BSSRDF of marble. Because marble is optically thin, light propagates in a par-

ticular spatial region as for epoxy resin. However, slices of BSSRDFs for different incident

positions are not the same owing to the inhomogeneous structure. As eight-dimensional BSS-

RDF includes spatial information such as the incident and outgoing positions, we can analyze

the spatial structure according to the similarity of BSSRDF slices.

Figure4.8shows six-dimensional slicesf(ωi, xo,ωo) = f(θi, ϕi, xo, yo, θo, ϕo) of the BSS-

RDF. The red distribution is obtained for the direction of illumination(θi, ϕi) = (44.3◦, 127.2◦),

and the blue distribution is obtained for(θi, ϕi) = (43.7◦, 233.7◦). Directions of illumination

are almost symmetric. Optically thin materials such as epoxy resin and marble changes the

shape of the distribution according to the direction of illumination and distributions at each

point are anisotropic. Light distributions of optically dense rubber eraser do not change with

the incident angle. Additionally, distributions at each incident point are isotropic. For any ma-

terial, angular distributions with the direction of illumination represent optical characteristics

of the material.

In this section, we analyze the sampled BSSRDFs by visualization. If the BSSRDF is

represented by an approximated low-dimensional function, it is difficult to analyze both spatial

and angular distributions simultaneously. We carry out detailed analysis by sampling the full-

dimensional BSSRDF.

25



(a) epoxy resin

(b) rubber eraser

(c) marble

Figure 4.7: Visualized BSSRDF. The direction of illumination is fixed at(θi, ϕi) =
(44.9◦, 74.8◦). The left column of images in (a) - (c) presents visualizations of the BSSRDF
for illumination at the red point in Fig.4.6. The right column of images in (a) - (c) presents
visualizations of the BSSRDF for fixed illumination at the blue point in Fig.4.6. The red arrow
shows the direction of illumination.
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(a) epoxy resin

(b) rubber eraser

(c) marble

Figure 4.8: Close up of the visualized BSSRDF, showing the angular distribution at
(xo, yo) = (−10, 0), (10, 0). The red arrow represents the direction of illumination
(θi, ϕi) = (44.3◦, 127.2◦) and the blue arrow represents the direction of illumination(θi, ϕi) =
(43.7◦, 233.7◦). Blue and red distributions represent the visualized angular distribution for each
illumination

4.3.2 Decomposition of isotropic and anisotropic components

To analyze light transport on an object surface, it is important to decompose the observed phe-

nomenon into basic optical components. As traditional photometric methods have assumed

only diffuse reflection, surface reflection is often decomposed into diffuse and specular reflec-

tion components to remove specular effect [101]. Nishino et al. [102] focused on the angular

dependency of surface reflection, and decomposed surface reflection into angular dependent

specular reflection and angular independent diffuse reflection. Inspired by their method, we

decompose the observed BSSRDF according to the angular dependency.

In the previous section, we showed various directional dependencies of the scattered light;

i.e., the BSSRDF can be decomposed into an angular independent isotropic component and

angular dependent anisotropic component as illustrated in Fig.4.9. The isotropic component

does not depend on the viewing direction, while the anisotropic component varies according to
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components

(b) Anisotropic
component

(c) Isotropic
component

Figure 4.9:Concept of decomposition. We decompose sampled BSSRDFs into isotropic and
anisotropic components according to the directional dependency.

the viewing direction. Hence, we formulate the decomposition as

f(xi, ωi, xo,ωo) = fi(xi,ωi,xo) + fa(xi, ωi, xo,ωo), (4.1)

where the functionfi represents the isotropic component and the functionfa represents the

anisotropic component. It is noted that the argumentωo is not included in the functionfi

because of the independency on the viewing direction.

The two components are decomposed according to the constancy of the angular distribution.

To implement this idea, we refer to a separation method proposed by Nishinoet al. [102]. In

their work, they simply extracted view-independent components by taking the minimal pixel

value at each surface point as a constant component over image sequences. We also apply this

idea to decompose sampled BSSRDFs. The isotropic component is separated by finding the

minimal value along viewing directions at each surface point:

fi(xi,ωi,xo) = min
ωo∈Ω

f(xi, ωi, xo,ωo), (4.2)

whereΩ denotes the hemispherical directions. The anisotropic component is then computed as

the residual according to

fa(xi,ωi,xo,ωo) = f(xi,ωi,xo, ωo)− fi(xi,ωi,xo). (4.3)

An overview of this decomposition is depicted in Fig.4.10.

Figure4.11shows the decomposition results of sampled BSSRDFs of epoxy resin, rubber

eraser and marble in pseudo color. The left column shows the sum of sampled BSSRDFs for all

observation directionsEboth, the center column shows the sum of the decomposed anisotropic
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Figure 4.10:BSSRDF decomposition with analysis of outgoing directionωo. Constant bias
in the BSSRDF corresponds to an angular independent component, and the remainder of the
BSSRDF is the component dependent on angle.

BSSRDF for all observation directionsEa and the right column shows the scaled decomposed

isotropic BSSRDFsEi, which are expressed as

Eboth =
∑

ωo

f(xi,ωi,xo,ωo), (4.4)

Ea =
∑

ωo

fa(xi,ωi,xo,ωo), (4.5)

Ei = sfi(xi,ωi,xo). (4.6)

As epoxy resin has strong directional scattering, most of the light is categorized in the anisotropic

component. In contrast, strong multiple scattering in the rubber eraser belongs to the isotropic

component. Illuminated light gradually loses its directionality as light scatters in the medium

because the light path varies according to a number of scattering, such that low-bounce scat-

tering retains the directionality, while higher-order scattering loses the directionality of a prop-

agating light in the media. Hence, we often see anisotropic scattering in optically thin media

and isotropic scattering in optically dense media. This result shows that we can decompose

the scattering component into low-bounce and high-order scatterings according to the angular

dependency, and the angular dependency is a clue with which to analyze optical density. Mar-

ble also has a low isotropic component because its inhomogeneous structure generates angular

varying distribution. This result reveals that the spatial structure of an object affects the angular

dependency of scattered light in the media.

From the above results of decomposition, we confirm that the sampled BSSRDFs can be

decomposed into isotropic and anisotropic components by the analysis of the BSSRDF in out-
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Figure 4.11:Decomposition results for three materials. The left column shows both compo-
nents, the center column shows the decomposed anisotropic component and the right column
shows the decomposed isotropic component. Each image shows the total energies of emitted
light at each surface point.
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going direction. In addition, we can analyze optical thickness and homogeneity using the

decomposed BSSRDF.

4.3.3 Refracted light in optically thin media

As discussed in previous sections, the scattering light in optically thin media saves directional-

ity of propagation. Generally, the incident light on an object surface is refracted and propagates

into the object. Direction of a scattering light depends on refraction effect on the surface. In the

optically thin epoxy resin, we previously observe the straight light distribution in Section4.2.2.

Here, we confirm whether the straight light distribution in epoxy resin relates refraction.

The path of refracted light is determined based on Snell’s law with directions of incident

and outgoing light, surface normal on the incident and outgoing point, and a refractive index of

the target object. Thus, we can generate the observation of refracted light ray as an image with

known direction of the incident and outgoing light. We compare generated image of refracted

light ray and observed scattering light and then consider the these relationships.

Figure 4.12 show the plot of refracted light ray with yellow line. We superimpose the

refracted light on the images in Fig.4.5according to direction of illumination and observation.

Although the refractive index of epoxy resin is unknown, we use1.5 as a value of refractive

index for plastics. Figure4.12 (a) shows that refracted light rays with the fixed illumination

xi = (0, 0) and ωi = (2.2◦, 154.3◦). Plots of refracted light are different in each image

because images are observed from different directions. Except for the image in the fourth

row and first column, plots of refracted light correspond to straight light distributions in the

image. In addition, each light distribution attenuates according to refracted ray. Image in the

fourth row and first column are observed from same direction of illumination. Because the

light illuminates almost perpendicular direction of object surface, refracted light also travels

through same direction. Thus, a plot of refracted light becomes the center point in the image.

Figure4.12(b) shows that refracted light rays with the fixed observationωo = (2.2◦, 154.3◦).

We observe the similar result of the Fig.4.12(a). Each direction of refracted light corresponds

to straight light distribution in the image.

From the visualization of refracted light in observed images, we confirm that the refracted

light ray contributes scattering in optically thin translucent object determining direction of scat-

tering light.
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(a) Refracted light with fixed illumination (b) Refracted light with fixed observation 

Figure 4.12:Plot of refracted light ray in observed images. The left images are observed with
the fixed illuminationxi = (0, 0) andωi = (2.2◦, 154.3◦). The right images are observed
with the fixed observationωo = (2.2◦, 154.3◦). Yellow line plots refracted light in each image
depending on both of direction of illumination and observations.

4.3.4 Approximation of optically thick media employing a dipole model

In the field of computer graphics, optically dense translucent materials are often synthesized

using a dipole approximation model [26]. We confirm the accuracy of the dipole model using

the sampled BSSRDF of an optically thick rubber eraser. The BSSRDFf(xi,ωi,xo, ωo) based

on dipole approximation is represented as

f(xi,ωi,xo,ωo) =
1

π
Ft(η, ωo)R(xi,xo)Ft(η, ωi), (4.7)

whereFt(η, ω) is the Fresnel transmission function.R(xi, xo) is the scattering term of the

dipole model parameterized by scattering coefficientσ′
s, absorption coefficientσt, and refrac-

tive indexη as

R(xi,xo) =

α

4π

(
zr

(
σtr +

1

dr(xi,xo)

)
e−σtrdr(xi,xo)

d2
r(xi,xo)

+ zv

(
σtr +

1

dv(xi, xo)

)
e−σtrdv(xi,xo)

d2
v(xi, xo)

)
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Figure 4.13:Result of dipole model fitting. Dots show the sampled BSSRDF at eachωi,ωo.
Solid lines show the fitted dipole model.
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Figure4.13shows the result of the dipole model fitting. We normalize the BSSRDF asf(xi, ωi, xo,ωo) =

1 at |xi−xo| = 0 and set refractive indexη = 1.3. Blue dots show the sampled BSSRDF with

(θi, ϕi) = (2.2◦, 154.3◦) and (θo, ϕo) = (43.7◦, 233.7◦) and orange dots show the BSSRDF

with interchanged illumination and observation angles.

As shown in Fig.4.13, the sampled BSSRDFs are similar. This observation satisfies the

model described as eq. (4.7) in which the BSSRDF with arbitraryωi andωo corresponds to the

BSSRDF with interchangedωi andωo. Fitting results are shown by solid lines. The estimated

parameters areσ′
t = 0.19, σa = 0.0 to (θi, ϕi) = (2.2◦, 154.3◦) andσ′

t = 0.16, σa = 0.0

to (θi, ϕi) = (43.7◦, 233.7◦). Although the estimated parameters are slightly different, the
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Figure 4.14:Synthesized image with parameters estimated by dipole model fitting.

BSSRDFs are approximated with little error. Figure4.14shows the image synthesized using

the dipole model with estimated parameters. The synthesized appearances are similar to the

appearance of the rubber eraser in Fig.4.4 (b). The results confirm that the appearance of a

rubber eraser can be approximated using a dipole model.

4.4 Discussion

In this chapter, we presented a novel method of sampling and analyzing full-dimensional BSS-

RDFs. For sampling, we used theTurtleback reflector, which is a polyhedral mirror system

that illuminates and observes the object surface from various directions by virtual projectors

and cameras. This system samples the full-dimensional BSSRDF in relatively short time. For

analysis, we visualized spatial and angular distributions by slicing BSSRDFs with fixed inci-

dent light ray and direction of outgoing direction. The analysis on directional distributions of

the light transport has already done in research on BRDFs, the analysis on incident and out-

going points is achieved by the full-dimensional BSSRDF. In addition, we decomposed the

BSSRDF into angular isotropic and anisotropic components by the analysis of outgoing direc-

tion. The analysis revealed that the ratio of the two components strongly depends on the optical

thickness and homogeneousness of the medium.
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Figure 4.15:Summary of the analysis of the BSSRDF in terms of optical thickness. Light
transport in optically thin and thick objects has different characteristics of directionality.

Constant with 
incident position 

Change with 
incident position 

Optically homogeneous object 
(epoxy resin) 
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Figure 4.16:Summary of the analysis of the BSSRDF in terms of optical homogeneity. Light
transport has spatially different propagation.

We summarize the characteristics of light transport in translucent media, which are analyzed

using the full-dimensional BSSRDFs in Figs.4.15and4.16. Here, we discuss an appropriate

model to represent scattering in translucent media, which we will use in the following chapters.

In optically thin translucent media, observed light transport depends on the incident and

outgoing direction because the incident light attenuates around the refracted light ray. Small

number of particles in optically thin media does not prevent the incident light from traveling

through the media, and the light does not spatially distribute but travels along a refracted ray.

Thus, scattering light in optically thin translucent media can be modeled by light attenuation

along with the refracted light ray depending on direction of the incident and outgoing light.

Analysis of refracted light in optically thin media as described in Section4.3.3also shows this

phenomena.

Meanwhile, incident light in optically thick translucent media does not depend on the direc-
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tion of the incident and outgoing light, because the light loses its directionality due to repeated

scatterings in the media. Repeated scatterings make uncountable light paths, and the light ran-

domly travels in the media independently of incident and outgoing directions. This means that

we can ignore the effect of directions of incident and outgoing light in modeling scattering

light in optically thick translucent media. The dipole model that we use for the model fitting of

scattering light on a rubber eraser is parameterized using only the distance between an incident

point and outgoing point|xi − xo| without the directions of the incident and outgoing light.

While we select a scattering model focusing on angular dependency to deal with optical

thickness, we have to additionally change the scattering model at each position to deal with

optical homogeneity. A spatially variant translucent medium is difficult to represent with the

parametric model owing to the complex structure of the medium such as optical discontinuity

owing to cracks between optically different layers [103]. In addition, it is difficult to deal with

completely different appropriate scattering models according to the optically thickness at each

position in the same formulation. Hence, we calibrate or estimate scattering model at each

position for the spatially varying translucent medium to avoid complex parametric expression

of scattering model.

Based on these analyses of the scattering model, we propose shape estimation methods for

optically thin and optically thick translucent objects in the following chapter.
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Chapter 5

Shape Estimation of an Optically Thin
Translucent Objects

From this chapter, we propose a shape estimation method for a translucent object based on the

discussion in Section4.4. Firstly, we present the estimation method for optically thin translu-

cent objects.

5.1 Introduction

When traveling through a translucent medium, light collides with particles and scatters in the

medium. Because the density of particles is low in optically thin translucent media, incident

light rarely collides with particles and travels almost in a straight line. Thus, attenuated light is

often observed around refracted light as shown in Section4.3.

The attenuation of light is modeled using the Lambert-Beer law [104] in physics. The law

describes that incident light exponentially attenuates along the length of the light path in a

medium. While the light path of scattering is usually complex owing to uncountable collisions

with particles, the light path of a single scattering is identified uniquely because light collides

with a particle only once in the medium. Propagating light in an optically thin medium is

dominated by low-bounce scattering, and the light attenuation model of single scattering is

thus appropriate for our target.

In this chapter, we develop a shape estimation method based on the observation of sin-

gle scattering, and its attenuation along the light path. We derive a solution method using a

scattering model that takes into account the refraction, an extinction coefficient, and a phase

function.

The primary contributions of this work are as follows. We propose a new shape estimation

technique based on the scattering effect for translucent objects. Scattering is introduced as a
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Figure 5.1: Illustration of the scattering model and examples of distribution profiles with a
varying phase function.

signal beneficial for determining the shape. The proposed method is effective when the target

object generates strong transmitted scattering, which is a situation in which other shape estima-

tion approaches cannot be applied. This work is the first attempt to directly use the observed

intensities of single scattering for shape measurement. Additionally, we develop an effective

solution method based on energy minimization for the simultaneous estimation of the shape

and scattering parameters.

5.2 Shape from Single Scattering

5.2.1 Background

Figure5.1(a) shows a parametric single scattering model. In a scattering medium, incident

light exponentially attenuates along the length of the light path according to the Lambert-Beer

law [104]. It also scatters through a solid angle in the medium, and a good approximation of

the phenomenon is the Henyey-Greenstein phase function [105]. With this phase function, the

observed intensityI of single scattering is described as [39, 41]

I = sp(g, θ)e−σt(d1+d2)dω, (5.1)

p(g, θ) =
1

4π

1− g2

(1 + g2 − 2g cos θ)
3
2

, (5.2)
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Figure 5.2: Setting for shape esti-
mation. A translucent object is illu-
minated from the side and observed
from the top.
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Figure 5.3: Light path in the target object. The in-
cident plane is almost planar, and incident light is as-
sumed to be parallel to thex-axis. The illuminated ray
reaches the surface point(x, y), changing its travel di-
rection at the scattering point(x′, y′).

wheres is a scaling constant that includes the intensity of the incident light and scattering

coefficient,σt is an extinction coefficient,(d1+d2) is the length of the light path in the medium,

dω is the solid angle of the light ray, andp(g, θ) is the phase function. The phase function

represents the scattering distribution, and the distribution profile is controlled by a parameterg

(−1 ≤ g ≤ 1). Figures5.1(b), (c), and (d) show examples of the distribution profiles produced

by varyingg.

5.2.2 Formulation

We formulate the relationship between observed intensities of single scattering and the shape

of a translucent target. Figure5.2shows our setting for the shape measurement. A translucent

object is illuminated from one side and observed from the top. We assume a homogeneous

material as a target object and orthographic projection for both illumination and observation.

We also assume that a incident light ray attenuates along horizontal line in an object and does

not reflect on other surfaces of the object. In addition, we ignore multiple scattering for now,

but explain a method for handling it in later sections.
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Figure 5.3 illustrates a light path of single scattering in a medium. The incident rayix

scatters through a solid angledω at scattering point(x′, y′), and reaches surface point(x, y).

n(x, y) represents the surface normal andix = [1, 0, 0]T and iz = [0, 0, 1]T are incident and

exiting light vectors, respectively.r(x, y) is a unit scattering vector pointing from the scattering

point (x′, y′) to the surface point(x, y). The angle between the incident vectorix and the

scattering vectorr(x, y) is denoted asθp. θr represents the projected angle ofθp on the plane

spanned byr(x, y) andiz. Our purpose is to estimate the height of the translucent objecth(x, y)

from the observed intensityI(x, y) at the surface point(x, y) on the surface, where the height

of the incident ray isz = 0. The scattered incident rayix is finally refracted at the object

surface. The angle of refraction obeys Snell’s law, expressed as

n(x, y)× iz = ηn(x, y)× r(x, y), (5.3)

whereη is the refractive index, and× represents a cross-product operator. The total length of

the light path becomes the sum ofx′, which corresponds to the sum of the distance from the

incident point to the scattering point and the distance from the scattering point to the surface

point,h(x, y)/sin θr. As the intensity of single scattering is modeled as eq. (5.1), the observed

intensity is expressed as

I(x, y) = sF in
t F out

t (x, y)p(g, θp)e
−σt(x′+h(x,y)

sin θr
)dω(h(x, y), θr), (5.4)

dω(h(x, y), θr) =
sin θrdA

h(x, y)2
,

wheres is a scaling constant,F out
t (x, y) is the Fresnel transmittance on the surface point(x, y),

andF in
t is the constant Fresnel transmittance on the incident point because the incident light

is perpendicular to the incident plane.dA is the physical size of a pixel in the observed im-

age. Equation (5.4) shows that the observed intensity depends on both the geometric shape

and scattering parameters, namely the extinction parameterσt, refractive indexη, and phase

function parameterg. Given these scattering parameters, the height of the translucent object is

determined to an unknown offset owing tos as

h(x, y) =
sin θr

σt

(
log s + log F in

t + log F out
t (x, y) + log p(g, θp)

+ log dω(h(x, y), θr)− log I(x, y))− x′ sin θr. (5.5)

.
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5.3 Solution method

In the previous section, we described a basic theory for obtaining the shape from single scat-

tering. However, in reality, we cannot directly estimate the object heighth(x, y) using eq. (5.5)

because of the unknown parameters and unclosed form of the function. In addition, the ob-

served intensities include contributions from not only single scattering but also multiple scat-

tering. In this section, we discuss a method that solves these problems. Our method assumes

that the refractive indexη is known because it can be directly measured using a refractometer.

5.3.1 Shape estimation by energy minimization

In our method, we employ an energy minimization approach to simultaneously determine both

the shape and scattering parameters. When the unknown parameters and height are correctly

estimated, eq. (5.4) should give an intensity that is equivalent to the observed intensityI(x, y).

Although we can estimate the unknown parameters by seeking parameters that generate the

observed intensity, parameter estimation tends to be unstable owing to a larger number of

unknown parameters than the captured intensity. To reliably derive a solution to this prob-

lem, we use multiplen(2 ≤ n) images that are captured by changing the height of the inci-

dent ray;i.e., we record multiple intensitiesIi(x, y) with varying heights of the incident rays

z = di (i = 1, . . . , n) as shown in Fig.5.3. We now haven intensity observations per scene

point Ii(x, y), expressed as

Ii(x, y) = sF in
t F out

t (x, y)p(g, θp)e
−σt(x′

i+
h(x,y)−di

sin θr
)dω(h(x, y), θr),

i = 1, . . . , n.
(5.6)

We also take into account the signal-to-noise ratio of the observed intensities; the darker ob-

servations suffer more from image noise while the brighter observations are more reliable. We

incorporate this by introducing a weighting factorwi when determining the unknown parame-

ters. We thus define an energy function for computing heightsh(x, y) and scattering parameters

s, g, σt as

E(h(x, y), s, g, σt) =
∑

i

wi

∑

x,y

(Ii(x, y)− Igen
i (h(x, y), s, g, σt))

2 , (5.7)

whereIgen
i is the generated intensity obtained using eq. (5.6), andwi is a weighting factor that

reduces the effect of noise. We define the weighting factorwi as

wi =

∑
x,y Ii(x, y)∑n

k=1

∑
x,y Ik(x, y)

. (5.8)
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The energy functionE evaluates the closeness between the observed intensity and intensity

generated using eq. (5.6). The minimization of the energy functionE gives us estimates of the

heighth(x, y) per-pixel and scattering parameterss, g andσt as

{h(x, y), s, g, σt} = argmin
h(x,y),s,g,σt

E(h(x, y), s, g, σt). (5.9)

We describe the optimization method in the following section.

5.3.2 Implementation

This section describes the implementation details of the solution method. Our method employs

non-linear optimization because of the non-convexity of eq. (5.7) with respect to the unknown

parameters. We now describe the method for making the initial guess of the heighth(x, y) and

the following optimization strategy.

Estimation of initial shape

To make an initial guess of the estimated parameters, we use the initial shapeh0(x, y) computed

by ignoring refraction (η = 1). Whenη = 1, the scattering vector coincides with the output

vector iz, the two-dimensional projection of the scattering point(x′, y′) becomes identical to

the surface point(x, y), and Fresnel transmittanceF out
t (x, y) is constant because refraction is

disregarded. Since the angleθp equalsπ/2, the phase functionp(g, θp) becomes constant. In

addition, we assume that solid angledω(h(x, y), θr) is a constant value. The intensity generated

from initial heighth0(x, y) is described as

I0
i (x, y) = Se−σt(h0(x,y)+x−di), S = sF in

t F out
t p

(
g,

π

2

)
dω. (5.10)

Here, unknown parameters are the heighth0(x, y), scaling constantS, and extinction coefficient

σt. Using a pair of intensity observationsIi(x, y) andIj(x, y) obtained for different heights of

incident raysdi anddj, the extinction coefficient is calculated as

σt =
log Ii(x, y)− log Ij(x, y)

di − dj

(di ̸= dj). (5.11)

In practice, we take the average for all pairs ofdi anddj as the estimate ofσt. We employ the

intensity at the incident point as the initial scaling constantS for the scaling without attenuation.

The initial guess of the heighth0(x, y) is therefore described as

h0(x, y) =
1

σt

(log S − log Ii(x, y))− x + di, (5.12)

and is estimated using the parametersσt andS. We use this initial guess as an input to the

optimization:h(x, y)← h0(x, y).
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Optimization

Now we estimate the shape and parameters by minimizing eq. (5.9) usingh0 as the initial guess

of the shape. The unknowns to be estimated are the per-pixel heighth(x, y) and scattering

parameterss, g, andσt. To efficiently avoid local minima, we use a two-step approach for the

optimization. Specifically, we first apply particle swarm optimization [106] to limit the search

range in a coarse manner, and then use the Nelder-Mead method [107] to find the optimal

parameter set on a fine scale.

Extraction of single scattering

As discussed above, actual observations are both of single and multiple scatterings as shown in

Chapter3.1. To separate the single scattering component from multiple scattering, we employ

a separation method [39] that uses a projector as a light source, as shown in Fig.5.4. We illumi-

nate one-dimensional high-frequency stripe pattern and capture several images with shifting its

phase to an object. Although black pixels do not directly illuminate the object, the brightness

of regions corresponding to black pixels is not zero due to multiple scattering. Since the bright-

ness of unilluminated regions does not change with shifted projection, the constant component

corresponds to multiple scattering. We extract the multiple scattering componentImultiple as the

constant component by taking minimal value along observed images with shifted projection.

In actual, the extracted minimal valueImin is the half of multiple scatteringImultiple because

the high-frequency stripe pattern illuminates the half of pixels on a horizontal line. Thus, the

multiple scattering is the two times of the constant component as

Imultiple = 2Imin. (5.13)

On the other hand, the illuminated region in observed image includes both single scattering

and multiple scattering. Thus, the imageImax by taking maximum value along images with

shifted observed images has both single scattering and multiple scattering. Then, we obtain

single scattering by subtracting the constant componentImin from Imax as

Isingle = Imax − Imin. (5.14)

Although this method allows us to extract the single scattering component easily, accu-

racy of separation depends on frequency of stripe pattern [108]. In the experiment, we select

appropriate frequency to separate scattering components on target objects.
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Figure 5.4:Decomposition method employing the projection of high-frequency illumination.
In this setting, single scattering and multiple scattering are observed as a high-frequency com-
ponent and almost constant component, respectively. Hence, single and multiple scatterings are
decomposed by analyzing the difference in captured images, using a shifting projection pattern.

5.4 Experiments

We assess the effectiveness of the proposed method for both synthetic and real-world scenes.

For the synthetic scenes, we assess the accuracy of the proposed method by making a compari-

son with the ground truth. For the real-world scenes, we prepare two objects where the ground

truth shape is available while the scattering parameters are unknown.

5.4.1 Synthetic scenes

For the synthetic scene experiment, we use two one-dimensional curved surfaces and one dis-

continuous surfaceh(x) as the scenes, referred to as Scenes A, B, and C. For each scene, we

simulate intensity observationsIi(x) with varying heights of incident raysdi = 0.2 × i[mm],

i = 0, · · · , 9 using the scattering model of eq. (5.6). We add Gaussian noise to the inten-

sity observations at five levels (µ = 0 andσ = 0, 5, 10, 15, 20). The optical parameters are

consistently set toη = 1.2, g = 0.1, σt = 0.15[mm−1], ands = 50000.

Figure5.5(a) shows Scene A and (b) shows the simulated intensity observation in the case

of Gaussian noiseσ = 10. From this intensity, we estimate the object shapes. Figure5.5(c)
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Figure 5.5:Estimated heights of Scene A
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Table 5.1:Estimated parameters and RMSE of the estimated height at each noise level.

Scaling 
constant 𝑠  

Parameter 
𝑔  

Extinction 
coefficient 
𝜎𝑡 [mm−1] 

RMSE of 
height [mm−1] 

Ground truth 

𝜎 = 0 

𝜎 = 5 

𝜎 = 10 

𝜎 = 15 

𝜎 = 20 

5.0 × 104  

5.08 × 104  

4.95 × 104  

4.95 × 104  

6.09 × 104  

6.33 × 104  

0.1 

0.069 

0.007 

0.002 

− 0.002 

0.003 

0.15 

0.15 

0.15 

0.15 

0.16 

0.16 

0.05 × 10－1  

0.15 × 10－1  

0.42 × 10－1  

1.64 × 10－1  

1.90 × 10－1  

shows the estimated result of Scene A. The initial height is globally skewed owing to the in-

accurate assumption of the refractive indexη = 1 and local deformations due to observation

noise. In particular, when the Gaussian noise levels areσ = 15 and20, the estimated shapes

become noisier as the length of the light path increases because of the low signal-to-noise ra-

tio. However, optimized results consistently agree well with the ground truth except for some

fluctuations.

Estimated scattering parameters and the root-mean-square error (RMSE) values are sum-

marized in Table5.1. With small noise, the scaling parameters and extinction coefficientσt

are almost correct. The scattering parameterg has a larger deviation from its ground truth.

Althoughg controls the scattering distribution, it affects both the intensity scale and intensity

attenuation depending on the object shape. Thus, estimatingg becomes more difficult than

estimating other parameters. While the RMSE increases according to the noise amplitude, the

overall errors are small and demonstrate the accuracy of the method.

Other experimental results are obtained for a synthetic one-dimensional stepped shape

(Scene B) and two-dimensional pyramid like shape (Scene C). The ground truth and estimation

result in the case of Gaussian noiseσ = 10 are shown in Fig.5.6(a) and Fig.5.7(a). Scattering

parameters are the same as those in the experiment for Scene A. Figure5.6shows experimental

results for Scene B. The initial estimation has errors along a discontinuous edge because the in-

tensity of the synthesized observations changes discontinuously. The estimation well converges

to the ground truth, and scattering parameters are estimated almost correctly ass = 4.89×104,

g = 0.044, andσt = 0.15[mm−1]. Figure5.7 shows results for Scene C, which is an asym-

metric and discontinuous scene. Although the initial shape as shown in Fig.5.7(c) also has

errors along the ridges of the pyramid shape, these errors are reduced in the final estimation.
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(a) Scene B and estimation result 

(b) Intensity observations 

Figure 5.6:Estimated heights of discontinuous Scene B. Estimated scattering parameters are
s = 4.89× 104, g = 0.044, andσt = 0.15[mm−1].

Estimated scattering parameters ares = 4.33 × 104, g = 0.025, andσt = 0.147[mm−1]. For

these asymmetric and discontinuous scenes as well, the estimation well converges to near the

ground truth. The scaling parameters and extinction coefficientσt as scattering parameters are

also estimated correctly.

5.4.2 Real-world scenes

We also applied the proposed method to real-world scenes. Figure5.8shows the experimental

setting. A 3M MPro110 projector was placed on the side of the target object, and a Point

Grey Grasshopper camera that had a linear response sensor was vertically placed to obtain a
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Figure 5.7:Estimated heights of discontinuous and asymmetric Scene C. The estimated param-
eters ares = 4.33× 104, g = 0.025, andσt = 0.147[mm−1].

top view. To avoid the perspective effect of the imaging system, we used an Edmund optics

telecentric lens for approximating an orthographic projection. To perform a comprehensive

analysis, we used two different shapes of translucent objects, one being concave and the other

being convex. We made these objects using the same material as shown in Fig.1.1(b). We show

target objects and their sizes in Figure5.9. The ground truth of these objects was known for

quantitative evaluation. We set the refractive indexη as1.3. We captured intensities of single

scatteringIi(x, y) (di = 0.25× i[mm], i = 0, · · · , 9) while shifting the height of incident light.

Figure5.10 shows the experimental result for the concave object. Figure5.10(a) shows

the decomposition of the scattering components in pseudo color. We also horizontally plot

intensities of each scattering component in Fig.5.10(b). The red, green, and blue plots show the
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Projector 
(3M MPro110) 

Camera 
(Point Grey Grasshopper) 

Telecentric lens 
(Edmund optics) 

21cm 

15cm 

Figure 5.8:Experimental setting. A projector is placed on the side of the object, and a camera
is vertically placed. We used a telecentric lens for orthographic projection.
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(a) Concave scene (b) Convex scene 

Figure 5.9:Target objects for evaluation
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Figure 5.10:Experimental result for a concave scene.
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Figure 5.11:Experimental result for a convex scene.
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Figure 5.12:Three-dimensional plots of estimated concave and convex scene.

intensities of single scattering, multiple scattering, and observed scattering, respectively. It is

observed that single scattering is almost exponentially attenuated with increasing distance from

the incident point. Figure5.10(c) shows plots of extracted single scattering with for different

heights of incident light. We estimate the target shape from these intensities. One-dimensional

plots of estimation results are shown in Fig.5.10(d). The red, green, and blue lines are the

ground truth, initial height, and final result, respectively. The initial height is not very far from

the ground truth. The final result is estimated as being close to the ground truth. However, the

final result is estimated incorrectly in the region of a planar surface. A possible reason for the

incorrect estimation is insufficient intensity of single scattering for shape estimation because

the light paths are longer in observing this region. In addition, the shape near the incident plane

does not match the ground truth well owing to the bright observation at the incident point and its

glare. Scattering parameters are estimated ass = 1.21×104, g = 0.042, andσ = 0.132[mm−1].

We also show the experimental result of the convex scene in Fig.5.11. Figures5.11(a) and

(b) show the separated scattering component and intensity plot, respectively. Figure5.11(d) is

the shape estimated from single scatterings as shown in Fig.5.11(c). Discontinuous shape at the

top of the convex shape in the initial shape is improved to the correct shape in the final result.

Estimated scattering parameters ares = 1.27 × 104, g = −0.083, andσt = 0.143[mm−1].

These parameters are similar to the concave case because the objects are made of the same

materials.

We show the result of another convex scene in Fig.5.13. Figure5.13(c) shows the recon-

struction result given by single scattering with illumination from the front of the target object.

Because of the insufficient intensities of single scattering as shown in Fig.5.13(b), the esti-

mated height has large error in the back area. To reduce the error, we capture the intensities

52



0

50

100

150

200

250 0

50

100

150

200

0

0.5

1

1.5

2

2.5

3

3.5

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

8.0 

0.0 
[mm] 

2.0 

4.0 

6.0 

Height 

(a) Target object
(c) Three-dimensional plot of the result with illumination

only from one side of the object

0

50

100

150

200

250

0

50

100

150

200

0

0.2

0.4

0.6

0.8

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8.0

0.0
[mm]

2.0

4.0

6.0

Height

(b) Observed single scattering
in pseudo color (d) Three-dimensional plot of the merged result

Figure 5.13:Experimental results for an asymmetric convex scene. (b) Observed single scatter-
ing in pseudo color. (c) Three-dimensional plot of the estimation result with illumination only
from one side of the object. (d) Three-dimensional plot of the merged result.

of single scattering by illuminating from the other side of the target object, and then merge the

two estimated reconstruction results. Figure5.13(d) shows the merged result. Large noise is

reduced and whole the shape is estimated. However, estimated surfaces are not planar due to

artifacts in the decomposed single scattering as shown in Fig.5.13(b). This artifact is occurred

by projected high-frequency stripe pattern. It remains difficulty on separation of scattering

components with high accuracy.
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5.4.3 Discussion

Computation time

In this experiment, it took about15 minutes to capture images (six images for extracting single

scattering at each of10 different depths), and it takes a few hours to compute the shape with an

unoptimized Matlab implementation. We computed estimates on an Intel Core 2 Duo central

processing unit (3.00 GHz) with 3GB random access memory. The size of the problem is74

(71 points forh(x), s, g, andσt) in synthetic data,259 (256 points forh(x, y), s, g, andσt) in

symmetric real data, and873 (870 points forh(x, y), s, g, andσt) in asymmetric real data.

Limitations

There are a few limitations to the current method. These limitations will be overcome in our

future work.

Object shape: Our current formulation requires that the incident plane is planar and incident

light on the target object is parallel to the x-axis for the extraction of single scattering using

high-frequency projection. When projected patterns interfere with each other, single scattering

cannot be extracted. This assumption needs to be relaxed when it is applied to a more general

shape.

Single scattering in an inhomogeneous material: As our method uses single scattering,

which exponentially attenuates with constant scattering parameters, we cannot estimate the

shape of an inhomogeneous material. To deal with spatially varying scattering media, it is

required to estimate scattering parameters in a three-dimensional volume. However, estimation

of a huge number of unknown scattering parameters is a challenging task.

5.5 Summary

In this chapter, we proposed a method of estimating the shape of optically thin translucent ob-

jects based on the attenuation of single scattering. Because the light in optically thin translucent

object is dominated by low-bounce scattering, the attenuation model of single scattering is ap-

propriate for target objects in this chapter. We modeled the light attenuation in the object based

on Lambert Beer’s law and make relationship between the shape of target object and observed

intensities of single scattering. Experiments with synthetic and real-world results demonstrated

that our method has the potential for the accurate modeling of translucent objects, which has

been difficult to achieve with other appearance-based methods. While the method works well

for various translucent objects, the accuracy suffers from low-intensity measurements and a
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high signal-to-noise ratio when measuring optically thick objects, for which multiple scattering

dominates the appearance. In addition, the accuracy of shape estimation depends on quality

of extracting single scattering by high-frequency illumination. Another issue relating to the

current approach is the high computational cost. We are interested in looking into these aspects

further to make the approach more practical.
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Chapter 6

Shape Estimation of an Optically Thick
Translucent Objects

6.1 Introduction

The shape of the optically thin translucent object is estimated from single scattering, which

is attenuated light along the refracted light. Refracted light is useful in reconstructing the

object shape because it depends directly on the surface direction. By contrast, in optically

thick translucent objects, incident light does not propagate along the refractive direction, but

rather distributes around the incident point owing to uncountable collisions with particles in the

medium as described in Section4.3. As a result, we cannot observe refractive transmitted light

in the medium but rather obtain shading of the target object.

Observed shadings are often used to estimate surface normals, which represent the direc-

tion of the object surface, in a photometric stereo technique [28]. The photometric stereo tech-

nique is known as a method of estimating object shape from multiple shading images in the

field of computer vision. While conventional photometric stereo methods have been developed

for simple Lambertian diffuse surfaces [76], recent generalizations can handle more complex

reflections in real-world scenes [109, 110]. However, the estimation of the surface normals of

translucent materials remains a difficult task, with subsurface scattering being significant [111].

While the exact modeling of subsurface scattering remains a difficult task that requires com-

plicated models, prior studies in the field of computer graphics show that the image formation

model of subsurface scattering can be well approximated as the convolution of the scattering

kernel and surface radiance of optically thick materials, which distribute light regardless of the

incident direction [95]. In Chapter4, we show that light transport in an optically thick translu-

cent medium does not depend on the directions of the incident and outgoing light. Hence, we

use this approximation to developsurface normal deconvolution, which recovers the original
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Figure 6.1:Light interactions on a translucent surface. Incident light is partially reflected from
the surface, while the remaining light transmits and spreads inside the subsurface.

surface normal from theblurry surface normal obtained by applying the conventional photo-

metric stereo method to translucent objects. This idea is similar to Donget al.’s method [112],

which estimates the surface normal using deconvolved input images to remove the subsurface

scattering effect. While Donget al. assumed parametric subsurface scattering (i.e., photon

beam diffusion of optically homogeneous media), we represent subsurface scattering by non-

parametric convolution kernels for either optically homogeneous or inhomogeneous media.

The convolution kernels can be either calibrated or estimated, and various deconvolution tech-

niques in the literature (such as image deblurring methods) can be used in the implementation

to recover the deblurred surface normal. We present estimation results obtained using our de-

convolution formulation and using existing deconvolution in experiments.

6.2 Convolutional Image Formation Model

We begin with the image formation model for a translucent surface. When light illuminates a

translucent surface, it is reflected, transmitted and absorbed as depicted in Fig.6.1. A portion of

the transmitted light returns to the surface via subsurface scattering; thus, the radianceI(x, l,v)

at a scene pointx with incident vectorl and observation vectorv becomes the sum of the
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reflectionIr(x, l,v) and subsurface scatteringIs(x, l,v) components:

I(x, l,v) = Ir(x, l,v) + Is(x, l,v). (6.1)

The subsurface scattering componentIs(x, l,v) is modeled as [26]

Is(x, l,v) = γ(x) F (v,n(x), η)

∫

y∈A

R(x, y)F (l,n(y), η)n(y)T ldy, (6.2)

whereγ(x) is a scale factor for the subsurface scattering component,F represents Fresnel

transmission, andv,n, l ∈ R3 are the observation, surface normal, and incident vectors, re-

spectively. η is a refractive index,R(x, y) represents an extinction term for light traveling

from scene pointx to its neighbory such as a dipole model [26], andA defines a neighboring

area. Generally, the subsurface scattering component describes a nonlinear relation between

the surface normal and observed intensity owing to the Fresnel transmission term. To relax

this complexity, we approximate the original model as a simpler form by assuming an optically

thick material, as in [113]. On the surface of an optically thick material, subsurface scattering

does not depend on the direction of the light, because the transmitted light scatters uncountable

times and loses its directionality due to random light paths as in the diffusion approximation.

Thus, subsurface scattering is invariant to the incident direction and outgoing direction, and

the Fresnel termF can be regarded as constant for an optically thick material. As a result, the

subsurface scattering componentIs(x, l,v) is simplified as

Is(x, l) = γ′(x)

∫

y∈A

R(x, y)n(y)T ldy, (6.3)

whereγ′(x) is a new scale factor of subsurface scattering that includes constant Fresnel trans-

mission terms.

Assuming a Lambertian reflectance model for the reflection component

Ir(x, l) = ρ(x)n(x)T l with a diffuse albedoρ(x), the intensity observationI(x, l,v) can be

written as

I(x, l) =


ρ(x)n(x) + γ′(x)

∫

y∈A

R(x, y)n(y)dy




T

l. (6.4)

The first factor of eq. (6.4) can be regarded as a simple convolution model as

I(x, l) =



∫

y∈A

h(x, y)n(y)dy




T

l = (h ∗ n(x))T l, (6.5)
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where∗ is the convolution operation, and the kernelh represents a scattering effect for the

surface normals and is expressed as

h(x, y) = ρ(x)δ(x− y) + γ′(x)R(x, y). (6.6)

The kernelh expresses the spatial attenuation of scattering from incident point on the object

surface.

A similar convolutional approximation of subsurface scattering is also discussed in the work

of Munoz et al. [113] for the forward rendering of optically thick materials. This method is

inspired by the works of convolutional approximated subsurface scattering by d’Eonet al. [114]

for the rendering of human skin and Donneret al. [25] for multi-layered materials. Unlike their

method, where the extinction termR(x, y) is defined as a function parameterized only by the

relative positions ofx andy, our method allows more flexibility for the extinction termR(x, y)

so that inhomogeneous translucent materials can also be handled.

6.3 Solution method

6.3.1 Surface normal obtained by the conventional photometric stereo
method

Based on the convolutional image formation model, we develop a photometric stereo method

for estimating the surface normals of an optically thick translucent surface. Our input is the

same as that of the traditional photometric stereo method in that a set of images is taken under

varying lighting directions from a fixed viewpoint. To simplify the discussion, we assume that

the light directions are calibrated and the observations do not include shadows. In the rest of

the paper, we consider the discretized pixel sitesu andv that correspond to scene pointsx and

y, respectively; thus, eq. (6.5) becomes

I(u, l) = (h(u, v) ∗ n(u))T l. (6.7)

The convolution equation eq. (6.7) has the simple linear algebraic expression

D = HNL, (6.8)

whereD ∈ Rm×k is an observation matrix,m andk are the numbers of pixels and light direc-

tions, respectively,H ∈ Rm×m is a scattering matrix,N ∈ Rm×3 is a surface normal matrix,
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andL ∈ R3×k is an incident light matrix, which is assumed to be known. This linear expres-

sion indeed has similarity to the expression of the Lambertian photometric stereo method [28],

where the observationD, scaled surface normalNs, and light matrixL have the relationship

D = NsL. (6.9)

From Eqs. (6.8) and (6.9), we see that the scaled surface normalNs corresponds toHN ac-

cording to

Ns = HN. (6.10)

Therefore, we can regard the scaled surface normalNs as ablurry version of the original

surface normalN that we wish to estimate. In the following, we callNs a smoothed surface

normal.

6.3.2 Estimation process

According to the observation in the previous section, we estimate the surface normalN by tak-

ing the following two-step approach. (a) Obtain the smoothed surface normalNs by Lamber-

tian photometric stereo [28], (b) Estimate the surface normalN in a deconvolution framework

using the subsurface scattering matrixH.

(a) Estimation of the smoothed surface normalNs. We use a conventional Lambertian

photometric stereo method [28] to derive the smoothed surface normalNs as

Ns = DL†, (6.11)

where † represents a Moore-Penrose pseudo inverse.

(b) Estimation of the original surface normal N. Once the smoothed surface normalNs is

obtained, we use eq. (6.10) to derive the original surface normalN. If the scattering matrixH

is available and invertible, we can directly obtain the estimate of the original surface normal

N in a linear least-squares fashion asN = H−1Ns. As the estimation result produced by such

simple deconvolution is often degraded by ringing artifacts owing to the loss of high-frequency

information in the original signal, we use a smoothness constraint to stabilize the estimation.

We design the smoothness terms as a weighted second-order difference ofn(u) betweenu’s

neighborhood locationst andv as

n′′(u) = w(t, u) (n(t)− n(u))− w(u, v) (n(u)− n(v)) . (6.12)
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The weightw(u, v) controls the discontinuity of surface normals by taking the difference of

intensity observations across varying lightingsli as

w(u, v) = exp

(
− 1

m

k∑

i

(I(u, li)− I(v, li))
2

)
. (6.13)

The matrix expression of the smoothnessN′′ is given as

N′′ = WN, (6.14)

whereW ∈ Ra×m is a matrix of the second-order derivative filter, anda is the number of

triplets used to compute the second-order derivatives. In our case, we define the triplets along

horizontal and vertical directions in the image coordinates. Finally, our estimation problem

becomes a ridge regression problem expressed as

N̂ = argmin
N

||HN−Ns||2F + λ||WN||2F , (6.15)

whereλ controls the smoothness of the estimates. An explicit solution to this problem is given

by setting the first-order derivative to zero as expressed by

N =
(
HTH + λWTW

)−1
HTNs. (6.16)

In this manner, the estimates for the original surface normalN can be obtained in a closed-form.

The mathematical expression of the problem is equivalent to that of the image deblurring

problem, where the original sharp image is recovered via deconvolution. The important differ-

ence, however, is that our problem deals with the deconvolution of surface normals. Therefore,

conventional image priors that are developed for natural images may not be suitable. Other

than this aspect, existing deconvolution techniques can be alternatively used to estimate the

surface normalN from the smoothed surface normalNs. The convolution kernelH is gener-

ally unknown, but can be either calibrated (non-blind deconvolution) or estimated (blind de-

convolution). While most image deblurring techniques are limited to spatially invariant point

spread functions (PSFs), which corresponds to handling optically homogeneous materials in

our case, the formulation of eq. (6.16) can naturally handle optically inhomogeneous materials,

corresponding to the case of spatially-varying PSFs.

6.3.3 Calibration of the Convolution Kernel

As mentioned above, the surface normal deconvolution can be performed without knowing the

convolution kernel using blind deconvolution techniques; however, knowledge of the convolu-

tion kernel is useful for stabilizing the estimation. In addition, spatially variant deconvolution is
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Figure 6.2: Setting for measuring the convolution kernel. A projector casts a thin light ray
on the target object. We estimate the convolution kernel from the incident pattern and light
distributions on the target object. In the case of an inhomogeneous medium, we capture light
distributions of optically different regions.

a challenging task in research on image deconvolution [115, 116]. Thus, we need to know con-

volution kernels at each position for dealing with optically inhomogeneous translucent objects.

Here we describe a simple procedure for measuring the convolution kernel. Fig.6.2shows our

setting for measuring the convolution kernel. By illuminating a diffuse surface and the target

translucent material individually by a thin ray emitted from a projector, we obtain the mea-

surements of the incident light distribution and scattering response on the surface, respectively.

The measured scattering response corresponds to the convolution between the incident light
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distribution and the convolution kernel. From this relationship, we calibrate the convolution

kernelh which represents spatial attenuation of scattering. When the target medium is opti-

cally inhomogeneous, we need to calibrate the convolution kernel in each optically different

region.

6.4 Experiments

We now evaluate our method using both synthetic and real-world data for the purposes of

quantitative and qualitative evaluations.

6.4.1 Synthetic scenes

Homogeneous media

As the synthetic scene, we use the rough surface scene shown in Fig.6.3. The image size is

160× 160 pixels. To synthesize the input images under varying lightings, we use eq. (6.1) with

the subsurface scattering model of eq. (6.2). For the extinction termR(x, y) in eq. (6.2), we use

the dipole model [26] with the same parameters described in their paper. The camera model is

orthographic and the area of a pixel is(4/15)2[mm2].

Figure6.3 (b) shows the result obtained using the Lambertian photometric stereo method

based on eq. (6.11) and its angular error in pseudo color. Although the estimated surface

normals are smoothed by subsurface scattering, especially around the edges, a low-frequency

signal of the overall surface normal directions is largely obtained.

To apply our surface normal deconvolution of eq. (6.16), we use the extinction termR(x, y)

as the convolution kernel. The distance between scene pointsx andy is approximated as the

distance between pixel sitesu andv in the image coordinates. Figures6.3(c) and (d) show the

results obtained using our method with smoothness factors ofλ = 0.01 andλ = 0.1, respec-

tively. While results with a small smoothness factorλ = 0.01 yield sharper reconstructions,

they suffer from ringing artifacts around surface normal edges. Although the choice of a proper

value forλ depends on the scene and is thus difficult as is the case for any regularization tech-

nique, with a proper value ofλ, our method has notably better reconstruction accuracy than

the Lambertian photometric stereo method that only considers the local illumination model,

even though we assume the same Lambertian model as for the reflectance component. Ta-

ble 6.1 summarizes the maximum and mean angular errors of the surface normal estimates

made using various material parameters. In general, we observe that a smaller magnitude of

subsurface scattering yields better accuracy, because stronger subsurface scattering cuts off the
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Figure 6.3:Result for a synthetic rough scene. (a) Example of synthetic images obtained using
the dipole model with the parameters for skim milk given in [26]. (b) Surface normal and error
maps of the Lambertian photometric stereo method. More faithful surface normals are obtained
using our method in (c) and (d) different smoothness factorsλ.

Table 6.1:Maximum and mean angular errors [deg.] of scenes A and B for various materials.
Parameters of each material are described in [26].

1. Marble 

2. Skim milk 

3. Whole milk 

4. Skin1 

5. Skin2 

1 

2 

3 

4 

5 

Plot of 
kernels 

Lambertian 
PS 

Our method 
𝜆 = 0.01 

Our method 
𝜆 = 0.1 

max mean max mean max mean 

56.2 

61.3 

52.4 

63.4 

61.5 

29.1 

52.1 

22.1 

43.1 

47.9 

36.2 

98.4 

28.5 

105.1 

86.2 

11.9 

15.7 

10.7 

15.3 

14.3 

1.9 

6.0 

1.5 

6.5 

4.2 

5.6 

10.7 

4.4 

10.6 

8.7 

high-frequency signals more notably. This shows that, by properly accounting for subsurface

scattering, the accuracy is roughly2 ∼ 5 times better than that of the baseline technique that

only considers the local illumination model.

For optically homogeneous materials, we can also use conventional deconvolution methods

in place of solving eq. (6.16). Figures6.4 and6.5 show the results of conventional non-blind

deconvolution and blind deconvolution for scene B, respectively. For the non-blind deconvo-
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Figure 6.4:Surface normal estimates made using non-blind deconvolution methods
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Figure 6.5:Surface normal estimates of scene B made using blind deconvolution methods

lution methods, we use the same convolution kernel as that used in producing the result of

Fig. 6.3. The results show consistent improvement over the Lambertian photometric stereo

method, although these original methods are not particularly designed to deblur surface normal

fields. In addition, the results of blind deconvolution methods in Fig.6.5, where the convolu-

tion kernel is not given but simultaneously estimated, also show improvement. While the blind

deconvolution is a harder problem than non-blind deconvolution to solve and the results are

generally worse, when knowledge of the convolution kernel is unavailable, it is a viable option

for our method.
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Figure 6.6:Results for a scene of an optically inhomogeneous medium using rough scene. (a)
Masks indicating different material regions and synthesized images. (b) Two types of convo-
lution kernels used for these distinct regions. (c) and (d) Smoothed surface normals obtained
employing the Lambertian photometric stereo method and our results, respectively.

Inhomogeneous media

Our solution method is naturally applicable to the case of inhomogeneous materials, as long as

the convolution kernelH in eq. (6.16) is defined. To evaluate the performance of our method

for inhomogeneous materials, we produce synthetic images that contain different optical thick-

nesses using masks that indicate the material regions as shown in Fig.6.6(a) and (b). Because

of the difference in the magnitudes of subsurface scattering in the material regions, the surface

normal estimates obtained using the Lambertian photometric stereo method, shown in Fig.6.6

(c), exhibit varying smoothnesses; smoother in the gray mask region, and sharper in the white

mask region.

By applying our method, the surface normal field is consistently improved regardless of

the material regions as shown in the Fig.6.6 (d). This recovery is more accurate than that of

Fig. 6.3, because the inhomogeneous example contains a region where there is less scattering.

Estimated normals in the gray mask region are less accurate than normals in the white mask

because deconvolution of a strong blur effect is more difficult than a weak blur effect.
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Figure 6.7:RMSE of estimated surface normals at each noise level

Robustness of estimation results against observation noise

We evaluate the robustness of our method against observation noise in the rough scene. The

optical parameters are set to those of skim milk as described in [26]. We add Gaussian noise

to the synthesized intensity at various levels (µ = 0 andσ = [0.0001, 1] × Imax, Imax is the

maximum value of the synthesized intensity). We also change the number of input synthesized

images as3, 10, and100. Figure6.7 plots the RMSE of estimated normals against the noise

level. The blue, red, and green lines are the results for 3, 10 and 100 input images, respectively.

The RMSE is constant at a lowσ level but gradually decreases asσ increases. For 14-bit raw

data, the RMSE decreases atσ = 0.1 × Imax = 163.8 andσ = 0.01 × Imax = 16.3 with 100

and10 input images, respectively. These conditions are closer to a commercial camera. If a

camera captures noisy data, we can reduce errors in the estimated surface normals owing to

observation noise by increasing the number of input images.

6.4.2 Real-world scenes

We also tested our method using real-world translucent objects. Figure6.8 (a) shows our ex-

periment setting. We used a Nikon D90 camera with a linear radiometric response function

(RAW mode) and a telescopic lens to approximate an orthographic projection. We used a 3M

MP220 projector to provide illumination. The target scenes are illuminated under directional

lighting, and the light directions are calibrated using a dark specular sphere. In addition, to
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avoid specular reflections from the scene, we placed polarizers in front of both the light source

and camera. We used three target objects: a bar of soap as a homogeneous medium and angel

and unicorn ornaments as inhomogeneous media, as shown in Fig.6.8 (b). Each scene was

recorded for12 different lighting directions. The image sizes of the soap, angel, and unicorn

scenes were232×164, 206×257, and158×230 pixels, respectively. Prior to the measurement,

the convolution kernels were measured using the procedure described in Section6.3.3. For the

inhomogeneous objects, we measured two distinct kernels for the different material regions,

one for a white region and the other for a pink region.

Figure6.9 shows the experimental results for the soap. The recorded intensity image is

not notably blurry, but the details are smoothed by subsurface scattering as shown in Fig.6.9

(a). The observed PSF shows incident light distributed on the surface of the soap. Fig.6.9

(b) shows the surface normals estimated using the Lambertian photometric stereo method [28],

our method, and Guet al.’s method [123]. Gu et al.’s method estimates surface normals from

images in which scattering effects are reduced by high-frequency sinusoidal projection. We

used a projector to control the projection pattern, and decomposed the direct reflection images

as shown in Fig.6.9. While the result of the Lambertian photometric stereo method shows

smoothed surface normals, our result is sharper. Even though the decomposed direct image

has moderate wave artifacts throughout, Guet al.’s method shows surface normals on a fine

scale. We also reconstruct the surface shape from normals estimated using Agrawalet al.’s

method[124] as shown in Fig.6.9(c). We recognize that detailed shapes can be estimated from

the normals of our method and Guet al.’s method.

Figures6.10 and6.11 show experimental results for the angel and unicorn, respectively.

Observed PSFs have different light distributions for the different materials as shown in Fig-

ures6.10and6.11(a). Although the observed image is blurred compared with decomposed di-

rect image, our method estimates sharper surface normals by reducing scattering effects. Guet

al.’s method also estimates sharp surface normals. However, the reconstructed shape has noise

in the planar region because of wave artifacts on the decomposed direct image. Subsurface

scattering components can be reduced by high-frequency sinusoidal projection. Nevertheless,

it is difficult to completely avoid artifacts in the decomposed image using a projection pattern.

6.4.3 Discussion

Computation time.

The above experiments show that, in the case of optically homogeneous materials, we can

apply various fast deconvolution methods for image deblurring to recover the surface normal.
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Figure 6.8:Experiment setting and target objects. We used a projector as a light source. The
camera was equipped with a telescopic lens. Polarizers were used to reduce the effects of
specular reflection on the target object.

However, in the case of inhomogeneous media, we have to solve eq. (6.16) to deal with spatially

variant convolution kernels. Our Matlab implementation on an Intel Core i7 central processing

unit (3.5 GHz) takes about17.6, 39, and3.5 seconds to recover the surface of the soap, angel,

and unicorn scenes, respectively. The density of non-zero elements of matrixFTF + λWTW

in eq. (6.16) is about2.5%. The computation time depends on the size and number of non-zero
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Figure 6.9:Result for a real-world scene of soap as a homogeneous medium. The direct image
is calculated using Guet al.’s method[123], and shapes are reconstructed using Agrawalet al.’s
method [124].

elements of matrixFTF+λWTW, which are determined by the input image size and apparent

sizes of PSFs in the image coordinates.

Limitations.

Our method has a couple of limitations. First, we have ignored the effect of Fresnel transmis-

sions. Thus, our method is restricted to optically thick materials. As a material has directional

scattering, the accuracy of our method may gradually decrease. We are interested in explor-

ing an iterative estimation framework that can be used to adaptively update the convolution

kernels for the incorporation of the Fresnel transmission effects. The second limitation is that
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Figure 6.10:Result for a real-world scene of an angel ornament as an inhomogeneous medium.
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Figure 6.11:Result for a real-world scene of a unicorn ornament as an inhomogeneous medium.
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our method in practice relies on known convolution kernels, especially when dealing with op-

tically inhomogeneous materials. Although a sophisticated blind deconvolution method may

resolve this issue, at this point, knowledge of the convolution kernel plays an important role

in obtaining accurate surface normal estimates. We are interested in investigating good prior

information for surface normal fields that may potentially improve the blind deconvolution.

6.5 Summary

In this chapter, we proposed a shape estimation method for optically thick translucent objects.

As optically thick translucent objects show shading on their surfaces, we estimate surface nor-

mals as the object shape from observed images employing the photometric stereo method. We

extended the previous study on the convolutional approximation of subsurface scattering and

developed a surface normal deconvolution technique, which consists of a conventional photo-

metric stereo method and image deconvolution. Our experiment shows that the surface normals

of translucent objects are reliably estimated by our method. As illustrated in the experiment

section, our method can benefit from a large body of image deblurring methods in the literature,

including blind deconvolution methods. In addition, we showed that our method is able to deal

with optically inhomogeneous media.

74



Chapter 7

Summary and Discussions

In this thesis, we proposed methods of estimating the shape of translucent objects from ob-

served scattering light according to light transport analysis. Scattering in translucent media

adversely affects shape measurement because it prevents reference to the incident points of the

laser range finder [4] and notably affects the object appearance as shown in Fig.1.2. While most

existing methods extract the scattering effect and thus ignore complex phenomena, scattering

is not completely reduced owing to the degree of the spatial distribution [18]. Our shape from

scatteringframework tackles these problems by obtaining the object shape from the observed

scattering effect itself. The key concept is how to model the relationship between the observed

scattering effect and shape of the target object. Scattering observations depend not only on the

target shape but also on the optical characteristics of the medium. Hence, we developed an

approximation model of subsurface scattering according to the analysis of light transport in a

real translucent medium.

First, we measured light transport in real translucent objects as described in Chapter4. We

used theTurtleback Reflectorto distribute virtual illuminations and observations around the

target scene, and captured the light transport as the eight-dimensional BSSRDF that is param-

eterized by the directions and positions of incident and outgoing light. The captured BSSRDF

was visualized as a distribution around the outgoing direction at each outgoing point with fixed

illumination for the analysis of the behavior of light transport. We also decomposed the BSS-

RDF into directional and nondirectional components by analyzing the BSSRDF along outgoing

directions. As a result, we obtained the characteristics of the response of the BSSRDF to opti-

cal properties such as the directional light in an optically thin translucent medium, directionally

invariant light in optically thick translucent objects, spatially invariant light in a homogeneous

medium, and spatially varying light in an inhomogeneous medium. While reflection analysis of

the outgoing direction is conducted using the four-dimensional BRDF, spatial analysis of light

transport is available using the eight-dimensional BSSRDF.
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According to the discussion in Chapter4, we constructed shape estimation methods for

translucent objects. We related scattering observations and object shape with optical parame-

ters, and estimated the object shape from observations. For optically thin translucent objects,

we used the attenuation model of single scattering to represent the directional light distribu-

tion around the refracted light in the medium. We formulated single scattering observed the

experimental setting as a function of object shape, and estimated object shape by minimizing

an energy function, which evaluates the difference between observed and synthesized intensi-

ties. We evaluated the estimation accuracy using synthetic data, and showed the availability of

our method when single scattering inputs are sufficiently bright. Although the observation of a

real translucent object includes varied types of scattering, we applied our estimation method to

extract single scattering. The method simultaneously estimates the scattering parameters and

target shape assuming an optically homogeneous translucent object. For optically thick translu-

cent objects, we approximate non-directional scattering in the convolution model. This models

not the direct relationship between the observed intensity and surface shape but the observed

intensity and surface normals, which represent the direction of the object surface. Although

the object shape needs to be reconstructed from the estimated normals, the convolution model

provides a simple estimation process using a deconvolution algorithm. While we need to cali-

brate the scattering distribution on the target surface of each material, we can handle optically

inhomogeneous media. Experiments employing synthetic and real scenes were conducted to

evaluate the effectiveness of deconvolution-based scattering reduction in our method.

Our proposal of theshape from scatteringframework allows us to estimate a translucent

shape from observed scattering itself without complicated light transport analysis.Shape from

scatteringextends shape estimation to a variety of targets having translucent appearance. Such

extension could benefit a wide range of applications in the field of computer vision that require

shape information;e.g., the automatic visual inspection of industrial products and the archiving

of artistic sculptures, where translucent objects are made of plastic, marble, and wax. Mean-

while, our framework can also be used in the application of medical imaging because target

organs have strong scattering properties. On the microscope scale, the main application of our

method would be cell imaging.

We still face the problem that our method works on only translucent objects whose scat-

terings are modeled as the attenuation of single scattering or non-directional multiple scatter-

ing. In particular, while we extracted single scattering component from scatterings in optically

thin translucent objects, the single scattering does not always become a main component in

scattering. In optically thin materials, low-bounce scatterings such as two and three-bounce
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scattering are also a main scattering component. Thus, even if the target object is relatively

optically thin translucent, there is a possibility that extracted single scattering is insufficient

intensity for shape estimation. The spatial optical properties of targets are also limited in both

proposed shape estimation. In the method for optically thin translucent objects, we assume

the spatially homogeneous material. This constraint allows us to estimate optical parameters

such as extinction coefficient, however, we cannot apply this shape estimation method to opti-

cally inhomogeneous translucent object. On the other hand, in the method for optically thick

translucent objects, we can handle optically inhomogeneous objects, but advancely calibrated

scattering kernels at each point on the object surface are needed. Simultaneous estimating the

object shape and optical parameters of optically inhomogeneous material is the most difficult

problem setting.

The ultimate solution to deal with any type of translucency is a brute-force search via the

simulation of light propagation in arbitrary translucent media without any parametric scattering

models. However, it is an ill-posed problem to estimate spatially distributed optical properties

and the object shape from a two-dimensional observed image in real time because a search

range of an enormous number of unknowns is too huge to obtain an optimal solution. A con-

ventional camera obtains only two-dimensional information, whereas recently developed ad-

vanced cameras can obtain richer information;e.g., the light field camera [125] and ultrafast

imaging camera [126, 127]. The light field camera [125] can store directions of incoming light

from a scene, and the captured data then give the directional information of propagating light.

Because the information of directionality relates to the directional distribution on BSSRDFs of

a target object, the light field camera imaging helps to shrink the search range of shape esti-

mation. Ultrafast imaging [126, 127] observes the temporal sequence of light propagation at a

trillion frames per second. Since this ultrafast speed competes with the speed of light, we see

the process of the light propagation from the captured image sequence. In the field of computer

graphics, realistic image is rendered by simulating the propagation of light rays. Therefore,

temporal image sequence becomes a clue for inversely rendering of target scene. This rich

information will allow us to analyze light transport and make it possible to obtain the shape of

a general translucent material in the future.

Our shape from scatteringframework contributes technique of photometric analysis in the

field of computer vision in the terms of using scattering light for obtaining object shape.
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