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Abstract

The acquisition of object shapes has various industrial applications, such as the visual inspec-
tion of industrial products, reverse engineering of free-form products, and modeling of object
shapes in computer graphics. A variety of measurement methods have been proposed to obtain
object shapes with high accuracy for any material. However, it remains difficult to measure
the shape of translucent objects reliably because scattering and transmitted light in the media
degrades the observation. To solve this problem, we progiteee from scatterintp estimate

the shapes of translucent objects from the observed scattering itself.

We aim to model the relationship between the object shape and scattering in a simple model.
While the actual scattering effect is a complicated phenomenon, scattering can be approximated
by making assumptions of the target material. In this thesis, we first sample and analyze light
transport in a real scene to select an appropriate scattering model for shape estimation. Light
transport is described by an eight-dimensional BSSRDF that completely represents light trans-
ports with the directions and positions of incident and outgoing light. Although it is difficult
to sample an eight-dimensional BSSRDF because illuminations and observations are required
from every direction, we sample the high-dimensional BSSRDF using a polyhedral mirror sys-
tem to place multiple virtual cameras and projectors. We also analyze the sampled BSSRDF
by the visualization of low-dimensional sliced data and decompose the sampled BSSRDF into
basic directional components. From the analysis of the BSSRDF, we summarize empirical
characteristics of light scattering inside a real translucent medium.

From the analysis of the BSSRDF, we propose shape estimation methods for optically thin
and optically thick translucent objects. Scattering in an optically thin translucent object is
characterized by light attenuation along the refracted light. Refracted light is relatively easily
modeled because it corresponds to single scattering, which is a one-bounce collision of light
with a particle in a medium. Hence, we can determine the shape of an object from the ob-
served intensity of single scattering and its attenuation, and develop a solution method that
simultaneously determines scattering parameters and the shape according to energy minimiza-
tion. Scattering in an optically thick translucent object distributes around the incident point and



loses its directionality. Such distributed scattering can be approximated as convolution with a
blurring kernel. We extend this observation in our experimental setting, and obtain the shape
of a target object without the effect of scattering using deconvolution. We demonstrate the
effectiveness of our proposed approach in extensive experiments using synthetic and real data.

Scattering has been regarded as a nuisance and eliminated employing various approaches in
the field of computer vision. In contrast, aglmape from scatterinffamework is a novel shape
estimation framework that uses the scattering effect as a cue for the object shape.
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Chapter 1

Introduction

1.1 Background

Recent advances in sensing technologies let us measure an object shapéle&tipde mea-
surement techniques are used in various situations such as visual inspection for controlling the
surface quality of industrial products, reverse engineering of free-form products, digital archiv-
ing of world heritage, obtaining object models for computer graphics, and scanning human
bodies for the virtual fitting of clothe®][ 3]. As the acquisition of object shapes broadens the
application of computer vision techniques, shape measurement methods have been advanced to
record the shape of any type of material with a high degree of accuracy.

Shape measurement methods are classified into two types: active and passive methods. An
active method uses the reflections of projected light, electromagnetic waves or other energy to
infer the shape of the target object in triangulatierg, sensing using a laser scanner, time-of-
flight camera, and structured light. A passive method estimates the shape of objects from ob-
served images without any energy projectierg, methods that use multi-view stereo and sil-
houette volume intersection. For industrial application, active methods are often used because
they can accurately measure a target shape with geometric calibration. Meanwhile, it is diffi-
cult to apply an active method to translucent objects within which propagating light scatters.
As pointed out by Godiret al. [4], the brightest observation of light incident on a translucent
object is shifted by scattering. Therefore, we often fail to obtain the shape of translucent ob-
jects because scattering degrades a direct projection on the target surface 1Highmvs an
example of failure in measuring translucent objects that generate scattering using a commercial
three-dimensional laser scanner, the Konica-Minolta Vivid 9i. While the scanner works well
for observing human skin, it cannot accurately estimate the shape of translucent objects owing
to strong scattering. Besides the object in Rid, there are many translucent objects around
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(@) Translucent blocks on the hand (b) Shape measurement result
by a laser range finder

LI

(c) Close up of translucent blocks (d) Strong scattering
in translucent object

Figure 1.1:Failure of the shape measurement of translucent objects using a laser scanner.

us such as most fruits, wax, marble, plastic products, and precious stones. Shape estimation of
translucent objects remains an open problem.

While scattering is well studied in the computer graphics field to render realistic images, it
is less discussed in the field of computer vision because complicated light interactions on the
object surface generated by scattering render inverse problems unsolvable. Scattering has thus
been regarded as a nuisance and eliminated by various approaches in applications of computer
vision. Polarization%, 6, 7, 8] and coating with diffuse powde®] reduce the subsurface scat-
tering effect. High-frequency illuminatiorlp, 11] separates directly illuminated lighe. @,
surface reflection, specularity and transmittance) and globally propagatecklighs€attering
and interreflection). Analysis of the light field2?, 13] extracts scattering components accord-
ing to their spatial and angular characteristics. The phase-shift metdpd4, 16] robustly
measures the object shape with the existence of scattering. However, these methods need an
additional preprocessing stage and it remains difficult to completely ignore the effect of strong
scattering 17]; e.g, the phase-shift method requires modulation of the projection pattern de-
pending on the translucency of the target matefid].[Consequently, shape estimation without

2



(a) Optically thin translucent object (b) Optically thick translucent object

Figure 1.2:Examples of translucent appearance. Although the shape and illumination are the
same, the observed translucent appearances differ in terms of the optical thickness.

the reduction of scattering phenomena is required.

1.2 Contributions of the thesis

This thesis proposes a new shape estimation framework namslithe from scatterinfyjame-
work, where the shape of a translucent object is estimated from the observed scattering itself.
While scattering is often analyzed for the estimation of the spatial distributions of smoke or
milk drops [L9, 20|, it has not been analyzed for the measurement of the surface shape of
translucent objects. Shape estimation from an observed image is considered to be the inverse
rendering of a realistic scene appearance in the field of computer graphics. As a realistic image
is rendered with known object shapes, illumination, and light transport on the object surface,
the object shape is inversely estimated from observed images with known illumination and light
transport. lllumination can be obtained from the calibration or controls of the experimental set-
ting. However, it is not easy to obtain arbitrary light transport within a measurement target
owing to intricate representations of light transport. Light transport only depends on the optical
properties of measurement targets. Figluzshows that the scene appearances of translucent
objects that differ only in optical thickness. While shading in Big (a) is greatly smoothed,
that in (b) is only slightly smoothed. To deal with the difference in light transport, we need to
choose or obtain an optimal observation model of material for shape estimation.

We develop a shape measurement method for translucent objects in the following steps.

1. Measurement and analysis of light transport on a translucent surfaceiln terms of
analysis of light transport at a surface point, surface reflection has been well studied

3



in both the fields of computer graphics and computer vision. A variety of models that
approximate the reflection by a parametric function have been propaseé?, and

dense sampling of the reflection is possible using optical devR®2f]. However, in

the case of scattering, standard parametric models and sampling methods are restricted
to homogeneous medi&9] or isotropic scatteringZ6] because scattering itself is a
complicated phenomenon. In this part, we present a novel sampling and analysis method
for complicated general light transport in a real scene. To observe light transport on a
surface, we need to place many cameras and projectors around the target object. Instead
of constructing such an impractical observation setting, we sample the light transport
using spherically distributed virtual cameras and projectors using a polyhedral mirror
system. We also analyze the sampled light transport to show the relationship between the
light transport and optical properties of translucent media. In analysis, we visualize light
transport in spherical distributions along outgoing directions. Additionally, we propose

a method of decomposing light transport into isotropic and anisotropic components for
scattering analysis.

. Development of a shape estimation algorithm based on an appropriate scattering
model: The framework of shape estimation using the observed intensity is referred to
as the shape-from-intensity framework. Except for scattering, many types of light trans-
port have been used for shape estimatiex;, diffuse reflection 27, 28, 29, specular
reflection B0, 31, 32, 33, 34], and refracted transmissioj]. These methods model

the relationship between observed intensities and the object shape to inversely estimate
the object shape according to light transport on a surface. Taking the same approach,
we develop appropriate observation models for a translucent object based on the result
of light transport analysis. In this thesis, we propose two estimation methods, one for
optically thin objects and the other for optically thick translucent objects, because the
appropriate observation models of scattering are completely different for these different

types of objects.

1.3 Organization of thesis

The thesis is organized as follows. Chapter 2 presents related work to show the contribution of

our research. We present research on the measurement and analysis of light transport in scatter-

ing media and shape measurement for various models of light transport. Chapter 3 summarizes

4



the basic theory of light transport. We explain typical modes of light transport focusing on scat-
tering effects and how to represent light transports in a mathematical expression. Chapters 4 to
6 describe in the main contribution of this thesis. First, we sample and analyze light transport in
various materials to obtain characteristics of light transport that is determined by optical prop-
erties. From the analysis in Chapter 4, we develop the shape estimation methods for optically
thin and optically thick translucent objects from observed scattered light in Chapters 5 and 6,
respectively. The final chapter concludes the thesis with a discussion of the proposed method
and future works.






Chapter 2

Related work

We summarize related work focusing on the measurement and analysis of light transport in

scattering media and shape measurement under various light transports on object surfaces.

2.1 Measurement and analysis of light transport in scatter-
ing media

Light transport in known scattering media has been traditionally studied in the field of computer
graphics to render realistic image36[ 37, 38]. More recently, the characteristics of scattering
media in terms of light transport from scene appearance have been actively studied in the field
of computer vision.

Although general scattering is a complex phenomenon, a single scattering event can easily
be modeled because it is a simple one-bounce collision of a light with a particle in a medium.
Hence, single scattering is often used to analyze scattering media. Mukagalvg39] es-
timated the optical parameters of scattering media from results for separate single scattering
events and then analyzed the light transport by visualizing each bounce scattering component
inspired by light transport analysis of interreflectiod$][ Narasimharet al. [41] also ob-
tained scattering parameters by observing single scattering in a diluted scattering medium.
Florescuet al. [42] applied optical tomography using observed single scattering and a radiative
transfer equation and reconstructed the attenuation parameters of the three-dimensional vol-
ume. The spatial distributions of scattering media, such as smoke or milk drops, have also been
studied [L9, 20].

General scatterings have also been analyzed by employing approximated scattering distri-
butions and graphics-processing-unit computing. Jeese [26] approximated scattering
as a dipole model under the assumption of an infinite homogeneous medium and then fitted
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scattering parameters. Mukaigaetal. [43] also estimated scattering parameters of homoge-
neous media by fitting the dipole mod@lg in a known environment of arbitrary illumination.
Gkioulekaset al. [44] analyzed the effects of the shape of the scattering distribution param-
eterized by a phase function on object appearance. In the field of medical imaging, optical
tomography 45] has been developed to obtain the distribution of optical properties in body tis-
sue from captured surface appearances. Because optical tomography estimates the properties of
body tissue by simulating light propagation in media, a graphics-processing-unit is employed

to reduce the computation time.

As described above, scattering has been analyzed from the measured spatial distribution.
However, recent research has developed an imaging system that captures light propagation
at approximately one-half of a trillion frames per secodé|[ This ultrafast camera makes it
possible to analyze propagating light on a temporal scaleeMidli[47] estimated the scattering
parameter of scattering media employing a light attenuation model and identified the type of
light interaction in a scene. Analysis of extended light transport on a temporal scale has also
been proposedp]. Despite the fact that time-scale image sequences can be used to analyze
light transport in scattering media, the technique requires an expensive imaging system. We
thus analyze the spatial distribution of scattering light and develop a method based on the

scattering characteristics.

2.2 Shape measurement for various light transports
2.2.1 Shape-from-intensity

Shape-from-intensity is a generic framework for shape measurement based on observed inten-
sities. While traditional shape-from-intensity estimates the object shape from diffuse reflec-
tion [27, 28, 29] or specular reflection30, 31, 32, 33, 34], other types of light transport on an
object surface are also used.

A convex shape tends to cast shadow on its surface because illumination is obstructed by an
object itself. We cannot obtain photometric information on shadow areas but a shadow bound-
ary shows the shape of obstructing object. Shafar and Kang@@rpposed a basic constraint
for a surface orientation, which casts the shadow on other surface. Yu and Chang estimated ob-
ject shape in integrated information of shadow and shading in graph based represeb@tion [
Savareset al. [51] proposedshadow carvingwhich carves three-dimensional volume based
on shadow areas.



On a concave shape, the intensity of the unilluminated surface is often increased by inter-
reflectionsj.e., repeated reflection between two surfaces. Nayalk [52] iteratively estimated
the shape of a concave surface by explicitly modeling the interreflection according to radiosity.
Liu et al. [53] showed that the light transport of the interreflection itself can be used as a cue for
shape estimation. Treibi& al. [54] focused on the characteristics of fluorescence. The fluo-
rescence emission is closer to ideal diffuse reflection even if the shape of the target is concave.
They estimated the surface shape as the shape obtained using traditional shape from shading
method to capture fluorescence.

Thin-film objects have iridescence along the view and lighting directions. Kobagashi
al. [55 modeled the appearance of iridescence and estimated the surface direction. In terms of
physics, the light intensity attenuates inversely proportionally to the square of the distance from
the light source. Liaet al. [56] used this inverse-square law to estimate object shape from light
attenuation. Because polarization relates to a refraction on object surfaces, ¢twinfs7]
used multi-spectral polarization to simultaneously obtain refractive indices and an object shape.

While the method proposed in this thesis does not use light characteristics raised above to
estimate shape, it is related to the described methods from the point of view of the shape-from-

intensity framework.

2.2.2 Shape measurement of transparent objects

Translucent and transparent objects transmit incident light into the medium. As light is pre-
vented from spreading in a transparent object, the path of the refracted light itself is used to
estimate the shape of the transparent object.

Most existing methods use pixel correspondence between the observed appearance and
known background texture to obtain the light path in transparent media. M&8sanplyzed
the optical flow of distorted images to establish correspondence between an unknown original
background image and distorted appearanceet¥@. [59] used Bokode §0], which enumer-
ates a pinhole projector as background texture, to obtain a unique refracted light patiet Ding
al. [61] captured a fluid surface using a camera array and estimated its shape according to the
light path derived from pixel correspondence and camera calibration. Simultaneous estima-
tion of a fluid surface and immersed scene depth has also been prop@seg fFombining
distortion and defocus analysis.

Although background distortion is useful in obtaining refracted light in transparent media,
it is difficult to know or estimate the original background from the appearance of solid objects.
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Hence, other types of tractable light are used in shape estima&®8pn Kutulakos and Ste-

ger [35] performed triangulation of the transmitted light path analyzed according to specular
reflection and transmission. Chari and Stu4] [extended the method of Kutulakos and Ste-
ger [35] using photometric information. Wetzstedtal. [65] used a light field probe to analyze
the transmitted light path. Miyazaki and lkeucl] estimated the shape of an object sur-
face by analyzing multiple interreflections in the object employing a polarization ray-tracing
method. Hullinet al. [67] immersed transparent objects in fluorescent fluid and obtained a
surface shape from visualized scan-line illumination.

While the described methods use refracted light, Morris and Kutula&8lsgroposed
scatter-trace photography focusing on a transparent object that partially reflects incident light.
Trifonov et al’s method f9] immerses target objects in fluid whose refractive index is the same
as that of the target and applies tomography to obtain the target shap.aViZ Q] introduce
the transport of intensity equation for phase imaging with coherent illumination to estimation
of two and three-dimensional refractive phenomena.

Even though our target object is not transparent object, refracted light is an informative cue
in shape estimation. In fact, we estimate the shapes of optically thin translucent objects using
light refracted in the target objects.

2.2.3 Shape measurement under scattering effects

Scattering has been removed in shape estimation by including an additional preprocessing stage
as described in Sectidnl In contrast, underwater imaging techniques analyze target scenes in
the presence of scattering. The scattering of light under water is described by simple attenuation
because most light does not spread in the medium. Narasiettzr71] modeled the appear-
ance of an object in a scattering medium using attenuation of a light stripe pattern and estimated
the target shape from the obtained reflectance of the target object. Tseaitalgg 2] modeled
the backscattering of a light source in scattering media employing a photometric stereo tech-
nique. Treibitz and Schechnefd estimated the scene depth from the backscattering falloff.
However, these methods cannot be directly applied to estimate the shape of translucent objects
because incident light spreads in translucent objects.

While shape estimation from scattering effects remains a challenging problem, ddong
al. [74] estimated the shapes of translucent objects from observed intensity that includes scat-
tering effects under the assumption of an optically thick homogeneous medium. An exact
model of scattering that traces light transport is complex. Conversely, scattering can be de-
scribed by a simple model when the optical characteristics of the target material are limited to

10



optical thickness or spatial homogeneity. Our proposal is similar to this approach, where we
model simple scattering while constraining the target material according to analysis of light

transport in translucent media.
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Chapter 3

Basic theory of light transport

Before beginning the main discussion, we describe the basic theory of light transport with
emphasis on a translucent surface. We first present typical light phenomena on a translucent
surface and then discuss the representation framework of light transport.

3.1 Lighttransport on a translucent surface

When a light ray incidents on a translucent surface, the light partially reflects on the surface,
and partially transmits and scatters in the medium as shown ir8HigT he ratio of the surface
reflection and subsurface scattering is physically determined by the Fresnel reflectance and
transmittanceq5]. Although distributions of reflected and scattered light are complicated, they
can be simply categorized into several elementary components.

Surface reflection is categorized into two basic types: diffuse and specular reflection. Dif-
fuse reflection is the light that reflects in all directions uniformly from a microscopically rough
surface. Diffusely reflected light has the same intensity in all observation directions because
light randomly reflects from locally rough surface. Ideal diffuse reflection is well known as
Lambertian reflectionq6]. Most computer vision techniques assume Lambertian reflection for
analyzing an observed image simply. The light of ideal specular reflection reflects into the only
direction of mirror reflection. In actual, ideal specular reflection does not exist in a real scene,
because there is no completely smoothed or clean surfaces. Thus, the light of specular reflec-
tion reflects from smooth surface and distributes around the direction of mirror reflection. Such
reflection gives an object a glossy or shiny appearance depending on the observation angle.

Subsurface scattering is also categorized into two types: single and multiple scattering. This
categorization depends on the number of collisions between light and particles in the medium.
While single scattering is the single collision of light with a particle in the medium, multiple
scattering is the collision of light with particles more than once in the medium before being
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Surface
=

Subsurface
=
Refraction

Figure 3.1:0verview of light transport on a translucent surface. Incident light not only reflects
on a surface but also travels into the medium. The direction of a light ray changes on a surface
because of refraction.

Diffuse reflection Specular reflection

Single scattering  Multiple scattering

observed. The light path of single scattering is determined by refraction on an object surface,
because the single scattering changes its traveling direction only once in the medium. The
light of single scattering distributes around the refracted light in the media and exits into a
refracted direction. Thus, the single scattering preserves directional distribution in the media
and outgoing direction. In contrast, the light path of multiple scattering cannot be identified
because repeated scattering produces an uncountable number of light paths. As a result, the
light paths of multiple scattering are completely random and the light of multiple scattering
randomly distributes in the media and exit into various directions. This random distribution
loses directionality of the incident light and attenuates around the incident point according to
the distance from the incident point and an optical characteristic.

Light transport on a translucent object is simply modeled by a combination of these reflec-
tions and scattering components. The next section introduces a representation framework for

reflection and scattering models generally.

3.2 Representation of light transport

As described in SectioB.1, light transport can be characterized as outgoing distributions of
light produced by varying incident light. This means that light transport can be represented by
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Figure 3.2:Notion of thebidirectional reflectance distribution functiqgBRDF). Incident light
ray coming from the directiow; is reflected into the directiow, at pointz.

a relationship between the incident light ray and outgoing light ralyidétectional reflectance
distribution function(BRDF) and abidirectional scattering surface reflectance distribution
function(BSSRDF) provides a framework with which to express the light transport on an object
surface 7] with the incident and outgoing light ray. FiguB2 and3.3illustrate the notions
of the BRDF and BSSRDF, respectively.

BRDF fgrpr describes any type of reflection with a ratio of light reflected in a direction
w, = (0,, ¢,) to light arriving from a directionw; = (6;, ¢;) at a surface point = (z,y), and
is thus denoted

[BRDF(T, Wi, W,). (3.1)

As four-dimensional function with fixed surface pouai various BRDF models have been
designed according to physical or empirical phenomé@ 22] such as Lambertian reflec-

tion [76] for the diffuse reflection, Phong moder9] for a glossy surface, and Torrance-
Sparrow model§0Q] for rough surface. Alternatively, some researchers made database of re-
flection by measuring BRDF in real scen@4,[82, 83, 84, 85]. The obtained BRDF has also

been used to analyze the characteristics of reflection in real s&®H&¥[88, 89]. Reflection

on an optical inhomogeneous material is easily represented by suitable independent BRDFs at
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Figure 3.3: Notion of the bidirectional scattering surface reflectance distribution function
(BSSRDF). When a light ray coming from; incidents at pointe;, part of the light scatters
into the subsurface. After scattering in the medium, light outputs from a different poantd

is distributed in the directiow,.

each surface point. Hence, recent research has fabricated arbitrary BRDFs employing wave

optics PQ], a dynamic display with liquid91], a programmable liquid-crystal spatial light

modulator P2], and by controlling specular highlights on the printing surfe&#.[
BSSRDFfpssrpr is an extended framework of the BRDF that expresses subsurface scat-

tering effects. The BSSRDF represents the ratio of outgoing light from pgigt (x,,y,) in

directionw, = (6,, ¢,) to incident light at pointe; = (z;, y;) from directionw; = (6;, ¢;), and

is thus expressed

fBSSRDF($i> Wi, Lo, wo)- (3.2)

Although BRDF models and sampling methods have been well studied, there are neither stan-
dard parametric models nor sampled raw data for the eight-dimensional BSSRDF because of
its high dimensionality. To sample the eight-dimensional BSSRDF, we need to control not only
the direction but also the position of incident and outgoing light ray. Hence, researchers often
approximate the BSSRDF as a low-dimensional function by considering only a homogeneous
medium R5, 94, 95| or assuming isotropic scattering based on diffusion the®8y 96, 97] to

shrink information of absolute incident and outgoing points. To represent the spatial varying
scattering effect, the BSSRDF needs absolute points of the incident and outgoing light. The

16



use of a full-dimensional BSSRDF to express general scattering effect remains a challenging
task in light transport analysis.
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Chapter 4

Measurement and Analysis of Light
Transport Employing a Full-dimensional
BSSRDF

From this chapter, we present the main contribution of our research. Firstly, we analyze the
light transport in translucent objects to obtain an appropriate appearance model that reflects

analyzed characteristics.

4.1 Introduction

Reflection, which is light transport at a surface point, has been well analyzed as a BRDF. A
variety of parametric BRDF models have been propo3@& pnd a raw BRDF database has
been constructed[l]. Alternatively, dense sampling of the BRDF using optical devices has
become possible2l, 23]. However, reflection alone is not enough to represent the translucent
appearance owing to the occurrence of subsurface scatt®8hg [

To analyze light transport on translucent objects, we need to measure the full-dimensional
BSSRDF that represents general light transport in real scenes. However, researchers have mea-
sured only low-dimensional BSSRDFs for the analysis of isotropic scattering or propagating
light in optically homogeneous mediaq, 94, 95. Sampling of the full-dimensional BSSRDF
is simply achieved by capturing the intensity for all possible illumination and observation di-
rections via surrounding illumination and observation of the target medium. As this simple
sampling takes an enormous time and requires large numbers of devices, we need to develop
an appropriate sampling method.

In this chapter, we present a novel sampling and analysis method for the full-dimensional
BSSRDF. We sample this full-dimensional BSSRDF using a polyhedral mirror system to place
many virtual cameras and projectors around the target medium. We also analyze the sampled
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BSSRDF by visualizing four-dimensional slices to observe the characteristics of light transport.
In addition, we propose a method of decomposing the BSSRDF into isotropic and anisotropic
components for scattering analysis. This research is the first attempt to sample and analyze a
full eight-dimensional BSSRDF for both homogeneous and inhomogeneous translucent mate-
rials such as rubber and marble. Because the sampled full-dimensional BSSRDF permits the
analysis of the scattering distribution in both spatial and angular domains, we decompose the
BSSRDF into isotropic and anisotropic components to analyze characteristics of the directional
distribution of the BSSRDF.

4.2 Sampling the full-dimensional BSSRDF using a polyhe-
dral mirror system

4.2.1 Polyhedral mirror system

To sample the BSSRDF, we need to surround the target object with many cameras and pro-
jectors. Obviously, such large numbers of devices are impractical. Therefore, mirror systems
[99, 10Q are often used to produce many virtual cameras and projectors. Fglshows
the principle of creating a virtual camera with a planar mirror. A camera observes a target
object as reflections on the mirror. Each reflected image mimics an observation from the back
of mirrors. While existing mirror system®89, 10(] are designed for special imaging methods
such as shallow depth-of-field imaging and confocal imaging, these systems can observe target
scenes from various directions with controlled illuminations. In fact, we have already devel-
oped theTurtleback reflectoas shown in Fig4.2 (a) in previous researciiQd. The reflector
was designed to distribute many virtual cameras and projectors on a hemisphere with uniform
density and constant distance. Combining the reflector with a camera and a projector, we can
observe and illuminate from a wide area of a hemisphere. We reuse this system to sample the
full-dimensional BSSRDF.

The sampling densities of the incident positnand outgoing positior, are 20 by 20
and 100 by 100, respectively. The number of sampling directioas ahdw, is 48. Figure4.3
shows the position of the virtual cameras and projectors. In total, 19,200 (48 incident directions
x 20 by 20 resolution) images are captured for BSSRDF sampling. If the shutter speed is set
to 100ms, the total sampling time becomes 32 minutes. Although the sampling is sparse, the

full-dimensional (eight-dimensional) BSSRDF can be obtained using our optical device.
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Camera

Virtual
camera

Mirror

Target scene

Figure 4.1:Virtual camera with mirror. A camera captures the target scene as a reflection on
the mirror.

Projector

(a) Turtleback reflector (b) System overview

Figure 4.2:Turtleback Reflectof100. The combination of the reflector with a camera and a
projector. Many virtual cameras and projectors can be distributed on a hemisphere.

4.2.2 Sampled BSSRDF

We sampled BSSRDFs of three different materials, namely (a) epoxy resin, (b) rubber eraser,
and (c) marble, as shown in Fig.4. These materials have different properties of translucency.
The epoxy resin is optically thin, while the rubber eraser is optically dense. The marble is

a typical inhomogeneous material. Square regions indicated by red broken lines show the
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Figure 4.3: Sampling positions on a hemisphere. Left: virtual cameras and projectors are
placed uniformly in a spherical coordinate system. Right: sampling positions correspond to the
vertexes of the geodesic dome.

(a) epoxy resin (b) rubber eraser (c) marble

Figure 4.4: Target translucent materials. The epoxy resin is optically thin, while the rubber
eraser is optically dense. The marble is a typical inhomogeneous material. Square regions
indicated by red broken lines show the sampling areas.

sampling areas. Figuré.5 shows examples of images captured by virtual cameras that are
enhanced by gamma correction£ 2.0). The left column of Fig4.5 shows images captured

by different virtual cameras under the same incident light. These are four-dimensignal,)

slices of the sampled BSSRDFs under fixed illuminatign= (0,0) andw,; = (2.2°,154.3°).

Each small block shows the brightness at each outgoing positicrom a particular outgoing
directionw,. The right column of Fig4.5 shows images captured by the same virtual camera
under different incident lights. These are four-dimensidagl w;) slices sampled from the
fixed incident pointe; = (0,0) and outgoing directiow, = (2.2°,154.3°). As there is color
bleeding in the captured images owing to the color filter pattern of the projector, we analyze the
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(a) epoxy resin

(b) rubber eraser

(c) marble

Figure 4.5:Examples of images captured by virtual cameras. The left column shows images
captured by different virtual cameras under the same incident light. The right column shows
images captured by the same virtual camera under different incident lights. These images are
enhanced by gamma correction<£ 2.0).
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scattering intensities in grayscale. Figdr& shows different light distributions on the epoxy
resin and almost the same light distributions on the rubber eraser for both fixed illumination
and observation. These distributions show that the light distribution in the epoxy resin changes
with the incident and outgoing directions, while the distribution in the rubber eraser does not
change with outgoing direction. The marble has spatially varying scattering because of its
inhomogeneous structure, including both optically thin and dense parts. Although such simple
analysis of the spatially distributed light with fixed illumination and observation directions is
possible, it is difficult to observe the directionally distributed light for the outgoing direction
from measurements in Fig.5. In the next section, we analyze the sampled BSSRDFs in terms

of both directional and spatial distributions.

4.3 Analysis of the Sampled BSSRDF

4.3.1 Visualization of the BSSRDF

Visualization is an effective method of analyzing sampled data. In the case of BRDk;, w,),

the directional distributiorf (w,) for several incident directions,; and positionse is often vi-
sualized for reflection analysis. Here, we also analyze sampled BSSRREs;, x,, w,) by

the visualization of the low-dimensional BSSRDEe,, w,) with fixed incident light.

First, we compare the visualized low-dimensional BSSRDFs with fixed incident direction

w; to observe the change in the BSSRDF with incident positan Figure 4.6 shows illu-
minated positiong:; on each material. Figu4.7 shows four-dimensional slice§x,, w,) =
(0,90, 00, 0o) Of the BSSRDF at a couple of incident positiaris= (x;, y;) as six-dimensional
slices f(x;, o, w,) = (T4, Yi, To, Yo, U,, @) Of the BSSRDF. The direction of illumination is

(a) epoxy resin (b) rubber eraser (c) marble

Figure 4.6:llluminated positions for the visualization of each material
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fixed atw; = (44.9°,74.8°). We plot the value of the BSSRDF af, from —30 to 30 in 10
intervals for all viewing directions in log-scale pseudo color on a spherical coordinate system
at each outgoing position. The left and right columns in Big.show four-dimensional slices

of the BSSRDF obtained with illumination at the red and blue points in£&fgj.respectively.
Figure4.7 (a) shows slices of the BSSRDF of epoxy resin in which there is a straight light dis-
tribution. Visualized directional distributions at each position have a peak value for a specific
direction and BSSRDFs have large values along the azimuth angle of the direction of illumi-
nation. This shows that scattering in epoxy resin is accounted for by single scattering because
single scattering preserves the directionality of incident light. Additionally, slices of BSSRDFs
are similar despite having different incident positions because epoxy resin is a homogeneous
medium. Figured.7 (b) shows a visualized slice of the BSSRDF of rubber eraser. BSSRDF
slices obtained for different incident points are also similar owing to the homogeneity. The
directional distribution at each position has an almost constant value that decreases with dis-
tance from the incident point. This shows that multiple scattering loses the directionality of the
incident light and is distributed uniformly among the outgoing directions. Figuféc) shows

the visualized BSSRDF of marble. Because marble is optically thin, light propagates in a par-
ticular spatial region as for epoxy resin. However, slices of BSSRDFs for different incident
positions are not the same owing to the inhomogeneous structure. As eight-dimensional BSS-
RDF includes spatial information such as the incident and outgoing positions, we can analyze
the spatial structure according to the similarity of BSSRDF slices.

Figure4.8shows six-dimensional slicg8w;, x,, w,) = f(0;, i, o, Yo, 05, P,) Of the BSS-

RDF. The red distribution is obtained for the direction of illuminatién ¢;) = (44.3°,127.2°),

and the blue distribution is obtained ft#;, ¢;) = (43.7°,233.7°). Directions of illumination

are almost symmetric. Optically thin materials such as epoxy resin and marble changes the
shape of the distribution according to the direction of illumination and distributions at each
point are anisotropic. Light distributions of optically dense rubber eraser do not change with
the incident angle. Additionally, distributions at each incident point are isotropic. For any ma-
terial, angular distributions with the direction of illumination represent optical characteristics
of the material.

In this section, we analyze the sampled BSSRDFs by visualization. If the BSSRDF is
represented by an approximated low-dimensional function, it is difficult to analyze both spatial
and angular distributions simultaneously. We carry out detailed analysis by sampling the full-
dimensional BSSRDF.
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(c) marble

Figure 4.7: Visualized BSSRDF. The direction of illumination is fixed &;,¢;) =
(44.9°,74.8°). The left column of images in (a) - (c) presents visualizations of the BSSRDF
for illumination at the red point in Figd.6. The right column of images in (a) - (c) presents
visualizations of the BSSRDF for fixed illumination at the blue point in Big. The red arrow
shows the direction of illumination.
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(c) marble

Figure 4.8: Close up of the visualized BSSRDF, showing the angular distribution at
(%o,90) = (—10,0),(10,0). The red arrow represents the direction of illumination
(0:, ¢;) = (44.3°,127.2°) and the blue arrow represents the direction of illuminaf@gney;) =
(43.7°,233.7°). Blue and red distributions represent the visualized angular distribution for each
illumination

4.3.2 Decomposition of isotropic and anisotropic components

To analyze light transport on an object surface, it is important to decompose the observed phe-
nomenon into basic optical components. As traditional photometric methods have assumed
only diffuse reflection, surface reflection is often decomposed into diffuse and specular reflec-
tion components to remove specular effe@]]. Nishino et al. 07 focused on the angular
dependency of surface reflection, and decomposed surface reflection into angular dependent
specular reflection and angular independent diffuse reflection. Inspired by their method, we
decompose the observed BSSRDF according to the angular dependency.

In the previous section, we showed various directional dependencies of the scattered light;
i.e., the BSSRDF can be decomposed into an angular independent isotropic component and
angular dependent anisotropic component as illustrated irdE3g.The isotropic component
does not depend on the viewing direction, while the anisotropic component varies according to
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(a) Both (b) Anisotropic (c) Isotropic
components component component

Figure 4.9:Concept of decomposition. We decompose sampled BSSRDFs into isotropic and
anisotropic components according to the directional dependency.

the viewing direction. Hence, we formulate the decomposition as
f(wi7 Wi, Lo, wo) = fi(wh Wi, w()) + fa(wiv Wi, Lo, w())7 (41)

where the functionf; represents the isotropic component and the funcfiorepresents the
anisotropic component. It is noted that the argumeptis not included in the functiory;
because of the independency on the viewing direction.

The two components are decomposed according to the constancy of the angular distribution.
To implement this idea, we refer to a separation method proposed by Nishatd102. In
their work, they simply extracted view-independent components by taking the minimal pixel
value at each surface point as a constant component over image sequences. We also apply this
idea to decompose sampled BSSRDFs. The isotropic component is separated by finding the
minimal value along viewing directions at each surface point:

‘fi(w’i?wi?wo) = min f(miawi7m07wo)7 (42)
Woe

wheref2 denotes the hemispherical directions. The anisotropic component is then computed as

the residual according to
fa(@s, Wi, To, wo) = f@4s, Wi, To, wo) — fil @i, wi, ). (4.3)

An overview of this decomposition is depicted in FHg1Q
Figure4.11shows the decomposition results of sampled BSSRDFs of epoxy resin, rubber
eraser and marble in pseudo color. The left column shows the sum of sampled BSSRDFs for all

observation direction&,.;,, the center column shows the sum of the decomposed anisotropic
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Figure 4.10:BSSRDF decomposition with analysis of outgoing directian Constant bias
in the BSSRDF corresponds to an angular independent component, and the remainder of the
BSSRDF is the component dependent on angle.

BSSRDF for all observation directioris, and the right column shows the scaled decomposed
isotropic BSSRDF4;, which are expressed as

Eboth = Z f(xh Wi, Lo, w0)7 (44)
Wo

Ea — Zfa(wiywivwoawo)v (45)
W,

Ei = sfi(:ci, Wi, 5130). (46)

As epoxy resin has strong directional scattering, most of the light is categorized in the anisotropic
component. In contrast, strong multiple scattering in the rubber eraser belongs to the isotropic
component. llluminated light gradually loses its directionality as light scatters in the medium
because the light path varies according to a number of scattering, such that low-bounce scat-
tering retains the directionality, while higher-order scattering loses the directionality of a prop-
agating light in the media. Hence, we often see anisotropic scattering in optically thin media
and isotropic scattering in optically dense media. This result shows that we can decompose
the scattering component into low-bounce and high-order scatterings according to the angular
dependency, and the angular dependency is a clue with which to analyze optical density. Mar-
ble also has a low isotropic component because its inhomogeneous structure generates angular
varying distribution. This result reveals that the spatial structure of an object affects the angular
dependency of scattered light in the media.

From the above results of decomposition, we confirm that the sampled BSSRDFs can be
decomposed into isotropic and anisotropic components by the analysis of the BSSRDF in out-
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Both Anisotropic
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Isotropic
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(a) epoxy resin

Isotropic
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Both Anisotropic
components component

(b) rubber eraser
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components component

Isotropic
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Figure 4.11:Decomposition results for three materials. The left column shows both compo-
nents, the center column shows the decomposed anisotropic component and the right column
shows the decomposed isotropic component. Each image shows the total energies of emitted
light at each surface point.
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going direction. In addition, we can analyze optical thickness and homogeneity using the
decomposed BSSRDF.

4.3.3 Refracted light in optically thin media

As discussed in previous sections, the scattering light in optically thin media saves directional-
ity of propagation. Generally, the incident light on an object surface is refracted and propagates
into the object. Direction of a scattering light depends on refraction effect on the surface. In the
optically thin epoxy resin, we previously observe the straight light distribution in Se¢tiba
Here, we confirm whether the straight light distribution in epoxy resin relates refraction.

The path of refracted light is determined based on Snell’s law with directions of incident
and outgoing light, surface normal on the incident and outgoing point, and a refractive index of
the target object. Thus, we can generate the observation of refracted light ray as an image with
known direction of the incident and outgoing light. We compare generated image of refracted
light ray and observed scattering light and then consider the these relationships.

Figure 4.12 show the plot of refracted light ray with yellow line. We superimpose the
refracted light on the images in Fig.5according to direction of illumination and observation.
Although the refractive index of epoxy resin is unknown, we u$eas a value of refractive
index for plastics. Figurd.12(a) shows that refracted light rays with the fixed illumination
z; = (0,0) andw; = (2.2°,154.3°). Plots of refracted light are different in each image
because images are observed from different directions. Except for the image in the fourth
row and first column, plots of refracted light correspond to straight light distributions in the
image. In addition, each light distribution attenuates according to refracted ray. Image in the
fourth row and first column are observed from same direction of illumination. Because the
light illuminates almost perpendicular direction of object surface, refracted light also travels
through same direction. Thus, a plot of refracted light becomes the center point in the image.
Figure4.12(b) shows that refracted light rays with the fixed observatign= (2.2°,154.3°).

We observe the similar result of the Fi§12(a). Each direction of refracted light corresponds
to straight light distribution in the image.

From the visualization of refracted light in observed images, we confirm that the refracted
light ray contributes scattering in optically thin translucent object determining direction of scat-

tering light.

31



(a) Refracted light with fixed illumination (b) Refracted light with fixed observation

Figure 4.12:Plot of refracted light ray in observed images. The left images are observed with
the fixed illuminationz; = (0,0) andw; = (2.2°,154.3°). The right images are observed
with the fixed observatiow, = (2.2°,154.3°). Yellow line plots refracted light in each image
depending on both of direction of illumination and observations.

4.3.4 Approximation of optically thick media employing a dipole model

In the field of computer graphics, optically dense translucent materials are often synthesized
using a dipole approximation mod&lq]. We confirm the accuracy of the dipole model using
the sampled BSSRDF of an optically thick rubber eraser. The BSSRBfw;, z,, w,) based

on dipole approximation is represented as
1
flay, wi, o, w,) = ;Ft(n,wo)R(:ci,mo)Ft(n,wi), 4.7)

where F(n,w) is the Fresnel transmission functio®(x;, z,) is the scattering term of the
dipole model parameterized by scattering coeffici€ntabsorption coefficient;, and refrac-

tive indexn as

1% 1 e—a'trdr(wi,mo) ]_ e_gf?"dﬂ(a’.iva)
M(ZT (‘”’“*d?«(asi,wo)) Bz,z,) <“”+dv<wi,azo>> d%(%%))
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Figure 4.13:Result of dipole model fitting. Dots show the sampled BSSRDF at each,.
Solid lines show the fitted dipole model.
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Figure4.13shows the result of the dipole model fitting. We normalize the BSSROF&sw;, x,, w,) =
1 at|xz; — x,| = 0 and set refractive index = 1.3. Blue dots show the sampled BSSRDF with
(0:,0;) = (2.2°,154.3°) and (0,, ¢,) = (43.7°,233.7°) and orange dots show the BSSRDF

with interchanged illumination and observation angles.

As shown in Fig.4.13 the sampled BSSRDFs are similar. This observation satisfies the
model described as edL.) in which the BSSRDF with arbitrary; andw, corresponds to the
BSSRDF with interchanged; andw,. Fitting results are shown by solid lines. The estimated
parameters are; = 0.19,0, = 0.0 to (6;,¢;) = (2.2°,154.3°) ando;, = 0.16,0, = 0.0
to (0;, ;) = (43.7°,233.7°). Although the estimated parameters are slightly different, the
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Figure 4.14:Synthesized image with parameters estimated by dipole model fitting.

BSSRDFs are approximated with little error. Figdrd4shows the image synthesized using
the dipole model with estimated parameters. The synthesized appearances are similar to the
appearance of the rubber eraser in Higl (b). The results confirm that the appearance of a

rubber eraser can be approximated using a dipole model.

4.4 Discussion

In this chapter, we presented a novel method of sampling and analyzing full-dimensional BSS-
RDFs. For sampling, we used ti@rtleback reflectarwhich is a polyhedral mirror system

that illuminates and observes the object surface from various directions by virtual projectors
and cameras. This system samples the full-dimensional BSSRDF in relatively short time. For
analysis, we visualized spatial and angular distributions by slicing BSSRDFs with fixed inci-
dent light ray and direction of outgoing direction. The analysis on directional distributions of
the light transport has already done in research on BRDFs, the analysis on incident and out-
going points is achieved by the full-dimensional BSSRDF. In addition, we decomposed the
BSSRDF into angular isotropic and anisotropic components by the analysis of outgoing direc-
tion. The analysis revealed that the ratio of the two components strongly depends on the optical

thickness and homogeneousness of the medium.
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Dominant angular Dominant angular
dependent component independent component
Optically thin object Optically thick object
(epoxy resin) (rubber eraser)

Figure 4.15: Summary of the analysis of the BSSRDF in terms of optical thickness. Light
transport in optically thin and thick objects has different characteristics of directionality.

Change with
incident position

Constant with
incident position

Optically homogeneous object Optically inhomogeneous object
(epoxy resin) (marble)

Figure 4.16:Summary of the analysis of the BSSRDF in terms of optical homogeneity. Light
transport has spatially different propagation.

We summarize the characteristics of light transport in translucent media, which are analyzed
using the full-dimensional BSSRDFs in Figk15and4.16 Here, we discuss an appropriate
model to represent scattering in translucent media, which we will use in the following chapters.

In optically thin translucent media, observed light transport depends on the incident and
outgoing direction because the incident light attenuates around the refracted light ray. Small
number of particles in optically thin media does not prevent the incident light from traveling
through the media, and the light does not spatially distribute but travels along a refracted ray.
Thus, scattering light in optically thin translucent media can be modeled by light attenuation
along with the refracted light ray depending on direction of the incident and outgoing light.
Analysis of refracted light in optically thin media as described in Secti@Balso shows this
phenomena.

Meanwhile, incident light in optically thick translucent media does not depend on the direc-
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tion of the incident and outgoing light, because the light loses its directionality due to repeated
scatterings in the media. Repeated scatterings make uncountable light paths, and the light ran-
domly travels in the media independently of incident and outgoing directions. This means that
we can ignore the effect of directions of incident and outgoing light in modeling scattering
light in optically thick translucent media. The dipole model that we use for the model fitting of
scattering light on a rubber eraser is parameterized using only the distance between an incident
point and outgoing pointe; — x,| without the directions of the incident and outgoing light.

While we select a scattering model focusing on angular dependency to deal with optical
thickness, we have to additionally change the scattering model at each position to deal with
optical homogeneity. A spatially variant translucent medium is difficult to represent with the
parametric model owing to the complex structure of the medium such as optical discontinuity
owing to cracks between optically different layet®§. In addition, it is difficult to deal with
completely different appropriate scattering models according to the optically thickness at each
position in the same formulation. Hence, we calibrate or estimate scattering model at each
position for the spatially varying translucent medium to avoid complex parametric expression
of scattering model.

Based on these analyses of the scattering model, we propose shape estimation methods for
optically thin and optically thick translucent objects in the following chapter.
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Chapter 5

Shape Estimation of an Optically Thin
Translucent Objects

From this chapter, we propose a shape estimation method for a translucent object based on the
discussion in Sectiod.4. Firstly, we present the estimation method for optically thin translu-

cent objects.

5.1 Introduction

When traveling through a translucent medium, light collides with particles and scatters in the
medium. Because the density of particles is low in optically thin translucent media, incident
light rarely collides with particles and travels almost in a straight line. Thus, attenuated light is
often observed around refracted light as shown in Seeti@n

The attenuation of light is modeled using the Lambert-Beer [E][in physics. The law
describes that incident light exponentially attenuates along the length of the light path in a
medium. While the light path of scattering is usually complex owing to uncountable collisions
with particles, the light path of a single scattering is identified uniquely because light collides
with a particle only once in the medium. Propagating light in an optically thin medium is
dominated by low-bounce scattering, and the light attenuation model of single scattering is
thus appropriate for our target.

In this chapter, we develop a shape estimation method based on the observation of sin-
gle scattering, and its attenuation along the light path. We derive a solution method using a
scattering model that takes into account the refraction, an extinction coefficient, and a phase
function.

The primary contributions of this work are as follows. We propose a new shape estimation

technique based on the scattering effect for translucent objects. Scattering is introduced as a
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Figure 5.1: lllustration of the scattering model and examples of distribution profiles with a
varying phase function.

signal beneficial for determining the shape. The proposed method is effective when the target
object generates strong transmitted scattering, which is a situation in which other shape estima-
tion approaches cannot be applied. This work is the first attempt to directly use the observed
intensities of single scattering for shape measurement. Additionally, we develop an effective

solution method based on energy minimization for the simultaneous estimation of the shape
and scattering parameters.

5.2 Shape from Single Scattering

5.2.1 Background

Figure5.1(a) shows a parametric single scattering model. In a scattering medium, incident
light exponentially attenuates along the length of the light path according to the Lambert-Beer
law [104]. It also scatters through a solid angle in the medium, and a good approximation of
the phenomenon is the Henyey-Greenstein phase fundtsh [With this phase function, the
observed intensity of single scattering is described &9[41]

I = sp(g,0)e th+d2) gy, (5.1)
(Y —— 5.2)
P AT (14 g2 — 2gcos )2’ '
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Figure 5.2: Setting for shape esti- Figure 5.3: Light path in the target object. The in-

mation. A translucent object is illu- cident plane is almost planar, and incident light is as-

minated from the side and observedumed to be parallel to theaxis. The illuminated ray

from the top. reaches the surface poipt, y), changing its travel di-
rection at the scattering poifit’, y').

wheres is a scaling constant that includes the intensity of the incident light and scattering
coefficient,o; is an extinction coefficientd; +d,) is the length of the light path in the medium,
dw is the solid angle of the light ray, andg, 6) is the phase function. The phase function
represents the scattering distribution, and the distribution profile is controlled by a parameter

(=1 < g <1). Figuress.1(b), (c), and (d) show examples of the distribution profiles produced
by varyingg.

5.2.2 Formulation

We formulate the relationship between observed intensities of single scattering and the shape
of a translucent target. FiguBe2 shows our setting for the shape measurement. A translucent
object is illuminated from one side and observed from the top. We assume a homogeneous
material as a target object and orthographic projection for both illumination and observation.
We also assume that a incident light ray attenuates along horizontal line in an object and does
not reflect on other surfaces of the object. In addition, we ignore multiple scattering for now,
but explain a method for handling it in later sections.
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Figure 5.3 illustrates a light path of single scattering in a medium. The incidentifay
scatters through a solid angley at scattering poinfz’, v'), and reaches surface point, y).
n(z,y) represents the surface normal apd= [1,0,0]” andi, = [0,0, 1] are incident and
exiting light vectors, respectively(x, y) is a unit scattering vector pointing from the scattering
point (z’,y’) to the surface pointz,y). The angle between the incident vecigrand the
scattering vector(x,y) is denoted a$,. 6, represents the projected angleggfon the plane
spanned by(z, y) andi,. Our purpose is to estimate the height of the translucent object)
from the observed intensit(z, y) at the surface poine, y) on the surface, where the height
of the incident ray is: = 0. The scattered incident ray is finally refracted at the object
surface. The angle of refraction obeys Snell’s law, expressed as

n(x,y) x i, =nn(z,y) x r(z,y), (5.3)

wheren is the refractive index, and represents a cross-product operator. The total length of
the light path becomes the sumdf which corresponds to the sum of the distance from the
incident point to the scattering point and the distance from the scattering point to the surface
point, h(z, y)/sin 6,. As the intensity of single scattering is modeled as Bd)(the observed
intensity is expressed as

I(z,y) = sE"FP (2, y)plg, 0,)e "5 ) dw(h(x, ), 6,), (5.4)
sin@..dA

dw(h 0,) = -—""

w( (xay)7 ) h(l’,y)Q

wheres is a scaling constant,?“(z, y) is the Fresnel transmittance on the surface paing),

and Fi™ is the constant Fresnel transmittance on the incident point because the incident light
is perpendicular to the incident planéA is the physical size of a pixel in the observed im-
age. EquationH.4) shows that the observed intensity depends on both the geometric shape
and scattering parameters, namely the extinction paramgteefractive index), and phase
function parametey. Given these scattering parameters, the height of the translucent object is

determined to an unknown offset owingd@as
sin 6,

hiw,y) = — (log s + log F;™ + log FY"" (z,y) + log p(g. 6,)

t

+logdw(h(z,y),0,) —logI(z,y)) — x'sinb,. (5.5)
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5.3 Solution method

In the previous section, we described a basic theory for obtaining the shape from single scat-
tering. However, in reality, we cannot directly estimate the object héighty) using eq. %.5)

because of the unknown parameters and unclosed form of the function. In addition, the ob-
served intensities include contributions from not only single scattering but also multiple scat-
tering. In this section, we discuss a method that solves these problems. Our method assumes
that the refractive index is known because it can be directly measured using a refractometer.

5.3.1 Shape estimation by energy minimization

In our method, we employ an energy minimization approach to simultaneously determine both
the shape and scattering parameters. When the unknown parameters and height are correctly
estimated, eq5(4) should give an intensity that is equivalent to the observed inteh&ityy ).

Although we can estimate the unknown parameters by seeking parameters that generate the
observed intensity, parameter estimation tends to be unstable owing to a larger number of
unknown parameters than the captured intensity. To reliably derive a solution to this prob-
lem, we use multiplex(2 < n) images that are captured by changing the height of the inci-
dent ray;i.e., we record multiple intensitieg(z, y) with varying heights of the incident rays

z=4d; (i=1,...,n)as shown in Fig5.3 We now have: intensity observations per scene

point [;(x,y), expressed as

h(z,y)—d;

Li(z,y) = sEF (2, y)p(g, 0,)e " snn D dw(h(z, ), 6,),

(5.6)
1=1,...,n.
We also take into account the signal-to-noise ratio of the observed intensities; the darker ob-
servations suffer more from image noise while the brighter observations are more reliable. We
incorporate this by introducing a weighting factor when determining the unknown parame-
ters. We thus define an energy function for computing heilghtsy) and scattering parameters

s,g,0; as
E(h(z,y),5,9,00) = Y_w; ¥ (Li(x,y) — I (h(x,y),5,9,00))*,  (5.7)
i Y

wherel!" is the generated intensity obtained using &g)( andw; is a weighting factor that
reduces the effect of noise. We define the weighting factas

v — 2wy li(z,9) 5.8)

2 ke 2oy (2, 9)
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The energy functior® evaluates the closeness between the observed intensity and intensity
generated using ecb.©). The minimization of the energy functiafi gives us estimates of the
heighth(x, y) per-pixel and scattering parameterg ando; as
{h(ﬂf, Z/), 5,9, Ut} - (arg)min E(h({l], y)7 S, 39, Ut)' (59)
h(x,y),s,9,0¢

We describe the optimization method in the following section.

5.3.2 Implementation

This section describes the implementation details of the solution method. Our method employs
non-linear optimization because of the non-convexity of Bgy) fwith respect to the unknown
parameters. We now describe the method for making the initial guess of the héighj and

the following optimization strategy.

Estimation of initial shape

To make an initial guess of the estimated parameters, we use the initial/stiapg) computed

by ignoring refraction{ = 1). Whenn = 1, the scattering vector coincides with the output
vectori,, the two-dimensional projection of the scattering pdirit /) becomes identical to
the surface poinfz, y), and Fresnel transmittande’*!(x, y) is constant because refraction is
disregarded. Since the andlgequalsr/2, the phase functiop(g, 6,) becomes constant. In
addition, we assume that solid angle(h.(x, y), 6,.) is a constant value. The intensity generated
from initial heighth?(z, y) is described as

ID(z,y) = Se~ (W @yte=di) g — sF"Ffp (g, g) dw. (5.10)

Here, unknown parameters are the height:, y), scaling constant, and extinction coefficient
0. Using a pair of intensity observatiodgz, y) and/;(z,y) obtained for different heights of
incident raysi; andd;, the extinction coefficient is calculated as

| Ii T, —log I; )
5 — og I;(x Z) dOg i(x,y) (d: # d;). (5.11)
i Yy

In practice, we take the average for all pairsiplindd; as the estimate of,. We employ the
intensity at the incident point as the initial scaling constafdr the scaling without attenuation.
The initial guess of the heighf (x, ) is therefore described as

1
o
and is estimated using the parametersind.S. We use this initial guess as an input to the
optimization:h(z,y) < h°(x,y).

42



Optimization

Now we estimate the shape and parameters by minimizindedy usingh® as the initial guess

of the shape. The unknowns to be estimated are the per-pixel heighg) and scattering
parameters, g, ando,. To efficiently avoid local minima, we use a two-step approach for the
optimization. Specifically, we first apply particle swarm optimizatib@€ to limit the search
range in a coarse manner, and then use the Nelder-Mead metbddtg find the optimal

parameter set on a fine scale.

Extraction of single scattering

As discussed above, actual observations are both of single and multiple scatterings as shown in
Chapter3.1 To separate the single scattering component from multiple scattering, we employ
a separation metho@9] that uses a projector as a light source, as shown ing=ig We illumi-

nate one-dimensional high-frequency stripe pattern and capture several images with shifting its
phase to an object. Although black pixels do not directly illuminate the object, the brightness
of regions corresponding to black pixels is not zero due to multiple scattering. Since the bright-
ness of unilluminated regions does not change with shifted projection, the constant component
corresponds to multiple scattering. We extract the multiple scattering complngni. as the
constant component by taking minimal value along observed images with shifted projection.
In actual, the extracted minimal valug,;,, is the half of multiple scattering,, .., because

the high-frequency stripe pattern illuminates the half of pixels on a horizontal line. Thus, the
multiple scattering is the two times of the constant component as

[multiple = QImin- (513)

On the other hand, the illuminated region in observed image includes both single scattering
and multiple scattering. Thus, the imagg,. by taking maximum value along images with
shifted observed images has both single scattering and multiple scattering. Then, we obtain

single scattering by subtracting the constant compohgntfrom I,,,., as
Isingle = Imaz - Imin~ (514)

Although this method allows us to extract the single scattering component easily, accu-
racy of separation depends on frequency of stripe patid§.[ In the experiment, we select

appropriate frequency to separate scattering components on target objects.
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Figure 5.4:Decomposition method employing the projection of high-frequency illumination.

In this setting, single scattering and multiple scattering are observed as a high-frequency com-
ponent and almost constant component, respectively. Hence, single and multiple scatterings are
decomposed by analyzing the difference in captured images, using a shifting projection pattern.

5.4 Experiments

We assess the effectiveness of the proposed method for both synthetic and real-world scenes.
For the synthetic scenes, we assess the accuracy of the proposed method by making a compari-
son with the ground truth. For the real-world scenes, we prepare two objects where the ground
truth shape is available while the scattering parameters are unknown.

5.4.1 Synthetic scenes

For the synthetic scene experiment, we use two one-dimensional curved surfaces and one dis-
continuous surfacé(z) as the scenes, referred to as Scenes A, B, and C. For each scene, we
simulate intensity observatiordgx) with varying heights of incident ray$ = 0.2 x i[mm],
i = 0,---,9 using the scattering model of e.§). We add Gaussian noise to the inten-
sity observations at five levelg. (= 0 ando = 0,5, 10, 15,20). The optical parameters are
consistently settg = 1.2, g = 0.1, oy = 0.15[mm~!], ands = 50000.

Figure5.5a) shows Scene A and (b) shows the simulated intensity observation in the case

of Gaussian noise = 10. From this intensity, we estimate the object shapes. FiguE)
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Figure 5.5:Estimated heights of Scene A
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Table 5.1:Estimated parameters and RMSE of the estimated height at each noise level.

Scaling | Parameter Extin_ct_ion RMSE of
coefficient . 1
constant s g o height [mm~1]
O¢ [mm™"]

Ground truth | 5.0 x 104 0.1 0.15 —
oc=0 5.08 x 104 0.069 0.15 0.05x 1071
c=5 4,95 x 10* 0.007 0.15 0.15x 1071
o=10 4.95 x 104 0.002 0.15 0.42 x 1071
oc=15 6.09 x 104 | — 0.002 0.16 1.64 x 101
o=20 6.33 x 104 0.003 0.16 1.90 x 101

shows the estimated result of Scene A. The initial height is globally skewed owing to the in-
accurate assumption of the refractive index 1 and local deformations due to observation
noise. In particular, when the Gaussian noise levelsrate 15 and20, the estimated shapes
become noisier as the length of the light path increases because of the low signal-to-noise ra-
tio. However, optimized results consistently agree well with the ground truth except for some
fluctuations.

Estimated scattering parameters and the root-mean-square error (RMSE) values are sum-
marized in Tablés.1 With small noise, the scaling parameteand extinction coefficient;
are almost correct. The scattering paramegtéias a larger deviation from its ground truth.
Although g controls the scattering distribution, it affects both the intensity scale and intensity
attenuation depending on the object shape. Thus, estimatiegomes more difficult than
estimating other parameters. While the RMSE increases according to the noise amplitude, the
overall errors are small and demonstrate the accuracy of the method.

Other experimental results are obtained for a synthetic one-dimensional stepped shape
(Scene B) and two-dimensional pyramid like shape (Scene C). The ground truth and estimation
result in the case of Gaussian noise- 10 are shown in Fig5.6(a) and Fig5.7(a). Scattering
parameters are the same as those in the experiment for Scene A.Fgsinews experimental
results for Scene B. The initial estimation has errors along a discontinuous edge because the in-
tensity of the synthesized observations changes discontinuously. The estimation well converges
to the ground truth, and scattering parameters are estimated almost correcthyasd x 104,

g = 0.044, ando; = 0.15[mm~!]. Figure5.7 shows results for Scene C, which is an asym-
metric and discontinuous scene. Although the initial shape as shown i%.F#g) also has
errors along the ridges of the pyramid shape, these errors are reduced in the final estimation.
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Figure 5.6:Estimated heights of discontinuous Scene B. Estimated scattering parameters are
s =4.89 x 10%, g = 0.044, ando; = 0.15]mm™1].

Estimated scattering parameters are 4.33 x 10, ¢ = 0.025, ando; = 0.147[mm~']. For
these asymmetric and discontinuous scenes as well, the estimation well converges to near the
ground truth. The scaling parameteaind extinction coefficient; as scattering parameters are

also estimated correctly.

5.4.2 Real-world scenes

We also applied the proposed method to real-world scenes. Fagaishows the experimental
setting. A 3M MProl110 projector was placed on the side of the target object, and a Point
Grey Grasshopper camera that had a linear response sensor was vertically placed to obtain a
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Figure 5.7:Estimated heights of discontinuous and asymmetric Scene C. The estimated param-
eters ares = 4.33 x 10%, g = 0.025, ando; = 0.147[mm™'].

top view. To avoid the perspective effect of the imaging system, we used an Edmund optics

telecentric lens for approximating an orthographic projection. To perform a comprehensive

analysis, we used two different shapes of translucent objects, one being concave and the other

being convex. We made these objects using the same material as showrlid @y. We show

target objects and their sizes in Figlg®. The ground truth of these objects was known for

guantitative evaluation. We set the refractive indexs1.3. We captured intensities of single

scattering/;(x, y) (d; = 0.25 xi[mm], i = 0, - - - , 9) while shifting the height of incident light.
Figure5.10 shows the experimental result for the concave object. Fi§ut§a) shows

the decomposition of the scattering components in pseudo color. We also horizontally plot

intensities of each scattering component in BidQb). The red, green, and blue plots show the
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Figure 5.8:Experimental setting. A projector is placed on the side of the object, and a camera
is vertically placed. We used a telecentric lens for orthographic projection.
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Figure 5.10:Experimental result for a concave scene.
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Figure 5.12:Three-dimensional plots of estimated concave and convex scene.

intensities of single scattering, multiple scattering, and observed scattering, respectively. It is
observed that single scattering is almost exponentially attenuated with increasing distance from
the incident point. Figur&.1Qc) shows plots of extracted single scattering with for different
heights of incident light. We estimate the target shape from these intensities. One-dimensional
plots of estimation results are shown in F&g1Qd). The red, green, and blue lines are the
ground truth, initial height, and final result, respectively. The initial height is not very far from
the ground truth. The final result is estimated as being close to the ground truth. However, the
final result is estimated incorrectly in the region of a planar surface. A possible reason for the
incorrect estimation is insufficient intensity of single scattering for shape estimation because
the light paths are longer in observing this region. In addition, the shape near the incident plane
does not match the ground truth well owing to the bright observation at the incident point and its
glare. Scattering parameters are estimated-ad .21 x 10%, g = 0.042, ando = 0.132[mm~1].

We also show the experimental result of the convex scene irbFid. Figures5.11(a) and
(b) show the separated scattering component and intensity plot, respectively. 3-iflid is
the shape estimated from single scatterings as shown i Hit{c). Discontinuous shape at the
top of the convex shape in the initial shape is improved to the correct shape in the final result.
Estimated scattering parameters are- 1.27 x 10%, ¢ = —0.083, ando; = 0.143[mm™!].

These parameters are similar to the concave case because the objects are made of the same
materials.

We show the result of another convex scene in big3 Figure5.13c) shows the recon-
struction result given by single scattering with illumination from the front of the target object.
Because of the insufficient intensities of single scattering as shown irbRig(b), the esti-
mated height has large error in the back area. To reduce the error, we capture the intensities
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Figure 5.13:Experimental results for an asymmetric convex scene. (b) Observed single scatter-
ing in pseudo color. (c) Three-dimensional plot of the estimation result with illumination only
from one side of the object. (d) Three-dimensional plot of the merged result.

of single scattering by illuminating from the other side of the target object, and then merge the
two estimated reconstruction results. Figbr@3d) shows the merged result. Large noise is
reduced and whole the shape is estimated. However, estimated surfaces are not planar due to
artifacts in the decomposed single scattering as shown irbHi§(b). This artifact is occurred

by projected high-frequency stripe pattern. It remains difficulty on separation of scattering
components with high accuracy.
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5.4.3 Discussion

Computation time

In this experiment, it took aboub minutes to capture images (six images for extracting single
scattering at each db different depths), and it takes a few hours to compute the shape with an
unoptimized Matlab implementation. We computed estimates on an Intel Core 2 Duo central
processing unit (3.00 GHz) with 3GB random access memory. The size of the probldm is
(71 points forh(zx), s, g, andoy) in synthetic data259 (256 points forh(z,y), s, g, andoy) in
symmetric real data, artf3 (870 points fori(x, y), s, g, ande;) in asymmetric real data.

Limitations

There are a few limitations to the current method. These limitations will be overcome in our
future work.

Object shape: Our current formulation requires that the incident plane is planar and incident
light on the target object is parallel to the x-axis for the extraction of single scattering using
high-frequency projection. When projected patterns interfere with each other, single scattering
cannot be extracted. This assumption needs to be relaxed when it is applied to a more general
shape.

Single scattering in an inhomogeneous material: As our method uses single scattering,
which exponentially attenuates with constant scattering parameters, we cannot estimate the
shape of an inhomogeneous material. To deal with spatially varying scattering media, it is
required to estimate scattering parameters in a three-dimensional volume. However, estimation
of a huge number of unknown scattering parameters is a challenging task.

5.5 Summary

In this chapter, we proposed a method of estimating the shape of optically thin translucent ob-
jects based on the attenuation of single scattering. Because the light in optically thin translucent
object is dominated by low-bounce scattering, the attenuation model of single scattering is ap-
propriate for target objects in this chapter. We modeled the light attenuation in the object based
on Lambert Beer’s law and make relationship between the shape of target object and observed
intensities of single scattering. Experiments with synthetic and real-world results demonstrated
that our method has the potential for the accurate modeling of translucent objects, which has
been difficult to achieve with other appearance-based methods. While the method works well
for various translucent objects, the accuracy suffers from low-intensity measurements and a
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high signal-to-noise ratio when measuring optically thick objects, for which multiple scattering
dominates the appearance. In addition, the accuracy of shape estimation depends on quality
of extracting single scattering by high-frequency illumination. Another issue relating to the
current approach is the high computational cost. We are interested in looking into these aspects

further to make the approach more practical.
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Chapter 6

Shape Estimation of an Optically Thick
Translucent Objects

6.1 Introduction

The shape of the optically thin translucent object is estimated from single scattering, which

is attenuated light along the refracted light. Refracted light is useful in reconstructing the

object shape because it depends directly on the surface direction. By contrast, in optically
thick translucent objects, incident light does not propagate along the refractive direction, but
rather distributes around the incident point owing to uncountable collisions with particles in the

medium as described in Sectidr8. As a result, we cannot observe refractive transmitted light

in the medium but rather obtain shading of the target object.

Observed shadings are often used to estimate surface normals, which represent the direc-
tion of the object surface, in a photometric stereo technig8p The photometric stereo tech-
nique is known as a method of estimating object shape from multiple shading images in the
field of computer vision. While conventional photometric stereo methods have been developed
for simple Lambertian diffuse surfaces, recent generalizations can handle more complex
reflections in real-world scene$(q9 11(. However, the estimation of the surface normals of
translucent materials remains a difficult task, with subsurface scattering being signifitgnt

While the exact modeling of subsurface scattering remains a difficult task that requires com-
plicated models, prior studies in the field of computer graphics show that the image formation
model of subsurface scattering can be well approximated as the convolution of the scattering
kernel and surface radiance of optically thick materials, which distribute light regardless of the
incident direction 95]. In Chapter4, we show that light transport in an optically thick translu-
cent medium does not depend on the directions of the incident and outgoing light. Hence, we

use this approximation to develapirface normal deconvolutiprvhich recovers the original
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Figure 6.1:Light interactions on a translucent surface. Incident light is partially reflected from
the surface, while the remaining light transmits and spreads inside the subsurface.

surface normal from thelurry surface normal obtained by applying the conventional photo-
metric stereo method to translucent objects. This idea is similar to Boalgs method 117,

which estimates the surface normal using deconvolved input images to remove the subsurface
scattering effect. While Dongt al. assumed parametric subsurface scatterieg photon

beam diffusion of optically homogeneous media), we represent subsurface scattering by non-
parametric convolution kernels for either optically homogeneous or inhomogeneous media.
The convolution kernels can be either calibrated or estimated, and various deconvolution tech-
niques in the literature (such as image deblurring methods) can be used in the implementation
to recover the deblurred surface normal. We present estimation results obtained using our de-
convolution formulation and using existing deconvolution in experiments.

6.2 Convolutional Image Formation Model

We begin with the image formation model for a translucent surface. When light illuminates a
translucent surface, it is reflected, transmitted and absorbed as depicteddriFgportion of

the transmitted light returns to the surface via subsurface scattering; thus, the rddiance)

at a scene point with incident vectorl and observation vector becomes the sum of the
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reflection/,.(z, 1, v) and subsurface scatterig(x, 1, v) components:
I(x,1,v) = [.(z,1,v) + I,(x,1,v). (6.1)
The subsurface scattering componétit:, 1, v) is modeled asZ6]

Ii(2,1,v) = y(z) F(v,n(z),n) / R(z,y)F(1,n(y),n)n(y)"ldy, (6.2)
ycA

where~(z) is a scale factor for the subsurface scattering comporfénmgpresents Fresnel
transmission, and, n,1 € R? are the observation, surface normal, and incident vectors, re-
spectively. n is a refractive index,R(x,y) represents an extinction term for light traveling
from scene point to its neighbory such as a dipole mode2§|, and A defines a neighboring
area. Generally, the subsurface scattering component describes a nonlinear relation between
the surface normal and observed intensity owing to the Fresnel transmission term. To relax
this complexity, we approximate the original model as a simpler form by assuming an optically
thick material, as in113. On the surface of an optically thick material, subsurface scattering
does not depend on the direction of the light, because the transmitted light scatters uncountable
times and loses its directionality due to random light paths as in the diffusion approximation.
Thus, subsurface scattering is invariant to the incident direction and outgoing direction, and
the Fresnel ternt’ can be regarded as constant for an optically thick material. As a result, the
subsurface scattering componélitr, 1, v) is simplified as

(@) =+ (@) [ Ree.g)n) g, 63)
yeA
where+/(z) is a new scale factor of subsurface scattering that includes constant Fresnel trans-
mission terms.
Assuming a Lambertian reflectance model for the reflection component
I.(z,1) = p(x)n(x)"1 with a diffuse albedg(z), the intensity observatiof(z,1,v) can be
written as

1(2.1) = | p@)n(z) + () / Riz.ym(y)dy | 1 (6.4)

The first factor of eq.q.4) can be regarded as a simple convolution model as

T

I(z,]) = / hz,y)n(y)dy | 1= (h=x* n(x))T 1, (6.5)

€A
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wherex is the convolution operation, and the kermetepresents a scattering effect for the

surface normals and is expressed as

h(z,y) = p(x)é(x —y) + 7' (x)R(z,y). (6.6)

The kernelh expresses the spatial attenuation of scattering from incident point on the object
surface.

A similar convolutional approximation of subsurface scattering is also discussed in the work
of Munozet al. [113 for the forward rendering of optically thick materials. This method is
inspired by the works of convolutional approximated subsurface scattering by dtiabipl14]
for the rendering of human skin and Donrel. [25] for multi-layered materials. Unlike their
method, where the extinction terRXz, y) is defined as a function parameterized only by the
relative positions of andy, our method allows more flexibility for the extinction tetRiz, y)

so that inhomogeneous translucent materials can also be handled.

6.3 Solution method

6.3.1 Surface normal obtained by the conventional photometric stereo
method

Based on the convolutional image formation model, we develop a photometric stereo method
for estimating the surface normals of an optically thick translucent surface. Our input is the
same as that of the traditional photometric stereo method in that a set of images is taken under
varying lighting directions from a fixed viewpoint. To simplify the discussion, we assume that
the light directions are calibrated and the observations do not include shadows. In the rest of
the paper, we consider the discretized pixel sitemdv that correspond to scene pointsind

y, respectively; thus, eg6(5) becomes
I(u,1) = (h(u,v) *n(u))" 1. (6.7)
The convolution equation e6.(/) has the simple linear algebraic expression
D = HNL, (6.8)

whereD € R™** is an observation matrix;; andk are the numbers of pixels and light direc-

tions, respectivelyHI € R™ ™ is a scattering matriXN € R™*3 is a surface normal matrix,
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andL € R*** is an incident light matrix, which is assumed to be known. This linear expres-
sion indeed has similarity to the expression of the Lambertian photometric stereo nizghod [
where the observatioD, scaled surface norma,, and light matrixL. have the relationship

D = N,L. (6.9)

From Egs. 6.8) and 6.9), we see that the scaled surface noriNalcorresponds tdiN ac-
cording to

N, = HN. (6.10)

Therefore, we can regard the scaled surface notNabs ablurry version of the original
surface normalN that we wish to estimate. In the following, we call, a smoothed surface
normal.

6.3.2 Estimation process

According to the observation in the previous section, we estimate the surface MNdimgabhk-
ing the following two-step approach. (a) Obtain the smoothed surface ndiay Lamber-
tian photometric stere@p], (b) Estimate the surface normil in a deconvolution framework
using the subsurface scattering mafix

(a) Estimation of the smoothed surface normalN,. We use a conventional Lambertian
photometric stereo metho@§] to derive the smoothed surface norm\l as

N, = DL, (6.11)

where T represents a Moore-Penrose pseudo inverse.

(b) Estimation of the original surface normalN. Once the smoothed surface norrmalis
obtained, we use eg6(10 to derive the original surface normal. If the scattering matrit

is available and invertible, we can directly obtain the estimate of the original surface normal
N in a linear least-squares fashionls= H™'N,. As the estimation result produced by such
simple deconvolution is often degraded by ringing artifacts owing to the loss of high-frequency
information in the original signal, we use a smoothness constraint to stabilize the estimation.
We design the smoothness tesnas a weighted second-order differencen¢fi) betweenu’s
neighborhood locationsandv as

n’(u) = w(t,u) (n(t) — n(u)) — w(u,v) (n(u) —n(v)). (6.12)
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The weightw(u, v) controls the discontinuity of surface normals by taking the difference of
intensity observations across varying lightirigas

w(u,v) = exp (_rln Z (I(u,l;) — I(v,li))2> : (6.13)

i

The matrix expression of the smoothn@gsis given as
N” = WN, (6.14)

whereW € R**™ is a matrix of the second-order derivative filter, ands the number of
triplets used to compute the second-order derivatives. In our case, we define the triplets along
horizontal and vertical directions in the image coordinates. Finally, our estimation problem
becomes a ridge regression problem expressed as

N = argmin|/HN — Ny|2 + \[[WN][%, (6.15)
N

where)\ controls the smoothness of the estimates. An explicit solution to this problem is given
by setting the first-order derivative to zero as expressed by

N = (HTH+ \W'W) 'H'N.. (6.16)

In this manner, the estimates for the original surface not¥edn be obtained in a closed-form.

The mathematical expression of the problem is equivalent to that of the image deblurring
problem, where the original sharp image is recovered via deconvolution. The important differ-
ence, however, is that our problem deals with the deconvolution of surface normals. Therefore,
conventional image priors that are developed for natural images may not be suitable. Other
than this aspect, existing deconvolution techniques can be alternatively used to estimate the
surface normaN from the smoothed surface norn?dl. The convolution kerneH is gener-
ally unknown, but can be either calibrated (non-blind deconvolution) or estimated (blind de-
convolution). While most image deblurring techniques are limited to spatially invariant point
spread functions (PSFs), which corresponds to handling optically homogeneous materials in
our case, the formulation of ef.(6 can naturally handle optically inhomogeneous materials,
corresponding to the case of spatially-varying PSFs.

6.3.3 Calibration of the Convolution Kernel

As mentioned above, the surface normal deconvolution can be performed without knowing the
convolution kernel using blind deconvolution techniques; however, knowledge of the convolu-
tion kernel is useful for stabilizing the estimation. In addition, spatially variant deconvolution is
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Figure 6.2: Setting for measuring the convolution kernel. A projector casts a thin light ray
on the target object. We estimate the convolution kernel from the incident pattern and light
distributions on the target object. In the case of an inhomogeneous medium, we capture light
distributions of optically different regions.

a challenging task in research on image deconvolutid,[116. Thus, we need to know con-
volution kernels at each position for dealing with optically inhomogeneous translucent objects.
Here we describe a simple procedure for measuring the convolution kerneb. Fgipows our

setting for measuring the convolution kernel. By illuminating a diffuse surface and the target
translucent material individually by a thin ray emitted from a projector, we obtain the mea-
surements of the incident light distribution and scattering response on the surface, respectively.
The measured scattering response corresponds to the convolution between the incident light
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distribution and the convolution kernel. From this relationship, we calibrate the convolution
kernel h which represents spatial attenuation of scattering. When the target medium is opti-
cally inhomogeneous, we need to calibrate the convolution kernel in each optically different

region.

6.4 EXxperiments

We now evaluate our method using both synthetic and real-world data for the purposes of

guantitative and qualitative evaluations.

6.4.1 Synthetic scenes

Homogeneous media

As the synthetic scene, we use the rough surface scene shown B ¥ighe image size is

160 x 160 pixels. To synthesize the input images under varying lightings, we usé.apwth

the subsurface scattering model of é812|. For the extinction terni(x, y) in eq. 6.2), we use

the dipole modelZ6] with the same parameters described in their paper. The camera model is
orthographic and the area of a pixelis/'15)[mm?].

Figure 6.3 (b) shows the result obtained using the Lambertian photometric stereo method
based on eq.6(11) and its angular error in pseudo color. Although the estimated surface
normals are smoothed by subsurface scattering, especially around the edges, a low-frequency
signal of the overall surface normal directions is largely obtained.

To apply our surface normal deconvolution of e811€), we use the extinction terii(z, y)
as the convolution kernel. The distance between scene poetsly is approximated as the
distance between pixel sitesandv in the image coordinates. Figurés3(c) and (d) show the
results obtained using our method with smoothness factoks-6f0.01 and\ = 0.1, respec-
tively. While results with a small smoothness factoe= 0.01 yield sharper reconstructions,
they suffer from ringing artifacts around surface normal edges. Although the choice of a proper
value for\ depends on the scene and is thus difficult as is the case for any regularization tech-
nique, with a proper value of, our method has notably better reconstruction accuracy than
the Lambertian photometric stereo method that only considers the local illumination model,
even though we assume the same Lambertian model as for the reflectance component. Ta-
ble 6.1 summarizes the maximum and mean angular errors of the surface normal estimates
made using various material parameters. In general, we observe that a smaller magnitude of
subsurface scattering yields better accuracy, because stronger subsurface scattering cuts off the
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Figure 6.3:Result for a synthetic rough scene. (a) Example of synthetic images obtained using
the dipole model with the parameters for skim milk given26][ (b) Surface normal and error
maps of the Lambertian photometric stereo method. More faithful surface normals are obtained
using our method in (c) and (d) different smoothness factors

Table 6.1:Maximum and mean angular errors [deg.] of scenes A and B for various materials.
Parameters of each material are describe@h [

Plot of 3 Lambertian Our method Our method

kernels )~ PS A=0.01 1=0.1
max mean max mean max mean
1. Marble 56.2 11.9 29.1 1.9 36.2 5.6

2. Skim milk 61.3 | 15.7 | 521 6.0 984 | 10.7
3. Whole milk 524 | 10.7 | 221 1.5 285 | 44
4. Skinl 634 | 153 | 431 6.5 | 105.1 | 10.6
5. Skin2 615 | 143 | 479 4.2 86.2 | 8.7

high-frequency signals more notably. This shows that, by properly accounting for subsurface
scattering, the accuracy is roughly~ 5 times better than that of the baseline technique that
only considers the local illumination model.

For optically homogeneous materials, we can also use conventional deconvolution methods
in place of solving eq.§.16). Figures6.4and6.5show the results of conventional non-blind
deconvolution and blind deconvolution for scene B, respectively. For the non-blind deconvo-
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Figure 6.4:Surface normal estimates made using non-blind deconvolution methods
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(a) Levinetal [12]] (b) Krishnanet al. [122]

Figure 6.5:Surface normal estimates of scene B made using blind deconvolution methods

lution methods, we use the same convolution kernel as that used in producing the result of

Fig. 6.3, The results show consistent improvement over the Lambertian photometric stereo

method, although these original methods are not particularly designed to deblur surface normal

fields. In addition, the results of blind deconvolution methods in &i§. where the convolu-

tion kernel is not given but simultaneously estimated, also show improvement. While the blind

deconvolution is a harder problem than non-blind deconvolution to solve and the results are

generally worse, when knowledge of the convolution kernel is unavailable, it is a viable option

for our method.
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Max: 63.7, Mean: 13.3 Max: 36.4, ean: 3.2
(a) Material region mask  (b) Kernel for (c) Lambertian
and synthesized image each region photometric stereo (d) Our method

Figure 6.6:Results for a scene of an optically inhomogeneous medium using rough scene. (a)
Masks indicating different material regions and synthesized images. (b) Two types of convo-

lution kernels used for these distinct regions. (c) and (d) Smoothed surface normals obtained
employing the Lambertian photometric stereo method and our results, respectively.

Inhomogeneous media

Our solution method is naturally applicable to the case of inhomogeneous materials, as long as
the convolution kerneH in eq. 6.16) is defined. To evaluate the performance of our method

for inhomogeneous materials, we produce synthetic images that contain different optical thick-
nesses using masks that indicate the material regions as shown éh&jg) and (b). Because

of the difference in the magnitudes of subsurface scattering in the material regions, the surface
normal estimates obtained using the Lambertian photometric stereo method, showr6i6 Fig.

(c), exhibit varying smoothnesses; smoother in the gray mask region, and sharper in the white

mask region.

By applying our method, the surface normal field is consistently improved regardless of
the material regions as shown in the F&g6 (d). This recovery is more accurate than that of
Fig. 6.3, because the inhomogeneous example contains a region where there is less scattering.
Estimated normals in the gray mask region are less accurate than normals in the white mask

because deconvolution of a strong blur effect is more difficult than a weak blur effect.
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Figure 6.7:RMSE of estimated surface normals at each noise level

Robustness of estimation results against observation noise

We evaluate the robustness of our method against observation noise in the rough scene. The
optical parameters are set to those of skim milk as describezbln YWe add Gaussian noise

to the synthesized intensity at various levgls£ 0 ando = [0.0001, 1] X I ez, Iz IS the
maximum value of the synthesized intensity). We also change the number of input synthesized
images as, 10, and100. Figure6.7 plots the RMSE of estimated normals against the noise
level. The blue, red, and green lines are the results for 3, 10 and 100 input images, respectively.
The RMSE is constant at a low/level but gradually decreases @asncreases. For 14-bit raw

data, the RMSE decreasessat 0.1 x [,,,, = 163.8 ando = 0.01 X [, = 16.3 with 100

and10 input images, respectively. These conditions are closer to a commercial camera. If a
camera captures noisy data, we can reduce errors in the estimated surface normals owing to

observation noise by increasing the number of input images.

6.4.2 Real-world scenes

We also tested our method using real-world translucent objects. FégBifa) shows our ex-

periment setting. We used a Nikon D90 camera with a linear radiometric response function
(RAW mode) and a telescopic lens to approximate an orthographic projection. We used a 3M
MP220 projector to provide illumination. The target scenes are illuminated under directional
lighting, and the light directions are calibrated using a dark specular sphere. In addition, to
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avoid specular reflections from the scene, we placed polarizers in front of both the light source
and camera. We used three target objects: a bar of soap as a homogeneous medium and angel
and unicorn ornaments as inhomogeneous media, as shown if.&idp). Each scene was
recorded forl2 different lighting directions. The image sizes of the soap, angel, and unicorn
scenes were32 x 164, 206 x 257, and158 x 230 pixels, respectively. Prior to the measurement,

the convolution kernels were measured using the procedure described in 8B FRor the
inhomogeneous objects, we measured two distinct kernels for the different material regions,
one for a white region and the other for a pink region.

Figure 6.9 shows the experimental results for the soap. The recorded intensity image is
not notably blurry, but the details are smoothed by subsurface scattering as shownGroFig.

(a). The observed PSF shows incident light distributed on the surface of the soa.9Fig.

(b) shows the surface normals estimated using the Lambertian photometric stereo r2gthod [
our method, and Gat al.’'s method L23. Gu et al.’s method estimates surface normals from
images in which scattering effects are reduced by high-frequency sinusoidal projection. We
used a projector to control the projection pattern, and decomposed the direct reflection images
as shown in Fig6.9. While the result of the Lambertian photometric stereo method shows
smoothed surface normals, our result is sharper. Even though the decomposed direct image
has moderate wave artifacts throughout, &wal’s method shows surface normals on a fine
scale. We also reconstruct the surface shape from normals estimated using Agjraisl
method[L24] as shown in Fig6.9(c). We recognize that detailed shapes can be estimated from
the normals of our method and @uial.’s method.

Figures6.10and 6.11 show experimental results for the angel and unicorn, respectively.
Observed PSFs have different light distributions for the different materials as shown in Fig-
ures6.10and6.11(a). Although the observed image is blurred compared with decomposed di-
rect image, our method estimates sharper surface normals by reducing scattering effetts. Gu
al.’s method also estimates sharp surface normals. However, the reconstructed shape has noise
in the planar region because of wave artifacts on the decomposed direct image. Subsurface
scattering components can be reduced by high-frequency sinusoidal projection. Nevertheless,
it is difficult to completely avoid artifacts in the decomposed image using a projection pattern.

6.4.3 Discussion

Computation time.

The above experiments show that, in the case of optically homogeneous materials, we can
apply various fast deconvolution methods for image deblurring to recover the surface normal.
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Figure 6.8:Experiment setting and target objects. We used a projector as a light source. The
camera was equipped with a telescopic lens. Polarizers were used to reduce the effects of
specular reflection on the target object.

However, in the case of inhomogeneous media, we have to solve. £.tp deal with spatially
variant convolution kernels. Our Matlab implementation on an Intel Core i7 central processing
unit (3.5 GHz) takes aboutr.6, 39, and3.5 seconds to recover the surface of the soap, angel,
and unicorn scenes, respectively. The density of non-zero elements of BaRix \W'W

ineq. 6.16 is about2.5%. The computation time depends on the size and number of non-zero

70



~ Bl

(a) Example of measured image Lambertian photometric stereo
and observed PSF

Decomposed direct image Gu et al.’s method
(b) Estimated (c) Reconstructed shape
surface normals from surface normals

Figure 6.9:Result for a real-world scene of soap as a homogeneous medium. The directimage
is calculated using Get al’s methodL23, and shapes are reconstructed using Agratal.’s
method [L24].

elements of matri¥’ F + \W’W, which are determined by the input image size and apparent
sizes of PSFs in the image coordinates.

Limitations.

Our method has a couple of limitations. First, we have ignored the effect of Fresnel transmis-
sions. Thus, our method is restricted to optically thick materials. As a material has directional
scattering, the accuracy of our method may gradually decrease. We are interested in explor-
ing an iterative estimation framework that can be used to adaptively update the convolution
kernels for the incorporation of the Fresnel transmission effects. The second limitation is that
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Figure 6.10:Result for a real-world scene of an angel ornament as an inhomogeneous medium.
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Figure 6.11:Result for a real-world scene of a unicorn ornament as an inhomogeneous medium.
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our method in practice relies on known convolution kernels, especially when dealing with op-
tically inhomogeneous materials. Although a sophisticated blind deconvolution method may
resolve this issue, at this point, knowledge of the convolution kernel plays an important role
in obtaining accurate surface normal estimates. We are interested in investigating good prior

information for surface normal fields that may potentially improve the blind deconvolution.

6.5 Summary

In this chapter, we proposed a shape estimation method for optically thick translucent objects.
As optically thick translucent objects show shading on their surfaces, we estimate surface nor-
mals as the object shape from observed images employing the photometric stereo method. We
extended the previous study on the convolutional approximation of subsurface scattering and
developed a surface normal deconvolution technique, which consists of a conventional photo-
metric stereo method and image deconvolution. Our experiment shows that the surface normals
of translucent objects are reliably estimated by our method. As illustrated in the experiment
section, our method can benefit from a large body of image deblurring methods in the literature,
including blind deconvolution methods. In addition, we showed that our method is able to deal
with optically inhomogeneous media.
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Chapter 7

Summary and Discussions

In this thesis, we proposed methods of estimating the shape of translucent objects from ob-
served scattering light according to light transport analysis. Scattering in translucent media
adversely affects shape measurement because it prevents reference to the incident points of the
laser range finded] and notably affects the object appearance as shown il FAgwWhile most
existing methods extract the scattering effect and thus ignore complex phenomena, scattering
is not completely reduced owing to the degree of the spatial distributign Qur shape from
scatteringframework tackles these problems by obtaining the object shape from the observed
scattering effect itself. The key concept is how to model the relationship between the observed
scattering effect and shape of the target object. Scattering observations depend not only on the
target shape but also on the optical characteristics of the medium. Hence, we developed an
approximation model of subsurface scattering according to the analysis of light transport in a
real translucent medium.

First, we measured light transport in real translucent objects as described in Ghapter
used theTurtleback Reflectoto distribute virtual illuminations and observations around the
target scene, and captured the light transport as the eight-dimensional BSSRDF that is param-
eterized by the directions and positions of incident and outgoing light. The captured BSSRDF
was visualized as a distribution around the outgoing direction at each outgoing point with fixed
illumination for the analysis of the behavior of light transport. We also decomposed the BSS-
RDF into directional and nondirectional components by analyzing the BSSRDF along outgoing
directions. As a result, we obtained the characteristics of the response of the BSSRDF to opti-
cal properties such as the directional light in an optically thin translucent medium, directionally
invariant light in optically thick translucent objects, spatially invariant light in a homogeneous
medium, and spatially varying light in an inhomogeneous medium. While reflection analysis of
the outgoing direction is conducted using the four-dimensional BRDF, spatial analysis of light
transport is available using the eight-dimensional BSSRDF.
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According to the discussion in Chaptér we constructed shape estimation methods for
translucent objects. We related scattering observations and object shape with optical parame-
ters, and estimated the object shape from observations. For optically thin translucent objects,
we used the attenuation model of single scattering to represent the directional light distribu-
tion around the refracted light in the medium. We formulated single scattering observed the
experimental setting as a function of object shape, and estimated object shape by minimizing
an energy function, which evaluates the difference between observed and synthesized intensi-
ties. We evaluated the estimation accuracy using synthetic data, and showed the availability of
our method when single scattering inputs are sufficiently bright. Although the observation of a
real translucent object includes varied types of scattering, we applied our estimation method to
extract single scattering. The method simultaneously estimates the scattering parameters and
target shape assuming an optically homogeneous translucent object. For optically thick translu-
cent objects, we approximate non-directional scattering in the convolution model. This models
not the direct relationship between the observed intensity and surface shape but the observed
intensity and surface normals, which represent the direction of the object surface. Although
the object shape needs to be reconstructed from the estimated normals, the convolution model
provides a simple estimation process using a deconvolution algorithm. While we need to cali-
brate the scattering distribution on the target surface of each material, we can handle optically
inhomogeneous media. Experiments employing synthetic and real scenes were conducted to
evaluate the effectiveness of deconvolution-based scattering reduction in our method.

Our proposal of theshape from scatterinffamework allows us to estimate a translucent
shape from observed scattering itself without complicated light transport an&ysipe from
scatteringextends shape estimation to a variety of targets having translucent appearance. Such
extension could benefit a wide range of applications in the field of computer vision that require
shape informatiore.g, the automatic visual inspection of industrial products and the archiving
of artistic sculptures, where translucent objects are made of plastic, marble, and wax. Mean-
while, our framework can also be used in the application of medical imaging because target
organs have strong scattering properties. On the microscope scale, the main application of our
method would be cell imaging.

We still face the problem that our method works on only translucent objects whose scat-
terings are modeled as the attenuation of single scattering or non-directional multiple scatter-
ing. In particular, while we extracted single scattering component from scatterings in optically
thin translucent objects, the single scattering does not always become a main component in
scattering. In optically thin materials, low-bounce scatterings such as two and three-bounce
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scattering are also a main scattering component. Thus, even if the target object is relatively
optically thin translucent, there is a possibility that extracted single scattering is insufficient
intensity for shape estimation. The spatial optical properties of targets are also limited in both
proposed shape estimation. In the method for optically thin translucent objects, we assume
the spatially homogeneous material. This constraint allows us to estimate optical parameters
such as extinction coefficient, however, we cannot apply this shape estimation method to opti-
cally inhomogeneous translucent object. On the other hand, in the method for optically thick
translucent objects, we can handle optically inhomogeneous objects, but advancely calibrated
scattering kernels at each point on the object surface are needed. Simultaneous estimating the
object shape and optical parameters of optically inhomogeneous material is the most difficult
problem setting.

The ultimate solution to deal with any type of translucency is a brute-force search via the
simulation of light propagation in arbitrary translucent media without any parametric scattering
models. However, it is an ill-posed problem to estimate spatially distributed optical properties
and the object shape from a two-dimensional observed image in real time because a search
range of an enormous number of unknowns is too huge to obtain an optimal solution. A con-
ventional camera obtains only two-dimensional information, whereas recently developed ad-
vanced cameras can obtain richer informatierg, the light field cameral25 and ultrafast
imaging cameral26, 127). The light field cameral25 can store directions of incoming light
from a scene, and the captured data then give the directional information of propagating light.
Because the information of directionality relates to the directional distribution on BSSRDFs of
a target object, the light field camera imaging helps to shrink the search range of shape esti-
mation. Ultrafast imagingl26, 127] observes the temporal sequence of light propagation at a
trillion frames per second. Since this ultrafast speed competes with the speed of light, we see
the process of the light propagation from the captured image sequence. In the field of computer
graphics, realistic image is rendered by simulating the propagation of light rays. Therefore,
temporal image sequence becomes a clue for inversely rendering of target scene. This rich
information will allow us to analyze light transport and make it possible to obtain the shape of
a general translucent material in the future.

Our shape from scatterinffamework contributes technique of photometric analysis in the
field of computer vision in the terms of using scattering light for obtaining object shape.
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