
Title
Design, Modeling, and Evaluation of Efficient
Caching Mechanisms for Content Dissemination
Networks

Author(s) 今井, 悟史

Citation 大阪大学, 2015, 博士論文

Version Type VoR

URL https://doi.org/10.18910/52029

rights �2015 IEEE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Design, Modeling, and Evaluation of

Efficient Caching Mechanisms

for Content Dissemination Networks

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2015

Satoshi IMAI

List of publications

Journal Papers

1. Satoshi Imai, Kenji Leibnitz, Masayuki Murata, “Energy Efficient Data Caching for Content

Dissemination Networks”, Journal of High Speed Networks, DOI:10.3233/JHS-130474, vol.

19, no. 3, pp. 215-235, October, 2013.

2. Satoshi Imai, Kenji Leibnitz, Masayuki Murata, “Adaptive TTL Control to Minimize Re-

source Cost in Hierarchical Caching Networks”, to appear in IEICE Transactions on Infor-

mation and Systems, March, 2015.

Refereed Conference Papers

1. Satoshi Imai, Kenji Leibnitz, Masayuki Murata, “Energy Efficient Content Locations for

In-Network Caching”, in Proceedings of 18th Asia-Pacific Conference on Communications

(APCC 2012), Jeju, Korea, Oct. 2012.

2. Satoshi Imai, Kenji Leibnitz, Masayuki Murata, “Energy-Aware Cache Management for

Content-Centric Networking”, in Proceedings of First International WorkShop on Energy-

Aware Systems, Communications and Security, Barcelona, Spain, March 2013.

3. Satoshi Imai, Kenji Leibnitz, Masayuki Murata, “Modeling of Content Dissemination Net-

works on Multiplexed Caching Hierarchies”, in Proceedings of the 13th International Con-

ference on Networks, Nice, France, 23-27 Feb. 2014.

. i .

Non-Refereed Technical Papers

1. Satoshi Imai, Kenji Leibnitz, Masayuki Murata, “Energy Awareness based on Cache Alloca-

tion Management in Content-Centric Networking”, Technical Report of IEICE (IN2011-140),

vol. 111, no. 469, pp. 19–24, March 2012 (in Japanese).

. ii .

Preface

As diversity of services and applications on networks is increasing, broadband traffic is growing

as well. To reduce the network traffic and efficiently use the resources of network systems, edge

computing and Content Delivery Networks (CDN) are well known as technology for facilitating the

processing of application programs/contents at edge servers near users in the network. Furthermore,

In-network caching technologies like Content-Centric Networking (CCN) for Information-Centric

Networking (ICN) are expected to reduce the network traffic and improve the service quality such

as communication latency by storing content data on network nodes near to users.

In these architectures for content dissemination networks, each node has caching functionality

and can achieve an adaptive content delivery. Therefore, the network traffic and communication

quality are influenced by the cache locations because content is generated by many publishers at

various locations and causes different amount of traffic depending on its popularity. Moreover,

the caching performance depends on the memory size of each node, delivery routes, and request

distribution of content. On the other hand, traditional caching mechanisms can be managed by

many methods, like Least Recently Used (LRU), Least Frequently Used (LFU) policies, but also by

more advanced methods for specific cache types that deal well with one-timers, which are accessed

only once and are not hit while in the cache, or by the limited lifetime of content in the cache called

Time-To-Live (TTL).

Therefore, to realize effective caching networks, it becomes important to grasp the cache char-

acteristics of each node and to manage system resources, taking into account energy and usage effi-

ciency for storage and network bandwidth, which are influenced by the characteristics of each cache

. iii .

node. This thesis discusses methodologies for improving the performance in design and cache man-

agement for content dissemination networks. As individual sub-problems, we investigate the issues

for energy efficiency, analysis of efficient caching mechanisms for one-timers and the TTL-based

caching mechanism, and controllability of system resources in content dissemination networks.

Regarding the first issue for improving energy efficiency, we propose a design method which

derives the most energy efficient cache locations of content and a distributed cache mechanism like

CCN to search for energy efficient cache locations to be close to the optimal solution. Simulation

results show that the distributed cache mechanism is able to reduce the power consumption of the

target network by at most 26% of traditional LFU policy and to achieve similar energy efficiency

within an increment less than 8% of the optimal caching.

To solve the next issue of analyzing cache characteristics, we focus on the 2Q and Adaptive Re-

placement Caching (ARC) mechanisms as effective caching for one-timers and propose approxima-

tion models, which can statistically analyze the influences of memory size and request distribution

on the cache performance. As a result of evaluating the approximation accuracy of the proposed

models, we show that our proposed method is able to estimate the hit probability with an error of

less than 2% for simulation results at a significantly shorter time.

We further research into the issue for analyzing cache aging techniques based on Time-To-

Live (TTL) of content in hierarchical caching. The TTL-based caching facilitates analyzing cache

characteristics and can realize appropriate resource management by efficiently setting TTLs. We

propose a theoretical model, which can analyze the impact of TTL-based caching on network re-

sources and cache performance in the distributed cache systems, with high accuracy of less than

3% error of the simulation results. Furthermore, we introduce a caching mechanism using energy

efficient TTLs and show its effectiveness by the model-based analysis.

We finally investigate the issue of the controllability of system resources in caching networks.

As an enhanced mechanism of distributed TTL-based caching, we propose an adaptive control

mechanism of the TTL value of content by using predictive models which can estimate the impact of

the TTL values on the resource cost of a caching network. Furthermore, we show the effectiveness

of the proposed mechanism. Through this research, we have confirmed that the proposed predictive

models can obtain good approximations of the control characteristics by the TTL values and that

. iv .

the proposed control mechanism can efficiently manage system resources in caching systems by

always searching for the minimum cost in the given range of TTLs.

. v .

Acknowledgments

This thesis could not have been accomplished without the assistance of many people, and I would

like to acknowledge all of them.

First of all, I would like to express my great gratitude to my supervisor, Professor Masayuki

Murata, for his generous guidance, insightful comments, and meaningful discussion. I was able to

complete my thesis owing to his kind guidance, timely encouragement, and valuable advice.

Also, I would especially like to express my sincere appreciation to Dr. Kenji Leibnitz of the

Center for Information and Neural Networks (CiNet), National Institute of Information and Com-

munications Technology, and Osaka University. He directed me to the appropriate perspective and

inspired me to aim at higher goals. My study would not have been possible without his continuous

care and support. I am deeply grateful to him.

I am heartily thankful to the members of my thesis committee, Professor Takashi Watanabe,

Professor Toru Hasegawa, Professor Teruo Higashino, and Professor Morito Matsuoka of the Grad-

uate School of Information Science and Technology, Osaka University, for their multilateral reviews

and perceptive comments.

Furthermore, I would like to acknowledge Mr. Tsuguo Kato, Mr. Hideyuki Miyata, Mr. Toru

Katagiri, Mr. Akira Chugo, Mr. Toshio Soumiya, and Ms. Akiko Yamada of Network Systems

Laboratories, Fujitsu Laboratories Ltd., for their support and encouragement during the course of

this study.

Furthermore, I appreciate all the members of the Network Systems Engineering Laboratory,

Fujitsu Laboratories Ltd., for their support and friendship. I learned a lot through a variety of

discussions and interactions with them.

. vii .

Finally, I deeply thank my parents, my wife Chieko, my daughter Ayano, and my son Hiroto,

for their understanding and hearty support and encouragement in my daily life. This work would

not have been achieved without them.

. viii .

Contents

List of publications i

Preface iii

Acknowledgments vii

1 Introduction 1

1.1 Background . 1

1.2 Outline of Thesis . 5

2 Design, Modeling, and Evaluation of Energy Efficient Cache Management 9

2.1 Issues and Approaches for Energy Efficient Cache Management 9

2.2 Optimal Cache Locations . 11

2.2.1 Design Flow . 11

2.2.2 Optimization Model . 11

2.3 Distributed Cache Mechanism . 15

2.3.1 Process Flow . 15

2.3.2 Distributed Algorithm for Threshold Design 17

2.4 Evaluation . 19

2.4.1 Tradeoff of Power Consumption . 21

2.4.2 Effectiveness of the Distributed Cache Mechanism 24

2.4.3 Power Consumption and Memory Usage 25

. ix .

2.4.4 Cache Performance . 29

2.5 Summary . 33

3 Modeling and Evaluation of Node-Level Cache Management 35

3.1 Issue and Approach for Analysis of Node-Level Cache Management 35

3.2 Caching Mechanisms for One-Timers . 37

3.2.1 2Q . 38

3.2.2 Adaptive Replacement Caching (ARC) 39

3.3 Proposed Approximation Models . 41

3.3.1 Approximation for Simplified 2Q . 41

3.3.2 Approximation for Full 2Q . 44

3.3.3 Approximation for ARC . 47

3.4 Evaluation . 50

3.4.1 Approximation Accuracy of Cache Hit Probability in 2Q 51

3.4.2 Approximation Accuracy of Cache Hit Probability in FRC and ARC 52

3.4.3 Comparison of Performance in Each Caching Mechanism 55

3.5 Summary . 56

4 Modeling and Evaluation of Static TTL Management in Hierarchical Caching 59

4.1 Issue and Approach for Analysis of Static TTL Management 59

4.2 Analytical Model . 60

4.2.1 Memory Usage . 63

4.2.2 Transmission Data . 64

4.2.3 Power Consumption . 64

4.2.4 Cache Hit Ratio . 65

4.2.5 Average Hop Length . 65

4.3 Evaluation using the Proposed Model . 65

4.3.1 Verification of the Proposed Model . 67

4.3.2 Impact of TTL . 68

. x .

4.4 Application to a Caching Mechanism using Energy Efficient TTLs 70

4.5 Summary . 75

5 Design, Modeling, and Evaluation of Adaptive TTL Management

in Hierarchical Caching 77

5.1 Issue and Approach for Adaptive TTL Management 77

5.2 System Model . 80

5.2.1 Request Propagation Model . 81

5.2.2 Resource Cost Model . 82

5.3 Proposed TTL Controller . 83

5.3.1 Design Algorithm of TTL Controller . 83

5.3.2 Distributed Prediction . 88

5.4 Evaluation . 93

5.4.1 Comparison of the Proposed Model and Simulation 95

5.4.2 Effectiveness of the Proposed Mechanism 96

5.4.3 Verification of Optimality . 99

5.4.4 Impact of the TTL Control on Cache Performance 101

5.4.5 Adaptability of TTL Control . 102

5.5 Summary . 103

6 Conclusion 105

Bibliography 109

. xi .

List of Figures

1.1 Caching hierarchies for each origin site . 3

2.1 Example of definition of route candidates . 12

2.2 Network model . 12

2.3 Constraint conditions . 15

2.4 Example of creating a caching hierarchy and the sub-tree structure 16

2.5 Bottom-up process . 17

2.6 Test topologies . 20

2.7 Request distribution of the content Rk,∗ . 20

2.8 Origin sites of content . 21

2.9 Power consumption for a chunk of each content ID and the ratio of power consump-

tion to that of optimal caching (Zipf:α = 1.2, TopologyA) 22

2.10 Power consumption for a chunk of content ID:398 (Zipf:α = 1.2, TopologyA) . . . 22

2.11 Power consumption for a chunk of each content ID and the ratio of power consump-

tion to that of optimal caching (Zipf:α = 1.2, TopologyB) 23

2.12 Power consumption for a chunk of content ID:395 (Zipf:α = 1.2, TopologyB) . . . 23

2.13 Example of time change of total power consumption for content following a Zipf

distribution with α = 1.2 (solid line: total power consumption / dashed line: cache

allocation power in the total power consumption) 25

2.14 Average power consumption when the memory size is changed 27

. xiii .

2.15 The cumulative power consumption of chunks of content for threshold-based caching

and optimal caching when the memory size is infinite 28

2.16 The total power consumption when the memory size is infinite and the request dis-

tribution is changed in Topology B . 29

2.17 Request distribution of the content (dasched line: r = 150, solid line: r = 100,

dotted line: r = 50) . 29

2.18 Average used memory when the memory size is changed 30

2.19 Cache hit ratio in the network when the memory size is changed 31

2.20 Average hop length when the memory size is changed 32

3.1 Queue structure of Simplified 2Q . 38

3.2 Queue structure of Full 2Q . 38

3.3 Queue structure of ARC . 40

3.4 Queue model of Simplified 2Q . 41

3.5 Queue model of Full 2Q . 44

3.6 Queue model of ARC . 47

3.7 Content popularity . 50

3.8 Comparison of cache hit probability per object in Simplified 2Q estimated by the

proposed model and measured by simulations . 51

3.9 Cache hit probability per object in Full 2Q estimated by the proposed model and

measured by simulations . 52

3.10 Cache hit probability per object in FRC(1) estimated by the proposed model and

measured by simulations . 53

3.11 Average hit probability of all objects estimated by the FRC model when changing

p and measured by simulations of ARC . 54

3.12 Box plot of values of p in simulations of ARC (C = 1000 and 2000) 54

3.13 Cache hit probability per object estimated by the proposed model of FRC(1) and

measured by simulations of ARC . 55

3.14 Cache hit probability of all objects estimated by each approximation model 56

. xiv .

4.1 Traditional TTL-based caching . 61

4.2 Cache hit ratio when the requests per content with the rate λ input to a CN at

an exponentially distributed interval and set “total request rates of a content item

[requests/sec]” and “TTL [sec]” to various patterns 61

4.3 An example of matrices Λc, Rc, and Dc for the request propagation on the delivery

tree having origin 1 . 62

4.4 Evaluation conditions rc
j . 67

4.5 Cache performance estimated by the proposed model and calculated by simulations

for different content ids . 68

4.6 Box plot of memory usage at each CN when the TTL value is changed 69

4.7 Power consumption of the network when the TTL value is changed 70

4.8 Cache performance when the TTL value is changed 71

4.9 Comparison of cache hit ratio at a CN with threshold-based caching and TTL-based

caching . 72

4.10 Energy efficient TTL for each topology . 73

4.11 Power consumption for energy efficient TTL-based caching and threshold-based

caching . 73

4.12 Cache performance for energy efficient TTL-based caching and threshold-based

caching . 74

4.13 Box plot of memory usage for TTL-based caching and threshold-based caching . . 75

5.1 TTL-based caching . 79

5.2 The tradeoff between storage cost and bandwidth cost 79

5.3 An example of matrices Λc, Rc, and Dc for the request propagation on the delivery

tree having origin 1 . 82

5.4 Outline of the proposed control mechanism . 84

5.5 Distributed prediction-based control mechanism 88

5.6 An example of the distributed prediction . 90

5.7 Tree topology for evaluation . 94

. xv .

5.8 Request distribution from each site . 94

5.9 Total resource cost estimated by the proposed model and measured by simulations

for different object ids in Cs : Cb = 0.1 : 0.9 . 96

5.10 Convergence values of resource cost and TTLs for content objects 97

5.11 Cumulative resource cost of all objects and the effectiveness of reducing the total

resource cost (initial cost, controlled cost, cost when setting TTLs to 60 and 120 sec) 98

5.12 Tradeoff between storage cost and bandwidth cost for object ids: {200, 250, 300}

with α = 0.8 in Cs : Cb = 0.1 : 0.9 . 99

5.13 Control trajectory and time change of TTLs for objects with α = 0.8 in Cs : Cb =

0.1 : 0.9 and with α = 1.2 in Cs : Cb = 0.03 : 0.97 when the initial TTL is set to 1 sec 100

5.14 Control trajectory for object with α = 0.8 in Cs : Cb = 0.1 : 0.9 and with α = 1.2 in

Cs : Cb = 0.03 : 0.97 when the initial TTL is set to 150 sec 101

5.15 Cache miss ratio and average hop length of all objects when converging at the min-

imum cost . 102

5.16 Control trajectory for object ids: {200, 250, 300} in Cs : Cb = 0.1 : 0.9 103

. xvi .

List of Tables

2.1 Variables in the optimal design of cache locations 13

2.2 Variables in the distributed cache mechanism . 19

2.3 Power density parameters. 19

4.1 Variables in the proposed model . 66

5.1 Variables used in the proposed model . 85

5.2 Power cost parameters . 93

5.3 Comparison between numerical evaluation and simulation 95

. xvii .

Chapter 1

Introduction

1.1 Background

The growing number of Information and Communication Technology (ICT) services on networks is

currently leading to a huge increase in network traffic. To reduce network traffic and efficiently use

ICT resources, edge computing [1, 2, 3] is well known as technology for facilitating the process-

ing of application programs/contents at edge servers near users in the network. As a result, edge

computing can also distribute the computation load and databases to each edge server. An edge

server has the functionality of generating user-specific contents and the origin server manages the

distributed system and master data for edge computing.

As one of edge computing technologies for reducing network traffic, Content Delivery Network

(CDN) architectures [4, 5] in metro/access networks, such as Akamai-CDN [6] or web proxies, are

well known. The CDNs can manage the content delivery at the edge of the networks by allocating

content replicas in cache servers, which are in geographical proximity to users, and it is expected

that CDNs not only reduce the network traffic but also improve communication quality such as

latency and throughput, when delivering content.

Furthermore, various caching architectures [7, 8] for Information-Centric Networking (ICN), in

which each node has caching functionality for content, have been actively discussed. In Content-

Centric Networking (CCN) [9] for ICN, content publishers advertise newly released content from

– 1 –

1.1 Background

the origin site along predefined routes. CCN is a receiver-driven protocol where Data is only sent

in response to a user’s request. Each content is divided into chunks of fixed size and these chunks

are cached on content routers along the content delivery route.

The content dissemination mechanism in CCN has the following features.

1. Content Advertisement: Content publishers advertise newly released content from the ori-

gin site of the content along predefined routes.

2. Content Discovery/Delivery: A content request (Interest) is forwarded on each content

router based on the Forwarding Information Base (FIB) until the requested content can be

found. An Interest forwarded on a router is added to the Pending Interest Table (PIT) in order

to remember the interface on which to send back the replies (Data). When the requested

content is found on a router, Data of the content are transmitted based on the PIT.

3. Content Storage: Data are cached on all routers along the transmission route based on the

specific replacement policy such as Least Recently Used (LRU) or Least Frequently Used

(LFU).

Caching technologies like CCN for ICN can reduce network traffic by storing content data in

many locations. The distributed mechanisms like CCN can automate the placement and deliv-

ery of content data for efficient content delivery. Meanwhile, network traffic is influenced by the

cache locations because each content generates a different amount of traffic depending on its popu-

larity. Additionally, many storages such as DRAM or SSD are required for content caching. Most

caching networks have hierarchical tree structures, logically or physically connected by cache nodes

(CNs) [10, 11, 12], and each content is delivered on the caching hierarchy rooted at each origin site

of content (cf. Fig. 1.1). Likewise in CCN, each cache node autonomously constructs a caching

hierarchy rooted at an origin site. In these distributed mechanisms, the caching hierarchy is con-

structed by routes between the origin site, caching CNs, and users, such that less popular content is

cached on CNs near to the origin site and more popular content is cached on CNs near to users.

On the other hand, caching mechanisms can be managed by traditional methods, like LRU,

– 2 –

Chapter 1. Introduction

Less Popular

 Content

More Popular

 Content

Origin

User

Caching hierarchy

for content having Origin 0

Caching hierarchy

for content having Origin 4
Caching hierarchy

for content having Origin 8

0

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Request Site

4

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Request Site

8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Request Site

0

1

2

4

3 6

7

8

ICN Topology

5

Figure 1.1: Caching hierarchies for each origin site

LFU, and First In, First Out (FIFO) replacement policies. Additionally, the general request distri-

bution in content dissemination networks is heavy-tailed containing many objects called one-timers,

which are accessed only once and are not hit while in the cache. However, in the traditional caching

mechanisms, the one-timers may deteriorate the whole cache performance by causing inefficient

cache replacement which discards more popular content. Beside the problem of one-timers, the

content, such as video streaming, generally has a limited lifetime. Therefore, caching mechanisms

can use a limited period of time, called Time-To-Live (TTL), for content. Moreover, TTL-based

caching can improve the adaptability of cache management per object compared with the existing

caching policies.

Taking into account the aforementioned background, to establish strategies on improving the

performance in system design and cache management for content dissemination networks, we focus

on solving the following issues.

Energy Efficiency of Cache Management

In order to realize energy efficient resource management in content dissemination networks,

it is important to manage the appropriate cache locations in consideration of the balance issue

– 3 –

1.1 Background

of traffic volume for delivering each content and memory used for storing content replicas by

locally collaborating with each node in accordance with the distributed mechanism like CCN

for ICN.

Analysis of Cache Management for One-Timers

To avoid the influence of cache pollution due to one-timers, effective caching mechanisms

having separate queues for one-timers, such as 2Q [13] and Adaptive Replacement Caching

(ARC) [14, 15], have been proposed. However, in previous work, caching mechanisms like

2Q and ARC are only discussed with respect to the general cache performance for various

workloads as a result of the implementation of the mechanisms. Therefore, it is required

to reveal the characteristics in the caching mechanisms like 2Q and ARC and analyze the

influence of cache pollution due to one-timers.

Analysis of TTL-based Cache Management

TTL-based caching is useful for efficient cache management per content object. However,

the characteristics in the distributed cache mechanism by using TTL-based caching depend

on the multiplexed caching hierarchies shown in Fig. 1.1. Therefore, it is also important to

grasp the impact of TTL-based caching on network resources and performance.

Controllability of TTL-based Cache Management

On the assumption that ICN services are provided on the network virtualization platform, the

caching services can manage resource cost like monetary cost for each content/application

by providing the necessary system resources, such as storage and communication bandwidth,

in the caching network. TTL values are useful for efficiently managing system resources

in distributed cache systems. However, to realize the efficient resource control by using

TTL, it becomes an issue to decide how much of the TTL value of content should be in-

creased/decreased to reduce the resource cost of the caching network.

Therefore, this thesis focuses on these issues for improving energy efficiency, analysis of the

characteristics of caching mechanisms for one-timers and TTL-based caching, and controllability

of system resources by using the TTL value, in content dissemination networks.

– 4 –

Chapter 1. Introduction

1.2 Outline of Thesis

This thesis investigates the issues of system design for energy efficient cache management, model-

ing of cache characteristics and distributed cache management at node level, and control method-

ology of system resources in content dissemination networks including various mechanisms for

Information-Centric Networks including edge computing, content delivery networks, and CCN.

Design, Modeling, and Evaluation of Energy Efficient Cache Management [16, 17, 18]

The growth in network traffic also increases the power consumption of network systems year by

year. In the reports of the Ministry of Economy, Trade, and Industry [19], broadband traffic in

Japan is growing at an annual rate of 25% and network power consumption is expected to occupy

20% of the total ICT power consumption by 2025.

Recently, power-saving mechanisms of network devices [20] have been studied in order to real-

ize Energy Proportional Networks [21, 22] in which power consumption of each device is propor-

tional to its usage. In addition, energy efficiency can be improved by reducing the traffic flow in the

network, because the traffic decrease can improve the effect of the power-saving mechanism in each

device or can prevent that frequent incremental deployments of the network devices are required.

Therefore, in order to realize energy efficiency of the network under the condition that network

devices and memory can be deployed in proportion to their usage, the appropriate cache allocation

should be executed in consideration of the cache allocation power, i.e., the memory power con-

sumed by storing the content and the traffic transmission power, i.e., the total power consumed by

network devices when data are transmitted.

In Chapter 2, our first topic aims to realize energy efficient cache locations in CCN and we

propose a design method to minimize the sum of power consumption of storage devices for con-

tent caching and power consumption of network devices for content delivery [16]. Furthermore,

we propose a distributed cache mechanism to locally search for energy efficient cache locations at-

tempting to be close to the optimal cache locations [17]. In the distributed cache mechanism, each

node autonomously pre-designs a threshold of request rates of content before cache operation and

– 5 –

1.2 Outline of Thesis

judges whether to cache content data by comparing content request rates with the designed thresh-

old. Additionally, we evaluate the energy efficiency of the proposed methods for some scenarios.

Modeling and Evaluation of Node-Level Cache Management

In caching systems for ICN，the communication quality is influenced by the cache performance of

each node. Moreover, the cache performance depends on the memory size allocated on each node

and content popularity according to the request distribution. Therefore, it is important to analyze

the cache characteristics of each node.

As representative caching mechanisms, LRU, LFU, and FIFO policies are well-known and sta-

tistical approximations for these mechanisms have been proposed [11, 23]. These approximation

models enable us to analyze cache characteristics at high accuracy and faster than computer simu-

lations. Meanwhile in ICN, the content popularity often follows a Zipf-like distribution including

many objects called one-timers [24, 25, 26] which are accessed only once and are not found in the

cache (no hit) when requested. Moreover in single queue management like LRU, LFU, and FIFO,

the one-timers can cause inefficient cache replacement by discarding more popular content in favor

of the one-timers. As a result, one-timers can deteriorate the whole cache performance. Actually,

one-timers account for a high percentage in the realistic workloads of web proxies and VoD services

and several studies [24, 26, 27, 28, 29] address the problem of one-timers. To solve this problem and

improve cache performance, effective caching mechanisms having separate queues for one-timers

such as 2Q and Adaptive Replacement Caching (ARC) have been proposed. Moreover, to design

efficient caching systems in which each node has limited memory size, it is important to analyze

the interaction of these separate queues, which influence each other, in 2Q and ARC.

In Chapter 3, we focus on analyzing the cache characteristics at a node with 2Q and ARC and

on approximating the cache characteristics of these mechanisms which have separate queues for

one-timers. Furthermore, we model statistical characteristics of 2Q and ARC and demonstrate the

approximation accuracy of the proposed models by comparing cache performance estimated by the

approximation model with that measured by simulations.

– 6 –

Chapter 1. Introduction

Modeling and Evaluation of Static TTL Management in Hierarchical Caching [30]

The persistent storage of content in the limited memory of each node is inefficient because the

content, such as video streaming, generally has a limited lifetime. Therefore, caching mechanisms

often use a limited period of time, called Time-To-Live (TTL) for content. Moreover, TTL-based

caching can improve the adaptability of cache management per object compared with the existing

policies such as LRU, FIFO, 2Q, or ARC with cache coordination which sorts content by popular-

ity and selects which content should be discarded. However, it is difficult to evaluate the impact of

TTL-based caching on network resources and performance because the characteristics in the dis-

tributed cache mechanism depend on the caching hierarchies connected by distributed cache nodes.

Therefore, we focus on analyzing the impact of the distributed cache mechanism based on TTL-

based caching on network resources, such as memory or network devices, and cache performance,

such as cache hit ratio and hop length, while delivering content.

In Chapter 4, we propose an analytical model to evaluate the impact of TTL on cache perfor-

mance and network resources of content in a distributed cache mechanism like CCN. Furthermore,

we demonstrate evaluation results for some network scenarios using the proposed model. In ad-

dition, we introduce a caching mechanism using energy efficient TTL as one possible application

of TTL-based caching and show the effectiveness of the proposed caching mechanism using our

model.

Design, Modeling, and Evaluation of Adaptive TTL Management in Hierarchical

Caching [31]

Recently, network virtualization technologies such as Network Function Virtualization (NFV) have

been attracting attention [32, 33]. On the assumption that ICN services are provided on the network

virtualization platform, the caching services can manage the resource cost like monetary cost for

each content/application by providing necessary system resources, such as storage and communi-

cation bandwidth, in the caching network.

In the distributed cache mechanisms, the network traffic and cache characteristics are influenced

by the cache locations and depend on the memory size in each cache node on the delivery tree.

– 7 –

1.2 Outline of Thesis

Therefore, it is difficult to manage the relationship among resource cost, network resources, such

as memory and network devices, and cache characteristics, such as cache hit ratio. As a result, in

ICN services, it becomes an important issue to manage the total cost of system resources, such as

storage and network bandwidth, which are influenced by cache characteristics of each cache node.

Meanwhile, TTL-based caching doesn’t only facilitate analyzing the cache characteristics but also

provides flexibility and adaptability of cache management per content [11, 34, 35].

In Chapter 5, we first introduce predictive models which estimate the impact of TTL on cache

characteristics, network resources, and the resource cost in the distributed cache system. Further-

more, we propose an adaptive TTL control mechanism based on the predictive models to reduce

the total resource cost and highlight the control methodology for general hierarchical TTL-based

caching as an application of Newton’s method [36, 37] for finding the optimum of a nonlinear

function.

Finally, Chapter 6 concludes this thesis with directions for future work.

– 8 –

Chapter 2

Design, Modeling, and Evaluation of

Energy Efficient Cache Management

2.1 Issues and Approaches for Energy Efficient Cache Management

Reducing network traffic is important because power consumption in networks has been increasing

year by year. Meanwhile, in-network caching for ICN is expected to achieve an adaptive content

delivery in the network and to reduce traffic by storing content data on each cache node. Therefore,

in-network caching is beneficial in view of energy efficiency. However, in order to improve energy

efficiency of the network, it is necessary to cache content appropriately in consideration of both

power consumption of content caching and transmission of traffic.

Recently, energy efficiency in CCN has been attracting a lot of attention [38, 39, 40]. Lee et

al. [38, 39] survey the energy efficiency of various network devices deployed in access/metro/core

networks. Furthermore, they evaluate the power-saving effect in the entire network when the de-

ployment ratio of CCN-enabled edge/core routers is changed. As a result, they show that CCN is

able to improve the energy efficiency of current CDNs.

Furthermore, Guan et al. [40] build energy models of traffic transmission power and caching

power for content delivery architectures such as “Conventional and decentralized server-based

– 9 –

2.1 Issues and Approaches for Energy Efficient Cache Management

CDN”, “Centralized server-based CDN using dynamic optical bypass”, and CCN. Using their en-

ergy models, they analyze the energy efficiency of each of these architectures. Those energy models

are approximations based on the relations between the topological structure and the average hop-

length from all sites to the nearest cache location. The appropriate number of cache locations for

content can be estimated in order to save the network power consumption when the target topology,

the required average hop-length, and the number of requests for content are given. In those papers,

energy efficiency is represented differently depending on the cache locations for content.

However, these works don’t discuss the design or search for energy efficient content locations

of caching hierarchies, which have different origin sites for content and asymmetric routes. In order

to realize energy efficient locations of content which can reduce the sum of cache allocation power

and traffic transmission power, we should consider constraints of multiplexed caching hierarchies

of content (cf. Fig. 1.1). Furthermore in CCN, a request should be autonomously executed by some

cache nodes (CNs) without needing to know the content locations.

In this chapter, we first aim to provide reference locations to realize energy efficiency for cache

strategies and introduce a new design method which can derive energy efficient locations of content

on constraints of the caching hierarchy rooted at the content’s origin site so as to minimize the

sum of cache allocation power and traffic transmission power. Secondly, we show a distributed

cache mechanism to search for energy efficient cache locations of content based on the caching

hierarchies attempting to be close to the optimal solution. Furthermore, we summarize the details

of the proposed methods and combine both approaches into the same framework which makes it

easy to compare both. Additionally we show new evaluation results.

The remainder of this chapter is organized as follows. We next describe the design method to

solve the cache location problem in Section 2.2 and the distributed cache mechanism to search for

energy efficient cache locations in Section 2.3. Section 2.4 demonstrates simulation results and we

summarize this chapter in Section 2.5.

– 10 –

Chapter 2. Energy Efficient Cache Management

2.2 Optimal Cache Locations

In order to provide reference locations to evaluate energy efficiency for cache strategies, we show

a 0-1 Integer Linear Programming Problem (0-1 ILP) model [41] to design energy efficient cache

locations of chunks of a target content satisfying the constraints of multiplexing caching hierarchies

which have a different origin site for content [16]. The model designs cache locations of chunks of

content in order of descending popularity to minimize total power consumption based on Energy

Proportional Networks.

2.2.1 Design Flow

The cache location design for each content is executed in the following steps.

step 1 Get content popularity.

step 2 Select a target content (k-th popular content) in the order of content popularity.

step 3 Extract route candidates to deliver the target content from a cache location to a requesting

user on the shortest-path tree rooted at the origin site of the target content and define the route

candidates as the design variables, cf. Figs. 2.1 and 2.2.

step 4 Design the optimal cache locations of the target content based on the route candidates in

consideration of the pre-designed routes for more popular content which have the same origin

site as that of the target content.

step 5 Return to step 2 and execute the design of the next popular content ([k+ 1]-th popular con-

tent).

2.2.2 Optimization Model

The objective function is defined as follows. For a network composed of content routers (cache

nodes) and Wavelength Division Multiplexing (WDM) nodes in Fig. 2.2, this model designs cache

locations and data (chunks) transmission routes for the delivery tree, which consists of a set of

– 11 –

2.2 Optimal Cache Locations

3

20

OriginOrigin

2

3

1

OriginOriginRoute candidates (variables)

Shortest-path tree rooted at site 0

0 -> 1

0 -> 2

0 -> 1 -> 3

0

1

2

3

0 -> 1

0 -> 2

1 -> 3

0 -> 1 -> 3

1

1

s0
(0,0)

s 0
(1,1)
0
(2,2)s

s 0
(3,3)

0
(0,1)s
0
(0,2)s
0
(1,3)s
0
(0,3)s

0

Figure 2.1: Example of definition of route candidates

origin s t
(i,j)

s t H() = 3

t i j

(i, j)

Content Router

WDM Node

Cache

Pwdm [J/bit]

Pr [J/bit]

Pca [J/bit s]

Figure 2.2: Network model

vertices (sites) V and route candidates Rc. The objective is to minimize the sum of cache allocation

power Cai, i.e., the power for storing a chunk of the target content in CN on site i, and traffic

transmission power Trk,(i, j), i.e., the total power of content routers and WDM nodes when a chunk

of content k is delivered on the route from site i to site j.

Minimize ∑
i∈V
{Cai ·ui}+ ∑

(i, j)∈Rc

{
Trk,(i, j) · st

(i, j)

}
(2.1)

The design variables are defined as follows.

• ui ∈ {0,1} indicates whether or not to store a chunk of the target content on CNi.

– 12 –

Chapter 2. Energy Efficient Cache Management

Table 2.1: Variables in the optimal design of cache locations
Variable Type of Variable Definition
Rk, j Given The request rate for target content k from a destination site j
Pca Given Power density for storage (memory) [J/(bit·s)]
Pr Given Power density of a content router [J/bit]
Pwdm Given Power density of a WDM node [J/bit]
D Given Data size of a chunk [bits]
ui Design Binary variable for whether to store a chunk of target content k

in CNi or not
st
(i, j) Design Binary variable for whether to select the route from CNi to CN j

defined on a shortest-path tree rooted at origin site t of a chunk
of target content k or not

• st
(i, j) ∈ {0,1} describes whether or not to select the route from site i to site j defined on the

shortest-path tree rooted at the origin site t of a chunk of the (k-th popular) target content.

All variables in the optimization model are summarized in Table 2.1.

Here, the cache allocation power Cai [J] in 1 sec when a chunk of the target content is cached

in CNi (ui = 1) is defined as

Cai = 1 ·D ·Pca, (2.2)

where Pca is the memory power density [J/(bit·s)] and D is the chunk size [bits] of the target content.

Furthermore, the traffic transmission power Trk,(i, j) [J] when a chunk of (k-th popular) target

content is delivered on the candidate route st
(i, j) from CNi to CN j on the shortest-path tree rooted at

origin site t, is defined as

Trk,(i, j) = D ·Rk, j · (Pr +Pwdm) ·H(st
(i, j)) (2.3)

where Pr and Pwdm are the power densities [J/bit] of a CN and of a WDM node, respectively, and

Rk, j is the request rate from site j for the target content. Furthermore, we define H(st
(i, j)) as the

hop-length of route st
(i, j).

– 13 –

2.2 Optimal Cache Locations

We next define the constraints for the proposed 0-1 ILP model. The transmission routes to site

j, which requests the target content having origin root t, should be created.

∑
i∈V

st
(i, j) = 1 ∀ j∈ V (2.4)

Moreover, the starting site of the transmission route should be the cache location of the target

content.

st
(i, j) ≤ ui ∀i∈ V, ∀(i, j) ∈ Rc (2.5)

For the hierarchical route constraint, the target content should be cached on the shortest-path tree

rooted at its origin site t. Furthermore, there should be more popular content, having the same

origin site t as the target content, on the designed transmission route and caching hierarchy should

be constructed as shown in Fig. 1.1.

st
(i, j) = 0 if rt

(h, j) /∈ st
(i, j)∨ st

(i, j) ∈
{

rt
(h, j)−h

}
, ∀(i, j) ∈ Rc (2.6)

In Fig. 2.3(a), st
(i, j) is the route sequence along the route st

(i, j) of the target content (k-th popular

content). Meanwhile, rt
(h, j) is the route sequence along the route of more popular content (m-th

popular content: m < k) having the same origin site t as the target content. Furthermore, site h

represents the starting site of the route sequence rt
(h, j) and

{
rt
(h, j)−h

}
represents the subsequence

excluding the starting site h from the route sequence rt
(h, j).

Furthermore, the same replicas should not be cached on the designed transmission route of the

target content (k-th popular content). This constraint is illustrated in Fig. 2.3(b).

st
(i, j)+uk ≤ 1 ∀(i, j) ∈ Rc, k ∈

{
st
(i, j)− i

}
(2.7)

– 14 –

Chapter 2. Energy Efficient Cache Management

Data transmition route

for more popular content

s
t
(i,j)

s = { }t
(i,j) i,h,j

r = { }t
(i,j) h,j

r
t
(h,j)

h

i

j

h

j

(a) Hierarchical route

s
t
(i,j)

h

i

j

s = { }t
(i,j) i,h,j

u = 0h

u = 0j

(b) Cache location

Figure 2.3: Constraint conditions

2.3 Distributed Cache Mechanism

In a distributed caching framework such as CCN, it is often difficult to get the request distribution for

all content items. Moreover, the optimization model shown in Sect. 2.2 lacks scalability for large-

scale networks because it belongs to the class of NP-complete problems. Therefore, we presented

a distributed mechanism in [17] to locally search for energy efficient cache locations of content

(chunks) for the same network model as Fig. 2.2.

In the proposed mechanism, every CN automatically pre-designs a threshold of request rates of

content using local information on each caching hierarchy before cache operation. Meanwhile dur-

ing the cache operation, each CN measures request rates of content (initial Interests of content) and

judges whether or not to cache chunks of the content using the pre-designed threshold as follows.

• When the request rate of content measured by CNi is higher than the threshold set in CNi,

chunks of the content are stored on CNi.

• When the request rate of content measured by CNi is lower than the threshold set in CNi,

chunks of the content aren’t cached in CNi.

2.3.1 Process Flow

The threshold design is autonomously executed by each CN based on the following process. Here

we define a parent CN, children CNs and branch CNs as the node directly over a target CN, nodes

– 15 –

2.3 Distributed Cache Mechanism

1

2 3

5

4

6

1

2

3 4

5

6

1

2

3 4

5

6

1

52

Delivery tree

rooted at Origin 1

Caching hierarchy having Origin 1Target topology

Sub -tree2

Sub -tree3

Sub -tree 1

A parent node

i

j ki

Sub- tree

Branch nodes

h

Target node

Sub-tree Structure

Children nodes

Figure 2.4: Example of creating a caching hierarchy and the sub-tree structure

directly under a target CN and all nodes below a target CN on a sub-tree in a caching hierarchy,

respectively, as shown in Fig. 2.4.

For a caching hierarchy,

repeat

Target CNi

step 1 model power consumption when a chunk is cached on CNi and transmitted to all branch

CNs.

step 2 design a threshold for each child CN using the power model and sets it to each child CN

not including CNi itself.

step 3 send the power model to parent CNh

(⇒ step 1 for next target CNi← CNh)

until CNi is the root of the caching hierarchy.

Next, we show a distributed design algorithm of the threshold in Fig. 2.5.

– 16 –

Chapter 2. Energy Efficient Cache Management

1

2

3 4

5

6

1

52

1

2

3

4

5

4

7

5

6

Children

Information

Power

Model

Caching hierarchy

having Origin t (=1)

Calculate
a thresholdLayer2

Layer1

Layer0

Layer2

Layer1

Layer0

Threshold for
each child CN

Calculate
a threshold

Threshold for
each child CN

Power

Model

Children

Information

Power

Model

Figure 2.5: Bottom-up process

2.3.2 Distributed Algorithm for Threshold Design

We assume CNi can know the following information from children CNs.

• Crt
i: the total number of children CNs for target CNi on caching hierarchy t

• Brt
i: the total number of branch CNs for target CNi on caching hierarchy t

• Ht
i : the sum of hop-lengths from target CNi to all branch CNs on caching hierarchy t

For content requested by each site at the rate of λ [requests/sec], the total power consumption when

its chunk is cached on CNi on caching hierarchy t and transmitted to all branch CNs is defined as

Powert
i(λ) = Cai +Tri(λ ,Ht

i), ∀i. (2.8)

Where the cache allocation power Cai [J] in 1 sec when a chunk is cached on CNi is shown in

Equation (2.2) and the traffic transmission power Tri(λ ,Ht
i) [J] when the chunk is transmitted from

CNi to all branch CNs is

Tri(λ ,Ht
i) = D ·λ · (Pr +Pwdm) ·Ht

i , ∀i. (2.9)

Next, CNi designs a threshold using the power model. Under the assumption that content

requests are symmetrically generated at all sites, CNi designs a threshold by the following rule

– 17 –

2.3 Distributed Cache Mechanism

for a sub-tree (cf. Fig. 2.4) using children information: Powert
j(λ), (∀ j ∈ Ct

i : a set of children

CNs).

if “Powert
i(λ): the power consumption when a chunk having request rate λ from each site is

cached only on CNi delivering it to all branch CNs” is greater than “∑ j∈Ct
i
Powert

j(λ): the power

consumption when a chunk having request rate λ from each site is cached on CN j (∀ j ∈ Ct
i)

delivering it to all branch CNs” then

the chunk is cached on child CN j (∀ j ∈ Ct
i)

else

the chunk isn’t cached on child CN j (∀ j ∈ Ct
i)

end if

CNi calculates the boundary condition of the above-mentioned rule as follows.

Powert
i(λ t

b) = ∑
j∈Ct

i

Powert
j(λ t

b), (2.10)

which leads to

λ t
b =

(Crt
i −1) ·D ·Pca

D · (Pr +Pwdm) · (Ht
i −∑ j∈Ct

i
Ht

j)
(2.11)

Therefore, the threshold T ht
j of CN j (j ∈ Ct

i) in caching hierarchy t can be derived as

T ht
j = Brt

jλ t
b. (2.12)

After designing it, CNi sets the threshold T ht
j to child CN j not including CNi itself and the cache

management in each CN is executed as follows.

For chunks of content having origin t,

• when the request rate of a content (initial Interest) measured by CN j is higher than T ht
j,

chunks of the content are cached on the CN j

• when the request rate of a content (initial Interest) measured by CN j is lower than T ht
j, chunks

of the content aren’t cached on the CN j

– 18 –

Chapter 2. Energy Efficient Cache Management

Table 2.2: Variables in the distributed cache mechanism
Variable Type of Variable Definition
Pca, Pr, Pwdm, D Given cf. Table 2.1
λ t

b Design The boundary condition of the request rate of content gen-
erated from each site to calculate the threthold T ht

j
T ht

j Design Threshold of the request rate for CN j in caching hierarchy
t

Crt
j Measure The total number of children CNs of CNi on caching hi-

erarchy t
Brt

j Measure The total number of branch CNs in a delivery tree rooted
at CNi on caching hierarchy t

Ht
j Measure The sum of hop-length from CNi to all branch CNs.

Table 2.3: Power density parameters.
Device (Product) Power Spec Power Density
DRAM 10 W 4 GB Pca = 3.125×10−10 J/(bit · s)
Content Router (CRS-1) 4185 W 320 Gbps Pr = 1.3×10−8 J/bit
WDM(FLASHWAVE9500) 800 W 480 Gbps Pwdm = 1.67×10−9 J/bit

Furthermore after calculating the power model such as Equation (2.8), each CN sends it to its parent

CN. Here, variables used in the threshold design are summarized in Table 2.2.

2.4 Evaluation

We first verified the tradeoff between cache allocation power and traffic transmission power for a

chunk of content using the optimization model and evaluated the effectiveness of the distributed

cache mechanism.

The simulation conditions are set to the following.

• Test networks: NSF topology with 14 CNs (Topology A), cf. Fig. 2.6(a) / US-backbone

topology with 24 CNs (Topology B), cf. Fig. 2.6(b).

• Content information: Zipf-distributed requests from each site j for K = 10000 content items

are defined as Rk, j = λ = rk−α/c, c = ∑K
k=1 k−α , cf. Fig. 2.7. We set α to 0.8 for UGC (User

– 19 –

2.4 Evaluation

1

2

3

4

5

6

7

8

9

10

11
12

13

14

(a) Topology A

1

6

19

15

2

3

4

5

7

8

9

10

11

12

13

14

16

17

18

20

22

24

23

21

(b) Topology B

Figure 2.6: Test topologies

Zipf(1.2)

Zipf(0.8)

R
e

q
u

e
st

 d
is

tr
ri

b
u

ti
o

n
 (

lo
g

)

1
e

−
0

4
1

e
−

0
2

1
e

+
0

0
1

e
+

0
2

0 2000 4000 6000 8000 10000

Content ID

Figure 2.7: Request distribution of the content Rk,∗

Generated Content) and 1.2 for VoD [42] and r to 100. Furthermore, the origin site t of

content ID k is set randomly based on a uniform distribution, cf. Fig.s 2.8(a) and (b). The

chunk size D and the average content size are set to 10 KB and 10 MB [43, 26]. The number

of chunks nk of content ID k follows a geometric distribution 1
σ (1− (1

σ))
nk with the average

number of chunks σ = 1000 = 10MB/10KB.

• Power density of each device: The power density of a memory device [J/(bit·s)] and a CN

– 20 –

Chapter 2. Energy Efficient Cache Management

(a) Origin sites of content in Topology A (b) Origin sites of content in Topology B

Figure 2.8: Origin sites of content

or WDM node [J/bit] are set to the values given in Table 2.3.

2.4.1 Tradeoff of Power Consumption

We now compare power consumption for a chunk of content from a Zipf distribution with α = 1.2

when the chunk is allocated using the following cache allocation policies.

• Cache allocation on 1 CN: The replica of a chunk of content is stored in a CNon its origin

site.

• Cache allocation on all CNs: The replicas of a chunk of content are stored in all CNs.

• Optimal cache allocation: The replicas of a chunk of content are stored in CNs designed by

our optimization model.

Figs. 2.9 and 2.11 show the power consumption for a chunk of content in each topology. Fur-

thermore, Figs. 2.10 and 2.12 present the snapshots of each caching policy for content ID:398

having the origin site 7 in Topology A and content ID:395 having the origin site 12 in Topology B.

– 21 –

2.4 Evaluation

Figure 2.9: Power consumption for a chunk of each content ID and the ratio of power consumption
to that of optimal caching (Zipf:α = 1.2, TopologyA)

Figure 2.10: Power consumption for a chunk of content ID:398 (Zipf:α = 1.2, TopologyA)

In these results, the cache locations for more popular content and less popular content in optimal

caching are same as those in caching on all CNs and caching on 1 CN, respectively. However

for content having intermediate popularity, the number of cache locations for a chunk in optimal

caching is different from that in the other policies according to its request rates. Moreover, Figs

– 22 –

Chapter 2. Energy Efficient Cache Management

Figure 2.11: Power consumption for a chunk of each content ID and the ratio of power consumption
to that of optimal caching (Zipf:α = 1.2, TopologyB)

Figure 2.12: Power consumption for a chunk of content ID:395 (Zipf:α = 1.2, TopologyB)

2.10 and 2.12 show the tradeoff relationship between the cache allocation power and the traffic

transmission power and different content delivery topologies are derived from each cache allocation

strategy. As a result, we see that the optimal cache allocation can derive the most energy efficient

– 23 –

2.4 Evaluation

locations for a chunk of content by balancing between the cache allocation power and the traffic

transmission power according to the content popularity.

Therefore, distributed cache mechanisms for CCN should consider the tradeoff between the

cache allocation power and the traffic transmission power and search for efficient cache locations

of chunks of content by balancing the tradeoff on the caching hierarchies to be close to the optimal

cache locations. Next, we demonstrate the effectiveness of our distributed cache mechanism.

2.4.2 Effectiveness of the Distributed Cache Mechanism

We evaluated the effectiveness of the distributed cache mechanism in chunk-level simulation and

compared energy efficiency of three caching policies for a CN with different memory sizes (2, 4, 8,

12, 16, 20, 24, 32, 64, ∞ GB).

• Optimal caching + LFU: A chunk of content is cached on locations designed by the opti-

mization model. When memory usage in a CN is above 100%, the chunk having the lowest

request rate is discarded from memory of the CN according to LFU.

• Threshold-based caching + LFU: A chunk of content is cached when the request rate of the

content is above a pre-designed threshold / isn’t cached when the request rate is below the

pre-designed threshold. Moreover, when memory usage in a CN is above 100%, the chunk

having the lowest request rate is discarded from memory of the CN according to LFU.

• Pure LFU: A chunk of content is cached in all CNs thorough which it passes. Only when

memory usage in a CN is above 100%, the chunk having the lowest request rate is discarded

from memory of the CN according to LFU.

In the simulations, the generation of each request follows an exponential distribution and all CNs

measure request rates of initial Interests of content for Pure LFU and threshold-based caching by

using the exponentially weighted moving average (EWMA). The simulation time is set to 7200 sec.

– 24 –

Chapter 2. Energy Efficient Cache Management

(a) 32 GB Memory, Topology A (b) 32 GB Memory, Topology B

(c) 64 GB Memory, Topology A (d) 64 GB Memory, Topology B

Figure 2.13: Example of time change of total power consumption for content following a Zipf
distribution with α = 1.2 (solid line: total power consumption / dashed line: cache allocation power
in the total power consumption)

2.4.3 Power Consumption and Memory Usage

We now compare the three caching policies in view of the total power consumption for two topolo-

gies. As examples, Fig. 2.13 shows the time change of total power consumption [J/s], which is

– 25 –

2.4 Evaluation

the sum of traffic transmission power and cache allocation power, when the memory size of each

CN is set to 32 GB and 64 GB. Additionally, Fig. 2.14 presents differences of the average power

consumption, which is the average of total power consumption in the steady state of the simulation

when the memory size is changed. These results shown in Figs. 2.14(a)-(d) demonstrate that the

power consumption in threshold-based caching is only slightly larger than that in optimal caching

and lower than that in Pure-LFU.

On the other hand, Fig. 2.14(c) shows larger differences of power consumption between threshold-

based caching and optimal caching compared with the other results. In Fig. 2.15, we additionally

show the total power consumption cumulated in the order from more popular content to less pop-

ular content for each topology which is composed of CNs having infinite memory. As shown in

Fig. 2.15(c), the cumulative differences of power consumption between threshold-based caching

and optimal caching are small for more popular content with IDs below 2000, but the cumulative

power consumption shows larger differences for less popular content with IDs over 2000, in the

long tailed distribution. That is why less popular content with α = 0.8 has higher request rates and

larger difference of power consumption than less popular content with α = 1.2.

Furthermore in Fig. 2.16, we demonstrate the total power consumption for Topology B when

the memory size of each CN is infinite and the request distribution is changed. For the Zipf-

distributed requests from each site as Rk, j = rk−α/c, we changed α to {0.5,0.8,1.2,1.5} and r

to {50,100,150}, respectively, as shown in Fig. 2.17.

As a result, we see that the differences between threshold-based caching and optimal caching are

small when α is large or r is small, that is, less popular content has lower request rates. Meanwhile,

energy efficiency in threshold-based caching is close to that in Pure-LFU as α becomes smaller or

r becomes larger.

Moreover in these results, the power consumption in threshold-based caching for content with

α = 1.2 is smaller than that for content with α = 0.8 because there are many contents having the

request rates over the threshold for content with α = 0.8, which discloses that the memory usage

for content with α = 0.8 is larger than that for content with α = 1.2 in Fig. 2.18.

In Fig. 2.18, the total power consumption in threshold-based caching and optimal caching

– 26 –

Chapter 2. Energy Efficient Cache Management

(a) Zipf:α = 0.8, Topology A (b) Zipf:α = 1.2, Topology A

(c) Zipf:α = 0.8, Topology B (d) Zipf:α = 1.2, Topology B

Figure 2.14: Average power consumption when the memory size is changed

doesn’t change even when the memory size is large, because the memory usage converges on the ap-

propriate usage in view of energy efficiency. Meanwhile, the total power consumption in Pure LFU

increases as the memory size is larger. This is why the cache allocation power becomes dominant

in the total power consumption according to increasing memory size.

– 27 –

2.4 Evaluation

(a) Zipf:α = 0.8, Topology A (b) Zipf:α = 1.2, Topology A

(c) Zipf:α = 0.8, Topology B (d) Zipf:α = 1.2, Topology B

Figure 2.15: The cumulative power consumption of chunks of content for threshold-based caching
and optimal caching when the memory size is infinite

As a result, we can see that the threshold-based caching using local searching realizes more

energy efficient caching than Pure LFU and is near to the optimal solution using the whole net-

work information. Meanwhile, these results show that the energy efficiency highly depends on the

distribution of content popularity.

– 28 –

Chapter 2. Energy Efficient Cache Management

Figure 2.16: The total power consumption when the memory size is infinite and the request distri-
bution is changed in Topology B

Figure 2.17: Request distribution of the content (dasched line: r = 150, solid line: r = 100, dotted
line: r = 50)

2.4.4 Cache Performance

We next analyze the cache hit ratio defined as the ratio of chunks cached in the network for each

request. Fig. 2.19 shows the average cache hit ratio for chunks of all content items when the memory

– 29 –

2.4 Evaluation

(a) Zipf:α = 0.8, Topology A (b) Zipf:α = 1.2, Topology A

(c) Zipf:α = 0.8, Topology B (d) Zipf:α = 1.2, Topology B

Figure 2.18: Average used memory when the memory size is changed

size of each CN is changed. For content with α = 0.8 in Figs. 2.19(a) and (c), the cache hit ratio

in threshold-based caching is near to that in Pure LFU when the memory size is small and that in

optimal caching only when the memory size is larger. For content with α = 1.2 in Figures 2.19(b)

and (d), the cache hit ratio in threshold-based caching is almost same as that in optimal caching

even when the memory size is small. Meanwhile in all cases, the cache hit ratio in Pure LFU is

– 30 –

Chapter 2. Energy Efficient Cache Management

(a) Zipf:α = 0.8, Topology A (b) Zipf:α = 1.2, Topology A

(c) Zipf:α = 0.8, Topology B (d) Zipf:α = 1.2, Topology B

Figure 2.19: Cache hit ratio in the network when the memory size is changed

lower than that in the other policies.

Furthermore, the cache hit ratio in threshold-based caching for content with α = 0.8 is higher

than that for content with α = 1.2 because less popular content with α = 0.8 has higher request

rates and is more easily cached in each CN than content with α = 1.2. Although the cache hit ratio

– 31 –

2.4 Evaluation

(a) Zipf:α = 0.8, Topology A (b) Zipf:α = 1.2, Topology A

(c) Zipf:α = 0.8, Topology B (d) Zipf:α = 1.2, Topology B

Figure 2.20: Average hop length when the memory size is changed

also depends on the distribution of content popularity, we see that the threshold-based caching can

achieve good performance near to the optimal caching and improve not only the power consump-

tion but also the cache hit ratio by effectively using network resources such as memory usage and

bandwidth.

Additionally, Fig. 2.20 shows the average hop length for chunks of all content items when the

– 32 –

Chapter 2. Energy Efficient Cache Management

memory size of each CN is changed. For evaluation, we add a penalty of +5 to the hop length of

content which isn’t cached on any CNs in the network and for which a request (Interest) reaches its

origin server. Figs. 2.20(b) and (d) illustrate that the average hop length in threshold-based caching

is near to that in optimal caching. Furthermore the average hop-length in Pure LFU is longer than

the others when the memory size of each CN is small, because many chunks of less popular content

aren’t cached in the network due to insufficient memory and many requests of content reach the

origin server. Meanwhile, Figs. 2.20(a) and (c) show the average hop-length in optimal caching and

threshold-based caching is close to that in Pure-LFU when the memory size is small. This is why

chunks of many contents are allocated on many CNs as with Pure LFU. Moreover as the memory

size is larger, the average hop length in Pure LFU becomes shorter than the others. Furthermore,

the average hop length in threshold-based caching is longer than that in optimal caching because

threshold-based caching discards more data than optimal caching as shown in Figs. 2.18(a) and (c).

Although the hop length also depends on the distribution of content popularity, we can see that

the threshold-based caching can control content locations to be close to the optimal caching in con-

sideration of the tradeoff between hop length i.e., response performance, and power consumption

of the network.

2.5 Summary

In this chapter, we introduced an energy efficient design method to derive the optimal cache lo-

cations of chunks of content in order to provide reference locations to evaluate energy efficiency

for cache strategies, which can consider the tradeoff between the cache allocation power and traf-

fic transmission power under the constraints of the caching hierarchy. Furthermore, we proposed

a distributed cache mechanism to locally search for energy efficient cache locations of chunks of

content. In the mechanism, each CN pre-designs a threshold of request rates of chunks for each

caching hierarchy and judges whether or not to cache the chunks by comparing measured request

rates with the threshold.

In the simulation, we revealed the tradeoff between the cache allocation power and the traffic

power for a chunk of content having different request rates and demonstrated that the proposed

– 33 –

2.5 Summary

distributed caching is near to the optimal solution derived by the proposed optimization model and

can improve the total power consumption and the cache hit rate in the target network compared with

Pure LFU. Furthermore, we showed that the energy efficiency of the proposed method depends on

the distribution of content popularity.

– 34 –

Chapter 3

Modeling and Evaluation of Node-Level

Cache Management

3.1 Issue and Approach for Analysis of Node-Level Cache Manage-

ment

In caching systems, cache performance depends on the memory size at each node and the request

distribution of content and it becomes an important issue to analyze the performance of current

caching mechanisms for designing efficient cache systems.

Traditionally, statistical models for general caching mechanisms, such as LRU and FIFO re-

placement policies, have been well studied [23, 11, 44]. Beside the approximation models for LRU

and FIFO policies, there have been some analysis models [45, 46, 47, 48, 49, 50] to design efficient

caching systems connecting multiple queues in a single node or a caching network.

Feldman et al. [45] propose a multi-level LRU caching and construct an approximation model

with multiple priority queues for service differentiation. The proposed mechanism uses LRU policy

for partitioned multi-level queues. Gallo et al. [46] model cache performance for random and

LRU policies in a single node and hierarchical caching systems. Furthermore, they also propose a

tandem caching model in which random and LRU policies are sequentially connected and evaluate

the caching performance by using the proposed models and simulations. Furthermore, Rosensweig

– 35 –

3.1 Issue and Approach for Analysis of Node-Level Cache Management

et al. [47] also propose an algorithm (a-NET) that approximates the cache performance of multi-

caching networks, where nodes execute the LRU or random policies. The approximation models are

constructed by Markov chains and can provide a good approximation to estimate cache performance

in caching networks.

As a representative model for general caching mechanisms, the Che approximation [11, 34] can

provide a highly accurate approximation of cache hit probability in LRU by using a simple model.

Under stationary content popularity λ (n), corresponding to the normalized access probability of

object n to the total accesses ∑N
n=1 λ (n) for N objects, the cache hit probability of object n for

memory size C is derived as

HLRU(n) = 1− e−λ (n)τC , (3.1)

where the characteristic time τC satisfies the condition of Eq. (3.2).

C =
N

∑
n=1

1− e−λ (n)τC (3.2)

Additionally, [34] also proposes an approximation model of cache hit probability under FIFO policy

as

HFIFO(n) =
λ (n)tC

∑i̸=n λ (i)+λ (n)tc
(3.3)

where the characteristic time tC satisfies the condition of Eq. (3.4).

C =
N

∑
n

λ (n)tC
∑i ̸=n λ (i)+λ (n)tC

(3.4)

Both approximations are simple but have the same accuracy as the approximation models proposed

by Dan et al. [23]. Furthermore, Fofack et al. [44] enhance the approximation models in [23] to eval-

uate cache performance in a caching network where nodes execute LRU and FIFO policies. These

model-based analyses can be executed in a shorter time than simulation-based evaluations. While

LRU and FIFO policies realize cache operation of O(1) in a single queue, their hitting performance

– 36 –

Chapter 3. Node-Level Cache Management

deteriorates when there are many one-timers. This is why relatively popular objects requested many

times may be pushed out from the single queue by one-timers.

Meanwhile as effective caching for one-timers, 2Q and ARC mechanisms have been introduced

and their caching operations are of the same complexity as LRU. These mechanisms can avoid in-

efficient eviction of relatively popular objects caused by one-timers because they maintain separate

queues for one-timers. To analyze cache performance of the 2Q mechanism, Tanaka et al. [50] pro-

pose an enhanced 2Q mechanism that dynamically controls optimal partitioning for two queues by

using interreference interval for purged objects (II-PO). They further propose an analytical model

for optimal partitioning in 2Q by using II-PO and realize better performance than LRU.

However, in the aforementioned proposals, the approximations for 2Q and ARC only discuss

empirical results on the cache performance by implementing these mechanisms. Moreover, to the

best of our knowledge the modeling and theoretical analysis of cache performance in these mech-

anisms has not been established yet. Actually, it is difficult to analyze the interaction between

separate queues compared with analyzing a single queue like for LRU or FIFO. Furthermore, it

is an important issue to analyze the influence of cache pollution due to one-timers shown in the

realistic workloads of web proxies and VoD services [24, 27, 28, 26, 29]. In this chapter, we aim to

analyze the interactions between the separate queues in 2Q and ARC and to generate new statistical

models of these mechanisms.

The remainder of this chapter is organized as follows. We review the caching mechanisms

2Q and ARC that are efficient for one-timers in Section 3.2 and propose the statistical models

in Section 3.3. Section 3.4 demonstrates the approximation accuracy of the proposed models by

comparing cache hit probability measured by simulation and that estimated by the proposed models.

Finally we summarize this chapter in Section 3.5.

3.2 Caching Mechanisms for One-Timers

In LRU or random policies, when there are many objects that are requested only once and then

never again, frequently requested objects may have to be removed due to the limited memory size.

On the other hand, the one-timers don’t influence cache removal of relatively popular objects in

– 37 –

3.2 Caching Mechanisms for One-Timers

A1

(Pointers)

Am

(Data)Hit

Figure 3.1: Queue structure of Simplified 2Q

A1 in

(Data)

Am

(Data)
Hit

A1 out

(Pointers)
Overflow

Figure 3.2: Queue structure of Full 2Q

mechanisms using separate queues for one-timers. As a consequence, these caching mechanisms

can realize better performance than LRU and random policies when there are many one-timers.

Moreover to construct efficient cache systems in which nodes use 2Q or ARC, the operator

should know the influence of node memory size and request distribution on cache performance in

advance. However, it is difficult to analyze the cache characteristics because the multiple queues

influence each other. Meanwhile to analyze the cache performance, simulations are useful, but

require much more time for the evaluation. Therefore, this chapter aims at providing a design

guideline for cache systems using 2Q or ARC and at modeling the statistical cache performance in

the steady state for these caching mechanisms.

3.2.1 2Q

We first introduce the overall algorithms of the 2Q mechanism which has two variants named Sim-

plified 2Q and Full 2Q [13]. As shown in Fig. 3.1, Simplified 2Q uses a combination of one FIFO

queue A1 and one LRU queue Am. The A1 queue is used to remember the access history of one-

timers, which are generally just pointers named ghost caches. On the other hand, the Am queue is

used to cache popular objects that are requested many times while they are in the cache. For the

first access of an object, Simplified 2Q caches the object data in the A1 queue. If the same object

is requested again while it is in the A1 or Am queue, the object will be moved to the tail of the Am

queue. When a new object is entered into one of the queues and the queue overflows, the oldest

object at the head of the queue is removed. Simplified 2Q is known to work very well for station-

ary requests, but does not work well for nonstationary requests. Therefore, Full 2Q is proposed to

– 38 –

Chapter 3. Node-Level Cache Management

improve the nonstationary cache performance of Simplified 2Q. As shown in Fig. 3.2, the A1 queue

in Simplified 2Q is divided into two queues A1in and A1out . When an object is accessed for the first

time, it is cached in the A1in queue. Additionally, when the A1in queue overflows and the oldest

object at the head of the A1in queue is pushed out, that object is stored as a ghost cache entry in the

A1out queue. If an object is hit in the A1out or Am queue, the object is moved to the tail of the Am

queue.

In 2Q, the sizes of all queues are constant. Therefore, we should design the partition sizes

offline. Regarding Full 2Q, the sizes of A1in, A1out , and Am queues are empirically set to 25% of the

total memory size, the number of identifiers for as many objects as would fit on 50% of the memory

size, and 75% of total memory size, respectively.

3.2.2 Adaptive Replacement Caching (ARC)

We next show the overall algorithms of ARC [14, 15]. ARC is an enhanced mechanism of Fixed

Replacement Caching (FRC). ARC and FRC have two LRU lists called L1 and L2 as shown in

Fig. 3.3. The L1 list stores one-timers and the L2 list stores objects accessed at least twice. Moreover,

the L1 list is divided into T1 and B1 queues which store object data and ghost caches, respectively.

Similarly, the L2 list is divided into T2 and B2. The sizes of the four queues satisfy the following

conditions

0≤ |L1|+ |L2| ≤ 2C, 0≤ |L1| ≤C, 0≤ |L2| ≤ 2C

where the total memory size, which is composed of the T1 and T2 queues, is C. The symbol | · |

denotes the total size of each list as the sum of the two queues for data and pointers. Furthermore

if an object is requested again when it is already stored in T2 or T1 / remembered in B1 or B2, the

object will be moved to the tail of the T2 queue.

While FRC attempts to keep the sizes of the T1 and T2 queues as constant values p and C− p,

ARC adaptively controls the tunable parameter p to track the sizes of the T1 and T2 queues as p and

C− p according to varying access patterns. Therefore, ARC behaves similarly to FRC except for

the adaptively changing p.

– 39 –

3.2 Caching Mechanisms for One-Timers

T1

(Data)

T2

(Data)

Hit

B2

(Pointers) Overflow Hit

B1

(Pointers) Overflow

Hit

L1 L2

Figure 3.3: Queue structure of ARC

ARC automatically tunes the parameter p by predicting that the frequency of access to objects

(i.e., one-timers or popular objects) will be increased/decreased in the near future as follows.

• When a request hits in B1 (i.e., ghost caches for objects accessed once), ARC guesses that

requests of other objects accessed once will also increase. As a result, the partition control of

p is executed as follows.

– If the size of T1 (= p) is small, i.e., one-timers have not been recently accessed, the size

of T1 is increased by 1

– If the size of T1 is large, the size of T1 is increased by p/(C− p)

• When a request hits in B2 (i.e., ghost caches for objects accessed more than once), ARC

guesses that requests of objects accessed more than once will increase. As a result, the

partition control of p is executed as follows.

– If the size of T2 (=C− p) is small, i.e., objects referred more than once have not been

recently accessed, the size of T2 is increased by 1

– If the size of T2 is large, the size of T2 is increased by (C− p)/p

In this algorithm of ARC, the cache hitting in B1 suggests an increase in the size of T1. Similarly,

a cache hitting in B2 suggests an increase in the size of T2. For various access patterns, ARC can

provide almost the same performance as that of FRC with optimal p tuned offline [15]. Moreover,

the implementations of ARC and FRC also have low complexity because they are based on simple

caching mechanisms such as LRU and FIFO.

– 40 –

Chapter 3. Node-Level Cache Management

A1

(Pointers)

Am

(Data)

Figure 3.4: Queue model of Simplified 2Q

In this chapter, we consider approximating the cache characteristics of ARC by FRC with a

given p and present the approximation accuracy in Sect. 3.4.

3.3 Proposed Approximation Models

We next propose new theorems for approximations of Simplified 2Q, Full 2Q, and FRC in Theorems

1, 2, and 3, respectively.

3.3.1 Approximation for Simplified 2Q

In consideration of the interaction between A1 and Am as shown in Fig. 3.4, the approximation

model of Simplified 2Q can be derived as follows.

Theorem 1 Under stationary popularity λ (n) of object n, the cache hit probability of object n in

Simplified 2Q is defined as follows.

HS2Q(n) = HAm(n). (3.5)

The cache hit probability is derived by using the following hit probabilities HA1(n), HAm(n) in both

queues.

• Hit and request probabilities of object n in the A1 queue

HA1(n) =
1− (1−λA1(n))

τA1

2

λA1(n) = λ (n)(1−HAm(n))

– 41 –

3.3 Proposed Approximation Models

• Hit and request probabilities of object n in the A2 queue

HAm(n) = 1− e−λAm (n)τAm

λAm(n) = λ (n)HAm(n)+λA1(n)HA1(n)

The characteristic time of each queue, i.e., TA1 and TA2 , is obtained by solving

CA1 = ∑
n=1

HA1(n), CAm = ∑
n

HAm(n).

The parameters CA1 and CAm are given as the sizes of the A1 and Am queues, respectively.

Proof 1 For approximation of the A1 queue, when T̄ and C are the average queuing time of each

object in microscopic time units and the size of the A1 queue, the probability that object n is hit at

the s-th reference slot after entering the A1 queue is

Hit(n) =
CT̄

∑
s=1

λA1(n)(1−λA1(n))
(s−1) = 1− (1−λA1(n))

CT̄

Because the hit object in the A1 queue moves to the Am queue, the hit rate of object n in the A1 queue

is

HA1(n) =
Hit(n)

2
=

1− (1−λA1(n))
CT̄

2
.

Suppose that CT̄ is the characteristic time τA1 of the A1 queue, the hit probability of object n in A1

queue is defined as

HA1(n) =
1− (1−λA1(n))

τA1

2
.

Furthermore, the Am queue can be proved in a similar way to the Che approximation [11]. □

The characteristic times τA1 and τAm can be calculated by Algorithm 1 with an enhancement of the

iterative calculation proposed in [44].

– 42 –

Chapter 3. Node-Level Cache Management

Algorithm 1 Calculation of Simplified 2Q model
Require: λ (1), · · · ,λ (N), CA1 , CAm

Ensure: HS2Q(1), · · · ,HS2Q(N)
Set τA1 , τAm , HA1(n), HAm(n) to arbitrary initial values
BA1 ← 0, BAm ← 0
for n← 1,N do

BA1 ← BA1 +HA1(n)
BAm ← BAm +HAm(n)

end for
while |CA1−BA1 | ≪ δ ∧ |CAm−BAm | ≪ δ do
{δ : the minimum value for precision}
BA1 ← 0, BAm ← 0
for n← 1,N do

λA1(n)← λ (n)(1−HA1(n))(1−HAm(n))
λAm(n)← λ (n)HAm(n)+λA1(n)HA1(n)

HA1(n)←
1−(1−λA1 (n))

τA1

2
HAm(n)← 1− e−λAm (n)τAm

BA1 ← BA1 +HA1(n)
BAm ← BAm +HAm(n)
{calculations for Theorem 1}

end for
τA1 ← τA1 +α(CA1−BA1)
τAm ← τAm +α(CAm−BAm)
{search for the characteristic time of each queue (α: a tunable parameter)}
for n← 1,N do

HS2Q(n)← HAm(n)
end for

end while

– 43 –

3.3 Proposed Approximation Models

A1 in

(Data)

Am

(Data)

A1 out

(Pointers)

Figure 3.5: Queue model of Full 2Q

3.3.2 Approximation for Full 2Q

As shown in Fig. 3.5, the approximation model for the A1in, A1out , and Am queues in Full 2Q can be

defined as follows.

Theorem 2 Under the stationary popularity λ (n) of object n, the hit probability of object n in Full

2Q is defined as

HF2Q(n) = HA1in(n)+HAm(n) (3.6)

by using the following hit probabilities HA1in(n), HA1out (n), and HAm(n) of the three queues.

• Hit and request probabilities of object n in the A1in queue

HA1in(n) = 1− (1−λA1in(n))
τA1in

λA1in(n) = λ (n)(1−HA1out (n))(1−HAm(n))

• Hit and request probabilities of object n in the A1out queue

HA1out (n) =
1− (1−λA1out (n))

τA1out

2

λA1out (n) = λ (n)(1−HA1in(n))(1−HAm(n))

– 44 –

Chapter 3. Node-Level Cache Management

• Hit and request probabilities of object n in the Am queue

HAm(n) = 1− e−λAm (n)τAm

λAm(n) = λ (n)HAm(n)+λA1out (n)HA1out (n)

The characteristic time of each queue, i.e., τA1in , τA1out , and τAm , is obtained by solving

CA1in = ∑
n

HA1in(n), CA1out = ∑
n

HA1out (n), CAm = ∑
n

HAm(n).

These parameters CA1in , CA1out , and CAm are given as the sizes of the A1in, A1out , and Am queues,

respectively.

Proof 2 For approximation of the A1in queue, when T̄ , C are the average queuing time of each

object in microscopic time units and the size of the A1in queue, the probability that object n is hit at

the s-th reference slot after entering the A1in queue is

HA1in(n) =
CT̄

∑
s=1

λA1in(n)(1−λA1in(n))
(s−1) = 1− (1−λA1in(n))

CT̄ .

Suppose that CT̄ is the characteristic time τA1in of the A1in queue, the hit probability of object n in

the A1in queue is defined as

HA1in(n) = 1− (1−λA1in(n))
τA1in .

Furthermore, the A1out and Am queues can be proved in a similar way with the approximation

for the A1 and Am queues in Simplified 2Q. □

The characteristic times τA1in , τA1out , and τA2 can be calculated by Algorithm 2.

– 45 –

3.3 Proposed Approximation Models

Algorithm 2 Calculation of Full 2Q model
Require: λ (1), · · · ,λ (N), CA1in , CA1out , CAm

Ensure: HF2Q(1), · · · ,HF2Q(N)
Set τA1in , τA1out , τAm , HA1in(n), HA1out (n), HAm(n) to arbitrary initial values
BA1in ← 0, BA1out ← 0, BAm ← 0
for n← 1,N do

BA1in ← BA1in +HA1in(n)
BA1out ← BA1out +HA1out (n)
BAm ← BAm +HAm(n)

end for
while |CA1in−BA1in | ≪ δ ∧ |CA1out −BA1out | ≪ δ ∧ |CAm−BAm | ≪ δ do
{δ : the minimum value for precision}
BA1in ← 0, BA1out ← 0, BAm ← 0
for n← 1,N do

λA1in(n)← λ (n)(1−HA1out (n))(1−HAm(n))
λA1out (n)← λ (n)(1−HA1in(n))(1−HAm(n))
λAm(n)← λ (n)HAm(n)+λA1out (n)HA1out (n)
HA1in(n)← 1− (1−λA1in(n))

τA1in

HA1out (n)←
1−(1−λA1out (n))

τA1out

2
HAm(n)← 1− e−λAm (n)τAm

BA1in ← BA1in +HA1in(n)
BA1out ← BA1out +HA1out (n)
BAm ← BAm +HAm(n)
{calculations for Theorem 2}

end for
τA1in ← τA1in +α(CA1in−BA1in)
τA1out ← τA1out +α(CA1out −BA1out)
τAm ← τAm +α(CAm−BAm)
{search for the characteristic time of each queue (α: a tunable parameter)}
for n← 1,N do

HF2Q(n)← HA1in
(n)+HAm(n)

end for
end while

– 46 –

Chapter 3. Node-Level Cache Management

T1

(Data)

T2

(Data)

B2

(Pointers)

B1

(Pointers)

Figure 3.6: Queue model of ARC

3.3.3 Approximation for ARC

In this chapter, we analyze the cache characteristics of ARC by using FRC with a given and con-

stant p. In consideration of the interaction between T2, T1, B2, and B1 as shown in Fig. 3.6, the

approximation model of FRC can be defined as follows.

Theorem 3 Under the stationary popularity λ (n) of object n, the hit probability of object n in FRC

with a given p is defined as

HFRC(n) = HT1(n)+HT2(n) (3.7)

by using cache hit probability HT1(n), HT2(n), HB1(n) and HB2(n) in the four queues:

• Hit and request probabilities of object n in the T2 queue

HT2(n) = 1− e−λT2 (n)τT2

λT2(n) = λ (n)HT2(n)+λT1(n)HT1(n)+λB1(n)HB1(n)+λB2(n)HB2(n)

– 47 –

3.3 Proposed Approximation Models

• Hit and request probabilities of object n in the T1 queue

HT1(n) =
1− (1−λT1(n))

τT1

2

λT1(n) = λ (n)(1−HT2(n))(1−HB2(n))(1−HB1(n))

• Hit and request probabilities of object n in the B1 queue

HB1(n) =
1− (1−λB1(n))

τB1

2

λB1(n) = λ (n)(1−HT1(n))(1−HT2(n))(1−HB2(n))

• Hit and request probabilities of object n in the B2 queue

HB2(n) =
1− (1−λB2(n))

τB1

2

λB2(n) = λ (n)(1−HT1(n))(1−HT2(n))(1−HB1(n))

The characteristic time of each queue, i.e., τT1 , τT2 , τB1 , and τB2 , is obtained by solving

p = ∑
n

HT1(n), C− p = ∑
n

HT2(n), C− p = ∑
n

HB1(n), p = ∑
n

HB2(n).

The parameters C and p are given as the total memory size and the size of the T1 queue, respectively.

Proof 3 The T2 queue can be proved in a similar way to the Che approximation [11]. Furthermore,

the T1, B1, and B2 queues can be proved in a similar way with the approximation for the A1 queue

in Simplified 2Q. □

The characteristic times τT2 , τT1 , τB1 and τB2 can be calculated by Algorithm 3.

Actually, in Sect. 3.4, we confirm that the size of the T1 queue (i.e., p) in ARC always varies

at small values for Zipf-like content popularity and the cache hit probability of ARC measured by

simulations is almost equal to that estimated by the FRC(p) model with small p. In the following

evaluations, we will use the FRC(1) model of setting p = 1 as the approximation of ARC.

– 48 –

Chapter 3. Node-Level Cache Management

Algorithm 3 Calculation of FRC model
Require: p, λ (1), · · · ,λ (N)
Ensure: HFRC(1), · · · ,HFRC(N)

Set τT2 , τT1 , τB2 , τB1 , HT1(n), HT2(n), HB1(n), HB2(n) to arbitrary initial values
CT2 ←C− p, CT1 ← p, CB1 ← p, CB2 ←C− p
BT2 ← 0, BT1 ← 0, BB2 ← 0, BB1 ← 0
for n← 1,N do

BT2 ← BT2 +HT2(n)
BT1 ← BT1 +HT1(n)
BB2 ← BB2 +HB2(n)
BB1 ← BB1 +HB1(n)

end for
while |CT2−BT2 | ≪ δ ∧ |CT1−BT1 | ≪ δ ∧ |CB2−BB2 | ≪ δ ∧ |CB1−BB1 | ≪ δ do
{δ : the minimum value for precision}
BT2 ← 0, BT1 ← 0, BB2 ← 0, BB1 ← 0
for n← 1,N do

λT2(n)← λ (n)HT2(n)+λT1(n)HT1(n)+λB1(n)HB1(n)+λB2(n)HB2(n)
λT1(n)← λ (n)(1−HT2(n))(1−HB2(n))(1−HB1(n))
λB1(n)← λ (n)(1−HT1(n))(1−HT2(n))(1−HB2(n))
λB2(n)← λ (n)(1−HT1(n))(1−HT2(n))(1−HB1(n))
HT2(n)← 1− e−λT2 (n)τT2

HT1(n)←
1−(1−λT1 (n))

τT1

2

HB1(n)←
1−(1−λB1 (n))

τB1

2

HB2(n)←
1−(1−λB2 (n))

τB1

2
BT2 ← BT2 +HT2(n)
BT1 ← BT1 +HT1(n)
BB1 ← BB1 +HB1(n)
BB2 ← BB2 +HB2(n)
{calculations for Theorem 3}

end for
τT2 ← τT2 +α(CT2−BT2)
τT1 ← τT1 +α(CT1−BT1)
τB2 ← τB2 +α(CB2−BB2)
τB1 ← τB1 +α(CB1−BB1)
{search for the characteristic time of each queue (α: a tunable parameter)}
for n← 1,N do

HFRC(n)← HT1(n)+HT2(n)
end for

end while

– 49 –

3.4 Evaluation

0 2000 4000 6000 8000 10000

1
e

−
0

7
1

e
−

0
5

1
e

−
0

3
1

e
−

0
1

0 2000 4000 6000 8000 10000

1
e

−
0

7
1

e
−

0
5

1
e

−
0

3
1

e
−

0
1

0 2000 4000 6000 8000 10000

1
e

−
0

7
1

e
−

0
5

1
e

−
0

3
1

e
−

0
1

0 2000 4000 6000 8000 10000

1
e

−
0

7
1

e
−

0
5

1
e

−
0

3
1

e
−

0
1

Zipf(1.2)

Zipf(1.0)

Zipf(0.8)

Zipf(1.5)

C
o

n
te

n
t
p

o
p

u
la

ri
ty

Object ID

Figure 3.7: Content popularity

3.4 Evaluation

To confirm the approximation accuracy of the proposed models of 2Q and ARC, we compare the

cache hit probability derived by Theorems 1-3 with that measured by simulations for content re-

quests generated at exponentially distributed intervals. The evaluation conditions are set to the

following.

• Content information: Zipf-distributed popularity of object n for N = 104 objects are defined

as λ (n) = k−α/c, c = ∑N
k=1 k−α , cf. Fig. 3.7. We set α to 0.8, 1.0, 1.2, and 1.5 as realistic

parameters for User Generated Content (UGC) and VoD [43, 42, 26]. For analytical simplic-

ity, we assume that each content object has the same size which is set to 1. In simulation, the

request rate of object n is set to 106λ (n) proportional to the normalized content popularity

[requests/time unit].

• Memory size at the target node: The total memory size C is set to 1000 and 2000.

• Default parameters for separate queues in Simplified 2Q /Full 2Q: In Simplified 2Q, the

size of the A1 queue is set to the number of identifiers for as many objects as would fit on

50% of the total memory size. In Full 2Q, we set the sizes of the A1in, A1out , and Am queues

– 50 –

Chapter 3. Node-Level Cache Management

(a) C = 1000 (b) C = 2000

Figure 3.8: Comparison of cache hit probability per object in Simplified 2Q estimated by the pro-
posed model and measured by simulations

to 10, the number of identifiers for as many objects as would fit on 50% of the total memory

size, and C−10, respectively.

• Simulation time : 60000 time units, e.g. msec.

3.4.1 Approximation Accuracy of Cache Hit Probability in 2Q

We first compare the cache hit probability per object measured by simulations and estimated by the

proposed model of Simplified 2Q. Figure 3.8 shows the cache hit probability per object in Simpli-

fied 2Q with default parameters. For comparison, we show the cache hit probability per object in

LRU estimated by the Che approximation. These results demonstrate that the proposed model of

Simplified 2Q can provide a good approximation of the cache hit probability per object measured

by simulations. Furthermore, the cache hit probability of warm objects, which are relatively pop-

ular but not most popular, are higher than those in LRU. This is why the A1 queue works well to

reduce the influence of one-timers on the cache characteristics of warm objects. Moreover as the

– 51 –

3.4 Evaluation

(a) C = 1000 (b) C = 2000

Figure 3.9: Cache hit probability per object in Full 2Q estimated by the proposed model and mea-
sured by simulations

Zipf parameter becomes larger, the cache hit probability in Simplified 2Q becomes close to that in

LRU.

We further analyze the cache hit probability per object measured by simulations and estimated

by the proposed model of Full 2Q with default parameters as shown in Fig. 3.9. As with the results

of Simplified 2Q, the proposed model of Full 2Q can provide a good approximation of the cache hit

probability per object measured by simulations. We can see that these results in Full 2Q are almost

same as those in Simplified 2Q.

3.4.2 Approximation Accuracy of Cache Hit Probability in FRC and ARC

In this section, we demonstrate that the proposed model of FRC(1) can approximate the cache

performance of ARC. In Fig. 3.10, we first present the cache hit probability estimated by the pro-

posed model of FRC(1) and measured by simulation. These results show that the proposed model

can approximate the simulation results and can reduce the influence of one-timers on the cache hit

– 52 –

Chapter 3. Node-Level Cache Management

(a) C = 1000 (b) C = 2000

Figure 3.10: Cache hit probability per object in FRC(1) estimated by the proposed model and
measured by simulations

probability of warm objects by using the L1 list in FRC.

Next we evaluate the average hit probability of all objects estimated by the FRC model for

different constant p and measured by simulations of ARC in Fig. 3.11. Here, we define the average

hit probability (AHP) in the approximation models and simulations as follows.

• Model: AHPmodel = λ (n)H(n), where H(n) is the cache hit probability of object n estimated

by the model.

• Simulation: AHPsim = Total number of hits of all objects
Total number of requests for all objects

These results demonstrate that the average hit probability in FRC with small p are almost the

same regardless of p and can approximate those measured by simulations of ARC. As a reference,

we show the average values of p in simulations of ARC which are adaptively tuned according to

nonstationary accesses in Fig. 3.12. In all conditions, the values of p are controlled at a low level.

These results suggest that the size of the T1 queue should be small and the B1 queue should be large

– 53 –

3.4 Evaluation

(a) C = 1000 (b) C = 2000

Figure 3.11: Average hit probability of all objects estimated by the FRC model when changing p
and measured by simulations of ARC

Figure 3.12: Box plot of values of p in simulations of ARC (C = 1000 and 2000)

– 54 –

Chapter 3. Node-Level Cache Management

(a) C = 1000 (b) C = 2000

Figure 3.13: Cache hit probability per object estimated by the proposed model of FRC(1) and
measured by simulations of ARC

to improve the cache performance at steady state. Since one-timers are actually rare events, it is not

necessary to cache the data of one-timers and sufficient to only store their pointers. As a result, we

can see that FRC(1) is suitable as an approximation model of ARC. Additionally, Fig. 3.13 presents

the cache hit probability per object estimated by the proposed model of FRC(1) and measured by

simulations of ARC. As a result, we see that the proposed model of FRC(1) can provide a highly

accurate approximation of the cache hit probability per object in ARC.

3.4.3 Comparison of Performance in Each Caching Mechanism

Next, by using the approximation models, we evaluate the cache performance for Simplified 2Q,

Full 2Q, ARC, and LRU.

Figure 3.14 presents the average hit probability AHP estimated by the proposed models of

2Q and ARC, as well as the Che approximation model for LRU. The AHP becomes higher as

the Zipf parameter becomes larger. Furthermore, we can see that the AHP in Simplified 2Q, Full

– 55 –

3.5 Summary

0
.4

0
.6

0
.8

1
.0

A
v
e

ra
g

e
 h

it
 p

ro
b

.
o

f
a

ll
o

b
je

c
ts

0.8 1.0 1.2 1.5

Zipf parameter

0
.7

0
.5

0
.9

0
.4

0
.6

0
.8

1
.0

0
.7

0
.5

0
.9

0.8 1.0 1.2 1.5

Zipf parameter

Simplified 2Q

Full 2Q

FRC(1)

LRU

C=1000 C=2000

Figure 3.14: Cache hit probability of all objects estimated by each approximation model

2Q, and ARC are almost the same and better than those of LRU. This is why the 2Q and ARC

mechanisms can mitigate the cache pollution of one-timers and the cache hit probability of warm

objects improves the average cache hit probability of all objects when the Zipf parameter is small

as shown in Figs. 3.8, 3.9, and 3.10. On the other hand, we confirmed that the proposed models

can estimate the cache performance at steady state for 2Q and ARC in a short time compared with

the simulation-based evaluations. In this way, the proposed models can easily evaluate the cache

characterisics of 2Q and ARC, which are influenced by node memory size and access patterns, and

we can use the proposed models as design guidelines for 2Q and ARC cache systems.

3.5 Summary

We proposed approximation models of 2Q and ARC which can consider the interactions between

separate queues for one-timers. In the evaluations, we validated that the proposed models can pro-

vide a highly accurate approximation of the simulation results. As a result, we showed that the pro-

posed models can easily analyze the statistical performance of 2Q and ARC at high accuracy. While

– 56 –

Chapter 3. Node-Level Cache Management

the simulation-based evaluations actually take a long time to measure the cache characteristics at

steady state, the proposed models can estimate the statistical performance for various conditions in

a short time. Finally, by using the model-based analysis, we confirmed that the cache performance

of 2Q and ARC is better than that of LRU because the partition management of multiple queues can

reduce the influence of one-timers on the cache performance of relatively popular objects.

In this research, we didn’t discuss the influence of the 2Q and ARC mechanisms of a cache

node on the whole performance of the caching network but can easily enhance the proposed models

by applying the search method of characteristic times for caching networks in [44].

– 57 –

Chapter 4

Modeling and Evaluation of Static TTL

Management in Hierarchical Caching

4.1 Issue and Approach for Analysis of Static TTL Management

In-network caching technologies are expected to reduce the network traffic and improve the service

quality, such as communication latency, by storing content data on network nodes near to users.

Meanwhile, the adaptive cache management using TTL of content can realize efficient memory

management per content. In a distributed cache system like CCN, it is an important issue to evaluate

cache performance and network resources required in the cache mechanism using the TTL value.

In TTL-based caching, each CN resets the time counter to the TTL of content every time a new

request for this content arrives and decreases the counter by 1 every time unit (cf. Fig. 4.1). In this

mechanism, each CN caches data of content delivered by another CN or an origin server when the

content counter is above 0 and discards the data of content when the counter becomes 0. Mean-

while in ICN, each CN autonomously constructs some caching hierarchies rooted at each origin site

of content (cf. Fig. 1.1). The caching hierarchy is constructed by routes between the origin site,

caching nodes and users, such that less popular content is cached on CNs near to the origin site

and more popular content is cached on CNs near to users. Therefore, it is difficult to evaluate the

impact of TTL-based caching on network resources and performance because the characteristics in

– 59 –

4.2 Analytical Model

the distributed cache mechanism depend on the caching hierarchies with distributed cache nodes.

As a enhanced model of LRU and FIFO policies, Fofack et al. [48, 49] introduce a TTL-based

caching model. Furthermore, Carofiglio et al. [51] explore the impact of storage management on the

cache performance per application in CCN and evaluate the effectiveness of static storage partition-

ing and dynamic management by priority-based weighted fair schemes combined with TTL-based

caching. Moreover, they study the possibility of improving cache scalability in TTL-based caching

without cache coordination. Hou et al. [52] propose an analytical model of a hierarchical TTL-

based caching system. The proposed mechanism updates content objects by using the TTL values

which are randomly set for each node according to its layer on the delivery tree.

However, these proposals don’t discuss the cache characteristics using TTL of content and the

impact of TTL on network resources and cache performance on the multiplexed caching hierar-

chies. Therefore, we investigate a statistical model to analyze the influence of TTL for content, on

hierarchical caching systems. This study assumes that each CN executes data caching using TTL of

content which can, for instance, be signaled in the data header of the content or set at each CN in

advance.

In this chapter, to provide a design guideline for caching networks using TTL and analyze the

cache characteristics in the steady state, we first propose an analytical model using matrix equations

to evaluate the cache characteristics on multiplexed caching hierarchies of content and evaluate the

validity of the proposed model and the impact of the TTL value.

The remainder of this chapter is organized as follows. We propose our analytical model in

Section 4.2 and demonstrate evaluation results using the proposed model in Section 4.3. Further-

more, in Section 4.4 we introduce a caching mechanism to improve energy efficiency using TTL

and we evaluate the effectiveness of the proposed mechanism. Finally, we summarize this chapter

in Section 4.5.

4.2 Analytical Model

We first propose the evaluation model to analyze the cache performance using TTL of a content in

the distributed cache system having multiplexed caching hierarchies.

– 60 –

Chapter 4. Static TTL Management

TTL Update

�me

�me
(hit) (hit) (hit) (unhit)

Request arrival of content

Data Retention Period
�me

Data Reten!on Period

TTL

Figure 4.1: Traditional TTL-based caching

1e−04 1e−02 1e+00 1e+02

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request rates of content (log)

C
a

c
h

e
 H

it
 R

a
ti
o

model

simulation

(a) T T L = 1

1e−04 1e−02 1e+00 1e+02

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request rates of content (log)

C
a

c
h

e
 H

it
 R

a
ti
o

model

simulation

(b) T T L = 10

Figure 4.2: Cache hit ratio when the requests per content with the rate λ input to a CN at an
exponentially distributed interval and set “total request rates of a content item [requests/sec]” and
“TTL [sec]” to various patterns

In TTL-based caching, the cache probability of content c having request rates λ c to a CN can

be expressed by the following function [34].

f (λ c,T T Lc) = 1− e−λ cT T Lc

As shown in Fig. 4.2, we demonstrate that this statistical function can provide a good approximation

of the cache hit ratio of content at a CN under the assumption that content requests arrive as a

– 61 –

4.2 Analytical Model

3 5

2 41

Figure 4.3: An example of matrices Λc, Rc, and Dc for the request propagation on the delivery tree
having origin 1

Poisson process. We next show the matrix model of request propagation of content in TTL-based

caching on caching hierarchy of content. The propagation of each request (Interest) of content c on

its caching hierarchy is expressed by the following model.

Λc[s+1] = Dc[s] ·Λc[s]+Rc,∀c (4.1)

Here, M, N, and s are the number of CNs, the number of sites having requesting users, and the

number of steps that each request propagates to the next CN, respectively. Moreover, we define Λc

as the M×N matrix consisting of the request rates λ c
(i, j) of content c from the requesting user in site

j to CNi and Rc as the M×N matrix of which elements are the request rates rc
i of content c from

users in site i.

Λc[s] := [λ c
(i, j)]M×N

[Rc]i j :=

 rc
j, ∀i = req site(j)

0 otherwise

– 62 –

Chapter 4. Static TTL Management

Dc is the M×M matrix of request propagation for content c as follows.

[Dc]mn :=

 1− f (∑N
k λ c

(n,k)[s],T T Lc), ∀m = parent node(n)

0 otherwise
(4.2)

In Fig. 4.3, we show an example of these matrices for the delivery tree having origin 1.

In the iterative matrix equation, we can consider the request propagation process and data

caching at each CN for content requested from each site. Moreover, the steady state of network

resources and cache performance per content can be derived by iteratively calculating the equation

smax-times which is the maximum number of hops from each site having requesting users to its

origin site.

Using the proposed model, we can model the system state and the cache performance for content

c such as

• memory usage per content in each CN,

• the total amount of transmission data in the network

• power consumption which is the sum of “cache allocation power” and “traffic transmission

power”.

• cache hit ratio per content which is the probability that the content is cached in the networks,

and

• average hop length per content.

4.2.1 Memory Usage

The memory usage of content c at CNi is derived using the data size θc of content c as follows.

Uc
i := θc f (

N

∑
k

λ c
(i,k),T T Lc). (4.3)

– 63 –

4.2 Analytical Model

4.2.2 Transmission Data

The total amount of data delivering of content c through all CNs is derived by

Dtc := θc

N

∑
j

Trc
j (4.4)

using the following vector consisting of the cumulative number of traffic flows Trc
j through each

CN on the delivery route for content c having origin site o requested by users in site j.

Trc := [Trc
1 · · ·Trc

j · · ·Trc
N]

T

= (H∗Λc)T


f (∑N

k λ c
(1,k),T T Lc)

...

f (∑N
k λ c

(M,k),T T Lc)

+(H[o,]∗Λc[o,])T(1− f (
N

∑
k

λ c
(o,k),T T Lc))

(4.5)

Here, we define “∗” as the element-wise product of a matrix or vector and H = [h(i, j)]M×N as the

matrix consisting of shortest hop length h(i, j) from CNi to CN j.

Moreover, the second term in Eq. (4.5) presents the amount of transmission data which aren’t

cached on the network.

4.2.3 Power Consumption

we consider total power consumption based on Energy Proportional Networks [21, 22] in which

power consumption of each device is proportional to its usage. In this chapter, we assume 1 time

unit as 1 sec.

Cache allocation power: CPc [J] for storing data of content c in 1 sec, i.e., the total power

consumed by storing content c on each CN in the network, is defined as

CPc := θcPca

M

∑
i

f (
N

∑
k

λ c
(i,k),T T Lc), (4.6)

where Pca is the memory power density [J/(bit· s)].

Traffic transmission power: TPc [J] i.e., the total power consumed by network devices when

– 64 –

Chapter 4. Static TTL Management

data of content c are delivered on the shortest routes, is derived as

TPc := (Pr +Pwdm)Dtc, (4.7)

where Pr and Pwdm are the power densities [J/bit] of a router and of a WDM node along the delivery

routes, respectively.

4.2.4 Cache Hit Ratio

The cache hit ratio of content c having origin o in the network is derived as

CHRc := 1−
∑N

j λ c
(o, j)

(
1− f (∑N

k λ c
(o,k),T T Lc)

)
∑N

j rc
j

. (4.8)

4.2.5 Average Hop Length

The average hop length of content c having origin o is derived as

AHLc :=
∑N

j

(
Trc

j +Hpoλ c
(o, j)(1− f (∑N

k λ c
(o,k),T T Lc)

)
∑N

j rc
j

. (4.9)

Where, the second term of the numerator is a penalty for the hop length of content c which isn’t

cached on any CNs in the network and for which a request reaches its origin server and Hpo is the

hop-length from the origin server to the CN in origin site o.

All variables in the proposed model are summarized in Table 4.1.

4.3 Evaluation using the Proposed Model

We evaluate the cache characteristics in TTL-based caching when changing the TTL value of con-

tent. The evaluation conditions are set to the following.

• Test networks: NSF topology with 14 CNs (Topology A), cf. Fig. 4.4(a) / US-backbone

topology with 24 CNs (Topology B), cf. Fig. 4.4(b). The maximum number of hops (smax) is

– 65 –

4.3 Evaluation using the Proposed Model

Table 4.1: Variables in the proposed model

Variable Definition
M The number of CNs
N The number of sites having requesting users
θc Data size of content c
λ c
(i, j) Request rates to CNi for content c requested by users in site j

rc
i Request rate of content c requested by users in site i

T T Lc TTL of content c at CNi

Uc
i Memory usage of content c at CNi

Dtc Total amount of data delivery of content c through all CNs
Trc

j Cumulative number of traffic flows through each CN on the delivery route for
content c requested by users in site j

CHRc Cache hit ratio of content c in the network
AHLc Average hop length of content c
h(i, j) Shortest hop length from CNi to CN j

Hpo Hop length from origin server to the CN in origin site o
CPc Total power consumption [J] for data storage of content c in 1 sec
TPc Total power consumption [J] delivering content c on the delivery routes
Pca Power density for storage [J/(bit·s)]
Pr Power density of a router [J/bit]
Pwdm Power density of a WDM node [J/bit]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Test topology A

6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

(b) Test topology B

5 hops in Topology A and 7 hops in Topology B. Furthermore, we assume that the memory

size of each CN is infinite and each site has requesting users for all content items, which

means M is equal to N. For evaluation, we set Hpo to 5 as the penalty of hop length.

– 66 –

Chapter 4. Static TTL Management

Zipf(1.2)

Zipf(0.8)

R
e

q
u

e
st

 d
is

tr
ri

b
u

ti
o

n
 (

lo
g

)

1
e

−
0

4
1

e
−

0
2

1
e

+
0

0
1

e
+

0
2

0 2000 4000 6000 8000 10000

Content id

Figure 4.4: Evaluation conditions rc
j

• Content information: Zipf-distributed requests from each site j for K = 10000 content

items are defined as rc
j = γk−α/c, c = ∑K

k=1 k−α , cf. Fig. 4.3. We set α to 0.8 for UGC (User

Generated Content) and 1.2 for VoD [42] and γ to 100 [requests/sec]. Furthermore, the origin

site t of content ID k is set randomly based on a uniform distribution. The content size is

geometrically distributed with mean 10 MB [43].

4.3.1 Verification of the Proposed Model

To verify the proposed model, we compare the cache performance using the model with that mea-

sured by simulations for 7 content items with α = 0.8 in Topology A. In the evaluations, we set the

TTL value as {1, 20, 40, 60} [sec].

Figures 4.5(a) and 4.5(b) shows that the cache hit ratio and average hop length for each content

provide suitable approximations of the simulation results. As a result, we see that the proposed

model can express the statistical characteristics for TTL-based caching.

– 67 –

4.3 Evaluation using the Proposed Model

(a) Cache hit ratio (b) Average hop length

Figure 4.5: Cache performance estimated by the proposed model and calculated by simulations for
different content ids

4.3.2 Impact of TTL

For the next evaluation, we define TTL of all content as the same value which is changed from 1

[sec] to 300 [sec] on the assumption that the TTL value is signaled in the data header of content.

Figure 4.6 shows the memory usage at each CN when the TTL value is changed. In these

results, the memory usage of each CN becomes larger as the TTL value becomes larger. Moreover,

the memory usage for content with α = 0.8 is larger than that for content with α = 1.2 because

less popular content with α = 0.8 has higher request rates and is easier to be cached than that with

α = 1.2.

Furthermore, Fig. 4.7 shows the power consumption of the target network according to the

change of the TTL value using the power densities of network devices shown in Table 2.3 of Chap-

ter 2. In addition, Fig. 4.8 presents cache hit ratio for all content items calculated by Eq. (4.8) and

average hop length for all content items calculated by Eq. (4.9).

– 68 –

Chapter 4. Static TTL Management

(a) Topology A (b) Topology B

Figure 4.6: Box plot of memory usage at each CN when the TTL value is changed

Figure 4.7 demonstrates the tradeoff between cache allocation power and traffic transmission

power for the change of the TTL value. Figs. 4.7(a) and (c) show that there is a point reversing the

relation of cache allocation power and traffic transmission power for the TTL value. Therefore, the

energy impact of TTL is also different depending on the network conditions and the proposed model

can search for the energy efficient TTL in consideration of the tradeoff of power consumption.

Meanwhile in Fig. 4.8(a), the cache hit ratio is also low in the region of the TTL values leading

to lower power consumption. Therefore, we should consider the relation between cache hit ratio

and power consumption to search for the energy efficient TTL. Furthermore, Fig. 4.8(b) shows that

the average hop length of all content items becomes smaller as the TTL becomes larger. In these

results, the approaching of the average hop length 1 hop means that all content items are cached

in all CNs. Therefore, the cache hit ratio approaches to around 100 % as the average hop length is

approaching to 1 and the memory usage becomes larger.

As a result, using the proposed model, we can analyze the cache characteristics in the distributed

cache system and provide a design guideline for TTL of content in view of energy efficiency or

efficient memory usage in each CN. Next we introduce an energy efficient caching mechanism

using TTL as application and demonstrate the effectiveness of the energy efficient TTL.

– 69 –

4.4 Application to a Caching Mechanism using Energy Efficient TTLs

(a) Content with α = 0.8 in Topology A (b) Content with α = 1.2 in Topology A

(c) Content with α = 0.8 in Topology B (d) Content with α = 1.2 in Topology B

Figure 4.7: Power consumption of the network when the TTL value is changed

4.4 Application to a Caching Mechanism using Energy Efficient TTLs

In consideration of energy efficiency in content dissemination networks, we previously proposed an

ILP model to design the most energy efficient cache locations in consideration of the multiplexed

caching hierarchies [16].

– 70 –

Chapter 4. Static TTL Management

(a) Cache hit ratio for all content items (b) Average hop length for all content items

Figure 4.8: Cache performance when the TTL value is changed

In [17], we proposed the threshold-based caching mechanism to locally search for locations

which are near to the most energy efficient locations. In threshold-based caching, every CN auto-

matically pre-designs a threshold of request rates of content using local information on each caching

hierarchy before cache operation and the content data are cached when the request rate of the con-

tent is above a pre-designed threshold or isn’t cached when the request rate is below that threshold.

In threshold-based caching, CNi has the threshold T ho
i [requests/sec] of request rates for ori-

gin site o of content, which is uniquely determined for each delivery tree in the target network.

Furthermore, we can express the request propagation matrix Dc
th of threshold-based caching in the

proposed model as

[Dc∈Co
th]mn :=

 1 ∀m = parent node(n)∧∑N
k λ c

(n,k)[s]< T ho
n

0 otherwise
. (4.10)

Co is the set of content items having origin o.

In this chapter, we propose an approximation method using TTL of threshold-based caching

because TTL-based caching can realize a more simple cache management by just updating the TTL

– 71 –

4.4 Application to a Caching Mechanism using Energy Efficient TTLs

(a) T T L = 1, T h = 1 (b) T T L = 10, T h = 0.1

Figure 4.9: Comparison of cache hit ratio at a CN with threshold-based caching and TTL-based
caching

counter of content without having to measure the request rates of content like in threshold-based

caching.

We derive the approximation method using TTL of threshold-based caching as follows.

T T Lo
i =

1
T ho

i
,∀i,o (4.11)

Here, T T Lo
i is set to CNi and defined as a different value for each origin site o of content.

In Fig. 4.9, we evaluate the cache hit ratio of content at a CN for threshold-based caching and

the energy efficient TTL-based caching. As a result, we see that the cache hit ratio in the energy

efficient TTL can provide similar characteristics to that in threshold-based caching.

Using Eq. (4.1), we can derive the request propagation matrix Dc∈Co
ttl using the energy efficient

TTL as

[Dc∈Co
ttl]mn :=

 1− f (∑N
k λ c

(n,k)[s],
1

T ho
n
), m = parent node(n)

0 otherwise
. (4.12)

– 72 –

Chapter 4. Static TTL Management

(a) Topology A (b) Topology B

Figure 4.10: Energy efficient TTL for each topology

Figure 4.11: Power consumption for energy efficient TTL-based caching and threshold-based
caching

– 73 –

4.4 Application to a Caching Mechanism using Energy Efficient TTLs

Figure 4.12: Cache performance for energy efficient TTL-based caching and threshold-based
caching

In these caching mechanisms, the threshold T ho
o and the TTL 1

T ho
o

for content having origin o

in CNo are defined as 0 and ∞, respectively. Therefore, all content items are always cached in the

network unless memory overflow occurres in each CN. Here, we demonstrate the effectiveness of

the energy efficient TTL based on the same conditions in Section 4.3. Fig. 4.10 shows the TTL

values derived by Eq. (4.11). In these results, T T Lo
o at CNo in origin site o is infinite and the other

TTLs are derived as different values for each target network.

In Figs. 4.11 and 4.12, we compare the total power consumption and the cache performance for

two mechanisms using the energy efficient TTLs and thresholds of request rates, respectively. In

these results, the total power consumption in the energy efficient TTL-based caching is near to that

in threshold-based caching. Moreover, the cache hit ratio is always 100% because T T Lo
o and T ho

o

(∀o) are infinite and 0. The average hop length in TTL-based caching is slightly smaller than that

in threshold-based caching because the memory usage in TTL-based caching is larger than that in

threshold-based caching as shown in Fig. 4.13.

– 74 –

Chapter 4. Static TTL Management

Figure 4.13: Box plot of memory usage for TTL-based caching and threshold-based caching

4.5 Summary

We proposed an analytical model to evaluate the cache characteristics of a distributed cache system

like CCN. The proposed model is expressed by iterative matrix equations and can evaluate the im-

pact of TTL-based caching on network resources and cache performance on multiplexed caching

hierarchies. In the evaluations, we verified the varidity of the proposed model and analyzed the im-

pact on memory usage, power consumption, cache hit ratio, and average hop length when changing

the TTL value of content.

Furthermore, we introduced the energy efficient TTL to reduce the power consumption of the

network and evaluated its effectiveness. Based on the proposed model, we showed that the energy

efficient TTL-based caching can achieve a similar power consumption like threshold-based caching

that searches for the most energy efficient cache locations.

– 75 –

Chapter 5

Design, Modeling, and Evaluation of

Adaptive TTL Management

in Hierarchical Caching

5.1 Issue and Approach for Adaptive TTL Management

The cache aging techniques based on TTL of content facilitate analyzing cache characteristics and

can realize appropriate resource management by setting efficient TTLs. Therefore, it becomes an

important issue to manage system resources, such as storage and network bandwidth, which are

influenced by the TTL value of content.

Traditionally, there are content placement algorithms [12, 53, 54, 55] as a solution for File Allo-

cation Problems [56] which minimize the cost imposed for content storage and queries (requests),

or maximize the performance such as distance to content. Baev et al. [53] propose an Integer Linear

Programming (ILP) model which minimizes content placement cost and an approximation solution

using a linear relaxation. Furthermore, Qui et al. [54] propose some replica placement algorithms

to solve the K-median problem for CDNs.

In contrast to the above-mentioned content placement problems, Borst et al. [12] formulate an

ILP model based on a hierarchical structure for content locations to minimize bandwidth costs and

– 77 –

5.1 Issue and Approach for Adaptive TTL Management

propose a distributed solution of the problem. Moreover, they evaluate the cost-saving effect for a

hierarchical topology which has symmetric bandwidth cost for a parent node and some leaf nodes.

Fofack et al. [48, 49] introduce a TTL-based caching model. Moreover, they [49] propose

iterative calculation methods for the approximation models, which can analyze the performance

in TTL-based cache networks, and demonstrate that the proposed models can approximate cache

hit ratio for some caching networks at high accuracy. Additionally, Berger et al. [35] also model

cache characteristics of two TTL-based caching, and the combination of the both. In Chapter 4, we

proposed an analytical model using simple matrix equations, which can analyze cache performance

and request propagation from all requesting users.

However, these proposals don’t discuss adaptive resource control to reduce the resource cost

in hierarchical caching by searching for an appropriate TTL of content. Therefore, as an enhanced

approach of TTL-based caching, we investigate a control methodology to efficiently use system

resources consisting of storage cost and bandwidth cost by adaptively tuning the TTL value of each

content object.

In this chapter, we assume the following policies in TTL-based caching [11, 34, 35].

• Policy 1: Each CN resets the time counter to the TTL value for each content every time a new

request for this content arrives and decreases the counter by 1 every time unit (cf. Fig. 5.1(a)).

• Policy 2: Each CN resets the time counter to the TTL value for each content only when there

are unsuccessful requests and decreases the counter by 1 every time unit (cf. Fig. 5.1(b)).

In both mechanisms, each CN judges whether to cache data by using a counter to manage TTL

of content. Each CN discards the content with expired TTL and forwards new requests for the

discarded content to another CN or the origin server. After receiving the delivered content, it caches

the data of the content again and updates the counter based on one of the following policies in

TTL-based caching [11, 34, 35].

As shown in Fig. 5.2, in general distributed TTL-based cache systems, storage cost increases

and bandwidth cost decreases as the TTL value of content increases. In order to reduce the total

resource cost, we should consider that there is a tradeoff for the TTL value between storage cost

– 78 –

Chapter 5. Adaptive TTL Management

TTL Update

�me

�me

(hit) (hit) (hit) (unhit)
Request arrival of content

Data Reten!on Period

�me

TTL

another CN or origin server
request data

(a) Policy 1

Data Reten�on Period

(unhit)

TTL Update

�me

�me

(hit) (hit)

Request arrival of content

�me

TTL

(unhit)

another CN or origin server
request data

another CN or origin server
request data

(b) Policy 2

Figure 5.1: TTL-based caching

TTL

Storage Cost

Bandwidth Cost

Total Cost

Figure 5.2: The tradeoff between storage cost and bandwidth cost

and bandwidth cost. Therefore, in this chapter, we propose an adaptive control mechanism to search

for the TTL of each content minimizing the total resource cost in the hierarchical cache system.

While in real systems usually content objects are split into multiple chunks, our proposed

– 79 –

5.2 System Model

caching mechanism considers only entire content objects. However, the methodology can be ex-

tended to chunk level caching on the analogy of object level caching. Meanwhile to manage the

TTL value per chunk, the system must handle much information about the TTL values. Further-

more, it is necessary to establish a new architecture for managing chunks with TTL values, which

is under discussion in the research field [35, 51, 52, 49] of ICN. For instance, in the architecture for

managing the TTL value per chunk, the chunks may be categorized into some classes with almost

the same TTL value, or chunks of an object may have the same TTL value. The implementation of

extending our mechanism to chunk level caching depends on this architecture. In this chapter, we

consider the extension of the proposed mechanism to chunk level caching as out of scope and we

will further study it as another work.

The remainder of this chapter is organized as follows. We next propose a system model in

Section 5.2 and an adaptive TTL controller in Section 5.3. Furthermore, we present evaluation

results using the proposed model in Section 5.4. Finally, we summarize this chapter in Section 5.5.

5.2 System Model

In order to model the cache characteristics in a hierarchical cache system, we first introduce the

following model [11, 34, 35] of the cache probability of content c having the request rate λ c to a

CN.

• Policy 1: f (λ c,T T Lc) = 1− e−λ cT T Lc
(5.1)

• Policy 2: f (λ c,T T Lc) =
λ cT T Lc

1+λ cT T Lc (5.2)

The parameter T T Lc is the TTL value of content c. These statistical functions can provide a good

approximation of the cache hit ratio of content at a CN under the assumption that the inter-arrival

time of content requests follows an exponential distribution.

– 80 –

Chapter 5. Adaptive TTL Management

5.2.1 Request Propagation Model

In Chapter 4, we proposed an analytical model using Policy 1 of the hierarchical cache system in

which each CN caches content data delivered by another CN or an origin server when the TTL

counter is above 0 and discards the content when the counter becomes 0.

The proposed model is expressed by simple matrix equations combining the statistical model

of each CN in Eqs. (5.1) or (5.2) and can predict the cache characteristics and resource usage in

hierarchical caching when the TTL value of content is given. Here, we show the evaluation model

to analyze the cache characteristics of the hierarchical cache system based on Policy 1 and Policy

2 in TTL-based caching. The propagation of each request of content c on its caching hierarchy is

expressed by the following model.

Λc[s+1] = Dc[s] ·Λc[s]+Rc,∀c (5.3)

Under the condition that M, N, and s are the number of CNs, the number of sites having requesting

users, and the number of steps that each request propagates to the next CN, respectively, we define

Λc as the M×N matrix consisting of the request rates λ c
(i, j) of content c forwarded from the re-

questing user in site j to CNi and Rc as the M×N matrix of which elements are the request rates rc
i

of content c input directly from users in site j to CNi.

We define Dc as the M×M matrix of request propagations for content c. The (m,n) element of

the matrix Dc if CNm is a parent node of CNn is defined as:

[Dc]mn := 1− f (
N

∑
j

λ c
(n, j),T T Lc) (5.4)

otherwise, [Dc]mn := 0.

In Fig. 5.3, we show an example of these matrices for the delivery tree having 5 nodes and origin

1. With Eq. (5.3), we can predict the request propagation process for content requested from each

site. Moreover, the steady state of propagated request rates per content can be derived by iteratively

calculating the equation smax-times, which is the maximum number of hops from each site having

requesting users to its origin site.

– 81 –

5.2 System Model

3 5

2 41Origin

Figure 5.3: An example of matrices Λc, Rc, and Dc for the request propagation on the delivery tree
having origin 1

5.2.2 Resource Cost Model

We next define the resource cost Jc(T T Lc,λ c
(m,n)) of content c in the hierarchical cache system when

the TTL value is set to T T Lc as follows.

Jc(T T Lc,λ c
(m,n))

= θcCs[1, · · · ,1]1×M


f (∑N

j λ c
(1, j),T T Lc)

...

f (∑N
j λ c

(M, j),T T Lc)

+θcCb[1, · · · ,1]1×N


Trc

1
...

Trc
N

 . (5.5)

The first and the second terms are the total cost for storing and transmitting data of content c in

the network, which use θc, Cs, and Cb as data size of content c [bit], the storage cost [cost/bit] and

bandwidth cost [cost/bit], respectively.

The cumulative number of traffic flows Trc
j through each CN on the delivery route for content c

having origin site o requested by users in site j is shown as follows.

Trc := [Trc
1 · · ·Trc

j · · ·Trc
N]

T

= (Hp∗Λc)T


f (∑N

j λ c
(1, j),T T Lc)

...

f (∑N
j λ c

(M, j),T T Lc)

+(Hp[o,]∗Λc[o,])T(1− f (
N

∑
j

λ c
(o, j),T T Lc))

(5.6)

– 82 –

Chapter 5. Adaptive TTL Management

Here, we define “∗” as the element-wise product (Hadamard product) of a matrix or vector and

Hp = [h(i, j)]M×N as the matrix consisting of shortest hop length h(i, j) from CNi to CN j and the

terms Hp[o,] and Λc[o,] are the o-th row vectors in matrices of Hp and Λc, respectively. Moreover,

the second term in Eq. (5.6) presents the amount of transmitted data which are not cached on the

network.

5.3 Proposed TTL Controller

In this chapter, we propose a TTL controller which adaptively updates TTL of content to reduce the

total resource cost in the hierarchical cache system.

On the assumption that the control interval for TTL is set to ∆ sec (e.g. 10 sec), the proposed

controller updates TTL of content c at each node by a manipulated value δ tc (e.g. 1 sec), in time

unit k to reduce the total resource cost in Eq. (5.5) as Eq. (5.7).

T T Lc
k+1 = Θ(T T Lc

k +ϕ(δ tc)) (5.7)

The terms ϕ(·) and Θ(·) are a manipulation function and a saturation function using the maximum

TTL value as follows.

ϕ(δ tc) =−sgn
(

dJc

dT T L

)
δ tc

Θ(x) = max(0,min(maxTTL,x))

The term sgn(·) is the sign function. Here, the cost function of Jc is downwardly convex over the

TTL value and the proposed controller searches for the TTL value of content minimizing the total

cost by decreasing slope of the differential dJc/dT T Lc.

5.3.1 Design Algorithm of TTL Controller

In the proposed control mechanism as shown in Fig. 5.4, the TTL controller of content is designed

by the following two steps.

– 83 –

5.3 Proposed TTL Controller

TTL Controller

Predictor

1

2

3 4

5

6
Measurement

[STEP1]

Predict request propaga!on

[STEP2]

Predict varia!on of resource cost

Measure request rates of users

Decide the manipulated values

Set the value to each CN

Figure 5.4: Outline of the proposed control mechanism

• STEP1: Predict the equilibrium of propagated request rates at each CN in Eq. (5.3) and the

variation of the propagated requests when the TTL value of content is increased by δ tc.

• STEP2: Predict the variation of the resource cost when the TTL value of content is increased

by δ tc, which is the differential of the cost function derived from the predictive results in

STEP1.

All variables in the proposed model are summarized in Table 5.1. Next, we show the design

process of the proposed TTL controller.

Prediction of Equilibrium and Variation of Propagated Request Rates

The equilibrium of propagated requests Λc of content c to each CN on its caching hierarchy satisfies

the following matrix equation:

Λc = DcΛc +Rc,∀c (5.8)

where Dc is the equilibrium of the request propagation matrix for content c in T T Lc. These can be

derived by iterative calculation of Eq. (5.3).

– 84 –

Chapter 5. Adaptive TTL Management

Table 5.1: Variables used in the proposed model
Variable Type Definition
M given number of CNs
N given number of sites having requesting users
θc given data size of content c [bit]
Cs given storage cost [cost/bit]
Cb given data transmission cost [cost/bit]
Hp given matrix consisting of hop length h(i, j) from CNi to CN j

rc
i measured request rate of content c requested by users in site i

T T Lc control TTL of content c
δ tc given manipulated value of TTL control
maxTTL given maximum value of TTL
λ c
(i, j) predicted propagated request rates to CNi for content c requested by users in

site j
δλ c

(i, j) predicted variation of propagated request rates to CNi for content c requested
by users in site j

Trc
j predicted cumulative number of traffic flows through each CN on the delivery

route for content c requested by users in site j
ωc
(i, j) predicted request rates for content c requested by users in site j forwarding from

CNi to its parent CN
δωc

(i, j) predicted variation of request rates for content c requested by users in site j
forwarding from CNi to its parent CN

Furthermore, we predict the variation of the propagated request rates δΛc when T T Lc
k is in-

creased by δ tc as follows.

Λc +δΛc = (Dc +δDc)(Λc +δΛc)+Rc,∀c

⇔ δΛc ≈ DcδΛc +δDcΛc,∀c

The (m,n) element of the matrix δDc if CNm is a parent node of CNn is defined as follows.

[δDc]mn :=−
∂ f (∑N

j λ c
(n, j),T T Lc)

∂T T L
δ t−

N

∑
h

∂ f (∑N
j λ c

(n, j),T T Lc)

∂λ c
(n,h)

δλ c
(n,h)

– 85 –

5.3 Proposed TTL Controller

Otherwise, [δDc]mn := 0. The matrix δΛc is defined as

δΛc := [δλ c
(i, j)]M×N .

As a result, we can derive the following equation with the matrices Gc and Hc.

δΛc ≈ GcδΛc +HcΛcδ tc. (5.9)

For the two policies in TTL-based caching, the (m,n) elements of the matrices [Gc]mn and [Hc]mn if

CNm is a parent node of CNn can be derived as follows.

• Policy 1:

[Gc]mn :=

(
1−T T Lc

N

∑
j

λ c
(n, j)

)
e−T T Lc ∑N

j λ c
(n, j)

[Hc]mn :=−
N

∑
j

λ c
(n, j)e

−T T Lc ∑N
j λ c

(n, j)

• Policy 2:

[Gc]mn :=
1

1+T T Lc ∑N
j λ c

(n, j)

−
T T Lc ∑N

j λ c
(n, j)

(1+T T Lc ∑N
j λ c

(n, j))
2

[Hc]mn :=−
∑N

j λ c
(n, j)

(1+T T Lc ∑N
j λ c

(n, j))
2

In both cases, [Gc]mn = 0 and [Hc]mn = 0 if CNm is not a parent node of CNn.

Because the square matrix (I−Gc) always has full rank, we can derive the following equation.

δΛc = (I−Gc)THcΛcδ tc (5.10)

– 86 –

Chapter 5. Adaptive TTL Management

Prediction of Variation of Resource Cost

For the total resource cost Jc in Eq. (5.5), we can differentiate the cost function δ Jc(T T Lc,δ tc,Λ,δΛ),

which is the variation of the total resource cost Jc when T T Lc is increased by δ tc, as follows.

δ Jc =
∂ Jc

∂T T L
δ tc + ∑

(m,n)

∂ Jc

∂λ c
(m,n)

δλ c
(m,n) (5.11)

=θcCs[1,..,1]1×M




∂ f (∑N
j λ c

(1, j) ,T T Lc)

∂T T L
...

∂ f (∑N
j λ c

(M, j),T T Lc)

∂T T L

δ tc+

(
∂ f (∑N

j λ c
(1, j) ,T T Lc)

∂λ c
(1,1)

..
∂ f (∑N

j λ c
(1, j) ,T T Lc)

∂λ c
(1,N)

...
∂ f (∑N

j λ c
(M, j),T T Lc)

∂λ c
(M,1)

..
∂ f (∑N

j λ c
(M, j),T T Lc)

∂λ c
(M,N)

∗δΛc

)
1
...

1


N×1



+θcCb[1,..,1]1×N(Hp∗δΛc)T


f (∑N

j λ c
(1, j),T T Lc)

...

f (∑N
j λ c

(M, j),T T Lc)



+θcCb[1,..,1]1×N(Hp∗Λc)T





∂ f (∑N
j λc

(1, j),T T Lc)

∂T T L

...
∂ f (∑N

j λc
(M, j),T T Lc)

∂T T L

δ tc +

(
∂ f (∑N

j λc
(1, j),T T Lc)

∂λ c
(1,1)

..
∂ f (∑N

j λc
(1, j),T T Lc)

∂λc
(1,N)

...
∂ f (∑N

j λc
(M, j),T T Lc)

∂λ c
(M,1)

..
∂ f (∑N

j λc
(M, j),T T Lc)

∂λc
(M,N)


∗δΛc

)
1

...

1


N×1


+θcCb[1, ..,1]1×N

(
(Hp[o,]∗δΛc[o,])T (1− f (

N

∑
j

λ c
(o, j),T T Lc))

−(Hp[o,]∗Λc[o,])T
(∂ f (∑N

j λ c
(o, j),T T Lc)

∂T T L
δ tc +

([∂ f (∑N
j λ c

(o, j),T T Lc)

∂λ c
(1,1)

..
∂ f (∑N

j λ c
(o, j),T T Lc)

∂λ c
(1,N)

]
∗δΛc[o,]

)
1
...

1


N×1

))

By substituting T T Lc
k and Λc in Eq. (5.8), and δΛc in Eq. (5.10) for the differential function

δ Jc, we can derive the following linear equation of δ tc where Qc is a scalar.

δ Jc = Qcδ tc

Therefore, the TTL controller in Eq. (5.7) can be derived by

T T Lc
k+1 = Θ(T T Lc

k +ϕ(δ tc)) , (5.12)

ϕ(δ tc) =−sgn(Qc)δ tc,

– 87 –

5.3 Proposed TTL Controller

Δ

time

time

time

Control period (e.g. 10sec)

Measurement period

k k+1 k+2
Δ

Δ Δ

TTL Controller

1

2

4

Measurement

Predictor

Predictor

Predictor

Figure 5.5: Distributed prediction-based control mechanism

which means that the TTL value of content is updated at each CN by the following rule. When Qc

is negative/positive, T T Lc is increased/decreased by δ tc and when Qc is zero, T T Lc is not updated.

The calculation order per content in the proposed prediction process is O(M2N), but we can

divide the predictive process into local prediction processes of each CN with calculation order of

O(N).

5.3.2 Distributed Prediction

The proposed algorithm of the TTL controller can be divided into recursive processes at each CN

which coordinates CNs on the delivery tree every time unit ∆ (cf., Fig. 5.5).

In the proposed mechanism, the tracking performance to change the request rates becomes

better as the control interval ∆ is smaller. However, the control interval should be set as a long

period to measure the statistics of request rates. Meanwhile, Santos et al. [57] proposed a statistics

table for CCN, which can online estimate request rates by using the exponentially weighted moving

average (EWMA), to implement their proposed Content-Centric Dissemination Algorithm (CEDO)

for maximizing the total delivery throughput. Therefore, we can also use EWMA to online measure

the request rates. In this chapter, we assume that the exchange of information between CNs and

TTL controllers, including measured request rates and manipulated TTL values for each content, is

– 88 –

Chapter 5. Adaptive TTL Management

bundled in a single measurement/control message.

In the distributed mechanism as shown in Fig. 5.6, CNm predicts the propagated request rate

Λc
m = λ c

(m, j), ∀ j,c in Eq. (5.8), the variation of request rate δΛc
m = δλ c

(m, j), ∀ j,c in Eq. (5.10), and

the variation of the resource cost δ Jc
m in Eq. (5.13) in the order from CNs (leaves) on the bottom

layer to a CN (root) on the upper layer in the delivery tree. The variation of the resource cost δ Jc
m

of CNm in Eq. (5.13) is derived by dividing the differential cost δ Jc in Eq. (5.11).

δ Jc
m = θcCs

(
∂ f (∑N

j λ c
(m, j),T T Lc)

∂T T L
δ tc +

N

∑
h

∂ f (∑N
j λ c

(m, j),T T Lc)

∂λ c
(m,h)

δλ c
(m,h)

)

+θcCb

(
N

∑
j

h(m, j)δλ c
(m, j) f (

N

∑
j

λ c
(m, j),T T Lc)

+
N

∑
j

h(m, j)λ c
(m, j)

(∂ f (∑N
j λ c

(m, j),T T Lc)

∂T T L
δ tc +

N

∑
h

∂ f (∑N
j λ c

(m, j),T T Lc)

∂λ c
(m,h)

δλ c
(m,h)

))
(5.13)

+



0 if m ̸= o

θcCb

(
∑N

j hm, jδλ c
m, j

(
1− f (∑N

j λ c
(m, j),T T Lc)

)
−∑N

j hm, jλ c
m, j

(
∂ f (∑N

j λ c
(m, j),T T Lc)

∂T T L δ tc +∑N
h

∂ f (∑N
j λ c

(m, j),T T Lc)

∂λ c
(m,h)

δλ c
(m,h)

))
if m = o

Prediction of Equilibrium and Variation of Propagated Request Rates

CNm first calculates the information Ωc
m, which is the predictive amount of propagated request rates

from CNm to its parent CNp, by the product of the matrix element Dc[p,m] and the m-th row vector

Λc
m in the right side of Eq. (5.8).

Ωc
m =

(
1− f (

N

∑
j

λ c
(m, j),T T Lc)

)
Λc

m

– 89 –

5.3 Proposed TTL Controller

Request sites

TTL Controller

δΩ ={ }
c
3

Λ
c
3 δΛ = 0

c
3

Ω

A
c
3 ,0
c
3

δJ
c
3

Λ
c
4 δΛ = 0

c
4 Λ

c
6 δΛ = 0

c
6

δΩ ={ }

Ω

A
c
4 ,0
c
4

δJ
c
4

c
4

Λ
c
2 δΛ

c
2

δΩ ={ }

Ω

Ac6
c
6

δJ
c
6

c
6 ,0

Λ
c
5 δΛ

c
5

δΩ ={ }
c
2

Ω

A
c
2 ,B
c
2

δJ +δJ +δJ
c
2

c
2

c
3

c
4

δΩ ={ }
c
5

Ω

c
5
c
5

δJ +δJ
c
5

c
5

c
6

A ,B

Λ
c
1 δΛ

c
1

Σ δJ
j=1

6
c
j

Predictor in CN1

Predictor in CN2 Predictor in CN5

Predictor in CN3 Predictor in CN4 Predictor in CN6

Figure 5.6: An example of the distributed prediction

Furthermore, CNm can predict the equilibrium of propagated request rates Λc
m by using its children

information on the delivery tree,

Λc
m = ∑

h∈Childm

Ωc
h +Rc

m (5.14)

where Rc
m is the request rate input directly to CNm by users and corresponds to the m-th row vector

of matrix Rc in Eq. (5.8). The terms Ωc
m and Λc

m are both 1×N vectors and Childm is a set of CNs

directly under CNm.

Furthermore, CNm calculates δΩc
m, which is the variation of the request rate from CNm to its

parent CNp when increasing T T L by δ tc. It is calculated by the sum of the product of the matrix

element Gc[p,m] and vector δΛc
m and the product of the matrix element Hc[p,m] and vector Λc

m in

the right side of Eq. (5.9). Therefore, the information becomes a linear function of δ tc with Ac
m and

– 90 –

Chapter 5. Adaptive TTL Management

Bc
m having Λc

m in Eq. (5.14) and δΛc
m derived by the children information δΩc

h of CNm

δΩc
m = Ac

mδ tc +Bc
m

where Ac
m and Bc

m are 1×N vectors which are defined for both policies as follows.

• Policy 1:

Ac
m =−

(
N

∑
j

λ c
(m, j)e

−T T Lc ∑N
j λ c

(m, j)

)
Λc

m

Bc
m =

((
1−T T Lc

N

∑
j

λ c
(m, j)

)
e−T T Lc ∑N

j λ c
(m, j)

)
δΛc

m

• Policy 2:

Ac
m =−

(
∑N

j λ c
(m, j)

(1+T T Lc ∑N
j λ c

(m, j))
2

)
Λc

m

Bc
m =

(
1

(1+T T Lc ∑N
j λ c

(m, j))
2

)
δΛc

m

Moreover, CNm predicts the variation of propagated request rates Λc
m by using its children informa-

tion δΩc
h,

δΛc
m = ∑

h∈Childm

δΩc
h (5.15)

where δΛc
m and δΩc

m are both 1×N vectors.

Prediction of Variation of Resource Cost

The differential costs in Eq. (5.13) for the two policies are shown in Eqs. (5.16) and (5.17).

– 91 –

5.3 Proposed TTL Controller

• Policy 1:

δ Jc
m(T T Lc,δ tc,Λc

m,δΛc
m)

= θcCs

(
N

∑
j

λ c
(m, j)e

−T T Lc ∑N
j λ c

(m, j)δ tc +T T Lce−T T Lc ∑N
j λ c

(m, j)

N

∑
h

δλ c
(m,h)

)

+θcCb

(
N

∑
j

h(m, j)δλ c
(m, j)(1− e−T T Lc ∑N

j λ c
(m, j))

+
N

∑
j

h(m, j)λ c
(m, j)

(N

∑
j

λ c
(m, j)e

−T T Lc ∑N
j λ c

(m, j)δ tc +T T Lce−T T Lc ∑N
j λ c

(m, j)

N

∑
h

δλ c
(m,h)

))

+



0 if m ̸= o

θcCb

(
∑ j hm, jδλ c

m, je
−T T Lc ∑N

j λ c
(m, j)−∑N

j hm, jλ c
m, j

(
∑N

j λ c
(m, j)e

−T T Lc ∑N
j λ c

(m, j)δ tc

+T T Lce−T T Lc ∑N
j λ c

(m, j) ∑N
h δλ c

(m,h)

))
if m = o

(5.16)

• Policy 2:

δ Jc
m(T T Lc,δ tc,Λc

m,δΛc
m)

= θcCs

(
∑N

j λ c
(m, j)

(1+T T Lc ∑N
j λ c

(m, j))
2

δ tc +
T T Lc

(1+T T Lc ∑N
j λ c

(m, j))
2

N

∑
h

δλ c
(m,h)

)

+θcCb

(
N

∑
j

h(m, j)δλ c
(m, j)

T T Lc ∑N
j λ c

(m, j)

1+T T Lc ∑N
j λ c

(m, j)

+
N

∑
j

h(m, j)λ c
(m, j)

(∑N
j λ c

(m, j)

(1+T T Lc ∑N
j λ c

(m, j))
2

δ tc +
T T Lc

(1+T T Lc ∑N
j λ c

(m, j))
2

N

∑
h

δλ c
(m,h)

))

+



0 if m ̸= o

θcCb

(
∑N

j hm, jδλ c
m, j

1
1+T T Lc ∑N

j λ c
(m, j)
−∑N

j hm, jλ c
m, j

(
∑N

j λ c
(m, j)

(1+T T Lc ∑N
j λ c

(m, j))
2 δ tc

+ T T Lc

(1+T T Lc ∑N
j λ c

(m, j))
2 ∑N

h δλ c
(m,h)

))
if m = o

(5.17)

– 92 –

Chapter 5. Adaptive TTL Management

Table 5.2: Power cost parameters
Device (Product) Power / Spec Power Cost per 1 sec
Memory (DRAM) 10 W / 4 GB Cs = 3.125×10−10 J/bit
Node (CRS-1) 4185 W / 320 Gbps Cb = 1.3×10−8 J/bit

By substituting T T Lc
k, Λc

m in Eq. (5.14), and δΛc
m in Eq. (5.15) for these models, δ Jc

m can be

expressed as a linear function of δ tc. Furthermore, CNm informs its parent CN of the cumulative

differential cost as follows.

δ Jc
m + ∑

h∈Lm

δ Jc
h

where Lm is a set of CNs below CNm on the delivery tree.

Finally, the TTL controller on the root CN can calculate the sum of differential costs ∑M
m=1 δ Jc

m

as Qcδ tc in Eq. (5.12). As a result, the proposed TTL controller can decide the manipulated value

δ tc of TTL.

5.4 Evaluation

We evaluate the effectiveness of the proposed mechanism when controlling the TTL value of content

based on the predictive models. The evaluation conditions are set to the following.

• Test network: 4-layered tree topology with in total 85 nodes of which 64 nodes are edge

nodes having requesting users, cf. Fig. 5.7. The root node has an origin server. The memory

size of each CN is set to sufficient size to cache 103 objects.

• Content information: Zipf-distributed requests from each site i for K = 103 objects are

defined as rc
i = γk−α/c, c = ∑K

k=1 k−α , cf. Fig. 5.8. We set α to 0.8 for User Generated

Content (UGC) and 1.2 for VoD [43, 42, 26] and γ to 100 [requests/sec]. For analytical

simplicity, we assume that each content object has the same size of θc which is set to 1.

• Cost parameters: The cost ratios between storage cost Cs and bandwidth cost Cb are set

– 93 –

5.4 Evaluation

Request sites

Origin

Server

Figure 5.7: Tree topology for evaluation

Figure 5.8: Request distribution from each site

to various values as 0.03 : 0.97, 0.1 : 0.9, 0.5 : 0.5, and 0.9 : 0.1. Here, the cost ratio of

0.03 : 0.97 corresponds to the energy cost as shown in Table.5.2

• Control parameters: We assume the manipulated value δ tc as 1 sec. Moreover, initial TTLs

of content and the maximum TTL are set to 1 sec and 300 sec, respectively.

– 94 –

Chapter 5. Adaptive TTL Management

Table 5.3: Comparison between numerical evaluation and simulation

Process
Numerical

Simulation
Calculation

input request rate rc
i given by a static value measured by each edge CN

cache
system

cache probability
calculated by

measured by each CNEqs. (5.1), (5.2)
and controlled TTLs

request propagation calculated by Eqs. (5.3)
simulated by packet process

and data delivery and (5.6)

output total cost Jc calculated by Eq. (5.5)
measured by each CN

and controlled TTLs

5.4.1 Comparison of the Proposed Model and Simulation

To verify the validity of the model proposed in Sect. 5.2, we first compare control results calculated

by the proposed model with that measured by simulations for 11 representative objects with α = 0.8

and α = 1.2 in Cs : Cb = 0.1 : 0.9.

Here, we show the difference between the numerical calculation based on the proposed model

and the packet simulation in Table 5.3. Both evaluations are executed by the distributed mechanism

in Subsect. 5.3.2 and TTL control in Eq. (5.12). Meanwhile in the numerical evaluation, the request

rate rc
i as input is set to a static value and the total cost Jc as output is calculated by Eq. (5.5) and the

controlled TTL value. In the simulation, the request rate rc
i is measured as the number of requests

by each edge CN and the total cost Jc is calculated as the sum of storage cost and bandwidth cost

measured by each CN. Furthermore, the request propagation and data delivery are simulated as

packet processes and we set the control interval ∆ and simulation time as 10 sec and 3600 sec,

respectively. Moreover, to measure the average rate of user requests rc
i within 10 sec in the same

way as [57], we use EWMA in consideration of historical data in the past 600 sec.

In Fig. 5.9(a), we show the total resource cost estimated by the model and the average cost

within 10 sec measured from 3560 sec to 3600 sec in the simulation. Additionally, Fig.5.9(b)

shows the time change of total resource cost estimated by the proposed model and measured by

simulation for 4 objects. The average cost measured by simulation varies more widely for content

objects having lower request rates but the results estimated by the proposed model provide suitable

– 95 –

5.4 Evaluation

(a) Comparison of controlled cost (b) Time change of cost for object ids: 1, 10, 50, and 100

Figure 5.9: Total resource cost estimated by the proposed model and measured by simulations for
different object ids in Cs : Cb = 0.1 : 0.9

approximations of the simulation results. Therefore, we see that the proposed model can express

the statistical characteristics for the proposed control mechanism.

5.4.2 Effectiveness of the Proposed Mechanism

Next, we demonstrate the effectiveness of the proposed mechanism by using the model-based anal-

ysis. Figure 5.10(a) shows the total resource cost for each object when setting the initial TTLs to

1 sec, the controlled cost by the proposed mechanism, and the minimum cost in the given range

of TTLs from 1 sec to 300 sec which are calculated offline by the request propagation model in

Eq. (5.3), respectively. These results demonstrate that the proposed mechanism is able to find TTL

values that reduce the resource cost to near the minimum cost under the given conditions, i.e., the

control range of TTL values, initial TTL values, the policy of TTL-based caching, and cost param-

eters.

Figure 5.10(b) shows the converged TTLs controlled by the proposed mechanism. As a result,

– 96 –

Chapter 5. Adaptive TTL Management

2

α=0.8 α=1.2 α=0.8 α=1.2
Cost Ratio 0.03:0.97 Cost Ratio 0.1:0.9

Cost Ratio 0.5:0.5 Cost Ratio 0.9:0.1

10
3

10
2

T
o

ta
l
re

s
o

u
rc

e
 c

o
s
t
(l
o

g
)

10
1

10
0

10
3

10
2

10
1

10
0

10
1
10

2
10

3

Object Popularity (log)

10
1
10

2
10

3
10

1
10

2
10

3
10

1
10

2
10

3

Controlled cost in Policy 1
Initial cost in Policy1

Controlled cost in Policy 2
Initial cost in Policy2

Minimum cost in Policy 1 Minimum cost in Policy 2

(a) Resource cost (b) TTLs

Figure 5.10: Convergence values of resource cost and TTLs for content objects

the controlled TTLs become smaller as storage cost becomes larger. Moreover, the TTL values of

content having large request rates converge at large values which are saturated by the maximum

TTL of 300 sec. Here, the TTL values in Policy 1 from id 1 to id 10 are not saturated at 300 sec

in spite of high popularity objects. This why the cache probability of Eq. (5.1) for these objects in

Policy 1 becomes 1 even when the TTL values are small.

Additionally, Fig. 5.11 presents the cumulative resource cost of all objects. To compare the

effectiveness of the proposed method with conventional methods using static TTLs, these figures

additionally show the results when setting static TTLs of all objects to 1 sec, 60 sec, and 120 sec.

In these results, we see that the proposed mechanism can reduce the total resource cost compared

to the cases when setting the TTL values of all objects to 1 sec as the initial value. Furthermore,

this mechanism can locally search for TTL values which can realize lower cost than that of when

the TTL values are set to static values of 60 sec and 120 sec.

– 97 –

5.4 Evaluation

(a) Objects with α = 0.8

(b) Objects with α = 1.2

Figure 5.11: Cumulative resource cost of all objects and the effectiveness of reducing the total
resource cost (initial cost, controlled cost, cost when setting TTLs to 60 and 120 sec)

– 98 –

Chapter 5. Adaptive TTL Management

Figure 5.12: Tradeoff between storage cost and bandwidth cost for object ids: {200, 250, 300} with
α = 0.8 in Cs : Cb = 0.1 : 0.9

5.4.3 Verification of Optimality

Figure 5.12 presents the tradeoffs between storage cost and bandwidth cost for object ids: {200,

250, 300} with α = 0.8 in Cs : Cb = 0.1 : 0.9, which are derived by the offline calculation using the

request propagation model in Eq. (5.3). These results show that the total storage cost of all CNs in

Policy 1 is not an increasing monotonic function. This is why there is a tradeoff between the total

storage cost and TTL in Policy 1, which means that the cache probability of the other nodes except

for edge nodes approaches 0 as the cache probability of edge nodes is close to 1. As a result, it

is conceivable that the curve of total resource cost depends on the request distribution and target

topology.

Figure 5.13(a) presents the control trajectories of the proposed mechanism and the minimum

cost derived by offline calculation for object ids: {200, 250, 300} with α = 0.8 in Cs : Cb = 0.1 : 0.9

and object ids: {200, 400, 600} with α = 1.2 in Cs : Cb = 0.03 : 0.97. Additionally in Fig. 5.13(b),

– 99 –

5.4 Evaluation

(a) Control trajectory (b) Time change of TTLs

Figure 5.13: Control trajectory and time change of TTLs for objects with α = 0.8 in Cs : Cb =
0.1 : 0.9 and with α = 1.2 in Cs : Cb = 0.03 : 0.97 when the initial TTL is set to 1 sec

we present the change of TTL values of each content. In these results, the proposed controllers

in Policy 1 converge at the TTL value and drop to the local minimum cost. Meanwhile, the TTL

controllers in Policy 2 can search for the minimum cost in the control range of TTLs by descending

the slope of the cost function.

In Fig. 5.14, we change the initial TTLs from 1 sec to 150 sec. In the results for object ids:

{250, 300} with α = 0.8 and object id: {400} with α = 1.2 in Policy 1, the TTL values converge

at different points from those when the initial TTLs are 1. However, because the request rates from

users vary momentarily, we can guess that there is little probability of staying on the local minimum

cost. Furthermore, in order to avoid converging to local solutions, it is effective to periodically reset

the TTL values randomly.

– 100 –

Chapter 5. Adaptive TTL Management

Figure 5.14: Control trajectory for object with α = 0.8 in Cs : Cb = 0.1 : 0.9 and with α = 1.2 in
Cs : Cb = 0.03 : 0.97 when the initial TTL is set to 150 sec

5.4.4 Impact of the TTL Control on Cache Performance

We show the cache miss ratio and average hop length in the control results derived by Fig. 5.10(a).

The cache miss ratio CMRc and the average hop length AHLc of object c in the network can be

defined as the following metrics.

CMRc :=
∑N

j λ c
(o, j)

(
1− f (∑N

k λ c
(o,k),T T Lc)

)
∑N

j rc
j

(5.18)

AHLc :=
∑N

j Trc
j

∑N
j rc

j
(5.19)

Figure 5.15 shows the cache miss ratio and the average hop length for all contents when the

proposed controller converges at each equilibrium. In the results, as content has lower request rates

and storage cost becomes larger, the cache miss ratio and average hop length of content become

higher and longer, respectively.

– 101 –

5.4 Evaluation

(a) Cache miss ratio (b) Average hop length

Figure 5.15: Cache miss ratio and average hop length of all objects when converging at the mini-
mum cost

5.4.5 Adaptability of TTL Control

We finally demonstrate the adaptability of the proposed mechanism. Figure 5.16 presents the control

trajectory for object ids: {200, 250, 300} in Cs : Cb = 0.1 : 0.9 when the request rate is changed from

α = 0.8 to α = 1.2 in the middle of the cache operation. In these results, the proposed controller

tracks the curve of the cost function caused by the change of the request rate of content. Meanwhile

for object ids: {250, 300}, the controllers in Policy 1 first converge at the local minimum cost for

the cost curve with α = 0.8 and can search for the minimum cost in the control range of TTLs for

the cost curve with α = 1.2 after changing the request rate of content. Therefore, we see that our

proposed mechanism can adaptively search for a TTL value to reduce the total resource cost in the

distributed cache system according to the change of the request distribution.

– 102 –

Chapter 5. Adaptive TTL Management

Figure 5.16: Control trajectory for object ids: {200, 250, 300} in Cs : Cb = 0.1 : 0.9

5.5 Summary

In this chapter, we proposed an adaptive control mechanism which auto-tunes the TTL value of

content based on predictive models to reduce the total resource cost in distributed cache systems

and introduced a distributed solution. The proposed mechanism periodically decides the manipu-

lated values of TTL by predicting the impact of the TTL values on the total resource cost in the

hierarchical cache system. In the evaluations, we compared the control results estimated by the

proposed model with those obtained by simulations. Furthermore, we analyzed the effectiveness of

the proposed mechanism and showed that our proposed mechanism can search for a TTL value of

content to reduce the total resource cost by descending the slope of the cost function. Additionally,

we analyzed the cache performance in the proposed control mechanism by using performance met-

rics such as cache miss ratio and average hop length and finally demonstrated the adaptability of

the proposed mechanism.

– 103 –

Chapter 6

Conclusion

In this thesis, we investigated theoretic models for efficient cache management. Through this re-

search, we provide new methodologies for design, modeling, and evaluation of effective caching

mechanisms and resource management in various caching architectures of edge computing, CDNs,

and CCN for ICN.

In Chapter 2, we first proposed an energy efficient design method to derive the optimal cache

locations of content chunks in order to provide reference locations to evaluate energy efficiency for

cache strategies, which can consider the tradeoff between the cache allocation power and traffic

transmission power under the constraints of the caching hierarchy. Furthermore, we proposed a

distributed cache mechanism to locally search for energy efficient cache locations of content chunks.

In this mechanism, each CN pre-designs a fixed threshold of request rates of chunks for each caching

hierarchy and judges whether or not to cache the chunks by comparing measured request rates with

the threshold. In the simulation, we revealed the tradeoff between the cache allocation power and

the traffic power for a chunk of content having different request rates and demonstrated that the

proposed distributed caching is near to the optimal solution derived by the optimization model and

can improve the total power consumption and the cache hit ratio in the target network compared

with Pure LFU. Furthermore, we showed that the energy efficiency of the proposed method depends

on the distribution of content popularity.

– 105 –

Chapter 6. Conclusion

Second, we focus on constructing the approximation models of 2Q and ARC which can con-

sider the interactions between separate queues for one-timers in Chapter 3. In the evaluations, we

validated that the proposed models can provide a good approximation of the simulation results. As

a result, the proposed models can easily analyze the statistical performance of 2Q and ARC at high

accuracy. Finally, by using the model-based analysis, we confirmed that the cache performance of

2Q and ARC is better than that of LRU because the partition management of multiple queues can

reduce the influence of one-timers on the cache performance of relatively popular objects.

Third, we focus on cache aging techniques based on Time-To-Live (TTL) of content in Chapter

4. The TTL-based caching facilitates analyzing cache characteristics and can realize appropriate

resource management by setting efficient TTLs. Therefore, we proposed an analytical model to

evaluate the cache characteristics of a distributed cache system. The proposed model is expressed by

iterative matrix equations and can evaluate the impact of TTL-based caching on network resources

and cache performance on multiplexed caching hierarchies. In the evaluations, we verified the

validity of the proposed model and analyzed the impact on memory usage, power consumption,

cache hit ratio, and average hop length when changing the TTL value of content.

In Chapter 5, as an enhanced mechanism of the TTL-based caching, we finally proposed an

adaptive control mechanism which auto-tunes the TTL value of content based on predictive models

to reduce the total resource cost in distributed cache systems and introduced a distributed solution.

The proposed mechanism periodically decides the manipulated values of TTL by predicting the im-

pact of the TTL values on the total resource cost in the hierarchical cache system. In the evaluations,

we compared the control results estimated by the proposed model with those obtained by simula-

tions. Furthermore, we analyzed the effectiveness of the proposed mechanism and showed that our

mechanism can search for a TTL value of content to reduce the total resource cost by descending

the slope of the cost function. Additionally, we analyzed the cache performance in the proposed

control mechanism by using performance metrics such as cache miss ratio and average hop length

and finally demonstrated the adaptability of the proposed mechanism.

In future management for ICN, it will be important to consider the tradeoff between the uti-

lization efficiency of system resources in the distributed cache systems and service quality such as

latency. Moreover, caching mechanisms which can efficiently and adaptively process nonstationary

– 106 –

Chapter 6. Conclusion

accesses for content will be also required. Additionally, the scalability of the cache management

in ICN should be improved in view of resolving addresses of content, disseminating content, and

searching for target content in the distributed cache networks. We believe that the discussion in this

thesis has useful implications for future research regarding these issues in content dissemination

networks.

– 107 –

Bibliography

[1] S. Sivasubramanian, G. Pierre, M.V. Steen, G. Alonso, “Analysis of Caching and Replication

Strategies for Web Applications,” IEEE Internet Computing, vol. 11, no. 1, pp. 60–66, 2007.

[2] Y. Lin, B. Kemme, M.P. Martinez, R. Jimenez-Peris, “Enhancing Edge Computing with

Database Replication,” in SRDS. IEEE Computer Society, October 2007, pp. 45–54.

[3] G. Silvestre, S. Monnet, R. Krishnaswamy, P. Sens, “Caju: A Content Distribution System for

Edge Networks,” in Euro-Par Workshops, ser. Lecture Notes in Computer Science, vol. 7640.

Springer, 2012, pp. 13–23.

[4] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, B. Weihl, “Globally Distributed

Content Delivery,” IEEE Internet Computing, vol. 6, no. 5, pp. 50–58, September 2002.

[5] A. Pathan, R. Buyya, “A Taxonomy and Survey of Content Delivery Networks,” Melbourne,

Australia, 2007.

[6] E. Nygren, R. K. Sitaraman, J. Sun, “The Akamai Network: A Platform for High-performance

Internet Applications,” Operating Systems Review, vol. 44, no. 3, pp. 2–19, 2010.

[7] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman, “A Survey of Information-

Centric Networking,” IEEE Communications Magazine, vol. 50, no. 7, pp. 26–36, 2012.

[8] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. V.

Katsaros, G. C. Polyzos, “A Survey of Information-Centric Networking Research,” in IEEE

Communications Surveys & Tutorials, vol. 19, no. 99, July 2013, pp. 1–26.

– 109 –

BIBLIOGRAPHY

[9] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, R. L. Braynard,

“Networking Named Content,” in Proceedings of the 5th ACM International Conference on

emerging Networking EXperiments and Technologies (CoNEXT 2009), Rome, Italy, Decem-

ber 2009, pp. 1–12.

[10] W. Li, E. Chan, Y. Wang, D. Chen, S.Lu, “Cache Placement Optimization in Hierarchical

Networks: Analysis and Performance Evaluation,” in 7th International IFIP-TC6 Networking

Conference, Singapore, May 2008, pp. 385–396.

[11] H. Che, Y. Tung, Z. Wang, “Hierarchical Web Caching Systems: Modeling, Design and Ex-

perimental Results,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 7, pp.

1305–1314, September 2002.

[12] S. Borst, V. Gupta, “Distributed Caching Algorithms for Content Distribution Networks,” in

Proceedings of the 29th IEEE Conference on Computer Communications (INFOCOM 2010),

San Diego, CA, USA, March 2010, pp. 1478–1486.

[13] T. Johnson, D. Shasha, “2Q: A Low Overhead High Performance Buffer Management Re-

placement Algorithm.” Morgan Kaufmann, 1994, pp. 439–450.

[14] N. Megiddo, D.S.Modha, “ARC: A Self-Tuning, Low Overhead Replacement Cache,” in Pro-

ceedings of the 2Nd USENIX Conference on File and Storage Technologies, ser. FAST ’03,

2003, pp. 115–130.

[15] N. Megiddo, D. S. Modha, “Outperforming LRU with an Adaptive Replacement Cache Algo-

rithm,” IEEE Computer, vol. 37, no. 4, pp. 58–65, 2004.

[16] S. Imai, K. Leibnitz, M. Murata, “Energy Efficient Content Locations for In-Network

Caching,” in Proceedings of APCC’12, Jeju, Korea, October 2012, pp. 554–559.

[17] ——, “Energy-Aware Cache Management for Content-Centric Networking,” in Proceedings

of First International WorkShop on Energy-Aware Systems, Communications and Security,

Barcelona, Spain, March 2013.

– 110 –

BIBLIOGRAPHY

[18] ——, “Energy Efficient Data Caching for Content Dissemination Networks,” Journal of High

Speed Networks, vol. 19, no. 3, pp. 215–235, October 2013.

[19] Ministry of Economy, Trade, and Industry, “Green IT Initiative in Japan,” 2008.

[20] M. Gupta, S. Singh, “Greening of Internet,” in Proceedings of ACM SIGCOMM’03, Karlsruhe,

Germany, August 2003, pp. 19–26.

[21] P. Mahadevan, P. Sharma, S. Banerjee, P. Ranganathan, “A Power Benchmarking Framework

For Network Devices,” in Proceedings of NETWORKING’09, vol. 5550, Aachen, Germany,

May 2009, pp. 795–808.

[22] T. Harder, V. Hudlet, Y. Ou, D. Schall, “Energy Efficiency is not Enough, Energy Proportion-

ality is Needed!” in Proceedings of DASFAA’11, Hong Kong, China, April 2011, pp. 226–239.

[23] A. Dan, D. Towsley, “An Approximate Analysis of the LRU and FIFO Buffer Replacement

Schemes,” SIGMETRICS Perform. Eval. Rev., vol. 18, no. 1, pp. 143–152, April 1990.

[24] M. Arlitt, C. Williamson, “Internet Web Servers: Workload Characterization and Performance

Implications,” IEEE/ACM Transaction on Networking, vol. 5, pp. 631–645, October 1997.

[25] S. M. Abid, H. Youssef, “Impact of One-Timer/N-Timer Object Classification on the Per-

formance of Web Cache Replacement Algorithms,” in Proceedings of Web Intelligence and

Intelligent Agent Technology (WI-IAT), vol. 1, Toronto, ON, Canada, August 2010, pp. 208–

211.

[26] P. Gill, M. Arlitt, Z. Li, “YouTube Traffic Characterization: a View from the Edge,” in Pro-

ceedings of IMC’07, San Diego, CA, USA, October 2007, pp. 15–28.

[27] A. Belloum, L. O. Hertzberger, “Dealing with One-Timer-Documents in Web Caching,” in

EUROMICRO, vol. 2. IEEE Computer Society, August 1998, pp. 544–550.

[28] A. Mahanti, D. Eager, C. Williamson, “Temporal Locality and its Impact on Web Proxy Cache

Performance,” PERFORMANCE EVALUATION, vol. 42, pp. 187–203, 2000.

– 111 –

BIBLIOGRAPHY

[29] S. M. Abid, H. Youssef, “Impact of One-Timer/N-Timer Object Classification on the Per-

formance of Web Cache Replacement Algorithms,” in Web Intelligence. IEEE, 2010, pp.

208–211.

[30] S. Imai, K. Leibnitz, M. Murata, “Modeling of Content Dissemination Networks on Multi-

plexed Caching Hierarchies,” in The Thirteenth International Conference on Networks, Nice,

Frace, February 2014, pp. 111–118.

[31] ——, “Adaptive TTL Control to Minimize Resource Cost in Hierarchical Caching Networks,”

IEICE Transactions on Information and Systems, March 2015.

[32] A. Fischer, J. F. Botero, M. T. Beck,H. Meer, X. Hesselbach, “Virtual Network Embedding: A

Survey.” IEEE Communications Surveys and Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[33] Y. Chen, J. Li, T. Wo,C. Hu, W. Liu, “Resilient Virtual Network Service Provision in Net-

work Virtualization Environments.” in IEEE 16th International Conference on Parallel and

Distributed Systems (ICPADS). IEEE, 2010, pp. 51–58.

[34] C. Fricker, P. Robert, J. Roberts, “A Versatile and Accurate Approximation for LRU Cache

Performance,” in Proceedings of the 24th International Teletraffic Congress (ITC), Krakow,

Poland, September 2012, pp. 1–8.

[35] D. S. Berger, P. Gland, S. Singla, F. Ciucu, “Exact Analysis of TTL Cache Networks: The

Case of Caching Policies driven by Stopping Times,” CoRR, vol. abs/1402.5987, 2014.

[36] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, ser. Frontiers in Applied

Mathematics. SIAM, 1995, no. 16.

[37] ——, Iterative Methods for Optimization. Society for Industrial and Applied Mathematics,

1999.

[38] U. Lee, I. Rimac, D. C. Kilper, V. Hilt, “Toward Energy-Efficient Content Dissemination,”

IEEE Network, vol. 25, no. 2, pp. 14–19, March 2011.

– 112 –

BIBLIOGRAPHY

[39] U. Lee, I. Rimac, V. Hilt, “Greening the Internet with Content-Centric Networking,” in Pro-

ceedings of e-Energy, Passau, Germany, October 2010, pp. 179–182.

[40] K. Guan, G. Atkinson, D. C. Kilper, “On the Energy Efficiency of Content Delivery Archi-

tectures,” in Proceedings of the 4th IEEE International Conference on Communications (ICC)

Workshop on Green Communications, Kyoto, Japan, June 2011.

[41] A. Schrijver, Theory of Linear and Integer Programming. New York, NY, USA: John Wiley

& Sons, Inc., 1986.

[42] C. Fricker, P. Robert, J. Roberts, “Impact of Traffic Mix on Caching Performance in a

Content-Centric Network,” in Proceedings of IEEE NOMEN’12, Workshop on Emerging De-

sign Choices in Name-Oriented Networking, Orlando, Florida, USA, March 2012.

[43] D. Rossi, G. Rossini, “Caching Performance of Content Centric Networks under Multi-Path

Routing,” 2011.

[44] N. C. Fofack, D. Towsley, M. Badov, M. Dehghan, D. L. Goeckel, “An Approximate

Analysis of Heterogeneous and General Cache Networks,” RR-8516, INRIA, Tech. Rep.,

2014. [Online]. Available: {https://hal.inria.fr/hal-00975339}

[45] M. Feldman, J. Chuang, “Service Differentiation in Web Caching and Content Distribution,”

in Proceedings of IASTED International Conference on Communications and Computer Net-

works (CCN 2002), Cambridge MA, November 2002.

[46] M. Gallo, B. Kauffmann, L. Muscariello, A. Simonian, C. Tanguy, “Performance Evalua-

tion of the Random Replacement Policy for Networks of Caches,” Performance Evaluation,

vol. 72, pp. 16–36, February 2014.

[47] E. J. Rosensweig, J. Kurose, D. Towsley, “Approximate Models for General Cache Networks,”

in Proceedings of the 29th Conference on Information Communications, ser. INFOCOM’10.

Piscataway, NJ, USA: IEEE Press, March 2010, pp. 1100–1108.

– 113 –

BIBLIOGRAPHY

[48] N. C. Fofack, P. Nain, G. Neglia, D. Towsley, “Analysis of TTL-based Cache Networks,” in

VALUETOOLS. IEEE, 2012, pp. 1–10.

[49] ——, “Performance Evaluation of Hierarchical TTL-based Cache Networks,” Computer Net-

works, vol. 65, pp. 212–231, March 2014.

[50] A. Tanaka, K. Tatsukawa, “Interreference Interval for Purged Objects: a New Metric for De-

sign and Analysis of Web Caching Algorithms,” in Proceedings of IEEE Performance, Com-

puting, and Communications Conference, 2003, pp. 549–554.

[51] G. Carofiglio, V. Gehlen, D. Perino, “Experimental Evaluation of Memory Management in

Content-Centric Networking,” in Proceedings of IEEE International Conference on Commu-

nications (ICC), Kyoto, Japan, June 2011.

[52] Y. T. Hou, J. Pan, B. Li, S. S. Panwar, “On Expiration-Based Hierarchical Caching Systems,”

IEEE Journal on Selected Areas in Communications, January 2004.

[53] I. Baev, R. Rajaraman,C. Swamy, “Approximation Algorithms for Data Placement in Arbi-

trary Networks,” in Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms

(SODA), Washington, DC, USA, January 2001, pp. 661–670.

[54] L. Qiu, V. N. Padmanabhan, G. M. Voelker, “On the Placement of Web Server Replicas,” in

Proceedings of the 20th IEEE Conference on Computer Communications (INFOCOM 2001),

Anchorage, AK, USA, April 2001, pp. 1587–1596.

[55] A. Leff, J. L. Wolf, “ReplicationAlgorithms in a Remote Caching Architecture,” IEEE Trans-

actions on Parallel and Distributed Systems, vol. 4, no. 11, pp. 1185–1204, November 1993.

[56] Z. Drezner, Facility Location: A Survey of Applications and Methods. Berlin, DEU: Springer,

1995.

[57] F. N. Santos, B. Ertl, C. Barakat, T. Spyropoulos, T. Turletti, “CEDO: Content-Centric Dis-

semination Algorithm for Delay-Tolerant Networks,” in MSWiM. ACM, November 2013,

pp. 377–386.

– 114 –

