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内容梗概

本論文は，筆者が 2012年から現在までに，大阪大学大学院情報科学研究科情報システ
ム工学専攻メディア統合環境講座在学中に行った研究の成果をまとめたものである．
高性能計算環境における資源管理は，個々の計算の実行性能および計算環境の効率的な
運用に影響する要因の 1 つである．近年の高性能計算環境は，多数の計算ノードをイン
ターコネクトと呼ばれるネットワークで相互接続したクラスタシステムとして構成されて
おり，その規模は計算環境の性能向上を目指し大規模化する傾向にある．一般的に，高性
能計算環境を必要とする計算要求は高い実行性能を得るため，できるだけ多くの計算ノー
ドを同時に利用した分散並列計算として実行される．そのため，その計算に割り当てられ
た計算ノード間の通信性能は計算の実行性能に多大な影響を与える．また，高性能計算環
境は，複数のユーザから出された多数の計算要求に対して資源割当が可能な範囲で複数の
計算を同時に実行する共用環境として提供されるのが一般的である．そのため，個々の計
算に対して高い実行性能を提供するためには，各計算における資源利用の状況を考慮した
効率的な資源割当が必要である．
このような高性能計算環境において，ユーザの計算要求をジョブとして受け付け，そ
れらに対して効率的に資源を割り当てるジョブ管理システム（Job Management System,

JMS）が広く採用されている．ジョブ管理システムは高性能計算環境から適切な資源を
ジョブに対して提供するため，必要となる資源情報や利用状況を把握する機能を有する．
しかし，今日利用可能なジョブ管理システムの多くは，Central Processing Unit（CPU）や
メモリなどの計算資源のみ管理しており，計算ノード間のインターコネクトをネットワー
ク資源として管理するための機能を有していない．このことは，インターコネクトが通信
要求を十分に満たす性能を常に有するよう構築されているとの仮定に起因すると考えられ
るが，大規模化傾向にある今日のクラスタシステムの状況から，そのようなインターコネ
クトの構築は困難になっていくと考える．以上のような背景から，本研究では，クラスタ
システムにおけるインターコネクトに着目し，計算資源と同様にネットワーク資源を動的
に管理するジョブ管理システムに関する研究開発を行う．
本論文では，まず従来のジョブ管理システムによる資源管理，およびクラスタシステム
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において高いネットワーク性能を得るためのアプローチについて調査し，計算資源と同様
にネットワーク資源であるインターコネクトを動的に管理・割当を行うための課題につ
いて分析を行う．分析結果より，本目的を実現するための技術課題として，（1）ネット
ワーク資源を動的に管理・制御する機能を備えたジョブ管理システムの実現可能性の検
証，（2）提案ジョブ管理システムへのネットワーク資源を制御する資源割当ポリシの配備
による有用性・実用性の評価が必要であることを示す．

1点目の課題であるネットワーク資源を動的に管理・制御する機能を備えたジョブ管理
システムの実現可能性の検証に対しては，新しいネットワークアーキテクチャのコンセプ
トである Software-Defined Networking（SDN）に着目し，従来のジョブ管理システムに対
して SDNを利用したネットワーク制御機能を拡張した SDN-enhanced JMSフレームワー
クを提案する．SDN-enhanced JMS フレームワークは，SDN の一実装である OpenFlow

を統合した外部モジュールとして実装する．本モジュールと従来のジョブ管理システム
を連携させることにより，計算資源とネットワーク資源をともに管理することが可能と
なる．Flat-treeインターコネクトを持つクラスタシステムにおいて，本システムと従来の
ジョブ管理システムに対して数種類のジョブセットを投入することにより，インターコネ
クトの利用状況を考慮した計算資源の割り当て，およびジョブの実行性能低下の抑制が可
能であることを確認する．

2点目の課題である提案ジョブ管理システムへのネットワーク資源を制御する資源割当
ポリシの配備による有用性・実用性の評価に対して，実際的な冗長経路を有するクラス
タシステムを対象とし，インターコネクトのトポロジ，各リンクの利用状況を考慮した
資源割当ポリシを提案・実装し，インターコネクトの利用状況を考慮した計算資源およ
びネットワーク資源の効率的な割当がなされているかを検証する．具体的には，多くの
高性能計算環境で採用されている Fat-treeインターコネクトを有するクラスタシステムを
ターゲットとした資源割当ポリシを提案し，SDN-enhanced JMSフレームワーク上で実際
に実装・配備を行えることを確認する．その上で，提案する資源割当ポリシを組み込んだ
SDN-enhanced JMSと従来のジョブ管理システムに対して，NAS Parallel Benchmarksな
どの数種のジョブセットを用いて，通信の衝突によるジョブの実行性能低下が抑制される
ことを確認する．これにより，提案手法の有用性・実用性を示す．
最後に，本研究の成果についてまとめ，今後の展望を述べて本論文を締めくくる．
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第 1章

序論

1.1 研究背景
近年の高性能計算環境は，インターコネクト（interconnect，相互結合網）と呼ばれる
ネットワークで多数の計算ノードを相互接続したクラスタシステムとして構成される．そ
の構成規模は性能向上を目的とし，ますます大規模化する傾向にある．実際，世界の高
性能計算機システムの上位 500までを年 2回ランキングしている TOP500 Supercomputer

Sites によれば，現在登録されている計算機システムの 85.8% がクラスタシステムであ
り [1]，数千台以上の計算ノードで構成されたクラスタシステムも登場しつつある．例え
ば，2014 年 11 月時点で世界第 1 位である中国人民解放軍国防科学技術大学の Tianhe-2

（天河二号）は 16,000計算ノード，日本第 1位である理化学研究所計算科学研究機構の K

computer（京）は 88,128計算ノード構成である．
一方，クラスタシステムの大規模化に伴い，計算ノードのインターコネクトの大規模
化・複雑化が進んでいる．一般的に，インターコネクトには，計算ノード間の高い通信性
能を得るために，低遅延・広帯域なネットワークが求められる．これを実現するため，通
信効率の良いネットワークトポロジに関する研究，専用デバイスを用いたインターコネク
ト技術など，様々な研究開発が活発に行われている．例えば，低遅延のインターコネクト
技術としてMyrinet [2, 3]や Infiniband [4]はその代表例としてあげることができる．しか
し，今日のクラスタシステムの大規模化に伴い，大規模化・複雑化傾向にあるインターコ
ネクト上で高い通信性能を得るためには，高性能なネットワークデバイスを駆使し，複雑
なネットワークトポロジを構成していく必要がある．結果，その構築・運用管理コストは
顕著な問題となりつつある.

大規模化するクラスタシステム上で高い計算性能を得るためには，できるだけ多くの計
算ノードを同時に利用した分散並列計算を効率よく行うことが必要となる．一般的に，分
散並列化による性能は，並列数の増加による計算時間の短縮と，分散並列化したことに
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よって生じるオーバーヘッドで決定される．この分散並列化の性能向上を阻害する要因の
中でも，とりわけ，計算ノード間の通信によるオーバーヘッドが分散並列計算に与える影
響は大きい．また，非効率な通信により計算対象のデータの到着が遅れると，その間 CPU

が待機状態になるため，時間とエネルギーを無駄に消費することになる．クラスタシステ
ムでは，インターコネクトで接続された計算ノードを複数同時に利用することから，イン
ターコネクトを高効率に利用して通信コストを最小限に抑えることが高性能計算を行う上
で重要である．
また，高性能計算環境の運用は，複数のユーザからの計算要求に対して資源の割当を行
い，複数のユーザの計算を同時に実行させるのが一般的である．その目的は高性能計算環
境の利用効率を最大化することにある．その際，各計算要求に対してどのように計算環境
の資源を配分するのかが，個々の計算の実行時間の短縮および計算環境全体の効率的な資
源の配分を実現する上で重要となる．
今日，様々な科学研究分野において解くべき問題や計算対象のデータが大規模化・大
容量化し，その結果，ますます高性能計算環境を必要とする計算が増加している．さら
に，高性能計算環境に対する資源要求は，様々な研究分野の計算要請に基づき多様化傾
向にある．例えば，社会科学分野におけるソーシャル・シミュレーションでは，より多
くの Agentを利用した Multi-Agentシミュレーションを実行するため，CPUだけでなく
Graphics Processing Unit（GPU）も含めたより多くの計算資源の利用手法が研究開発され
ている [5-12]．このような計算要求多様化の観点からも，高性能計算環境には，それを構
成する多様な計算資源を管理し，高効率に配分する資源管理の重要性が急速に高まってい
る．多様な計算要求が増加している現状から，高性能計算環境における資源の管理・割当
は，個々の計算の実行性能や利便性，および計算環境全体の効率的な運用に影響する重要
な課題となっている．
今日では，高性能計算環境における資源管理システムとして，ユーザの計算要求をジョ
ブとして受け付け，それらに対して効率的に資源を割り当てるジョブ管理システム（Job

Management System, JMS）が広く採用されている．ジョブ管理システムは，主に高性能
計算（High-Performance Computing，HPC）に代表される科学技術計算環境で利用され
ている資源管理システムであり，現在利用されている主要なジョブ管理システムとして，
Network Queuing System（NQS）[13]，Portable Batch System（PBS）[14], Platform Load

Sharing Facility（LSF）[15], Condor [16, 17]，Open Grid Scheduler/Grid Engine（OGS/GE）
[18]をあげることができる．ジョブ管理システムは，ゲートウェイ，資源管理，利用統計
の機能を有する．ゲートウェイはユーザが計算要求を出すための窓口であり，ユーザが高
性能計算環境の構成や利用状況を意識せずに，実行したい計算と必要な資源量を計算環境
に要求することができるインタフェースを提供する．資源管理機能は，高性能計算環境に
おける資源の利用状況を把握し，ジョブに対して効率的に資源を割り当てる．利用統計
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は，ユーザごとの資源利用履歴を管理し，計算環境の運用状況の把握やユーザへの課金の
ために使用される．
しかし，今日利用可能なジョブ管理システムは，各計算ノードの CPUやメモリなどの
計算資源の利用状況とジョブに対するユーザの資源要求にのみ基づいて行う．つまり，分
散並列計算の実行性能に影響を与えるクラスタシステムのネットワーク資源であるイン
ターコネクトは，ジョブ管理システムでは資源として管理されておらず，インターコネク
トをネットワーク資源として制御するための機能をジョブ管理システムは有していない．
その理由の 1 つとして，ジョブにどのように計算ノードが割り当てられても，計算ノー
ド間の通信は常に十分な性能が得られるようインターコネクトは設計・構築されていると
の仮定に基づきジョブ管理システムが設計されていることに起因すると考えられる．しか
し，今日の高性能計算環境の主流であるクラスタシステムは，構成する計算ノードの数が
増加し大規模化する傾向にある．そのため，計算ノード間を接続するインターコネクトも
大規模化する傾向にある．さらに，クラスタシステム上で行われる分散並列計算の並列数
の増加や，個々の計算ノードの性能向上による処理の高速化や取り扱うデータサイズの大
規模化などにより，インターコネクトはますます高い通信性能が求められつつある．しか
し，上述の仮定を満たすインターコネクトを実現するためには，専用のネットワークハー
ドウェアや多数のネットワーク機器を必要とし，また，構築・運用におけるコストを鑑み
ると，今後このような大規模なインターコネクトを構築していくことはますます困難にな
ると考えられる．また，GPUに代表されるアクセラレータ資源や，クラウドサービスな
どで提供されている仮想化資源のような新たな資源についても現在のジョブ管理システム
では制御することができない．計算資源だけに基づいて資源管理を行うジョブ管理システ
ムでは，様々な資源を有する現在の高性能計算環境を，柔軟かつ効率的に管理することは
できない．

1.2 本研究の目的
1.1節で記したように，今日の高性能計算環境で高い計算性能を得るためには，ますま
す多様化するユーザからの計算要求に対し，その構成資源の利用状況を考慮し，構成資源
を動的かつ効率的に割り当てることのできる柔軟な資源管理の仕組みが必要不可欠となり
つつある．そのような視点から，本研究では，クラスタシステムを構成する資源のうち，
特に，ネットワーク資源であるインターコネクトに着眼し，計算資源だけでなくネット
ワーク資源を動的な資源と捉え，ユーザの計算要求に対して適切な資源割当を行うことの
できるジョブ管理システムの実現を目指す．本目的を実現するために，本研究では，ま
ず，ネットワーク資源を動的に制御することによる資源管理手法のプロトタイプ化をはか
り，本研究で構想するジョブ管理システムの実現可能性を検証する．その後，今日のクラ
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スタシステムで採用される実際的なインターコネクトをもつクラスタシステムを対象と
し，計算資源とネットワーク資源をともに扱う資源割当ポリシの提案・実装を行い，その
性能評価を行うことで，その有用性，実用性を検証するアプローチをとる．これにより，
ユーザからの多様な計算要求に基づき GPUや仮想計算機資源にも対応できる新しいジョ
ブ管理システムの一形態を示すこともまた本研究の目的の一つである．

1.3 論文構成
本論文の構成は以下のとおりである．
2章では，1.2節で記した本研究の目的達成のための技術課題を抽出する．そのために，
今日利用できる従来のジョブ管理システムによる資源管理手法，ならびに，クラスタシス
テム上で高い通信性能を得ることを目的とした関連研究について整理する．その際，特
に，計算資源と同様にネットワーク資源であるインターコネクトを動的に管理・割当を行
う手法，技術について着目する．その後，本研究で達成すべき 2 点の技術課題を明確に
する．

3章では，2章で導出された 1点目の課題に基づき，ネットワーク資源を考慮したジョ
ブ管理システムフレームワークとして，近年急速に関心と着目が集まっている新しい
ネットワークアーキテクチャ概念である Software-Defined Networking（SDN）を利用し
た SDN-enhanced JMS フレームワークを提案する [19-23]．SDN では，対象となるネッ
トワークの振る舞いをコントローラで中央集権的かつ動的に制御可能とする．本章では，
この SDNの一実装である OpenFlowを応用して従来のジョブ管理システムにネットワー
クのプログラム機能を拡張することで，計算資源だけでなくネットワーク資源を動的な資
源と捉え管理・制御するジョブ管理システムフレームワークのプロトタイプ開発を行う．
これにより，本研究の提案の実現可能性を検証する．

4章では，2章で導出された 2点目の課題に基づき，計算資源およびネットワーク資源
の利用状況を考慮して計算資源およびインターコネクトの通信経路の割当を実現する資源
割当ポリシを提案・実装する [24, 25]．通常，冗長経路を持つインターコネクトでの経路
選択は各ネットワークデバイスが持つ機能により実現され，ジョブ管理システムの計算資
源割当とは独立して行われる．この制御を SDN-enhanced JMS 上で実装し，計算資源お
よび通信経路の割当を実現する資源割当ポリシについて Fat-treeトポロジインターコネク
トを持つクラスタシステム上で提案・評価する．これにより，本研究で提案するジョブ管
理システムが，実用的なインターコネクトを持つクラスタシステム上で計算資源および
ネットワーク資源を効率的に管理することで，ジョブに高い実行性能を提供できることを
確認し，その実用性を検証する．

5章では，本研究にて得られた成果についてまとめ，今後の課題を述べる．
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第 2章

クラスタシステムにおける資源管理
の現状と課題

2.1 はじめに
ユーザからの計算要求に応じた効率的な資源割当を行うことは，高性能計算環境の運用
における主要課題の 1 つである．効率的な資源割当を実現するため，様々なサービスや
計算環境のアーキテクチャを対象とした資源割当を実現する資源割当手法や資源管理シス
テムに関する研究開発が行われている．その資源管理の対象である高性能計算環境の多く
は大規模なクラスタシステムとして構築されている．クラスタシステムにおける資源は，
各計算ノードが持つ CPUやメモリなどの計算資源と，計算ノード間を繋ぐインターコネ
クトにおけるネットワーク資源に大別される．また，近年のクラスタシステムによっては
GPUなどのアクセラレータ資源や，計算資源やネットワーク資源が仮想化されて提供さ
れる仮想化資源など，資源管理システムで扱うべき対象は多様化してきている．それゆ
え，クラスタシステムを構成する資源をどのように管理し，どのように効率的にユーザの
計算要求に割り当てるかが，資源管理システムを設計・開発する上で重要である．ジョブ
管理システムは，HPC分野の高性能計算環境において広く採用されている資源管理シス
テムであり，計算処理の効率的な負荷分散や耐障害性を実現するために導入される．しか
し，今日のジョブ管理システムの多くは，クラスタシステムの計算資源のみを対象とし，
インターコネクトなどのネットワーク資源については考慮していない．ネットワーク資源
を考慮しない資源割当では，今日のクラスタシステムにおける主な計算要求である分散並
列計算に対し，得られる通信性能を考慮せずに割り当てる計算資源を決定するため，高い
実行性能を得られる計算資源をジョブに提供できている保証は無い．
本章では，クラスタシステムの現状，一般的なジョブ管理システムにおける資源管理手
法および技術についての整理を行うとともに，クラスタシステムにおける効率的なネット
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ワーク利用に関する関連研究の調査を行う．その際，計算資源と同様にインターコネクト
をネットワーク資源として管理・割当を行う手法および技術に着眼する．これにより，1

章で記した本研究の目的を実現するための技術課題を明確にする．
以下に本章の構成を示す．2.2 節では，クラスタシステムの現状について調査を行い，
インターコネクトの観点から整理を行う．2.3節では，一般的なジョブ管理システムにお
ける資源管理の仕組みについて確認し，その問題点を明らかにする．2.4節では，クラス
タシステムにおいて高いネットワーク性能を得るための関連研究について調査し，そのア
プローチを整理する．2.4節では，2.2節，2.3節，2.4節を踏まえて，計算資源と同様に
インターコネクトをネットワーク資源として管理・割当を行うための課題について分析を
行い，本研究で解決すべき技術課題を明確にする．

2.2 クラスタシステムの現状
本節では，今日の高性能計算環境の主流であるクラスタシステムにおける資源管理の問
題点を明確にするため，クラスタシステムが大規模化する背景およびインターコネクトの
構成技術と現状について説明する．

2.2.1 クラスタシステムの構成
クラスタシステムは，多数の計算ノードをインターコネクトで接続し，全体を一つの計
算環境とすることで高性能計算に対応した分散並列用計算機システムである．クラスタシ
ステムの性能を表す際，理論ピーク性能と実効性能が用いられることが一般的である．理
論ピーク性能は，ベンダや計算センターなどが提示する高性能計算環境の性能公称値とし
て用いられる．クラスタシステムの場合，理論ピーク性能は（個々の計算ノードが持つ演
算性能）×（計算ノード数）で表される．より高い性能を持つクラスタシステムを構築す
るとき，個々の計算ノードの演算性能自体は向上しているが，その向上分だけでシステム
の目標性能を達成できる場合は少ない．そこで，計算ノード数を増加させることで性能向
上を図るため，結果として高性能計算環境は大規模化していく．
一方，実効性能とは，分散並列計算を実行した際に得られる実質的な性能である．分散
並列計算は通常，複数の処理への分け方や分割された処理間での通信に起因するオーバー
ヘッドが生じるため，理論ピーク性能値を実行性能値として得ることは極めて困難であ
る．上述のオーバーヘッドは分散並列計算の処理内容に依存するため，実効性能は理論
ピーク性能と異なり一意には表せない．そこで，高性能計算環境の性能を比較する場合に
は，特定のアプリケーションにおける実行効率（実効性能／理論ピーク性能）を算出する．
例えば，TOP500 Supercomputer Sitesでのランキングでは，連立一次方程式の解を求める
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プログラムでシステムの浮動小数点演算性能を評価する LINPACKベンチマーク [26-28]

が用いられている [1]．高い実効性能を出せる高性能計算環境を構築するには，分散並列
計算における並列化のオーバーヘッドの削減が必要不可欠である．特に，オーバーヘッド
の要因の中でも，計算ノード間の通信コストは影響が大きいため，高い性能が得られるイ
ンターコネクトが高性能計算環境には求められる．

2.2.2 クラスタシステムのインターコネクト
一般的に，インターコネクトの性能指標には，遅延と帯域幅が用いられる．遅延とは送
信したデータが宛先で受信されるまでにかかる時間であり，帯域幅とは単位時間あたりに
転送できるデータ量である．高性能計算環境のインターコネクトでは，分散並列計算の
オーバーヘッドを抑制するために低遅延・広帯域なネットワークが求められている．
インターコネクトの性能に関連する主要素は，大別するとネットワークデバイスと，
ネットワークトポロジに分類できる．計算ノードが扱える帯域幅のピーク性能は，使用
するネットワークデバイスによって決定される．高性能計算環境のインターコネクトで
利用されている主なネットワークデバイスとして，一般的な Ethernet，Myrinet [2, 3]，
Infiniband [4] があげられる．Ehternet によるインターコネクトは，その汎用性から高コ
ストパフォーマンスかつ高拡張性を有するインターコネクトを構築できるが性能面で劣
る．一方，Myrinetや Infinibandは低遅延な通信を提供できるネットワークデバイスであ
り，高性能なクラスタシステムのインターコネクトに適しているが，その導入コストは
Ethernetによるインターコネクトより非常に高くなる．上述のネットワークデバイス以外
にも，ベンダ固有の専用ハードウェアによるインターコネクトも提供されている．
本研究では，クラスタシステムのインターコネクトをネットワーク資源として動的に制
御して計算要求に対して適切に資源割当を行うことで，クラスタシステムの資源を効率的
に運用するジョブ管理システムの実現を目的としている．その効果は 1.1節で述べたイン
ターコネクトに求められる性能を実現できない環境において有効である．そこで，本論文
では，非効率な資源割当により性能面に大きな影響が現れると考えられる Ethernetによる
インターコネクトを対象とする．
一方，インターコネクトのトポロジは，通信性能だけでなく，インターコネクトの冗長
性や拡張性にも影響する重要な要素である．インターコネクトのトポロジはその構成に
よって直接網と間接網に分類される．直接網のインターコネクトでは，各計算ノードが複
数のネットワークインタフェースを持ち，それらを相互接続してリンクを張り，インター
コネクトを形成する．直接網のインターコネクトにおけるルーティングは計算ノード上で
行われる．代表的な直接網のトポロジとして，メッシュ（Mesh），トーラス（Torus），ハ
イパーキューブ（Hypercube）などがあげられる．一方，間接網では，計算ノードが持つ
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ネットワークインタフェースは基本的に 1 つであり，計算ノードはスイッチを介するこ
とでインターコネクトを形成する．そのため，間接網におけるリンクは，計算ノードとス
イッチ，およびスイッチ同士の間に形成される．なお，間接網でのルーティングは基本的
にスイッチで制御される．間接網のトポロジの例として，ツリー（Flat-tree，Fat-tree）や
クロスバ（Crossbar）などがあげられる．上述のネットワークデバイスとネットワークト
ポロジに対し，高性能計算環境を構成する計算ノード数，インターコネクへの要求性能，
導入コストなどの条件から判断し，インターコネクトを構築する．
本研究では上述したトポロジのうち，間接網で構成されたインターコネクトを対象と
する．

2.2.3 システム大規模化により生じる問題
クラスタシステムにおける計算ノード数の増加に伴い，ネットワーク通信性能の視点か
らインターコネクトはその構成を大規模化・複雑化せざるを得ない状況にある．大規模ク
ラスタシステムでのインターコネクトでは，多くのリンクやスイッチを用いた複雑なトポ
ロジ設計や新たなネットワークデバイスが必要となり，システム規模の大規模化に伴うイ
ンターコネクトの構築コストもますます大きくなりつつある．
例えば，8万計算ノード以上で構成される理化学研究所の K computerでは，多数の計
算ノードを高速に接続するため，Torus fusion（Tofu）インターコネクトと呼ばれるベンダ
固有のネットワークハードウェアを利用している [29]．Tofuインターコネクトでは，10

万計算ノードの拡張性を実現し，かつ，高性能・高信頼性・高可用性を備えるため，6次元
メッシュ/トーラスの直接網のトポロジ構成を，ネットワークインタフェースやルーティ
ング制御のため専用に開発したインターコネクトコントローラを各計算ノードに採用する
ことで実現している．
また，クラスタシステムのインターコネクトを k-ary Fat-treeトポロジ [30]で構成した
場合，計算ノードの増加に伴い多数のネットワークスイッチや機器間のリンクのための
ケーブルが必要となる．図 2.1に 3層構造で k = 4の場合のクラスタシステムの構成例を
示す．3層 k-ary Fat-treeトポロジでインターコネクトを構築する場合，k個のポートを持
つネットワークスイッチを 5k2/4台用いることにより，k3/4台の計算ノードで構成され
たクラスタシステムを構築できる．その際のインターコネクトにおけるネットワークリン
クの数は 3k3/4 本となる．図 2.1 の例のように，4-ary Fat-tree トポロジのインターコネ
クトであれば，20台の 4ポート・ネットワークスイッチと 48本のリンクを用いて 16台
の計算ノードで構成されたクラスタシステムを構築できるが，32-ary Fat-treeトポロジで
インターコネクトを構成した場合，8,192台の計算ノードで構成されたクラスタシステム
を構築するために，32個のポートを持つネットワークスイッチを 1,280台，計算ノードや
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Edge

Aggregation

Core

Pod

図 2.1 k-ary Fat-treeインターコネクト（k=4）．

スイッチ間のリンクを 24,576本必要となり，インターコネクトは大規模化する．
上述の例のように専用ネットワークハードウェアや多数のネットワーク機器を採用して
クラスタシステムを構築できる場合，規模に応じた性能を持つインターコネクトを構築す
ることは可能である．しかし，一般的なクラスタシステムでは，上述のようなインターコ
ネクトは構築および構築後の運用で多大なコストを必要とするため，その実現が困難にな
りつつある．

2.3 ジョブ管理システムにおける問題
高性能計算環境の運用において，ジョブ管理システムの資源管理機能は提供資源におけ
る実行性能および資源提供サービスの品質を決定する重要な課題である．特に，提供した
資源量に基づき課金することで運用されている高性能計算環境では，サービス品質の低下
によりユーザが離れることは深刻な問題となる．それゆえ，今日までにシステム構成や
サービス形態に応じたさまざまな割当資源決定アルゴリズムやジョブ管理システムが数多
く提案されてきた [31]．本節では，一般的なジョブ管理システムにおける構成および各機
能について説明し，現在のジョブ管理システムにおける問題を分析する．

2.3.1 ジョブ管理システムの構成
ジョブ管理システムに対して求められる役割は，ユーザの計算要求を受け付けるゲート
ウェイとしてのインタフェース，さまざまな計算要求に対して高い性能を得られる資源を
効率的に割り当てることができる資源管理，ユーザに提供してきた資源量を管理する利用
統計があげられ，それぞれに対応した機能を持つ．図 2.2に一般的なジョブ管理システム
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job job

Job Queue 1

job
script

job
script

job
script

job

Job Queue 2

JMS

job job job job

図 2.2 ジョブ管理システムの一般的な構成．

におけるシステム構成を示す．ジョブ管理システムでは，提供資源である高性能計算環境
と，それを制御するための管理ノードから構成される．管理対象となる高性能計算環境は
1つとは限らず，1台の管理ノードで複数の計算環境を制御する場合もある．管理ノード
のジョブ管理システムのマスターモジュール，および，各計算ノード上のノード管理モ
ジュールが連携することで資源制御が実現される
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2.3.1.1 ゲートウェイ機能
ユーザが高性能計算環境に対して計算要求を出すには，まず管理ノードのマスターモ
ジュールに設定されたジョブキュー（Job Queue）を選択する必要がある．ジョブキュー
には資源量や計算実行可能時間の上限，ユーザ制限，実行優先度などが設定されている．
ジョブキューは高性能計算環境の運用ポリシに従い管理者によって設計されており，複数
のジョブキューが用意されるのが一般的である．各種設定を行ったジョブキューをユーザ
に提示することは，高性能計算環境におけるサービス一覧を示すことになる．この機能に
より，管理者の観点ではユーザの計算要求をその内容ごとに分類・整理することができ，
ユーザの観点では高性能計算環境の構成などの詳細な情報を意識することなく，計算要求
に適した資源提供サービスを選択することができる．
選択したジョブキューにジョブを投入するために，ユーザは利用するジョブキューや計
算に必要な資源量を記述したジョブスクリプトを作成し，ジョブ管理システムのマスター
モジュールに投入する．ユーザから投入されたジョブは指定されたジョブキューに格納さ
れ，資源割当処理が行われるのを待つ．なお，ジョブキューに設定された条件に反する
ジョブは拒否される．
一般的なジョブスクリプトの記述例として，OGS/GE [18] におけるジョブスクリプト
の例を図 2.3に示す．通常，ジョブスクリプトは，資源要求などの条件を記述する条件記
述部（図 2.3 の例では#$ で始まる行）と，実行する計算について記述した実行記述部か
ら構成される．ジョブスクリプトの条件記述部において，今日のジョブ管理システムの多
くは CPUやメモリといった計算資源に対する要求を記述可能である．図 2.3の例の場合，
3行目の “#$ -pe ompi 32”で 32並列の分散並列計算を行うための CPUを要求しており，
4行目の “#$ -l h vmem=8gb”では 1並列あたりの使用メモリの上限を指定している．他
の要求条件として，分散並列計算の環境設定，計算結果の出力形式，ジョブの実行開始時
間，計算実行時の環境変数などが指定できる．実行記述部には計算を実行するためのコマ
ンドを記述する．ジョブスクリプトは実質，一般的なシェルスクリプトであるため，実行
記述部は柔軟な処理の記述が可能である．例えば，単純な連続計算，計算に対する前処理
や後処理，計算結果に従った次の計算の選択や実行プログラムの生成，新たなジョブの生
成などが可能である．

2.3.1.2 資源管理機能
ジョブキューに資源の割当を待つジョブに対し，ジョブの資源要求を満たし，かつ，シ
ステム全体の効率的利用の観点にも適した資源をジョブに割り当てることがジョブ管理シ
ステムの資源管理機能に求められる．計算環境の利用状況を考慮してジョブに資源を割り
当てるためには，資源の利用状態を監視する必要がある．ジョブ管理システムの資源管理
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#!/bin/csh

#$ q QUEUE_NAME

#$ pe ompi 32

#$ l h_vmem = 8gb

mpirun np $NSLOTS ./a.out

図 2.3 一般的なジョブ管理システムにおけるジョブスクリプトの記述例．

における役割は，高性能計算環境の各資源における利用状況の把握と，ジョブに対する割
当資源の決定である．
高性能計算環境の資源における利用状況の把握は，管理ノードのマスターモジュールか
ら各計算ノードのノード管理モジュールに定期的に計算資源の利用状況を問い合わせ，計
算ノードのノード管理モジュールが持つ利用状況の情報を収集する．収集される情報とし
て，各計算ノードの CPUロードアベレージやメモリの空き容量などがある．集められた
各計算ノードの利用状況情報は，割当資源決定処理で利用される．
ジョブへの資源割当処理は 2つのフェーズに分けられる．まず，最初のフェーズでは，
ジョブキューに投入されているジョブの中から，資源割当を実行するジョブを選択する．
ジョブの選択は基本的にはジョブごとに算出された優先度の値に従い決定される．ジョブ
の優先度は，ユーザおよび投入されたジョブキューに設定された優先度，要求している資
源量，ユーザのこれまでの利用資源量，ジョブキューに投入されてからの時間などのパラ
メータと，各パラメータに対する重みや優先度制御ポリシなどの管理者による設定に基づ
き，ジョブ管理システムが持つ計算式から算出される．優先度の順に並べ替えられたジョ
ブに対し，優先度の高いジョブから順に資源割当処理を実行する．
次のフェーズでは，選択されたジョブに対して実際に資源割当を行う．割当資源の決定
処理では，まず割当対象となる計算ノードで構成された割当候補リストに対し，ジョブの
資源要求やジョブキューに設定された資源に対する条件を満たさないものを除外する．次
に，収集した計算ノードの利用状況に基づき割当候補リストにある計算ノードに優先度を
設定してソートする．多くのジョブ管理システムでは，優先度の設定には各計算ノード
の CPUロードアベレージが用いられる．最後に，ソートされた割当候補リストに基づき，
ジョブに割り当てる計算ノードを決定する．なお，今日のマルチコア CPUを有する計算
ノードのように，1つの計算ノードにジョブプロセスを割り当てるための複数のスロット
が設定されている場合には，管理者が設定したスロットの割当ポリシに従って計算ノード
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を選択することになる．スロットへのジョブプロセスの割当に関する基本的なポリシとし
ては，選択した計算ノードのスロットをすべて消費して割り当てる方式と，割当候補リス
トの計算ノードに対して 1スロットずつジョブプロセスを割り当てていく方式がある．

2.3.1.3 統計管理機能
ジョブ管理システムの利用統計機能は，資源割当を行ったジョブに関する情報を記録
し，ユーザごとに管理する機能である．管理される情報としては一般的に，ジョブ ID，
ジョブの投入・実行開始・実行終了の日時，割り当てた資源などがある．収集した情報
は，高性能計算環境の運用におけるユーザへの課金や，ユーザに対する情報提供で使用さ
れる．

2.3.2 ジョブ管理システムによる資源管理の問題
2.2節で述べたように，ネットワークの管理・制御の重要性が高まりつつあるにも関わ
らず，今日利用可能なジョブ管理システムでは，ネットワークなど他の資源を制御するた
めの機能は従来のジョブ管理システムには備えられておらず，資源の利用状況の把握お
よびジョブへの資源割当など，資源制御に関する処理は計算資源に対してのみ行われる．
ジョブ管理システムがネットワーク資源を管理対象としていない理由として，以下の 2点
が考えられる．1点目の理由として，インターコネクトはハードウェア性能やネットワー
ク構成によって分散並列計算で生じる通信要求を常に許容できる性能を備えているとの仮
定の下でジョブ管理システムが設計されていることが考えられる．2点目の理由として，
ネットワークは利用状況やユーザの要求に応じて動的に制御することができない静的な資
源であるとの仮定に起因すると考える．しかし，システム構成が大規模化・分散化してい
く傾向にある高性能計算環境の現状を鑑みれば，前述の 2つの仮定を実現した複数のユー
ザが同時にジョブを実行するのに十分なネットワーク性能を有するクラスタシステムの構
築はますますコスト的に困難になっていくと考えられる．それゆえ，計算要求に適した資
源を動的かつ効率的に配分することで高い実行性能を提供可能な新たなアプローチが必要
であると考える．

2.4 分散並列計算のためのネットワークの効率的利用の関連
研究

分散並列計算における通信性能による実効性能の低下は，高い実行性能を得るための重
要な課題とされており，高性能計算環境上でネットワークを効率的に利用することで分散
並列計算の実行性能を向上させることを目的とした研究が多数報告されている．これらの
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研究は，大別すると，本研究の目的と同様の資源割当やシステム制御など管理者側からの
アプローチと，アプリケーションからネットワークを効率的に利用することを目的とした
ユーザ側からのアプローチに分類できる．
管理者側からのアプローチの 1 つとして，ネットワーク資源も制御するリソース管理
システムに関する研究が上げられる．このようなネットワーク資源管理技術に関する研究
は，特に，グリッドコンピューティング [32, 33]の分野で多く行われている．高性能計算
を目的としたグリッド環境は，複数拠点に分散している高性能計算環境を広域ネットワー
クで集約することで，さらに大規模な分散並列計算を実行可能な高性能計算環境として構
築される．その性質上，広域ネットワークにおける通信性能が分散並列計算処理のボトル
ネックとなるため，ネットワークをどのように扱うかが重要な課題とされている．

GARA（General-purpose Architecture for Reservation and Allocation）では，DiffServ

によるパケットスケジューリングを利用することによって，ユーザにネットワーク資
源の QoS（Quality of Service）を事前予約するためのインタフェースを提供する [34]．
G-lambda プロジェクトで開発されたグリッドスーパースケジューラ [35] や DRAGON

Project [36] では，各拠点間を接続する光パスネットワーク資源に対し，ジョブに割
り当てる光パスネットワークの経路設定を事前予約するネットワーク資源管理機能を
GMPLS（Generalized Multi-Protocol Label Switching）によって実現している．Tomásら
は，Exponential Smoothing（ES）アルゴリズムによってグリッド環境における計算資源
及びネットワーク資源の利用状態を予測し，その結果に基づいてジョブに割り当てる資源
を各拠点のジョブ管理システムに事前予約機能を実現したネットワークを考慮したグリッ
ドメタスケジューラ [37]を提案している．
これらのグリッド環境に対する資源管理システムは，一般的に各拠点で運用されてい
るジョブ管理システムに対して，資源確保のための事前予約の調整を行うスーパースケ
ジューラとして実現されている．すなわち，各拠点における資源管理は従来のジョブ管理
システムにより制御されるため，拠点内のインターコネクトに対するネットワーク資源管
理機能は備えていない．一方，本研究では拠点内のインターコネクトに対して，ジョブへ
のネットワーク資源割当を制御することで，高い実行性能をジョブに提供し，かつ，イン
ターコネクトを効率的に運用することを目的とする．
ユーザによるネットワーク資源要求を実現するための手法としては，ネットワーク
資源も含めた計算環境の資源を要求する手段として，グリッド環境上に仮想インフラ
を構築する記述言語 VXDL（Virtual Resources and Interconnection Networks Description

Language） [38] が提案されている．VXDL によるネットワーク資源要求では，ネット
ワークトポロジなどのネットワーク情報の記述手法に主眼がある．この手法は本研究にお
いてネットワーク情報を管理する上で参考となるが，計算資源とネットワーク資源をとも
に扱うジョブ管理手法そのものに主眼がある点が異なる．
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Ethernet を用いた PC クラスタシステムにおいて，複数パスを持つ Fat-tree のような
ネットワークトポロジを構成するための手法として，VLANルーティング法 [39]がある．
この手法では，VLANを用いることにより L2 Ethernetネットワーク上に複数のパスを有
する計算ノード間のインターコネクトを構成することを可能とする．これは PCクラスタ
システムの構築時に VLANの設定を行う手法であるため，基本的にはインターコネクト
に対する静的な制御である．本研究では，各ジョブにおけるユーザの資源要求に応じて
ネットワークを動的に割り当てることを目的としているため主眼が異なる．
一方，ユーザ側からのアプローチでは，MPI（Message Passing Interface）による分散
並列計算における通信を効率的に行うための研究が多数行われている．MPI はクラスタ
システムにおける分散並列計算で広く利用されている並列プログラミングの規格であり，
MPIライブラリでは 1対 1通信やグループ通信を行うための関数が提供される．実行す
るアプリケーションの通信特性に基づいてジョブのプロセスを計算ノードに割り当てる手
法に関する研究として，森江らが提案したMPIランクの配置最適化技術 [40-44]があげら
れる．この最適化技術では，MPIの集合通信アルゴリズムにおける通信タイミングを考慮
して MPIランクの配置を決定することにより通信の衝突を回避し，計算処理における通
信時間を削減する．この手法では 1つのジョブ内における通信の最適化を目的としている
が，他のジョブによる通信の影響は考慮されていない．本研究では計算環境で実行される
複数のジョブに対して最適なネットワーク資源配分を目的とする点が異なる．

2.5 クラスタシステムにおける資源管理の問題
前述したように，大規模化している今日のクラスタシステムにおいて効率的に資源を割
り当てるためには，様々な資源を柔軟に制御できる資源管理が重要である．しかし，今日
利用されているジョブ管理システムで扱うことが可能な資源は，計算ノードの CPUやメ
モリのような計算資源だけである．そこで，本研究ではクラスタシステムの主な利用方法
である分散並列計算の実行性能に大きな影響を与える計算ノード間のインターコネクトに
着目し，計算資源とネットワーク資源をともに制御可能なジョブ管理システムの実現を目
指す．本研究では，インターコネクトをネットワーク資源として動的に管理可能なジョブ
管理システムを実現するための技術課題として，（1）ネットワーク資源を動的に管理・制
御する機能を備えたジョブ管理システムの実現可能性の検証，（2）提案ジョブ管理システ
ムへのネットワーク資源を制御する資源割当ポリシの配備による有用性・実用性の評価，
を設定した．本節では，上述の各課題について説明する．
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2.5.1 ネットワーク資源を動的に管理・制御する機能
従来のインターコネクトにおける通信の制御は，個々のネットワークデバイスで設定さ
れており，各デバイスの設定に基づいた制御が連携することで，インターコネクト全体の
通信制御を実現している．そのため，インターコネクトをネットワーク資源として扱うた
めには，各ネットワークデバイスを動的に制御する仕組みをどのように実現するかが最大
の課題となる．
次に，インターコネクトをネットワーク資源として扱うためには，上述のネットワーク
制御機能を利用した資源管理の実現が必要となる．ジョブ管理システムにおける計算資源
の管理・割当は，2.3.1.2で述べたように，各計算ノードにおける計算資源の利用状況の把
握，計算資源の利用状況とユーザの要求資源量に基づいた最適な割当資源の探索，ジョブ
への資源割当の 3つの手順で行われる．ジョブ管理システムで計算資源とネットワーク資
源をともに効率的に扱うためには，ネットワーク資源の制御についても計算資源と同様の
手順で行えることが望ましい．このような資源管理を実現するためには，インターコネク
トに対するネットワーク構成や利用状況を把握する機能およびジョブに対してネットワー
ク資源を明示的に割り当てる機能を，ジョブ管理システムが備える必要がある．また，も
う 1つの手順であるジョブへの割当資源の決定についても，従来のジョブ管理システムの
機能では計算資源しか扱えないため，計算資源とネットワーク資源の両資源に対応した資
源割当ポリシを設定可能なフレームワークが必要となる．

2.5.2 ネットワーク資源を動的制御する資源割当ポリシ
今日のクラスタシステムでは，広帯域と耐障害性を実現するために，冗長経路を有する
インターコネクトが採用されていることが多い．冗長経路を持つインターコネクトでは，
計算ノードから発生する通信をどのように複数の通信経路に分散させるのかが，高い通信
性能を得るために重要である．冗長経路における通信の負荷分散制御は，通常，スイッチ
の持つ機能によって行われている．従来のクラスタシステムにおける資源管理では，ジョ
ブ管理システムは計算資源のジョブへの割当だけを制御しており，インターコネクトにお
ける通信の制御は，各ネットワークスイッチによって独立に行われる．その結果，ジョブ
に対してより高い性能を得られる資源の組み合わせが存在していたとしても，そのような
資源割当を選択できない場合がある．それゆえ，計算資源とネットワーク資源の利用状況
を鑑み，最適な資源の組み合わせを決定する資源割当ポリシの実現は，ジョブに高性能な
資源を提供し，システム全体の資源を効率的に運用するための重要な課題である．
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2.6 おわりに
本章では，クラスタシステムの現状およびジョブ管理システムによる資源管理について
分析を行い，クラスタシステムから高い性能が得られる資源をユーザの計算要求に対して
提供するためには，分散並列計算の実行性能に大きな影響を与えるインターコネクトを
ネットワーク資源として制御可能なジョブ管理システムが必要であることを示した．次
に，クラスタシステムのインターコネクトから高いネットワーク性能を得ることを目的と
した関連研究について調査を行い，本研究の位置づけを確認するとともに，計算資源と
ネットワーク資源をともに制御可能なジョブ管理システムを実現するための 2 点の課題
を導出した．1点目はジョブ管理システムからネットワーク資源であるインターコネクト
を動的に管理・制御することが可能であるか検証することであり，2点目は Fat-treeイン
ターコネクトで通信衝突を回避する資源割当ポリシを提案・実装・評価することで，実際
のクラスタシステムに対する提案ジョブ管理システムの有用性・実用性を確認することで
ある．
インターコネクトをネットワーク資源として扱うための最大の課題は，ネットワークに
おける通信の制御を動的かつ一元的に制御するための手段である．従来，ネットワークは
静的な資源とみなされていたため，現在のジョブ管理システムはネットワークを制御する
ための機能を備えていない．しかし，ネットワークの動的制御が可能になれば，資源管理
を行うために必要となる資源情報の収集機能とジョブへの資源割当機能が実現できる．ま
た，割当資源を決定する機能を，ネットワーク資源に対応させる必要がある．3 章では，
これらの機能を備えた Network-awareなジョブ管理システムフレームワークを提案する．
一方，冗長経路を持つインターコネクト環境において，リンク上における通信の衝突を
抑制することは，計算ノード間で高い通信性能を得るために重要である．提案するジョブ
管理システムは計算資源とネットワーク資源をともに扱うことが可能であるため，リンク
上での通信の衝突を回避する資源割当を実現することが可能である．しかし，そのために
は資源情報を考慮してジョブへの割当資源を決定する資源割当ポリシが必要である．4章
では，多くの計算環境で採用されている Fat-treeインターコネクトを持つクラスタシステ
ムにおいて，計算資源とネットワーク資源の両資源を制御する資源割当ポリシを提案・評
価し，提案するジョブ管理システムが実際的なクラスタシステム上で有用であることを確
認する．
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第 3章

SDN を利用した Network-aware
ジョブ管理システムフレームワーク

3.1 はじめに
クラスタシステムは多数の計算ノードをネットワークで相互接続した構成であるため，
クラスタシステムの資源は大別して各計算ノードが持つ CPUやメモリなどの計算資源と，
その計算ノード間を繋ぐネットワーク資源に分類される．クラスタシステム上で計算処理
の大規模化および高速化を実現するためには，できるだけ多数の計算ノードを同時かつ効
率的に利用した分散並列計算を行う必要がある．分散並列計算では計算ノード間で頻繁に
通信を行うため，ジョブの実行時間はジョブに割り当てられた計算ノード間のネットワー
ク性能に依存するところが大きい．したがって，各ジョブの実行性能を最大化するために
は，その処理に適したネットワーク資源と計算資源の組み合わせをジョブに割り当てられ
なければならない．また，クラスタシステムは，一般的に複数のユーザから多数の計算要
求を受け付け，計算環境が許容する範囲で同時に実行されるため，各計算要求に対してど
のように資源を割り当てるかが，個々のジョブの処理時間を短縮させる上で重要となる．
ジョブ管理システムは，クラスタシステムの利用状況を考慮し，資源をジョブに効率的
に割り当てる役割を担う．しかし，2章で述べたように今日利用可能なジョブ管理システ
ムは，計算資源だけを対象に資源管理を行うのみである．このような資源管理では，他の
ジョブの通信との衝突などにより提供される資源における通信性能は保障されないため，
効率的に分散並列計算を実行できる環境を提供できず，システム全体の利用効率も低下さ
せる．これまでは，ハードウェアの性能やその構成によって，十分な通信性能を保証する
ことが前提であった．しかし，大規模化・分散化傾向にあるクラスタシステムではハード
ウェアのみによって通信性能を保証することは困難になると考えられる．
そこで，本研究では，インターコネクトをネットワーク資源として扱うことができる
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ネットワーク資源の動的な制御機能を実現する新しいアプローチで資源管理手法の実現を
目指す．本章では，このような視点から，ネットワーク資源の動的な制御による資源管理
手法の実現可能性を模索するため，ネットワーク資源を動的に制御することによる資源管
理手法のプロトタイプ化を行う．
以下に本章の構成を示す．3.2 節では，ジョブ管理システムからインターコネクトを
ネットワーク資源として扱うための要件を分析する．3.3 節では，3.2 節の要件分析に基
づき，インターコネクトに対するネットワーク制御機能を提案し，その機能を統合した
Network-awareジョブ管理システムフレームワークについて説明する．3.4節では，提案
するジョブ管理システムに対する評価実験について述べる．最後に，3.5節で本章のまと
めを行う．

3.2 ネットワーク資源管理の要件
本節では，ジョブ管理システムからインターコネクトをネットワーク資源として扱うた
めに，まずネットワーク資源についての定義を行い，ネットワーク資源を管理するための
システム要件を分析する．

3.2.1 ネットワーク資源
インターコネクトをネットワーク資源として管理するためには，その資源にあった資
源管理指標を定める必要がある．計算資源と同様にネットワーク資源を扱うため，従来
のジョブ管理システムにおける計算資源の管理割当について確認する．ジョブにおける
CPUへの資源要求は，一般的にジョブで実行する分散並列計算の並列数で行われる．そ
れゆえ，資源の要求量は整数値であり，ジョブ管理システムはその要求数に従いジョブの
プロセスを CPUに割り当てる．1台の計算ノードに同時に割り当てることが可能なジョ
ブプロセスの数はスロット数として管理者によってジョブ管理システムに設定されてい
る．一般的にその値は計算ノードの CPU数および CPUのコア数と同じであるが，CPU

のタイムシェアリング処理によりそれ以上の値も設定可能である．メモリに対するジョブ
の資源要求は使用する容量で行うため，MB（メガバイト）や GB（ギガバイト）等の単
位を指定する必要がある．以上より，ジョブ管理システムにおける計算資源の管理は計算
ノード単位で行われており，各計算ノード上における資源量として CPUに対するスロッ
ト数やメモリ容量が用いられている．
前述の計算資源に対する資源管理を参考に，ジョブ管理システムが管理・割当を行う
ネットワーク資源について分析する．まず，計算資源における計算ノードに相当するイン
ターコネクト上におけるネットワーク資源の管理単位を定義する必要がある．ジョブに割
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り当てた資源におけるインターコネクトの利用は計算ノード間の通信となるため，ネット
ワーク資源の管理単位は割り当てた計算ノード間の通信経路であると考える．通信経路に
対して要求および割当を行う資源量をインターコネクトにおける性能指標である遅延と帯
域幅から検討する．インターコネクトにおける遅延の主な要因は，ネットワークデバイス
の性能およびネットワークデバイスを経由するホップ数が考えられる．ネットワークデバ
イスの性能による遅延については，高性能計算環境の構築時に決定される要因であり，資
源制御による抑制はできない．ネットワークデバイスを経由するホップ数については，計
算ノード間の総リンク長はインターコネクトのトポロジ構造に基づいて算出が可能である
ため，割り当てる計算ノードの配置に依存する．一方，各通信経路における利用可能帯域
幅に関しては，クラスタシステムにおいて実行されている各ジョブの通信状況に依存す
る．帯域幅の測定箇所としては，計算ノード間または各リンクにおける使用帯域幅を測定
する方法が考えられる．ただし，各計算ノードで使用帯域幅を測定した場合，冗長経路を
持つインターコネクトでは，測定結果がどの通信経路における値であるのかを識別するこ
とが困難になると考える．
以上より，提案する Network-awareジョブ管理システムフレームワークにおいて制御す
るネットワーク資源とは，ジョブに割り当てる計算ノード間の通信経路であり，その資源
量として通信経路上における遅延および帯域幅とする．また，インターコネクトをネット
ワーク資源として扱うために必要な情報として，計算ノードの配置も含めたインターコネ
クトのトポロジ構造および各リンクの利用可能帯域幅を取得する必要があると考える．

3.2.2 システム要件
2.3節で説明したように，今日の一般的なジョブ管理システムはインターコネクトは資
源として管理・制御する機能を有していない．計算資源と同様に，インターコネクトを
ネットワーク資源として制御するジョブ管理システムを実現するためには，下記の 5項目
のシステム要件を満たす必要があると考える．以下，各要件について説明する．
（1）ネットワーク資源要求入力インタフェース
ユーザがジョブを投入する際，計算資源と同様にネットワーク資源を要求できなければな
らない．そのためには，ユーザが要求するネットワーク資源量を記載し，システムに伝達
するための直感的なインタフェースが必要不可欠である．また，計算資源同様に要求でき
るよう一貫性のあるインタフェースでなければならない．
（2）ネットワーク資源情報取得機能
インターコネクトの利用状態を考慮してジョブへの資源割当を行うためには，計算資源と
同様にクラスタシステムのネットワーク利用状況を監視し，利用情報を取得するための機
能が必要である．
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（3）ネットワーク資源割当管理機能
ジョブに計算資源を割り当てるのと同様に，ネットワーク資源を明示的に割り当てるため
の機能が必要である．また，実行中のジョブにどのようにネットワーク資源を割り当てた
のかを管理する仕組みも必要となる．
（4）割当資源決定機能
取得されたネットワーク資源情報と計算資源情報及びユーザの資源要求に対し，資源割当
ポリシに基づいて最適な計算資源及びネットワーク資源の組み合わせを割り当てるために
は，ジョブの計算特性やネットワーク利用特性を考慮して割り当てる資源を決定する機能
が不可欠である．
さらに，上記の要件（4）に対しては，下記の要件（5）を満たすことが必要と考える．

（5）任意の資源割当ポリシを配備できるシステム構成
一般的に，資源に対する管理・運用ポリシは，管理組織や資源構成などの要因により，高
性能計算環境ごとに異なる．そのため，管理者が資源割当ポリシを柔軟に設計できるよ
うにする必要がある．これにより，より実用性の高いジョブ管理システムの実現につな
がる．

3.3 SDN-enhanced JMS フレームワーク
本節では，3.2節でまとめた 5つの要件を満たす，ネットワーク資源に対する動的な管
理・割当機能を備えた Network-aware ジョブ管理システムフレームワークについて提案
する．

3.3.1 SDN/OpenFlow

3.2節で述べた 5つの要件を実現するため，新しいネットワークアーキテクチャのコン
セプトである Software Defined Networking（SDN）におけるネットワークのプログラミ
ング性に着目した．SDNにおけるネットワークの構成は，従来のネットワークにおいて
個々のネットワークスイッチで行われていたネットワークパケットの制御機能と転送機能
を分離し，制御機能を 1つのコントローラに集約したアーキテクチャとなる．SDNでは，
ネットワーク環境における管理対象のスイッチを一元的にコントローラで管理する．その
コントローラはソフトウェアとして実装可能であるため，プログラムを書き換えることに
よってネットワークの制御を動的に変更可能である．
この SDN を実現する技術の 1 つとして OpenFlow [45] があり，OpenFlow コント
ローラをソフトウェアとして実装するため，多数の開発フレームワークが提供されてい
る [46-51]．



3.3 SDN-enhanced JMSフレームワーク 23

(a) 従来のネットワーク．
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(b) OpenFlowネットワーク．

図 3.1 従来のネットワークと OpenFlowネットワークの例．

図 3.1に従来のネットワークおよび OpenFlowネットワークの例を示す．通常，Open-

Flow ネットワークは，上述した SDN に基づき，パケット転送を行う複数の OpenFlow

スイッチと，パケットの転送経路を制御する 1 つの OpenFlow コントローラで構成され
る．OpenFlowネットワークにおいて，パケットの転送経路は各 OpenFlowスイッチが持
つ flow table に基づいて決定される．flow table は，対象となるパケットごとに処理を定
義した flow entryの集合である．各 flow entryは，パケットに対する判定条件及び処理方
法と，その flow entryで処理されたパケット数などを記録したフロー統計情報の 3項目で
構成される．

OpenFlow コントローラは，各 OpenFlow スイッチの flow table に flow entry を Open-

Flow プロトコルを通して追加及び削除することができる．例えば，OpenFlow ネット
ワークにおいて，該当する flow entry が flow table に存在しないパケットが届いた場合，
OpenFlow スイッチはそのパケットを OpenFlow コントローラに転送し，どのように処
理するのかを OpenFlow コントローラに問い合わせる．OpenFlow スイッチからの問い
合わせに対し，OpenFlow コントローラはそのパケットに対応した flow entry を生成し，
OpenFlow スイッチの flow table に追加する．この OpenFlow コントローラによる flow

entryの制御により，従来のネットワーク環境では実施が困難であったネットワーク全体
に対する動的な制御を行うことが可能となる．

3.3.2 システム概要
本節では，計算資源とネットワーク資源をともに管理・割当できる Network-awareジョ
ブ管理システムとして，計算資源に対する管理・割当を行う従来のジョブ管理システム
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に対し，3.2節のシステム要件に基づき設計したネットワーク資源動的制御機能を拡張し
た SDN-enhanced JMSフレームワークを提案する．提案する SDN-enhanced JMSフレー
ムワークの構成を図 3.2に示す．上述したように，3.3.1節で述べた OpenFlowを中核技
術として採用し，SDN-enhanced JMSフレームワークを設計する．SDN-enhanced JMSフ
レームワークでは，従来のジョブ管理システムにネットワーク資源に対する機能を備え
た Network Management Module（NMM）と呼ぶ外部モジュールを連携させる．さらに，
NMM は，Brain コンポーネントと OpenFlow コントローラを内包した Network Control

コンポーネントの 2つのモジュールとデータベースで構成する設計とする．このようなモ
ジュール構成により，従来のジョブ管理システムへの改良が最小限に抑えた実装を行うこ
とができる．また，従来のジョブ管理システムのマスターモジュールが実行されている管
理ノード上に NMM が導入できない場合や，異なる管理ノードで既存の OpenFlow コン
トローラが実行されている場合のように，単一管理ノードによる構築ができない環境が想
定される．そのような環境でも SDN-enhanced JMS フレームワークを導入可能とするた
め，ネットワークを介して従来のジョブ管理システムおよび NMM の各コンポーネント
が通信を行う設計とする．

Brainコンポーネントは，従来のジョブ管理システムにおいて計算資源情報に基づいて
生成された計算ノードの割当候補リストを，Network Controlコンポーネントからはネッ
トワーク資源の利用状況を取得し，ジョブに割り当てるべき計算資源とネットワーク資
源を決定する要件（4）を実現するコンポーネントである．また，要件（5）を実現するた
め，ジョブに割り当てる資源を決定するためのポリシの定義を，資源割当ポリシクラスモ
ジュールを介して行う設計とした．資源割当ポリシクラスモジュールは，システム管理者
が任意の資源割当ポリシを自由に設計でき，資源割当ポリシを容易に切り替えて適用でき
るようにするため，スクリプト言語を使用する設計とした．
一方，Network Controlコンポーネントは，OpenFlowを利用して要件（2），（3）を実現す
るためのコンポーネントである．要件（2）のネットワーク資源情報取得機能は，Network

Controlコンポーネントが OpenFlowコントローラおよび各 flow entryが持つ統計情報を
介してネットワーク資源の情報を取得する．要件（3）のネットワーク資源割当管理機能
は，計算ノード間の通信経路を OpenFlowコントローラによる flow entryを用いたネット
ワーク制御によりネットワークフローとして扱うことで実現する．ジョブに割り当てる資
源における flow entry情報は，ネットワーク資源の割当を決定する Brainコンポーネント
で生成された情報から取得する．
なお，要件（1）は，従来のジョブ管理システムにおける計算資源の要求方法を拡張す
ることで実現する．これは，SDN-enhanced JMSフレームワークにおいても，従来のジョ
ブ管理システムと同じ手順でユーザの資源要求及びジョブ投入を可能にするためである．
ネットワーク資源に対する資源要求方法として，SDN-enhanced JMSフレームワークでは
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図 3.2 SDN-enhanced JMSフレームワークの構成．

資源割当ポリシクラスモジュールで定義する資源割当ポリシの名前を指定することによっ
て要求できる設計とした．

3.3.3 システム実装と詳細
本節では，提案する SDN-enhanced JMSフレームワークのプロトタイプ実装の構成，資
源割当の処理の流れ，資源割当ポリシの構成について述べる．

3.3.3.1 SDN-enhanced JMS フレームワークの構成
本節では提案する SDN-enhanced JMS フレームワークのプロトタイプ実装について説
明する．提案する SDN-enhanced JMSフレームワークは，3.3.2節で述べたように，従来の
ジョブ管理システムに NMMを連携させることで実現する．本章における SDN-enhanced
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#!/bin/csh

#$ q QUEUE_NAME

#$ pe ompi 32

#$ l h_vmem = 8gb

#$ l netprio = policy_name

mpirun np $NSLOTS ./a.out

図 3.3 SDN-enhanced JMSフレームワークにおけるジョブスクリプトの記述例．

JMS フレームワークのプロトタイプ実装では，従来のジョブ管理システムとして Open

Grid Scheduler/Grid Engine (OGS/GE) [18]を，NMMに組み込む OpenFlowコントローラ
には前述の OpenFlowコントローラ開発フレームワークの中から Trema [46]を採用した．
Tremaは Rubyまたは C言語でコントローラの実装が可能なフレームワークであるため，
コントローラ設計段階でのスクリプト言語である Ruby による変更の容易さと，実用段
階での C言語による高性能化が期待できる点から，提案する SDN-enhanced JMSフレー
ムワークのプロトタイプ実装に Trema を採用した．なお，本プロトタイプ実装で用いた
OpenFlow仕様のバージョンは 1.0である．また，ジョブ管理システムのマスターモジュー
ルと Brain コンポーネント間及び Brain コンポーネントと Network Control コンポーネ
ント間の通信には XML-RPC [52, 53] を利用する．XML-RPC は Remote Procedure Call

(RPC)プロトコルの一種であり，非常にシンプルな仕様のため広く利用されている．提案
するジョブ管理システムフレームワークでは，従来のジョブ管理システムや OpenFlowコ
ントローラを同一管理ノードに集約できない場合も想定し，汎用性の高い XML-RPC を
用いて通信を行う．以下，3.2節の要件がどのように実装されたかについて説明する．
ネットワーク資源要求入力インタフェース
提案する SDN-enhanced JMS フレームワークのプロトタイプ実装における従来のジョブ
管理システムである OGS/GEの計算資源の要求方法である qsubコマンドに対し，ネット
ワーク資源を要求するための資源要求オプションを拡張することで実現する．qsub コマ
ンドは，ユーザが OGS/GEのマスターモジュールにジョブを投入するために提供されて
いるコマンドである．通常，ユーザはコンパイルなどを行うために提供されている作業用
ノードでジョブスクリプトを引数として qsubコマンドを実行することでジョブの投入を
行う．提案する SDN-enhanced JMSフレームワークにおけるネットワーク資源の要求は，
ユーザの計算資源要求と同様に，ジョブスクリプトにネットワーク資源要求を記述する
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（図 3.3参照）．提案する SDN-enhanced JMSフレームワークのプロトタイプ実装では，こ
のネットワーク資源に対する拡張資源要求オプションを “netprio”という名前で定義して
おり，本オプションの値に後述する資源割当ポリシの名前を指定することでネットワーク
資源の割当手法を要求できる．すなわち，本プロトタイプ実装におけるネットワーク資源
への要求はシステム管理者が定義したポリシに基づいて行われ，ユーザが自由に計算ノー
ド間のトポロジや通信経路における資源量を要求する仕組みは実装していない．
ネットワーク資源情報取得機能
本機能は OpenFlow コントローラを介して実行するため，Network Control コンポーネ
ントに実装する．本ジョブ管理システムフレームワークの実装では，計算環境における
ネットワークトポロジと，ネットワークの各リンクにおける帯域幅と遅延をネットワー
ク資源情報として取得する．計算環境のネットワークトポロジ情報は，OpenFlowコント
ローラによる OpenFlowネットワークの管理においても必要であり，一般的に Link Layer

Discovery Protocol（LLDP） [54] を用いて取得している．提案するジョブ管理システム
フレームワークにおいても，Network Controlコンポーネントが OpenFlowコントローラ
を介して LLDPを実行することによってトポロジ情報を取得するよう実装した．
各リンクにおける帯域幅についての情報は，各 flow entryの統計情報にそのネットワー
クフローにおける転送バイト数を保持しているため，これらの情報からリンクにおける使
用帯域幅を取得する．各リンクにおける使用帯域幅は，上記の転送バイト数と本ジョブ管
理システムフレームワークの設定ファイルに記載する最大帯域幅から算出する．具体的に
は，対象とするリンクに対して，そのリンクを利用する各ネットワークフローの転送パ
ケット量を flow entryの byte countフィールドから取得し，前回取得時からの差分を算出
する．なお，1つのリンクには複数のネットワークフローが存在する場合があるため，転
送パケット量は各 flow entryの byte countフィールドの値の合計値となる．ある時刻 tに
おける flow entry iの byte countフィールドの値を byte counti(t)とし，ネットワーク資
源情報の収集間隔を ∆tとした場合，転送パケット量は下記の式で算出される．

(転送パケット量) =
∑
i

byte counti(t)− byte counti(t−∆t)

この転送パケット量と情報取得間隔の時間を基にその間の使用帯域幅を算出する．

(使用帯域幅) = (転送パケット量)× 8/∆t

この使用可能帯域幅と最大帯域幅との差分を利用可能帯域幅とする．なお，本プロトタイ
プ実装において，Network controlコンポーネントによるネットワーク資源の利用状況の情
報収集間隔∆tは 10秒としている．遅延については，その資源量を本提案 SDN-enhanced

JMS フレームワークでは計算ノード間の通信経路におけるホップ数としているため，そ
の通信経路と取得したインターコネクトのトポロジ情報に基づき算出する．それゆえ，遅
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延の資源量については本機能により定期的に収集されるネットワーク資源情報に含まれ
ない．
ネットワーク資源割当管理機能
本機能は OpenFlowコントローラの機能を利用して実現するため，Network Controlコン
ポーネント内に統合することとした．本機能は，提案するジョブ管理システムフレーム
ワークが決定したジョブへのネットワーク資源割当に従い，そのジョブが使用するネット
ワーク経路の制御を行う．具体的には，Brainコンポーネントが決定したジョブに割り当
てるネットワーク経路に応じて生成された flow entryを flow tableに書き込むことで実現
する．そのため，Network Controlコンポーネントには，XML-RPCを介して Brainコン
ポーネントからジョブに割り当てた flow entry情報を取得する機能を実装した．
割当資源決定機能
本機能は Brainコンポーネントに実装した．計算資源情報に基づいたジョブに割り当てる
計算ノードの選定処理は，従来のジョブ管理システムが有する機能であるため，Brainコ
ンポーネントでは行わない．Brainコンポーネントでは，従来のジョブ管理システムが計
算ノード選定処理で算出した優先度に従い生成した計算ノードの割当候補リストに対し，
インターコネクトの利用状況を反映させた新たな優先度を算出し，その優先度に従い割当
候補リストの順序を変更することによって両資源を考慮した資源割当を実現する．この
ネットワーク資源情報を考慮した新たな優先度の算出方法は後述する資源割当ポリシで定
義される．

Brain コンポーネントが従来のジョブ管理システムの計算ノード割当候補リストに対
して変更を行うため，提案する SDN-enhanced JMS フレームワークでは OGS/GE が持
つ Parallel Environment Queue Sort (PQS) APIを利用する．PQS APIは，OGS/GEの計算
ノード選定処理に対して，システム管理者が定義した規則を反映させることができる．こ
の選定規則の定義は動的ライブラリとして実装する必要がある．本ジョブ管理システムフ
レームワークでは，PQS APIの動的ライブラリを XML-RPCで通信可能な実装とするこ
とで，外部モジュールである NMMの Brainコンポーネントからジョブに割り当てる計算
ノードの割当候補リストを制御可能としている．
任意の資源割当ポリシを配備できるシステム構成
本要件は，Brainコンポーネント上に実装した資源割当ポリシクラスモジュールで実現す
る．資源割当ポリシクラスモジュールは，管理者が資源割当ポリシを定義するスクリプト
を記述するためのインタフェースを提供する．資源割当ポリシを記述するスクリプト言語
に，SDN-enhanced JMSフレームワークでは Rubyを採用する．その理由は，OpenFlow

コントローラとして採用した Tremaにおいて Rubyを使用しているため，NMM内での親
和性が高いためである．資源割当ポリシは Rubyで記述したスクリプトであるため，シス
テム管理者は各資源に対する処理を自由に記述できる設計となっている．また，Brainコ
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図 3.4 SDN-enhanced JMSフレームワークにおける処理の流れ．

ンポーネントが 3.2節の要件（4）を実現するために取得する，従来のジョブ管理システ
ムからの計算資源情報や，Network Controlコンポーネントが収集したネットワーク資源
情報を参照するための APIを，資源割当ポリシクラスモジュールで提供する．資源割当ポ
リシクラスモジュールでは，3.2節の要件（1）による拡張資源要求オプション “netprio”

の値ごとに処理を記述することによって，システム管理者は複数の資源割当ポリシを定義
することができる．

3.3.3.2 資源割当の処理フロー
本節では，提案する SDN-enhanced JMS フレームワークのプロトタイプ実装における
計算資源およびネットワーク資源の割当について説明する．図 3.4は SDN-enhanced JMS

フレームワークにおける資源割当処理を，システムを構成する JMS，Brain，Network

controlに切り分けて処理の流れを示す．
まず，図 3.4 の（a）では，2.3.1.2 節で述べたように，JMS はジョブキューに格納さ
れているジョブから資源割当を行うジョブを選択し，そのジョブのジョブスクリプト
に記載されたユーザの資源要求について確認する．選択されたジョブに対し，提案する
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SDN-enhanced JMS フレームワークのプロトタイプ実装において従来のジョブ管理シス
テムとして採用した OGS/GEの場合，クラスタシステムの計算ノードの中から，ユーザ
の資源要求を満たす計算ノードを抽出し，その計算ノード名を並べたジョブへの割当候補
リストを生成する．その際，割当可能なスロットを持たない計算ノードや，メモリに対す
る資源要求を満たさない計算ノードは割当候補リストから除外される．次に，生成された
計算ノードの割当候補リストに対し，各計算ノードにおける利用状況に基づき，資源利用
の少ない計算ノードからジョブに割り当てるよう並べ替えを行う．通常，OGS/GE にお
けるこの並べ替え処理は，各計算ノードの利用状況として CPUロードアベレージを用い
る．CPUロードアベレージの値は計算ノードで CPUが利用されているほど大きくなるた
め，その値が小さいほど高い優先度を持つ計算ノードとして割当候補リストの上位になる
よう並べ替える．OGS/GEでは，この割当候補リストに対して上位の計算ノードから順に
ジョブに割り当てる計算ノードを決定し，計算資源の割当処理を完了する．一方，提案す
る SDN-enhanced JMS フレームワークでは，割当候補リスト，各計算ノードが持つ割当
候補リストの並べ替えに使用した優先度や割当可能なスロット数やメモリ容量，ジョブに
関する情報とともに上述の PQS APIおよび XML-RPCを介して Brainコンポーネントに
送る．ジョブに関する情報にはジョブ ID，ジョブスクリプトに記述されたスロット数や
メモリ容量などのユーザが要求する資源量があげられる．
計算ノードの割当候補リストを受け取った Brainコンポーネントは，（b），（c）の処理
で，Network Controlコンポーネントからインターコネクトのトポロジ情報および各リン
クにおいて使用されている帯域幅と最大帯域幅の値をネットワーク資源情報として取得す
る．インターコネクトのトポロジ情報は，計算ノードやネットワークスイッチの一覧で構
成されるノード情報と，それらのノードがどのように接続されているかの対応をリストに
したリンク情報で構成される．（d）の処理で，割当候補リストの各計算ノードが持つ計算
資源に関する優先度，取得したネットワーク資源情報，ユーザが要求する資源量に基づ
き，後述する資源割当ポリシにおける処理の定義に従って各計算ノードにおける新たな優
先度を定める．新たに設定された優先度に従い，計算ノードの割当候補リストを並べ替
え，その変更された割当候補リストを OGS/GE に送り返すことで，（e）において Brain

コンポーネントで決定したジョブへの計算ノードの割当を OGS/GEに反映させることが
できる．（e）でジョブへの割当が確定した計算ノードリストを Brainコンポーネントに送
り，Brainコンポーネントはその各計算ノード間の通信経路を flow entryとして生成する．
生成された flow entryリストは Network Controlコンポーネントに送られ，（g）でジョブ
プロセスの計算ノードへの割当を，（h）で flow entryリストの OpenFlowスイッチへの設
定を行うことで，計算資源，ネットワーク資源のそれぞれの資源割当を完了する．
提案する SDN-enhanced JMS フレームワークによる計算ノードの割当候補リストへの
制御の例を図 3.5 に示す．図 3.5 ではジョブに 4 台の計算ノードを割り当てる状況を想
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図 3.5 提案する SDN-enhanced JMS フレームワークにおける計算ノードの割当候補
リストに対する処理の例（4台の計算ノードをジョブに割り当てる場合）．

定している．従来のジョブ管理システムである OGS/GEによる資源割当では，図 3.5-(a)

に従い，node03，node01，node05，node07がジョブに割り当てられる．一方，提案する
SDN-enhanced JMSフレームワークの図 3.4の（d）の処理で，後述の資源割当ポリシに
おける定義に従い新たに優先度を各計算ノードに設定した結果，図 3.5-(b)で示す 4台の
計算ノードが node03，node01，node02，node04の順で高い優先度となったと仮定する．
このとき，Brain コンポーネントは新たな優先度に従い，それらの計算ノードが割当候
補リストの上位に来るよう並べ替えを行い，図 3.5-(c)に示す割当候補リストに修正して
OGS/GEへと送り返すため，OGS/GEは図 3.4の（e）の処理で上述の 4台の計算ノード
をジョブに割り当てる．

3.3.3.3 資源割当ポリシ
本節では，資源割当ポリシクラスモジュールを介してシステム管理者が定義できる資源
割当ポリシについて述べる．資源割当ポリシクラスモジュールでは，3.3.3.1節で述べたよ
うに，拡張資源要求オプション “netprio”で指定する資源割当ポリシ名ごとにジョブへの
計算資源およびネットワーク資源の割当処理を定義できる．資源割当ポリシは，ジョブへ
の計算資源およびネットワーク資源の割当を制御するため，NMMの Brainコンポーネン
トにおける処理を 3つのフェーズに分割し，各フェーズに対する処理を定義する設計とし
ている．Brainコンポーネントにおける 3つの処理フェーズは，（1）図 3.4の（b）と（d）
の処理である計算ノード割当候補リストの修正処理，（2）（f）の処理であるジョブに割り
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当てる計算ノード間の通信経路の設定処理，（3）ジョブの実行終了時におけるネットワー
ク資源に対する後処理である．この各フェーズにおける処理を，（1）については sort qlist

関数，（2）については set route関数，（3）については del route関数に定義する．
sort qlist関数は，PQS APIから取得する計算ノードの割当候補リストに対し，Network

Controlコンポーネントから取得したネットワーク資源情報を計算ノードの優先度にどの
ように反映させて新たな優先度を算出するのかを定義する関数である．本関数での定義に
よりジョブへの資源割当が決定されるため，資源割当ポリシの設計において最も重要な関
数となる．set route関数は，割当計算ノードリストの各計算ノード間における通信経路に
対応した flow entryを生成し，それらの flow entryを OpenFlowスイッチの flow tableに
追加するよう Network Controlコンポーネントに指示を出す関数である．そのため，この
関数における処理は，基本的には，どの資源割当ポリシにおいても同じとなるが，計算
ノード間の割当通信経路の再探索や通信経路の設定以外の OpenFlow ネットワークへの
設定等も行えるよう自由に定義できる設計とした．del route 関数は，ジョブが終了した
際に，そのジョブに割り当てられた flow entryを OpenFlowスイッチの flow tableから削
除するための処理を定義する関数である．この関数における処理も set route関数と同様，
基本的には共通の処理となるが，資源割当ポリシの独自の後処理が追加できるよう定義可
能な設計とした．
資源割当ポリシを配備した資源割当ポリシクラスモジュールの擬似コードを図 3.6に示
す．図 3.6は，2つの資源割当ポリシ “Policy1”と “Policy2”を配備した場合の例であり，
ユーザがジョブスクリプトの “netprio” でこれらの資源割当ポリシ名を指定することで，
その資源割当ポリシ名で定義された処理に従い Brainコンポーネントがジョブへの割当資
源を決定する．また，“netprio”の値が未指定，または，該当しない資源割当ポリシ名が指
定された場合の例外処理として，OGS/GE による資源割当と同様の動作をする処理も定
義されている．資源割当ポリシクラスモジュールは，3.3.3.1節で述べたように Rubyを用
いて資源割当ポリシを記述する設計となっているため，システム管理者は SDN-enhanced

JMS フレームワークを停止することなく資源割当ポリシの追加・変更を行うことが可能
である．
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## Resource Assignment Policy

class Policy

def sort_qlist ( )

case netprio

when Policy1 then

Policy1

=

when Policy2 then

Policy2

=

else

=

end

return

end

def set_route ( )

case netprio

when Policy1 then

flow entry = Policy1

flow entry

when Policy2 then

flow entry = Policy2

flow entry

else

flow entry = flow entry

end

return flow entry

end

def del_route ( )

case netprio

when Policy1 then

Policy1

when Policy2 then

Policy2

end

flow entry

end

end

図 3.6 資源割当ポリシを配備した資源割当ポリシクラスモジュールの擬似コード．
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3.4 評価実験
3.3.2節の要件に基づき提案・実装したジョブ管理システムフレームワークの実現可能
性を検証するため，単純な 2 層 Flat-tree インターコネクトを有するクラスタシステムを
ターゲットとした資源割当ポリシを実装し，以下の評価実験を行った．

3.4.1 実験で用いる資源割当ポリシ
提案するジョブ管理システムフレームワークにおいて資源割当を行うためには，資源割
当ポリシクラスモジュールを介して資源割当ポリシを定義する必要がある．そこで，本実
験で用いる資源割当ポリシとして，“hop”と “bandwidth”の 2種類の簡易的な資源割当ポ
リシを実装して資源割当ポリシクラスモジュールに配備する．“hop”は，割り当てる計算
ノード間の遅延が最小となる計算ノードの組み合わせを求めてジョブに資源割当を行う遅
延考慮ポリシである．“bandwidth”は帯域考慮ポリシで，ジョブに割り当てる計算ノード
間の利用可能帯域が最大となる計算ノードの組み合わせを探索する．
この 2つの資源割当ポリシにおける割当資源決定処理の流れは基本的に同様であり，下
記の手順で行われる．

(1) ネットワーク資源に関する情報を取得する．
(2) 割当候補リストの計算ノード間の通信経路における対象とする資源量を算出し，そ

の通信経路の優先度とする．
(3) 3台以上の計算ノードが要求されている場合，要求台数の計算ノードの組み合わせ

における全通信経路の資源量からその組み合わせの優先度を算出する．
(4) 最も高い優先度を持つ組み合わせの計算ノードがジョブに割り当てられるよう割当

候補リストの修正を行う．

（1）については資源割当ポリシクラスモジュールが提供する機能を用いて，インター
コネクトのトポロジ情報と各リンクにおける利用可能帯域幅を取得する．（2）において，
資源量の算出処理はダイクストラアルゴリズムによる経路探索処理を利用して実装した．
具体的に，遅延考慮ポリシでは 2台の計算ノード間の通信経路を探索する際のホップ数を
カウントすることで資源量とし，帯域考慮ポリシでは通信経路を構成する各リンクにおけ
る利用可能帯域幅の最小値をその通信経路の資源量とする．算出した資源量は，ホップ数
については昇順で，利用可能帯域幅については降順で優先度として利用する．（3）では，
（2）で求めた資源量を用い，要求台数の計算ノードの組み合わせにおける全通信経路の資
源量の平均値を算出し，その計算ノードの組み合わせの優先度とする．（4）では，（3）の
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L1 L2 L3 L4

SW1

SW3 SW5SW4SW2

JMS

NMM

図 3.7 クラスタシステムの構成．

表 3.1 計算ノードの仕様．

OS CentOS 6.2

CPU Intel Xeon E5-2620(2.00GHz) x2

Memory 64GB

NIC on board Intel I350 Gigabit Ethernet

結果から最も高い優先度を持つ組み合わせの計算ノードが割当候補リストの上位になるよ
う計算ノードの優先度を修正し，リストの並べ替えを行う．

3.4.2 実験環境
実験環境として，図 3.7に示す構成の Flat-treeトポロジのインターコネクトを持つクラ
スタシステムを用いる．本クラスタシステムは，28台の表 3.1に示す計算ノードと，5台
の OpenFlow スイッチで構成されている．なお，使用した OpenFlow スイッチは 3 台の
NEC UNIVERGE PF5240であり，SW2と SW3，SW4と SW5はそれぞれ同一スイッチ
を VLANで 2つに分割して使用している．それぞれ計算ノード及び OpenFlowスイッチ
を繋ぐネットワークはすべて Gigabit Ethernetである．管理ノードは 1台であり，ジョブ
管理システムのマスターモジュール，NMM，OpenFlowコントローラはすべてこのノー
ドに集約されている．

3.4.3 SDN-enhanced JMS フレームワークの動作検証
本節では，提案する SDN-enhanced JMS フレームワークによるネットワーク資源の制
御・割当を検証するため，ジョブにおける主な処理としてプロセス間での通信だけを行う
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表 3.2 投入したジョブセットの並列数．

ジョブ番号 1 2 3 4 5 6 7 8 9 10

並列数 6 10 12 14 6 2 10 4 8 10

ジョブ番号 11 12 13 14 15 16 17 18 19 20

並列数 2 8 8 4 14 12 4 2 8 12

ジョブ番号 21 22 23 24 25 26 27 28 29 30

並列数 8 8 8 6 6 4 4 4 4 2

プログラムを用いて評価を行う．

3.4.3.1 実験の目的と方法
本実験の目的は，ネットワーク資源を考慮することによるジョブへの資源割当の効果を
評価することにある．そこで，ジョブ管理システムが 1つの計算ノードに割り当てるジョ
ブのプロセスを 1 つに制限することで，ネットワーク資源を使用しないプロセス間通信
を抑制する．また，本実験で使用するジョブはすべて，ジョブの実行時間が，基本的に割
り当てられたネットワーク資源の性能に依存する Networkインテンシブジョブを用いる．
そのようなジョブで実行するプログラムとして，本実験で用いるジョブでは 100 MiBの
データをプロセス間で相互に交換するプログラムを採用する．具体的には，ジョブにお
けるデータ交換処理として，本プログラムでは，ジョブの各プロセスが持つ 100MiB の
データに対して MPI Alltoall を使用した全プロセス間でのデータ交換を 10 回実行する．
MPI Alltoall は分散並列計算で広く利用されている MPI ライブラリが提供する関数の 1

つであり，分散並列計算の全プロセスが自身の持つデータの該当部分を全プロセスに対し
て送信する処理である．本論文では，ジョブで実行する分散並列計算として，クラスタシ
ステムで標準的に使用されている MPIを用いたプログラムを想定しているため，実験で
はジョブのプロセス間における通信にMPIライブラリを使用するプログラムを採用する．
プログラム構築環境には，コンパイラに gcc-4.4.6，MPI ライブラリには OpenMPI 1.5.4

を使用した．
実験は OGS/GE及び SDN-enhanced JMSフレームワークに対して任意の並列数を要求
する，30個のジョブで構成されたジョブセットを投入することで行う．並列数について
は，基本的に 2個以上のジョブが同時に実行されるようにするため，2並列から 14並列
までの同じ乱数列を用いる．ジョブセットにおける各ジョブの並列数を表 3.2に示す．な
お，各ジョブ管理システムへのジョブの投入はジョブ番号の順に実施するが，実行順序は
ジョブ管理システムのジョブ選択機能によって決定される．本実験では各ジョブ管理シス
テムとも OGS/GEのジョブ選択機能を利用する．
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3.4.3.2 遅延考慮ポリシでの性能評価
OGS/GEに対して 3.4.3.1節で述べたジョブセットを投入した場合と，提案するジョブ
管理システムフレームワークに対して遅延考慮ポリシ “hop” を要求してジョブセットを
投入した場合について，各ジョブの実行時間の測定を行った．
各ジョブの実行時間の比較結果を図 3.8に示す．図 3.8におけるジョブ番号とは，ジョ
ブセット内における各ジョブの並び順を示す番号であり，ジョブ管理システムにはこの番
号順で投入される．なお，本評価実験では，ジョブセットを一度にジョブ管理システムに
投入するためジョブの投入順序と実行順序は必ずしも一致しない．ただし，ジョブの実行
順の決定は両ジョブ管理システムとも OGS/GEが持つジョブ選択機能によって行われる
ため，資源割当を行うジョブの選択条件は同じである．
図 3.8より，提案するジョブ管理システムフレームワークによって資源を割り当てられ
たジョブの方が実行時間を縮減できたことが確認できた．実行時間の縮減は平均で 44.8%

であり，その効果は通信量が多くなる並列数が大きいジョブほど顕著に表れた．この結果
は，提案するジョブ管理システムフレームワークによる資源割当が，OGS/GEによる資源
割当よりも図 3.7におけるリンク L1～L4での輻輳の発生を抑制したためと考える．

OGS/GE による資源割当では計算ノード間の遅延を考慮せずに計算資源をジョブに割
り当てるため，異なる OpenFlowスイッチに接続された計算ノードの組み合わせになる場
合が多く生じる．これにより，OpenFlowスイッチ SW1を経由する通信が多くなり，リ
ンク L1～L4で輻輳を発生させたと考える．一方，遅延考慮ポリシでは，計算ノード間の
ホップ数を小さくするため，同じ OpenFlowスイッチに接続された計算ノードを優先的に
割り当てる．これにより，SW1を経由した通信が減少するため，スイッチ間のリンクに
おける輻輳の発生が抑えられたと考える．
また，遅延による影響が出やすい小さなメッセージサイズでデータ交換を行うジョブを
用いて，遅延考慮ポリシの効果について評価を行った．ジョブで実行するプログラムに
は，前述の評価プログラムに対して取り扱うデータサイズを 1 KiBに，実行回数を 5,000

回に変更したプログラムを使用した．なお，実行プログラムにおける変更以外は，前述の
100 MiB のデータサイズにおける評価実験と同じ条件で実施する．その結果を図 3.9 に
示す．
図 3.9より，小さなメッセージサイズを扱うジョブにおいても，遅延考慮ポリシに基づ
いて資源を割り当てた場合の方が実行時間を縮減できることを確認できた．そのジョブの
実行時間の縮減率は平均で 15.3%であった．なお，100 MiBのデータを用いた場合と比
較するとジョブの実行時間の縮減率が落ちている理由としては，1 KiBのデータでの実験
におけるジョブの通信処理の時間が 100 MiBの場合より短く，ジョブの実行時間に占め
る通信処理の時間の割合が少ないため，通信処理の時間の縮減によるジョブの実行時間へ
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の影響が少なくなったためと考える．実際，30ジョブにおけるジョブの実行時間に占め
る通信処理の時間の割合は，100 MiBの実験では多くのジョブで 90%以上を占めていた
のに対し，1 KiBの実験では 45%～60%程度であった．
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図 3.8 遅延考慮ポリシにおける各ジョブの実行時間の比較（100MiB）．
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図 3.9 遅延考慮ポリシにおける各ジョブの実行時間の比較（1KiB）．
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3.4.3.3 帯域考慮ポリシでの性能評価
次に，提案するジョブ管理システムフレームワークに対して帯域考慮ポリシ “bandwidth”

を要求した場合における各ジョブの実行時間を，従来のジョブ管理システムの場合と比較
した．その結果を図 3.10に示す．この資源割当ポリシを用いた場合も各ジョブにおける
実行時間が縮減されていることが確認でき，その差は平均で 30.7% であった．その傾向
は遅延考慮ポリシを適用した場合と類似している．これは，帯域考慮ポリシによる割当資
源の決定においても，割り当てる計算ノードが同じ OpenFlowスイッチに集約されるよう
選択されるためである．OpenFlowスイッチ間のリンク L1～L4は複数の通信で共有され
るため，各リンクにおける通信量は大きい場合が多い．本資源割当ポリシでは利用可能
帯域でジョブに割り当てる計算ノードを選択するため，OpenFlowスイッチ SW1を経由
する計算ノードの組み合わせをジョブに割り当てる可能性は低くなる．その結果，同じ
OpenFlow スイッチに接続された計算ノードの組み合わせで資源割当が実行されるため，
遅延を考慮した場合と似た結果になったと考える．
また，遅延考慮ポリシの実験と同様に，帯域考慮ポリシにおいてもデータサイズに 1

KiB を用いた小さなメッセージサイズでデータ交換を行うジョブによる実験を行った．
実験の条件およびジョブで実行するプログラムは 3.4.3.2 節と同様である．その結果を
図 3.11に示す．
図 3.11から，帯域考慮ポリシにおいても，提案する SDN-enhanced JMSによるジョブ
への資源割当の方が実行時間を縮減できることを確認できた．そのジョブの実行時間の縮
減率は平均で 6.0%であった．100 MiBのデータに比べて実行時間の縮減率が減少した理
由は遅延考慮ポリシの場合と同様であると考える．また，遅延考慮ポリシによる実行時間
の縮減率よりも低下した理由としては，帯域考慮ポリシは資源割当時の利用可能帯域幅の
情報に基づきジョブに割り当てる計算ノードを決定しているため，ジョブが利用する帯域
幅が小さい本実験では適切な通信経路を持つ計算ノードの組み合わせをジョブに割り当て
ることができていなかった可能性が考えられる．図 3.9と比較した場合，他のジョブが実
行中に資源割当が行われた後半のジョブにおける実行時間は，図 3.11では遅延考慮ポリ
シの場合に比べてあまり縮減されていない．
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3.4.3.4 ジョブへの計算ノードの割当
本節では，提案する SDN-enhanced JMS フレームワークにより，インターコネクトの
利用状況を考慮したジョブへの計算ノードの割当が行われていることを確認する．3.4.3.2

節及び 3.4.3.3 節の実験において，1 回のジョブセットの投入での各ジョブ管理システム
によるジョブへの計算ノードの割当結果を図 3.12～図 3.14に示す．図 3.12は OGS/GE

を，図 3.13は遅延考慮ポリシを適用した場合，図 3.14は帯域考慮ポリシを適用した場合
のジョブへの計算ノードの割当結果である．図 3.12～図 3.14では，縦軸は本実験で使用
した PCクラスタシステムの各計算ノード番号を，横軸は時間を示す．なお，各グラフ中
に描かれた破線は，同一 OpenFlowスイッチに接続された計算ノードの範囲を示す．
図 3.12と比較すると，図 3.13及び図 3.14では，1つのジョブが同一 OpenFlowスイッ
チに接続された計算ノードに集約して割り当てられる傾向にあることが確認できる．その
結果，どちらの資源割当ポリシを適用した場合にも，従来のジョブ管理システムによる計
算ノードの割当よりも図 3.7の SW1を経由した通信を行う頻度は低かったと考えられる．
それゆえ，PC クラスタシステムのスイッチ間のリンクにおける輻輳の発生を抑制でき，
3.4.3.2節及び 3.4.3.3節における各ジョブの実行時間の短縮が実現できたと考える．
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図 3.12 ジョブへの計算ノードの割当結果（OGS/GE）．
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図 3.13 ジョブへの計算ノードの割当結果（遅延考慮ポリシ）．



3.4 評価実験 47

1

1

1

1

1

1

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

2

2

5

5

5

5

5

5

7

7

7

7

7

7

7

7

7

7

24

24

24

24

24

24

16

16

16

16

16

16

16

16

16

16

16

16

25

25

25

25

25

25

8

8

8

8

6

6

10

10

10

10

10

10

10

10

10

10

14

14

14

14

11

11

17

17

17

17

18

18

26

26

26

26

20

20

20

20

20

20

20

20

20

20

20

20

30

30

9

9

9

9

9

9

9

9

27

27

27

27

28

28

28

28

29

29

29

29

4

4

4

4

4

4

4

4

4

4

4

4

4

4

15

15

15

15

15

15

15

15

15

15

15

15

15

15

12

12

12

12

12

12

12

12

13

13

13

13

13

13

13

13

19

19

19

19

19

19

19

19

21

21

21

21

21

21

21

21

22

22

22

22

22

22

22

22

23

23

23

23

23

23

23

23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

図 3.14 ジョブへの計算ノードの割当結果（帯域考慮ポリシ）．
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3.4.4 NAS Parallel Benchmarks による性能分析
クラスタシステム上で実行される実際のアプリケーションへの SDN-enhanced JMS

フレームワークによる資源割当の有効性を検証するため，基本的な分散並列計算を用
いたベンチマークプログラムである NASA Advanced Supercomputing（NAS）Parallel

Benchmarks [55, 56]を実行するジョブを用いて各ジョブ管理システムにおける実行性能
を評価した．以下，NAS Parallel Benchmarksの概要について述べた後，実験結果につい
て検証する．

3.4.4.1 NAS Parallel Benchmarks

NAS Parallel Benchmarksは，NASA（National Aeronautics Space Administration）Ames

Research Centerで開発された，HPC分野でよく知られている分散並列計算のベンチマーク
スイートである．NAS Parallel Benchmarksは，5種類の Parallel Kernel Benchmarks（EP，
MG，CG，FT，IS）と，3種類の Parallel CFD（Computational Fluid Dynamics）Application

Benchmarks（LU，SP，BT）で構成されている．また，各ベンチマークは計算で使用する
問題サイズを 5つのクラス（A，B，C，W，S）から選択することができる．

NAS Parallel Benchmarksの各ベンチマークで行う計算の内容と特性について概説する．
EP（Embarrassingly Parallel benchmark）は，ガウス分布に従う擬似乱数を用いて 2次元統
計情報を処理する並列プログラムである．このベンチマークプログラムの特性として，こ
のベンチマークは並列計算のプロセス間での通信をほとんど行わないことがあげられる．
MG（Multigrid benchmark）は 3次元ポアソン方程式を V-Cycleマルチグリッド法を用い
て解く並列プログラムである．MGの処理は 4つのフェーズで構成されており，各フェー
ズの終了時にプロセス間で通信を行う．CG（Conjugate Gradient benchmark）は，大規模
疎行列の最小固有値を共役勾配法を用いて算出する並列プログラムであり，行列ベクトル
積の性能評価に用いられる．FT（3-D FFT PDE benchmark）は，3次元 FFT（Fast Fourier

Transform）を用いて偏微分方程式を解く並列プログラムである．このプログラムでは，各
プロセスでの FFT計算終了後に行われるデータ交換および 3次元 FFT後のチェックサム
計算において通信が発生する．IS（Integer Sort benchmark）は，バケットソートアルゴリ
ズムを用いて整数データのソートを行う並列プログラムである．このプログラムもデータ
交換のために通信が発生する．Parallel CFD Application Benchmarksの LU（Lowerupper

Diagonal），SP（Scalar Pentadiagonal），BT（block tridiagonal）は，一般的な流体力学計
算のシミュレーションベンチマークであり，実行性能が通信性能に大きく影響されること
が知られている．
これら 8 つのベンチマークにおいて，EP を除いた各ベンチマークには，実行でき
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る並列数に制限がある．MG，CG，FT，IS，LU の 5 つのベンチマークでは並列数が
2n (n = 1, 2, 3...)，SPと BTの 2つのベンチマークでは n2 (n = 1, 2, 3...)である必要が
ある．

3.4.4.2 NAS Parallel Benchmarks による評価実験
本実験で使用した NAS Parallel Benchmarksは Ver.3.3.1であり，問題サイズには Class

B を採用した．なお，NAS Parallel Benchmarks を構成する 8 つのベンチマークには，
3.4.4.1 節で述べたように，それぞれ実行できる並列数に制限がある．また，各ジョブ管
理システムの資源割当によるジョブへの資源割当の効果を評価するため，複数のジョブが
同時に実行される必要がある．そこで，本実験ではこれらの条件をすべて満たす 4 並列
のジョブのみを用い，1試行で投入するジョブセットは本評価環境で同時実行が可能であ
る 7ジョブで構成する．同じ並列数のジョブで構成されたジョブセットを投入した場合，
初めに割り当てられた計算ノードの組み合わせのまま順次ジョブが実行される可能性が高
い．そこで，様々な計算ノードの組み合わせで評価するためジョブセットは初期に割り当
てられるジョブ数を 1試行とし，これを繰り返して JMSの資源割当機能によるジョブの
実行性能差を評価する．
各ジョブ管理システムにおけるベンチマークの平均実行時間を図 3.15に示す．図 3.15

より，提案する SDN-enhanced JMS フレームワークによって資源を割り当てられたジョ
ブの方が，いずれのベンチマークにおいてもその平均実行時間は同等，または短縮できた
ことが確認できた．特に，FTベンチマークと BTベンチマークで平均実行時間が大きく
縮減されており，その縮減率は FTで約 18%，BTで約 10%であった．本実験において，
遅延考慮ポリシと帯域考慮ポリシによる資源割当での平均実行時間の差は現れなかった．
これは，本実験のジョブは 4並列であることから，どちらの資源割当ポリシによるジョブ
への計算ノードの割当においても，スイッチ間のリンク上で通信衝突が発生したためと考
える．

EPベンチマークについては，3.4.4.1節で述べたように，プロセス間の通信をほとんど
行わないため，各ジョブ管理システムにおける資源割当の違いに起因する実行時間の差
は現れないはずである．しかし，本実験における結果では，提案する SDN-enhanced JMS

フレームワークの両方の資源割当ポリシにおいて平均実行時間が短くなるとの結果となっ
た．しかし，これらのジョブ平均実行時間の差はどちらの資源割当ポリシを用いた場合に
おいても約 2秒程度であり，これは平均実行時間の約 2%であることから，誤差の範囲で
あると考える．ISベンチマークと SPベンチマークについては，ジョブの平均実行時間が
短いことから，その時間に占める通信時間も短く，提案する SDN-enhanced JMS フレー
ムワークの資源割当による通信時間の削減効果が少なかったと考えられる．
以上より，提案する SDN-enhanced JMS フレームワークによるネットワーク資源を考
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慮した計算資源割当は，実アプリケーションに近いプログラムにおいても有効であること
を確認できた．
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図 3.15 NAS Parallel Benchmarksによる比較．
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3.4.5 大規模クラスタシステムへの適用に向けた課題
本節では，提案した SDN-enhanced JMS フレームワークの大規模クラスタシステムへ
の適用について議論する．提案した SDN-enhanced JMS フレームワークを数千・数万の
計算ノードで構成されるような大規模クラスタシステムに適用することを想定した場合，
インターコネクトにおけるスイッチ数やリンク数は大規模かつ複雑になると考えられる．
このような計算環境で実行されるジョブは，より多くの計算ノードを利用した分散並列計
算になると考えられるため，ジョブの実行性能は割り当てられた計算ノード間における通
信性能に大きく影響されると考えられる．それゆえ，割り当てるネットワーク資源を制御
して高い通信性能を提供することによる効果はより高くなると考えられる．一方，要求に
適したネットワーク資源の探索処理のオーバーヘッドはネットワーク資源の規模が大きく
なるほど増加することが想定されるため，資源情報の管理や最適な割当資源の探索手法に
関してさらなる工夫が必要になると考える．
本章で提案した SDN-enhanced JMS フレームワークの実装において，最適な割当資源
の探探索処理のオーバーヘッド時間は，割当候補リストの計算ノード数，ジョブが要求す
る計算ノード数，計算ノード間の通信経路数やその経路におけるホップ数を決めるイン
ターコネクトのトポロジ構造によって決定されると考えられる．本章で評価に使用した遅
延考慮ポリシと帯域考慮ポリシの場合，割当候補リストの計算ノード数とジョブが要求す
る計算ノード数が割当資源の決定に要する時間に影響するパラメータとなる．3.4.3節の
実験において，連続してジョブが割り当てられた計算ノードにおける前のジョブの終了時
間と次のジョブの開始時間の差を算出したところ，OGS/GE では平均 118.8 秒であった
のに対し，SDN-enhanced JMSフレームワークでは 188.7秒となり，その差は 69.9秒で
58 % 増加している．その一方で，3.4.3.2 節の 100 MiB のデータを用いた実験では平均
44.8%のジョブの実行時間縮減ができているため，単純に計算した場合，156秒以上の通
信処理を行うジョブであれば，ジョブが計算ノードを専有する時間を削減できる．

3.5 おわりに
本章では，従来のジョブ管理システムとして採用した OGS/GEにおける計算資源管理
に対して，SDNの一実装である OpenFlowを利用したネットワーク制御機能を拡張する
ことによって，計算環境におけるネットワーク資源と計算資源をともに管理し，両資源
の利用状況やユーザの要求を考慮した資源割当を実現する SDN-enhanced JMS フレーム
ワークを提案・実装した．提案・実装した SDN-enhanced JMSフレームワークでは，シス
テム管理者が資源割当ポリシクラスモジュールを編集することによって，ユーザの資源要
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求に対する柔軟な資源割当制御を実現した．SDN-enhanced JMS フレームワークの評価
では，シンプルなトポロジである Flat-treeインターコネクトを有するクラスタシステムを
ターゲットとして，資源割当ポリシに遅延及び帯域を考慮した 2種類のポリシを定義し，
従来のジョブ管理システムとの資源割当の違いによるジョブの実行性能の差を比較した．
その結果，SDN-enhanced JMSフレームワークによるネットワーク資源を考慮したジョブ
への資源割当は，従来のジョブ管理システムの場合より高い実行性能を得られる資源を提
供することが確認できた．これにより，ネットワーク資源の動的な制御による資源管理手
法の実現可能性を検証できたと考える．
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第 4章

Fat-treeインターコネクトを持つク
ラスタシステムのための資源割当ポ
リシ

4.1 はじめに
クラスタシステム上で分散並列計算を効率的に実行するためには，最適な計算資源と
ネットワーク資源がユーザの計算要求に割り当てられる必要がある．前章では，計算資源
とネットワーク資源をともに管理・制御するための Network-awareジョブ管理システムフ
レームワークとして SDN-enhanced JMSフレームワークを提案・実装し，単純な Flat-tree

トポロジのインターコネクトを有するクラスタシステム上でその実現可能性を評価した．
しかし，前章で提案した SDN-enhanced JMS フレームワークが現実的なインターコネク
トで構成されるクラスタシステム上で，ユーザの計算要求に対して効率的に資源を割り当
てられるかは検証されていない．このことは，ネットワーク資源を動的に制御するジョブ
管理システムの有用性および実用性を評価する上で不可欠である．ネットワーク資源であ
る計算ノード間の通信経路では，分散並列計算の実行性能に影響を与える遅延や帯域幅な
ど複数の性能指標を考慮する必要があるため，計算資源の場合に比べてジョブに割り当て
る資源の判定基準が複雑となる．そこで，本章では，冗長経路を持つインターコネクトと
して，実際のクラスタシステムの多くが採用する Fat-treeインターコネクトを持つクラス
タシステムを対象とし，高い性能を得られる計算資源およびネットワーク資源をジョブに
割り当てる資源割当ポリシを設計・実装した上で，SDN-enhanced JMSフレームワークの
有用性・実用性を評価する．
近年のクラスタシステムでは，インターコネクトにおける通信の負荷分散と広帯域化・
耐障害性の観点から，冗長経路を持つトポロジで構築されたインターコネクトを採用して
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いる．冗長経路を持つインターコネクトは，当然，単一経路のトポロジで構成されたイン
ターコネクトよりも多くのリンクを持つため，トポロジ構造が複雑になる．その一方で，
計算ノード間に複数の通信経路を有するため，各計算ノードからの通信を複数の通信経路
に分散することで，広帯域の確保および通信衝突の回避ができるというメリットがある．
冗長経路を持つインターコネクト上では複数の通信経路への負荷分散を行う必要がある
が，通常，その制御は各スイッチが持つ機能により実現される．そのため，スイッチにお
ける冗長経路への通信の負荷分散は，ジョブ管理システムにおける計算資源の割当とは独
立して制御される．例えば，冗長経路への通信の負荷分散の制御が，各計算ノードが持つ
ネットワーク機器の情報に基づいて静的に行われる場合，従来のジョブ管理システムで
は，インターコネクト上の一部のリンクに通信が集中するような偏った計算資源にジョブ
を割り当てるような状況を引き起こす可能性がある．このとき，通信が集中したリンクを
含む通信経路を利用する計算ノードが割り当てられたジョブは，そのリンク上で必要な帯
域幅を得られず，他の通信との衝突も発生するため，高い通信性能を得ることができな
い．また，このように一部のリンクに通信が偏った状況は，インターコネクト全体におけ
る通信の負荷分散の観点からも非効率な状態となる．それゆえ，個々のジョブに高い実行
性能が得られる資源を提供し，システム全体を効率的に運用するためには，通信衝突が発
生するような状況を回避する必要がある．
本章では，冗長経路を持つ実際的なクラスタシステムにおいて，各計算ノード間の冗長
経路およびインターコネクト全体に対して効率的な通信の負荷分散について述べる．負荷
分散の実現方法として，SDN-enhanced JMSフレームワークによるジョブへの計算ノード
および計算ノード間の通信経路の割当制御を行う．また，ネットワーク資源を計算資源と
同様に動的に制御するジョブ管理システムの有用性および実用性を評価・検証する．冗長
経路を有するインターコネクトとして，本章では今日多くのクラスタシステムで採用され
ている Fat-treeトポロジで構成されたインターコネクトを対象とする．
以下，本章の構成を示す．4.2節では，本章で想定する Fat-treeトポロジ構成のインター
コネクトを持つクラスタシステム上で回避すべき資源割当状況を示し，SDN-enhanced

JMS フレームワークに配備する資源割当ポリシに求められる処理を分析する．4.3 節で
は，4.2節の分析結果に基づき，資源の利用状況を考慮した計算ノードの割当および計算
ノード間の通信経路の選択を行う資源割当ポリシを提案し，設計・実装について説明す
る．4.4節では，提案する資源割当ポリシに対する評価実験を行い，得られた結果からそ
の有用性および実用性について議論する．最後に，4.5節で本章のまとめを行う．
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4.2 問題分析
本節では，冗長経路を有するインターコネクトの代表例として本章で対象とした Fat-tree

トポロジのインターコネクトについて，特徴と回避すべき資源割当状況に関して分析す
る．分析した結果から，Fat-treeインターコネクトを対象とした資源割当ポリシに求めら
れる機能要件を導く．
冗長経路を持つインターコネクトでは計算ノード間に複数の通信経路を持つため，計算
ノード間の通信をどの経路を用いて行うのかを決定する必要がある．通常，この計算ノー
ド間における複数の通信経路への分散制御は，経由する各スイッチに実装された機能を用
いて行われる．それゆえ，利用可能な冗長経路への分散制御手法はインターコネクトの構
築に使用するスイッチに依存するため，一般的なインターコネクトでは，同じ種類のス
イッチで構成されている．
基本的な冗長経路への負荷分散制御手法として，通信の送信元および送信先となる計算
ノードが持つ IPアドレスや MACアドレスのようなネットワークの情報に基づいて使用
する通信経路を決定する静的ルーティング手法や，ラウンドロビン方式による通信回数が
均一になるように通信経路を振り分ける手法がある．しかし，これらの手法では必ずしも
発生する通信を効率的に分散できる訳ではなく，複数の通信経路への振り分けが一方に偏
り，計算ノード間における通信性能の低下を引き起こす場合がある．
このような通信性能の低下を回避し，計算ノード間の通信を効率的に分散させて高い通
信性能を得ることを目的とし，これまでに様々な負荷分散アルゴリズムの研究が行われ
ている．例えば，文献 [57]では，Fat-treeトポロジで構成されたインターコネクトにおい
て，OpenFlowを用いた動的ルーティング技術を提案している．その負荷分散アルゴリズ
ムでは，冗長経路内の各リンクの利用状況を OpenFlowにより把握して，最適な通信経路
を選択する．この手法では任意の計算ノード間における動的な負荷分散を実現しており，
本研究における通信経路の選択手法の参考となる．しかし，本研究では，インターコネク
トの利用状況を考慮した計算ノード間の冗長経路への負荷分散の制御だけでなく，通信を
行う計算ノードの配置も併せて制御することでインターコネクト全体の通信を管理可能と
するネットワーク資源を動的に制御するジョブ管理システムの実現を目的としている点が
異なる．
冗長経路を持つインターコネクトのトポロジとして，Fat-treeは今日のクラスタシステ
ムで広く採用されている．Fat-treeは間接網に分類されるツリー型トポロジの 1つであり，
木構造の葉から根に向けて広帯域にすることで，Flat-treeが持つ根側のリンクにおける帯
域幅に関するボトルネックを改善する．この広帯域の確保は，より大きな帯域幅を得られ
るスイッチを根側に使用することでも実現できるが，複数のリンクやスイッチを用いて多
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重化した構成にすることは，耐障害性の向上に繋がる．しかし，このように多重化した構
成では，より多くのスイッチとケーブルが必要となるため，構築コストや設置スペースが
増加する．
上述の Fat-treeトポロジで構成されたインターコネクトを持つクラスタシステムを例に
して，計算資源の割当制御と冗長経路への分散制御が独立した状況で生じる問題について
述べる．まず，3つのジョブ（J0，J1，J2)が図 4.1(a)のように計算ノードに割り当てら
れている状況を想定する．ジョブ J0とジョブ J1は 2つの計算ノードを使用し，広帯域を
要求する Networkインテンシブジョブであり，J2は 1つの計算ノード内で処理が閉じて
いるジョブである．このような資源利用状況において，新たに 2つの計算ノードと広帯域
の通信を要求する Networkインテンシブジョブ（J3）が投入されたとする．ジョブ J3へ
の資源割当の結果，図 4.1(b)に示すような計算ノードへのジョブの配置が行われた場合，
ジョブ J3が行う通信をどのように冗長経路へ分散させても，他のジョブの通信との衝突
が発生する．もし，冗長経路への分散制御アルゴリズムがジョブ J3の通信を，図 4.1(b)

に示す SW1を通る Path 1に割り当てた場合，その通信は SW1 – SW4間のリンクで，ジョ
ブ J0で実行されている通信との衝突が起こる．もう一方の SW2を通る Path 2に通信経
路を割り当てたとしても，今度は SW2 – SW5間のリンクでジョブ J1の通信と衝突が発生
する．そのため，ジョブ J3が使用する経路をどのように変えても，ジョブ J3と通信衝突
が起こるジョブにおいて通信性能の低下が生じる．しかし，もしジョブ J3が図 4.1(c)に
示すような計算ノードに割り当てられ，かつ通信経路に SW2を経由する経路が割り当て
られるなら，ジョブ間での通信の衝突は発生しない．このような資源割当を実現するため
には，ジョブに割り当てる計算ノードを決定する際に，計算ノードが使用する通信経路の
状況も併せて評価し，計算ノードの選択に反映させる必要がある．
以上の考察より，本章の目的であるジョブへの効率的な計算ノードおよび計算ノード間
の通信経路の割当を SDN-enhanced JMS フレームワークで行うための資源割当ポリシで
は，他のジョブによる通信との衝突を抑制する計算ノードおよび計算ノード間の通信経路
をジョブに割り当てる．そのような資源割当ポリシを実現するにあたり，提案する資源割
当ポリシでは以下の要件を満たす必要があると考える．

(1) ネットワーク資源に関する情報の取得
(2) 計算ノードを接続されたスイッチごとに分類
(3) 同一スイッチに接続された計算ノードをできるだけ多く含む計算ノードの組み合わ

せの選択
(4) 選択した計算ノード間で使用する通信経路を決定

要件（1）は，ジョブに割り当てる計算ノードを決定する際に，割り当てる計算ノード
間の通信経路についても考慮するため，必要となるインターコネクトのネットワーク資源
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(c) 非効率なジョブ J3への資源割当．

図 4.1 Fat-treeクラスタシステムにおける資源割当例．



60 第 4章 Fat-treeインターコネクトを持つクラスタシステムのための資源割当ポリシ

情報を取得するための要件である．要件（2）では，取得した Fat-treeインターコネクト
のトポロジ構造に基づき，同一スイッチに接続された計算ノードを事前に接続するスイッ
チごとに分類する．同一スイッチに接続された計算ノード間では通信経路が 1つとなるた
め，複数の通信経路から割り当てる経路を選択する必要がない．要件（3）では，ジョブ
で要求された計算資源量を満たす計算ノードの組み合わせを決定する．その際，要件（2）
の結果を利用して，同じスイッチに接続された計算ノードを多く含む構成とする．このよ
うな計算ノードの組み合わせにすることにより，他のジョブの通信と共有する可能性のあ
るスイッチ間のリンクを経由する通信経路の利用を抑制する．要件（4）では，要件（3）
で生成した計算ノードの組み合わせに対し，各計算ノード間の通信経路を決定し，各通信
経路が持つ資源量から計算ノードの組み合わせにおける優先度を算出する．

4.3 Fat-tree インターコネクトを考慮した資源割当ポリシ
本節では，4.2節の要件を実現する資源割当ポリシの基本方針と実装について述べる．

4.3.1 基本方針と基本設計
4.2節の各機能要件を満たす設計方針について述べる．提案する資源割当ポリシの目的
は，この資源割当ポリシによるジョブへの計算ノードおよび計算ノード間の通信経路の割
当により，各リンクにおける通信衝突の抑制とインターコネクト全体における効率的な通
信の負荷分散を実現することである．この目的を達成するにあたり，本章で提案する資源
割当ポリシでは，他のジョブの通信との衝突が発生する可能性があるスイッチ間のリンク
の利用を抑制した計算ノードの割当を行う．そのような計算ノードの組み合わせとして，
提案する資源割当ポリシではジョブに割り当てる計算ノードをできる限り同じスイッチに
接続されるよう集約する．Fat-tree インターコネクトでは，2.2.2 節で述べたように計算
ノードが持つネットワークインタフェースは 1 つであるため，計算ノードと接続するス
イッチの間のリンクは 1本である．それゆえ，同じスイッチに接続した計算ノードは，そ
れぞれ 1本のリンクでそのスイッチと接続しているため，その計算ノード間は単一の通信
経路となる．また，ジョブ管理システムの設定で，1台の計算ノードに対して異なるジョ
ブの割当を許可しない限り，その通信経路に他のジョブの通信は発生しないため，他の
ジョブとの通信衝突を考慮する必要がなくなる．上述の設定は，計算ノードにおける計算
資源制御の制限上，多くのクラスタシステムにおける運用で採用されているため，この設
定を前提として資源割当ポリシを設計することは，実際的なクラスタシステムへの適用の
妨げにならないと考える．以上の基本方針に基づき，インターコネクトの利用状況を考慮
して通信経路を割り当てることにより，他のジョブとの通信衝突を回避可能な資源割当ポ
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リシを実装する．
資源割当ポリシは，3.3.3.3 節で述べたように，資源割当ポリシクラスモジュール上で

Brainコンポーネントにおける 3つの処理フェーズに対して行う．Brainコンポーネント
の各処理フェーズにおける処理内容を資源割当ポリシとして実装するため，資源割当ポリ
シクラスモジュールにおいて sort qlist関数，set route関数，del route関数の定義を行う
必要がある．この 3つの関数を定義することで，SDN-enhanced JMSフレームワークに資
源割当ポリシを配備し，そのポリシに従った資源割当の制御を行うことができる．4.2節
で導出した資源割当ポリシの要件は，すべてジョブに割り当てる計算ノードを決定するた
めの処理であるため，その実装は sort qlist関数において行う．したがって，ジョブに割
り当てる計算ノード間の通信経路に対応した flow entryを生成する set route関数，および
ジョブ終了後の後処理を定義する del route関数については提案する資源割当ポリシ固有
の処理の追加は必要ない．

4.3.2 実装
本節では，4.2節で導出した要件に基づき，インターコネクトの利用状況を考慮して計算
ノードおよび割当計算ノード間の通信経路の割当を行う資源割当ポリシの実装について述
べる．図 4.2に提案する資源割当ポリシにおける sort qlistのフローチャートを，図 4.3に
擬似コードを示す．なお，本資源割当ポリシの実装では，資源割当ポリシクラスモジュー
ルに提案する資源割当ポリシのみを配備する．
図 4.2に従い，提案する資源割当ポリシの実装について説明する．まず，提案する資源
割当ポリシでは，ネットワーク資源情報の取得を行う．これは 4.2節の要件（1）であり，
図 4.3の 2行目に示す get net info()を用いる．get net info()は 3.3.3.3節で述べた資源割
当ポリシクラスモジュールの APIで提供される機能であり，Network controlコンポーネ
ントからネットワーク資源情報を取得する．現在の SDN-enhanced JMS フレームワーク
の実装では，本機能で取得可能なネットワーク資源情報は，計算ノードも含めたクラスタ
システム全体のトポロジ構造，インターコネクトの各リンクにおける使用帯域幅と最大帯
域幅である．また，取得した各リンクにおける 2つの帯域幅情報から，そのリンクにおけ
る利用可能帯域幅を算出する．

(利用可能帯域幅) = (最大帯域幅)− (使用帯域幅)

次に，OGS/GE から得た割当候補リストの全計算ノードに対し，その計算ノードと接
続するスイッチを確認し，スイッチごとに計算ノードを分類する．これは要件（2）に対
する実装であり，図 4.3の 3～5行目が該当する．本処理における計算ノードと接続する
スイッチの確認には，取得したネットワーク資源情報におけるトポロジ情報を利用する．
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本実装では，スイッチごとに分類された計算ノードのリストを指定するための識別子と
して，取得したトポロジ情報に含まれる各 OpenFlowスイッチの Datapath IDを用いる．
Datapath IDは，OpenFlowネットワークにおいて，各 OpenFlowスイッチを識別するた
めに設定された一意な値である．また，本処理の際に各スイッチにおける分類された計算
ノード数，接続されている計算ノード数，該当スイッチから他のスイッチへのリンク数を
取得する．
計算ノードの分類処理が終了した後，計算ノードと接続する各スイッチにおいて，ス
イッチの Datapath IDの値 d-idを識別子とした計算ノードのリストを用い，そのスイッ
チに接続された計算ノードが有する割当可能スロット数の合計値を算出する．

sw[d-id].slots =
∑
i

sw[d-id].nodes[i].slot

スロットは，2.3.1.2 節で述べたように，各計算ノードに割り当てることができるジョブ
のプロセス数を定義している．このスロット数の合計値をスイッチごとに求めることに
より，そのスイッチに割り当てることができるジョブのプロセス数を把握する．これは，
要件（3）における計算ノードの組み合わせを求める処理を，計算ノードが接続されたス
イッチ単位で行うためである．次に，計算ノードの組み合わせを，できる限り同じスイッ
チに接続された計算ノードで構成されるよう生成する．その際，できるだけ多くのジョ
ブが同一スイッチに接続された計算ノードに割り当てられるようにするため，必要最小
限のスロット数を持つスイッチに接続された計算ノードに優先的に割り当てる．例えば，
図 4.4(a)に示すように，2つのスイッチにおいて，それぞれのスロット数 1の計算ノード
が 2台および 4台が割当可能であると仮定する．このような状況において，2並列を要求
するジョブに割り当てる計算ノードを選択する場合を想定する．もし図 4.4(b) の緑色の
計算ノードのように，計算ノードの選択を 4台から選択可能なスイッチで行った場合，こ
の計算ノードの選択では，これ以降のジョブに対して 2並列のジョブしか同一スイッチに
接続された計算ノードを提供できない．しかし，図 4.4(c)の赤色の計算ノードのように，
2台の計算ノードが選択可能なスイッチを選択した場合，次のジョブでは 4並列まで同一
スイッチに接続された計算ノードを提供できる．なお，選択可能な計算ノードが各スイッ
チに 1 台だけとなった場合，同じスイッチに接続された計算ノードを選択することがで
きないため，4.2節で述べた用件（2）のメリットを得られないため，選択可能なすべての
計算ノードの組み合わせを求める．上述の処理は図 4.3の 8～26行目のように実装してお
り，これにより要件（3）のジョブで要求された計算資源量を満たす計算ノードの組み合
わせの生成を実現する．
最後に，選択した計算ノードの組み合わせにおける通信経路の資源量を求め，各計算
ノード間に割り当てる通信経路を決定する．本処理におけるネットワーク資源の資源量に



4.3 Fat-treeインターコネクトを考慮した資源割当ポリシ 63

は，各リンクの利用可能帯域幅を用い，3.4.1節で述べた帯域考慮ポリシと同様に，通信
経路を構成する各リンクが持つ利用可能帯域幅の最小値をその通信経路の資源量とする．

resource value(path) = min(available bandwidth(linki))(linki ∈ path)

利用可能帯域幅を通信経路における資源量として利用する理由は 2 つある．1 点目は，
Fat-tree インターコネクトにおいて，ある一対の計算ノードの組み合わせにおける計算
ノード間の通信経路は常に同じホップ数となるためである．それゆえ，計算ノード間の通
信経路における資源量にホップ数を利用した場合，冗長経路間の資源量の差が無い状態に
なるため，通信経路の選択を行うことができない．2点目は，他のジョブの通信で利用さ
れているリンクでは利用可能帯域幅が小さくなるため，そのようなリンクを経由する通信
経路では上述の資源量も低くなる．上述の通信経路を構成する各リンクが持つ利用可能帯
域幅の最小値を求める処理を実装するため，本資源割当ポリシではダイクストラアルゴリ
ズムにおけるリンクの走査機能を利用した．ダイクストラアルゴリズムは，インターコネ
クトを各リンクにおける資源量を重みとする重み付きグラフとみなし，その枝の重みを用
いて最短経路を探索する有名なアルゴリズムである．本実装では，枝の重みとして各リン
クにおける利用可能帯域幅を用い，最短経路の走査処理で得る各リンクの利用可能帯域幅
の最小値を保持することで，通信経路における資源量を算出する．
通信経路の決定について，同一スイッチに接続された計算ノード間では通信経路は 1つ
であるため，経路選択処理を省略可能である．また，その単一経路における資源量は 4.3

節で述べた同一計算ノードへのジョブの割当の制限から，常にリンクの最大帯域幅とな
る．それゆえ，ジョブに割り当てる計算ノードがすべて同一スイッチに接続されている場
合，通信経路の選択およびその経路における資源量の算出処理を行う必要がない．それ以
外の通信経路における資源量の算出では，まず計算ノードの組み合わせに含まれる要件
（2）のスイッチ間で各通信経路における資源量として各リンクにおける利用可能帯域幅の
最小値を算出する．これは，計算ノードと接続されたスイッチ間のリンクは単一であり，
その利用可能帯域幅は上述のとおり最大帯域幅であるため，計算ノードが接続するスイッ
チ間の通信経路における利用可能帯域幅と比較するだけで，それぞれのスイッチに接続さ
れた計算ノード間の通信経路における資源量を算出できる．この処理により，計算ノード
ごとに通信経路の資源量を算出するより計算量を削減することができる．
次に，異なるスイッチに接続された計算ノード間において，ジョブに割り当てる通信経
路を決定する．各計算ノード間の通信経路の割当は，基本的には各通信経路における資源
量である利用可能帯域幅の大きい経路を選択する．同じスイッチ間で複数の通信経路の割
当を行う場合，まず割り当てた通信経路の資源量をスイッチ間の経路における資源量とし
て算出した利用可能帯域幅から引く．その後，同様の処理を行っていき，すべての冗長経
路において利用可能帯域幅を超える状態となった場合は，各通信経路に対してラウンドロ
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ビン方式で割り当てる．
以上の処理により，ジョブに割り当てる計算ノードおよび計算ノード間の通信経路を決
定し，割当候補リストの修正を行う．なお，要件（3）の実装において，選択可能な計算
ノードが各スイッチに 1台だけとなった場合は選択可能なすべての計算ノードの組み合わ
せを求めているため，3.4.1節の資源割当ポリシと同様に，計算ノードの組み合わせにお
ける全通信経路の資源量の平均値を求めてその値をその計算ノードの組み合わせにおける
優先度とする．この処理をすべての計算ノードの組で行い，最も高い値となった計算ノー
ドの組み合わせを，ジョブに割り当てる計算ノードとして決定する．
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node sw[d id] sw[d id].nodes

sw[d id].slots == 1

sw[d id] sw[d id].slots

p_num > 0

node in

allocate_nodes

p_num >= sw[d id].slots

No

Yes

d id

Yes

p_num =

p_num = p_num sw[d id].slots

allocate_node = allocate_nodes + sw[d id].nodes

sw.delete(d id)

tmp_nodes = sw[d id].nodes p_num

allocate_nodes = allocate_nodes + tmp_nodes

p_num = 0

p_num

d id

m_allocate_nodes = sw

m_flag = true

No

No

No

Yes

m_flag == true
YesNo

図 4.2 提案資源割当ポリシにおける sort qlistのフローチャート．
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1. def sort_qlist ( picklist , job_info )
2. net_info = get_net_info ( )
3. for node in picklist
4. categorize_node ( node , net_info.topology , sw )
5. end
6. total_slot_num ( sw )
7. p_num = job_info.process_num
8. while p_num > 0
9. d id = max_slots ( sw )
10. if p_num >= sw[d id].slots && sw[d id].slots > 1
11. allocate_nodes = allocate_nodes + sw[d id].nodes
12. p_num = p_num sw[d id].slots
13. sw.delete(d id)
14. elsif sw[d id].slots == 1
15. m_allocate_nodes = calc_node_set( allocate_nodes , sw )
16. m_flag = true
17. p_num = 0
18. break
19. else
20. d id = search_allocation ( p_num , sw )
21. tmp_nodes = select_nodes ( sw[d id] , p_num )
22. allocate_nodes = allocate_nodes + tmp_nodes
23. p_num = 0
24. break
25. end
26. end
27. if m_flag
28. calc_resource_mean ( topology , m_allocate_nodes )
29. max_r_value ( m_allocate_nodes , allocate_nodes , allocate_path )
30. else
31. allocate_path = calc_path ( topology , allocate_nodes )
32. end
33. modify_picklist ( picklist , allocate_nodes )
34. return picklist
35. end

図 4.3 提案資源割当ポリシにおける sort qlistの擬似コード．

(a) 各スイッチにおける計算ノード
の前提状態．

(b) 資源割当ポリシの方針にあわな
い計算ノードの選択．

(c) 資源割当ポリシの方針にあった
計算ノードの選択．

図 4.4 各スイッチに接続された計算ノードの選択例．
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表 4.1 計算ノードの仕様．

CPU Intel Xeon E5-2620(2.00GHz) × 2

Memory 64GB

NIC on board Intel I350 GbE

OS CentOS 6.2

4.4 評価実験
本節では，提案する資源割当ポリシを組み込んだ SDN-enhanced JMSが，Fat-treeイン
ターコネクトを持つクラスタシステムにおいて有用であることを確認するため，以下の評
価実験を行った．

4.4.1 実験環境
本実験で使用する環境は，図 4.5に示す構成の Fat-treeトポロジのインターコネクトを
持つクラスタシステムである．本クラスタシステムは，表 4.1で示す仕様の 28台の計算
ノードと 1台の SDN-enhanced JMSフレームワークが導入された管理ノードで構成され
る．インターコネクトは，6台の OpenFlowスイッチ（NEC UNIVERGE PF5240）を用い
て構築した 2階層 Fat-treeトポロジで構成され，計算ノードと OpenFlowスイッチの接続
は Gigabit Ethernetで接続する．
このクラスタシステムのインターコネクトにおいて，本実験ではスイッチ間の接続にお
ける帯域幅が異なる 2 種類のインターコネクト構成を用いる．図 4.5(a) に示すクラスタ
システムでは，スイッチ間の接続をすべて Gigabit Ethernetで構成する．このシステム構
成では，あるスイッチに接続された 7台すべての計算ノードが，他のスイッチの計算ノー
ド 7台に対して一斉に通信を行った場合，スイッチが計算ノードから求められる最大帯域
幅が 1Gbps × 7の 7Gbpsであるのに対し，スイッチ間で許容できる最大帯域幅が 1Gbps

× 2の 2 Gbpsとなり不足する．図 4.5(b)のクラスタシステムを，以下，非フルバイセク
ションクラスタとする．一方，図 4.5(b)に示すクラスタシステムでは，スイッチ間を 4本
の Gigabit Ethernet ケーブルで接続し，これらを IEEE 802.3ad Link Aggregation を用い
て論理的に統合することで，4 Gbpsの帯域幅を持つリンクとする構成とした．この場合，
スイッチが許容できる最大帯域幅は 4Gbps × 2の 8 Gbpsとなり，計算ノードの一斉通信
を処理可能である．図 4.5(b)のクラスタシステムを，以下，フルバイセクションクラスタ
とする．
これらのクラスタシステムのインターコネクトは冗長経路を持つため，従来のジョブ管
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SW1

SW3 SW5SW4

SW2

SW6

(a) 非フルバイセクションクラスタの構成．

SW1

SW3 SW5SW4

SW2

SW6

(b) フルバイセクションクラスタの構成．

図 4.5 クラスタシステムの構成．

理システムによる資源管理では，4.2節で述べたようにスイッチの機能を利用した冗長経
路への負荷分散の制御を各スイッチで設定する必要がある．そこで，本クラスタシステ
ムでは，複数の通信経路への負荷分散制御に Open Shortest Path First（OSPF） [58]を採
用した．OSPFを採用した理由は，クラスタシステムで使用した OpenFlowスイッチで，
OpenFlowの機能を使わずに複数通信経路の制御を行うことができるのがこの手法だけで
あったためである．Fat-treeトポロジにおいて，ある対の計算ノード間における複数の通
信経路は等コストとみなせるので，OSPFによる通信経路への負荷分散には，ラウンドロ
ビン方式による Equal Cost Multi Path（ECMP） [59, 60]が用いられる．
ジョブプロセスの計算ノードへの割当に関して，本実験では計算ノードに割り当てられ
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るジョブのプロセスを 1つに制限するため，OGS/GEの計算ノード設定においてスロッ
ト数を 1 に設定した．これは計算ノード内でのプロセス間通信を発生させないための制
限である．本実験の目的は，計算ノード間における通信経路の制御手法の違いによる実
行性能への効果を評価することであるため，制御の対象外である計算ノード内のプロセ
ス通信が発生する状況を制限する必要がある．また，この制限は現在の SDN-enhanced

JMS フレームワークの実装に起因する制限でもある．もし異なるジョブのプロセスが
同じ通信経路を持つ計算資源，すなわち 2 台の同じ計算ノードに割り当てられた場合，
現在の SDN-enhanced JMS フレームワークはその経路で発生した通信がどちらのジョ
ブのプロセスで行われているのかを区別できない．SDN-enhanced JMS フレームワーク
は，各ジョブに割り当てられる通信経路を NMM 上で flow entry として管理している．
現在の実装では，flow entry は各計算ノードの MAC アドレスに基づいて定義される．
それゆえ，Network control コンポーネントがその通信経路に対して生成する flow entry

は同じとなり，Network control コンポーネントからは識別できなくなる．このことは，
SDN-enhanced JMS フレームワークにおけるネットワーク統計情報の取得に影響を与え
るため，今後の対応が求められる．

4.4.2 2 並列ジョブによる評価
本実験の目的は，提案する資源割当ポリシを組み込んだ SDN-enhanced JMS によって
インターコネクトを効率的に利用できていることを確認することにある．そこで，本実験
では 2つのプロセスを生成する 2並列 Networkインテンシブジョブを用い，従来のジョ
ブ管理システムと SDN-enhanced JMS の両方にジョブを投入して比較する評価実験を行
う．4.4.1節の制限によって 1つの計算ノードに割り当てられるジョブのプロセスは常に
1つである．これにより，2並列ジョブは一対の計算ノードにプロセスが割り当てられる
ため，ジョブが利用した通信経路を確認しやすくする．
使用する 2並列 Networkインテンシブジョブで実行するプログラムには，任意のサイ
ズでのデータ交換を 1,000回繰り返す Ping-Pongプログラムを用いる．このデータ交換プ
ログラムは MPI Send と MPI Recv を用いて実装する．本実験で利用するデータサイズ
は，1KiB，16KiB，32KiB，64KiB，128KiB，256KiB，512KiB，1MiB，16MiB，32MiB，
64MiBの 11種類である．本実験では，同じデータサイズを用いた 14個のジョブで構成
されたジョブセットを，ジョブ管理システムに投入することを 1試行とし，各データサイ
ズにつき 4回ずつ行う．1つのジョブセットを 14個のジョブで構成したのは，図 4.5に
示すクラスタシステムで 2並列ジョブを同時に実行できる上限が 14個のためある．もし
15個以上のジョブセットを投入した場合，上限数を超えたジョブはジョブ管理システム
のキューで待ち，資源が空き次第計算ノードに割り当てられる．しかし，割り当てられる
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計算ノードの組み合わせは，基本的に終了したジョブが使用していた組み合わせとなる．
その結果，計算ノードの組み合わせは初期の割当に依存し，それ以降はほとんど変化しな
い．そこで，様々な資源割当の組み合わせで評価を行うため，1試行で投入するジョブの
数を上限数である 14個とした．
以下，この実験で得られた結果に対し，資源割当およびジョブの実行性能についての評
価について述べる．
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4.4.2.1 ジョブへの資源割当についての評価
各ジョブに対する計算資源およびネットワーク資源の割当を評価するため，各ジョブプ
ロセスがどのように計算ノードに割り当てられているかを調査した．
まず，各試行において異なるスイッチに接続した計算ノードに対してプロセスが割り当
てられたジョブの数を調査した．このようなジョブで使用される通信経路はスイッチ間の
リンクを経由するため，他のジョブによる通信と衝突が生じる可能性がある．各ジョブへ
の計算ノードの割当状況については，どちらのジョブ管理システムによる制御においても
OGS/GE のログファイルから確認できる．しかし，割り当てられた計算ノード間のどの
通信経路を利用したのかの確認については，各ジョブ管理システムで状況が異なる．従来
のジョブ管理システムによる実験では，計算ノード間における通信は各スイッチにおける
OSPFによるラウンドロビン方式での制御によりすべての通信経路に分散されるため，詳
細な利用状況の確認は困難である．一方，SDN-enhanced JMSでは使用する通信経路は，
Netwrok controlコンポーネントに組み込まれた OpenFlowコントローラによって制御さ
れているため，ジョブが使用した通信経路は NMMのログに記録される．
これらのログの解析結果より，従来のジョブ管理システムによる資源割当では，1試行
あたり平均 10.6個のジョブが異なるスイッチに接続された計算ノードに割り当てられた．
その結果，多くの通信が図 4.5の SW1や SW2を経由して行われていたため，通信衝突の
発生率は高くなっていたものと推測される．一方，SDN-enhanced JMSの場合，異なるス
イッチに接続された計算ノードに割り当てられたジョブの数は平均 2.0個であった．本実
験で用いたクラスタシステムでは 1 つのスイッチあたり 7 台の計算ノードが接続されて
いる構成のため，少なくとも 2つのジョブが異なるスイッチに接続された計算ノードに割
り当てられる．つまり，この結果は，本クラスタシステムで達成できる最小のジョブ数で
あり，提案資源割当ポリシはスイッチ間における通信衝突の発生を，計算ノードへのジョ
ブの割当の観点から最大限抑制できた．また，NMMのログより，このような 2つのジョ
ブに割り当てられた通信経路に，同じスイッチ間のリンクが使用されているものが無かっ
たことが確認できた．以上より，提案資源割当ポリシによる計算資源とネットワーク資源
の割当は，通信衝突の発生を抑制できることが確認できた．

4.4.2.2 非フルバイセクションクラスタにおける性能評価
非フルバイセクションクラスタにおけるジョブの通信性能および実行性能について評価
を行った．各データサイズにおけるジョブの平均通信時間および平均実行時間をまとめた
グラフが図 4.6(a)および図 4.6(b)である．なお，このグラフにおいて両軸とも対数目盛で
ある．
結果として，SDN-enhanced JMSによる資源管理は，どのデータサイズにおいても平均
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通信時間および平均実行時間の削減に成功した．特に，64 KiB以上のデータサイズで大
きな差が現れた．64 MiBのデータサイズでの実験では，平均通信時間の削減率は 44.1%

であり，平均実行時間の削減率は 44.0%であった．
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図 4.6 非フルバイセクションクラスタにおける 2並列ジョブ実験の結果．
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4.4.2.3 フルバイセクションクラスタにおける性能評価
フルバイセクションクラスタにおけるジョブの平均通信時間および平均実行時間をまと
めたグラフを図 4.7(a) および図 4.7(b) に示す．スイッチ間の接続に十分な帯域を備えて
いる本環境においても，提案する資源割当ポリシによるジョブへの割当資源の決定は，よ
りよいジョブの通信性能および実行性能を達成できた．図 4.7(a) や図 4.7(b) における結
果の傾向は，4.4.2.2 における結果と似ている．しかし，ジョブの通信時間および実行時
間の削減率は非フルバイセクションクラスタ環境での結果より少ない．実際，その削減率
は，平均通信時間で 23.0%，平均実行時間で 22.8%であった．
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図 4.7 フルバイセクションクラスタにおける 2並列ジョブ実験の結果．
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4.4.3 NAS Parallel Benchmarks による性能分析
本節では，提案する資源割当ポリシを適用した SDN-enhanced JMSによる資源制御が，
実際の並列計算アプリケーションでの利用に有効であることを確認するため，Fat-treeイ
ンターコネクトを持つクラスタシステムにおいて，基本的な分散並列計算で性能評価を行
う NAS Parallel Benchmarks [56]を実行するジョブを用いて評価を行う．
本実験では，NAS Parallel Benchmarksを，3.4.3.5節と同様の条件で使用する．すなわ
ち，NAS Parallel Benchmarksのバージョンには ver.3.3.1を使用し，評価に用いるベンチ
マークの問題サイズは Class B である．本ベンチマークを実行する際の並列数も 3.4.3.5

節と同様に，すべてのベンチマークを同じ並列数で実行でき，かつ実験環境のクラスタシ
ステムで複数のジョブが同時に実行できる 4並列とした．なお，両ジョブ管理システムに
投入するジョブセットの構成は一部異なり，本実験用いるジョブセットのジョブ数は 30

ジョブとした．

4.4.3.1 非フルバイセクションクラスタにおける性能評価
非フルバイセクションクラスタにおいて，両ジョブ管理システムに対し，NAS Parallel

Benchmarksの各ベンチマークを実行するジョブセットを投入した．その結果を図 4.8に
示す．図 4.8の縦軸はジョブの平均実行時間比であり，（提案する資源割当ポリシを組み
込んだ SDN-enhanced JMSでのジョブの平均実行時間）/（従来のジョブ管理システムを
用いた場合のジョブの平均実行時間）で算出した．
その結果として，SDN-enhanced JMSによる資源割当では，EP以外のどのベンチマー
クにおいてもジョブの平均実行時間を削減できた．EPベンチマークについては平均実行
時間比がほぼ 1.0となっているが，これは 3.4.3.5節で述べたようにジョブのプロセス間
でほとんど通信を行わないためである．それゆえ，提案資源割当ポリシによる通信経路の
制御の効果が出ないことは妥当な結果である．
また，図 4.8より，ジョブの平均実行時間比に特に大きく差が現れたのは，EP以外の並
列カーネルベンチマークを実行したジョブにおいてである．そのジョブの平均実行時間の
削減率はそれぞれ，MGで 30.9%，CGで 28.8%，FTで 30.2%，ISで 20.4%であった．
並列カーネルベンチマークは行列計算やデータソートなどの，様々なアプリケーション内
で実行されている基礎的な計算を評価するベンチマークであるため，提案する資源割当ポ
リシを組み込んだ SDN-enhanced JMS フレームワークは，一般的な並列計算アプリケー
ションにより高い実行性能を得られる資源を提供できると考える．
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図 4.8 非フルバイセクションクラスタにおける NAS Parallel Benchmarksの結果．
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4.4.3.2 フルバイセクションクラスタにおける性能評価
次に，フルバイセクションクラスタにおいて，4.4.3.1と同様に両ジョブ管理システムに
対する評価実験を行った．その結果を図 4.9に示す．図 4.9のグラフの縦軸は，図 4.8と
同様に算出したジョブの平均実行時間比である．
本実験における結果として，スイッチ間に十分な帯域幅を持つフルバイセクションクラ
スタにおいても，SDN-enhanced JMSによる資源割当でジョブの実行時間を削減できた．
なお，EPベンチマークについては 4.4.3.1と同様に効果が現れなかった．ジョブの平均実
行時間の削減率はそれぞれ，MGで 20.2%，CGで 13.9%，FTで 9.2%，ISで 12.6%で
あった．
実験結果の傾向は非フルバイセクションクラスタ環境での実験結果に似ているが，ジョ
ブの平均実行時間の削減率はフルバイセクションクラスタ環境の場合の方が小さかった．
この結果は，スイッチ間のリンクに十分な帯域幅を持たせても，それを効率的にジョブに
割り当てることができなかったため，実行性能は低下したと考えられる．実際，従来の
ジョブ管理システムによる資源管理で採用された OSPFによる冗長経路への負荷分散は，
ラウンドロビン方式に基づいたシンプルな手法であった．それゆえ，効率的な負荷分散と
ならない状況が発生し，ジョブにおける通信性能の低下を引き起こしたと考えられる．
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図 4.9 フルバイセクションクラスタにおける NAS Parallel Benchmarksの結果．
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4.5 おわりに
本章では，今日のクラスタシステムで広く採用されている Fat-treeトポロジのインター
コネクトで構成されたクラスタシステムを対象とし，計算資源の割当と冗長経路への負荷
分散を連携して制御する資源割当ポリシを提案・実装し，前章で提案した SDN-enhanced

JMSフレームワークによる資源割当の有用性，実用性を評価した．特に，冗長経路を効率
的に利用することによる通信の衝突回避を実現する提案した資源割当ポリシでは，従来の
スイッチによる負荷分散制御を利用せず，SDN-enhanced JMSフレームワークの機能を用
いてインターコネクトの利用状況を把握し，それに基づいてジョブに割り当てる計算ノー
ドと，それらの間の通信経路を明示的に指定する．
評価実験では，Fat-treeインターコネクトにおいて，スイッチ間のリンクに十分な帯域
幅を持つ場合と持たない場合の 2 種類のクラスタシステムを用意した．また，従来のス
イッチによる冗長経路への負荷分散手法として，OSPFが持つ制御機能を採用した．この
2種類のクラスタシステムに対し，2並列データ交換プログラムを用いた実験では，提案
した資源割当ポリシが効率的な通信経路をジョブに割り当て，ジョブの平均実行時間を
最大 44.0%削減できることを確認した．また，NAS Parallel Benchmarksを用いた評価で
は，通信を伴うベンチマークにおいてジョブの平均実行時間を，スイッチ間のリンクに
十分な帯域幅を持たないクラスタシステムにおいてジョブの平均実行時間を最大 30.9%，
持つ場合でも最大 20.2% 削減できた．以上より，提案した資源割当ポリシを組み込んだ
SDN-enhanced JMSフレームワークが，冗長経路を持つインターコネクトで構成された実
際のクラスタシステム上で有用であることを確認できた．
今後の課題として，実際のアプリケーションを利用した性能評価が必要であることがあ
げられる．本章で行った NAS Parallel Benchmarksによる評価では，あくまでアプリケー
ションの処理の一部に対する検証にしかならない．それゆえ，実際に利用されているシ
ミュレーションなどで評価を行う必要がある．
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結論

5.1 本論文のまとめ
本論文は，ますます多様化するユーザからの計算要求に対し，その構成資源を適切かつ
効率的に割り当てることのできる柔軟な資源管理の仕組みの必要性に着目し，計算資源だ
けでなくネットワーク資源を動的な資源と捉え管理・制御することで，ユーザの計算要求
に対して適切な資源割当を行うことのできるジョブ管理システムの実現を目的とした研究
成果をまとめた．

1章では，近年の高性能計算環境の現状と動向について整理し，今日の大規模クラスタ
システムにおいて高い計算性能を得るためには，そのネットワーク資源であるインターコ
ネクトの管理と制御が必要不可欠であることをまとめた．また，そのような視点から，ク
ラスタシステムを構成するネットワーク資源であるインターコネクトに着眼し，計算資源
だけでなくネットワーク資源を動的な資源と捉え管理・制御することで，ユーザの計算要
求に対して適切な資源割当を行うことのできるジョブ管理システムの実現を本研究の目的
とした．

2章では，今日のクラスタシステムの現状，一般的なジョブ管理システムにおける資源
管理手法および技術についての整理，ならびに，クラスタシステム上で高い通信性能を得
ることを目的とした関連研究について整理した．これにより，1章で示した本研究の目的
達成のためには，（1）ネットワーク資源を動的に管理・制御する機能を備えたジョブ管理
システムの実現可能性の検証，（2）提案ジョブ管理システムへのネットワーク資源を制御
する資源割当ポリシの配備による有用性・実用性の評価の 2つの技術課題の解決が必要で
あることを述べた．

3章では，2章で導出した課題（1）ネットワーク資源を動的に管理・制御する機能を備
えたジョブ管理システムの実現可能性の検証に対して，インターコネクトをネットワーク
資源として管理するためのネットワーク資源制御技術を組み込んだジョブ管理システム



82 第 5章 結論

フレームワークを実現し，その方向性を検証した．本研究では，ソフトウェアで実装可
能なコントローラから動的かつ一元的なネットワークの制御を可能とする，新しいネッ
トワークアーキテクチャ概念である SDN に着目し，SDN を従来のジョブ管理システム
と統合させた SDN-enhanced JMS を提案・実装した．SDN-enhanced JMS によるネット
ワーク資源を考慮した資源割当の効果を評価するため，最も単純なインターコネクトであ
る Flat-tree インターコネクトを有するクラスタシステムをターゲットとし，遅延または
利用可能帯域幅を考慮してジョブに割り当てる計算ノードを決定する資源割当ポリシを定
義し，Ping-Pong，MPI Alltoallを用いた 2種類の Networkインテンシブジョブセットと
NAS Parallel Benchmarksを実行するジョブセットを Flat-treeインターコネクトのクラス
タシステムに投入することで評価を行い，インターコネクトを効率的に利用した資源割当
を実現できていること，およびジョブの実行時間を短縮できていることを確認した．これ
により，ネットワーク資源を動的に管理・制御する機能を備えたジョブ管理システムが実
現可能であることを確認した．

4章では，2章で導出した課題（2）提案ジョブ管理システムへのネットワーク資源を制
御する資源割当ポリシの配備による有用性・実用性の評価に対して，計算資源およびネッ
トワーク資源の利用状況を考慮して計算資源および通信経路の割当を実現する資源割当ポ
リシに関する研究開発の成果をまとめた．本研究では，広帯域・耐障害性を実現するため
多くのクラスタシステムで採用されている冗長経路を有するインターコネクトにおいて，
従来のスイッチによる通信の負荷分散制御を用いず，実際の利用状況に応じて明示的に使
用する通信経路をジョブに割り当てる資源割当ポリシを設計・実装し，本研究で提案する
ジョブ管理システムが現実的なインターコネクトを有するクラスタシステム上でより高い
実行性能を持つ資源をジョブに割り当てることができることを確認した．提案した資源割
当ポリシによって，クラスタシステムの利用状況に応じて，計算ノード間の冗長経路にお
ける負荷分散，およびインターコネクト全体における通信量の分散が可能となった．提案
した資源割当ポリシによるネットワークの負荷分散およびジョブの実行性能への効果を確
認するため，多くのクラスタシステムで採用されている Fat-treeトポロジのインターコネ
クト環境において，OSPFによる冗長経路の負荷分散を利用したクラスタシステムにおけ
る従来のジョブ管理システムの資源割当と比較実験を行った．実験は 2 種類の Network

インテンシブなジョブセットと NAS Parallel Benchmarksを実行するジョブセットで行っ
た．その結果として，提案した資源割当ポリシにより決定された資源割当は，各ジョブに
対して高い性能を得られる資源を割り当てることができることを確認した．
これにより，本研究の目的である計算資源だけでなくネットワーク資源を動的な資源と
捉え，ユーザの計算要求に対して適切な資源割当を行うことのできるジョブ管理システム
の実現性と有用性・実用性を示した．
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5.2 今後の課題
提案した SDN-enhanced JMSでは，インターコネクトをネットワーク資源として動的に
制御する機能を実現し，計算資源とネットワーク資源の両資源を考慮した資源割当決定手
法を設定できるフレームワークを提供した．しかし，現在の SDN-enhanced JMS では各
リンクにおける利用可能な帯域幅のような割当資源量の制御は行えていない．そのため，
インターコネクトのリンクは他のジョブによる通信が同時に行われることがあるため，提
供できる通信性能はベストエフォートとなり，得られる性能を保障することができない．
今後，ネットワークにおける QoS（Quality of Service）機能などの他の通信制御機能も，
SDN-enhanced JMSの Network Management Moduleに取り入れていく必要がある．
提案した資源割当ポリシは，冗長経路を持つインターコネクトトポロジの 1 つである

Fat-treeトポロジのインターコネクトを想定した実装となっている．それゆえ，他の冗長
経路を持つインターコネクトに対して効率的な割当資源を決定できる資源割当ポリシの設
計・実装が必要である．また，本資源割当ポリシはジョブの実行性能およびクラスタシス
テムにおける資源の効率的な割当に焦点を当てて実装している．しかし，実際の高性能計
算環境では，資源割当の決定には運用ポリシなど他の条件も考慮する必要がある．これに
ついても，それらの条件を反映させるために必要な機能などを分析していく必要がある．
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