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Abstract

AR AR, 2@ S K0 SRR BREL D IR 2 460 2 72 JEAE 2 e ) 1 2
bnH. DD, TOX D B OEE SR, WeEZ B E LKA
IATHONTWD. RS, RO 2 BEHEEXHIMT 5 2 & THiESZ7HRE L, BE
D30 % 2 [ % R 2 B RERY B SURITH (FES : Functional Electrical Stimulation)
FEEOMEIC LT, BHAMERFEL LTHEASATNS.

LinL, EXAIEOmS &, HIHEOZOMICERWIERIEERH 5 Z &,
D7 L H 1O BRI T X o TERE) S 5 BRI o B CIX TR
\ZiE K7 % ill-posed problem ZfE< LERHDH Z L E)DH, FES=v hr—7
(ZHLAIA TR Y] 0T T L OEHITAE S TR,

AW TITFES = b n—Z ZfAiATe, & MACROEIBZ LI LIZET V%
AREIC T2 2 L2 AR E L, FEHUBRENR 0P ml & WM S A st R 1 Ko Tl
I TWD & 2Pl SIS DWW T L CEE R RIEE T V) 2R LTz,

INET, HEX (EMG) -t hOEShFIEEM OMITIC LY, ek
ZRERLT DAETUH T O AL D TR ST ihibhith & Fn T S L7z G B
25, S RIS 5 BT B L BARIIIME & BB H D LA STV D.
IO O Z FES NS U, s & MIVEZ 2B L R R 2 —BICIRE
T252LT, b MORMEEDHEZRBLLLET VT HZENTELEEX,
PUREI R OMREF L LT FOMEEE &Y HIT, BETLHEZHNTZEDOE
T Al & R AT

T, FRENZHR U= RERBE TR 2 BB T 2 W i—e 5 1
LEBRT, 6 NOHERE XL, AKFmNIZIT 2 BEENEE) S 2 WGEh R+ L4
RFRID U Ay — FfEEET LV THRIATE 2 2 & B0, TOET NV EMREG R
BTV E LTz, WRICFREND FTREZRARIC L7 FMREREE T ICk W\, MBI
EER 2R R+ B ROEIFEGET NV THIHTE D B R, 3 NDOHEHREIC
XL, BRI 2 OB R E T VDR EZ T o 72, FFE L7-E s
RETNE, JlFE LICMRRET VARG LTSRS, MBEEEDH 2RO
ROFWEAEIEZ B L, RELEETANRYTHD 2 L 2R L.

PLE B e N BEEES O P RHET T L 28 Ed 5 2 LA TE, FESIZK

Dt NOBENHIEOFEBA~O TR0 L35 LN TET.
F7o, 1T NOHERE IR L, FERAREREE TR0 5 i BIERE EEE RF O EMG 4 1
L, BEESEENRFO b MBI O FRER 2R E Lz, £ ORI L LREET Y
L, $RE LU VHSHEET T L b OESFIEEIGICAIL VWD Z L E
R~LTz.
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F1E K

1.1 HAEE=

A, SuRICETeE v, HEIEAESIZ L bRVMAET, ZREESIC LD
BEE G ABE DHIMEIZH 5. Z DT, KRBT ORFE 2§ 2 7o B 0
BSRe, BREEL B E LIFEREAIITOTWD . RRIZ, RO %
EEEXAMT 5 2 & THEE2d7 L, BE DA 5 M E IR T 2 FERERE
ST (FES : Functional Electrical Stimulation) (%, R DOBRELIZ % L T % iE H
FREZRFHEE LTHA SN TV S.

1.1.1 FES O&ERHl

FEEEOBEREI L LT, AT EE ORVEREI S LT, T 2H 712k
WTHBOFER (EMG : Electromyogram) #HufS L, iz HKicHbtid 2G50
i 2 T 5 ik, ETREBEE 0 L TUROBRAZIG L, B RS
WD LT 2 FENRESNTND (1] [2]. LAL, ZHULIETHE—ORHIIT
DG ZAT O BRI O FiEEZ L > Tnd. —F, E8@E OBEXHMIC X 2 B
OYLEBERTEIZHL - 724158 %i&%’&ﬁbﬂf%é. TnoErEEDHDLE, A—
7 V=7 3] [15], 7 m—X RK—T7R[16]- [19], A 7V » R [20]- [29]

SEIND. FRIA 7Y v REIORIEET, B0 ifVWiEs) 2 afeic 7
574—ﬁ7jv—%ﬂﬁ&,ﬁﬁ%ﬁ%ﬁ&@%ﬂ@ﬂﬁ%ﬁﬁm¢é74—P
Ny 7 FIE ORI S A Fedafii 2 7o flEE S L CTRER I TWAD. LL, EXHL
DIRS &, FHILHREDOZEADFNIFRNIEFRIEE R HH Z &, Dl b 120k
DOFEHFUH AT & - THEED X 41 5 RIS o EBh il 4TI EAEITHEE R 35 ill-posed
problem Z g < MER & 5 [20] 7o EOREIZ LY, a2 br—FITHAAT Y]
RETNOHEMIIRG TITR0.

1.1.2 FES OIRIK
FES & _L5MEIC 51T 5 HFBIR 2 Gustavo & O#E% £ L ICHBT 5 [30].



F1E FFim 2

A—TN—TH

BUETTIR & 17CV % SIGMEDICS $£0 Parastep 72 £ O3k FES ¥ A7 A
EHICHT B &, EICHEER EORET «— KAy 2 21Tb P —7 v n—
FHIEE TV S [31] [32. S BOBRICHNT, BRIKILY 7 v F08T
BWEORY AL THRES L, HECRY M BERD 5.

70— FL—TE

Ja—X R—T7ROHIENTEB ORAERZ U TV X A 2T L, @il & A
SV TCTFESHIHAZITY) Z N TE L RN THD. 2 ED 7 4 — K7
NHY, FIEOREEZ L IR,

1. BT 7 4 — KN 7 (Biological Feedback) +++ EMG X fi#E X (EEG)
7% E OIS ENEN 2 W27 4 — F/3y 27 [33]- [35]. 4B OIGENEN &2
BT 228G ERmWZ &, ENG e FOBEBZHE PR FIEN R
W2 ENERTH S.

2. BEMIT72 7 4 — R/3w 7 (Artificial Feedback) =+« JIEE® Y, HRE
RENLEGT D, BEiAEPMEEZ WY 4 — K23y 27 [36] 37]. R
VIR EEHAWT FESHIH O X A I T EIRETHIENTE, BITRETE
B REEICB W CUIFEHTH D, 734 ADOMHAMERNMEN T & A3 A
Thb.

Ja—XRKL—ROT7T 3 Aaht L TRERZ D DIZ Finite State Con-
trollers (FSCs) 23 % [38] [39]. Zd =y hu—Fi, —r AL, REM
IRRIE T ORI ZILIZT H O T, A CIERMER G T v Y X LAOFRE M
AIEETH D, FlZIE, B2 10[° | YL ERdET 2 &Rl A > U o dh 2 85 14
5, Lol okllTch D, fELNA—/LTIITEHTH DN, FES O N
BHEZ 2T D13 L, B L — O E PR BEI O K e s /e~ v v
VITRENZ72 D, Kostov B [26] 1%, FSCsIZBURTIXFES NA A A D=7 ZAD
A LoV RHIENCRIH T2 2 &R TEX 720 IR RTn 5.

N Ty FE

=T on—T7HE 7o —X NL—T RO A G DTN, 7Ty R
® FES #l#Iz >\ T, f&EH7e H DIZ Dynamic controllers 23 % [40] [41]. Z®
ayvhke—J@FA—7r—"arte—7 L LT, Hill DFET /VOEIEMRIZ
ESIERERER A, ZJu—X R NLr—Far he—JIPIDay hue—J
%Z AW TU 5. Dynamic controllers (%, BIEH IIZHT 72 ZALEEIZRARH Y,
FAHE ST IC DB AT L WO MR B 5. £72, PID=v hr—



TEHENHERR Y AT AN A THWAEENRET L LIZS WD TTF 22—
YITIEMETH D,

Za—J)lry kI—YH#

FLATFELIAMC G Artificial Neural Networks (ANNs) Z H 7= FES #ilf#l & #i5
SNTWS. Winslow b, MOAEZHERFTD7-OICEMG %27 4 — KXy 7 &
L C FES filJ & Ji# S 2 D12 ANN & H\\ 7z [42]. Abbas 1, A7 kv
7 BB NZBAET 2 ARG & 2813 2 72912 ANN &2 v 7z [43]. LaL, ANN %
%wkﬁ%@,%%ﬁ%éht%@ﬁ&w ZOHBE L TEHOHLE, £L<
DOFERHAZET 5 2 L2 8IC kD, #ER, ANNIZHESS a sy be—F 33
IXE - TV,

1.1.3 FHAHIEETIL

BB EHS OB T, FETUBREDR O AT AL & WITEDS FPARARRE R S K CHil
INTND ET WMl BT\ D [44]. £72, TR 2150t
7 DN O TR S ihfsbitl (AA o Agonist-antagonist muscle ratio)
TR SN AIENEEE (AAJEMEEE @ agonist-antagonist muscle activity) & >
ToPRIT DN O, RS TR IS ISR Y 3 2 BEN A B & B B B 0, FTE
FEIIBEERIME & BEME N H D Z L BB LN STV D [45] [46). :m%w:&
D, BTG TERE OB RIE, FEPHT ICEXRMZ 52 5%l b A
BTHDHAREMER S D.

Z ZTARMIZETIE, ERROIEFIEHEL TIRMEOREIZE B L, EMG i THW
O VT A HUEL e TG M B OB 2 55U~ 7 O BKRIIIS 3 2 JFIEIC D0
TEZD. PR ERIMEZ ol L CFER 2 —RICRET 22 LT, & hORH
HEENZEEEL LET T2 2 N TE D EEX, HEPUREROMREL & LT
b hORBEiZ & HISF, BRETLHEEZANTEDOET MLzl FESIZL D
SEEN I O A BT

1.1.4 AXHEDE=E

AWFFEIZBNTIE, BURTITIREICAE DR FEEZ RE TV iRy, FESOA—7
V=TT T A ONT, P EGE A W2, FES O ZedilEE T L&
BRTDHZLEEZHMET S, BRI n—X RAL—THIH E OFEAICLY, &
WS T FES filfill 2 B3 57O ORTEME L L TOEFRELFFO.



F2E HEERERRIE

2.1 FES&IF

b ME, EEAZT O BRIS, KIMEEIZH D 1 RIEHEIEF (somatomotor cortex) (2
BWCEEBIFE S A AR T 5. AR S V2 EEB I TEENENL (action potential) &
U CHFRE, EHIRARHE A R TR D 0 HINHET 2 2 & CHEEINET I ND
(FBE £ TOREE 2 FAXAFEER (Central nervous system) & FES). UL, ff#gE
MM 72 L2 L0, 1 RIEEE ORI HE, REFEIZ L0 FHEZ
BET 228 LIESGEITE, LRROEERNES SN L COEEBE S H I 50
5720, ZOX S —ATEe FONBIIFREZE Z 925, ZOBEAMEOFIA
TEER T O, b LUAMETDBERICH D20, RKMOHIEREITIERT L T
W5, XoT, KNS OEEFRTZIEN 6 R A LOITETRIET L, #
FIESE D Z ENRFEETH S, FES X, Lo X 91, FHAEREROBEIC X
VDI EEERE IS KT L, SN O BRI A HUINY 5 FiE A2 IV TRRE L
e W S, BREMEZHET 5EmERTH .

P K B ORBIEN R > CLE S 2GAIS, RRUBNERER 2 &
R, WRBLZ Db DI L FHINHE S EOIR T 25 2 & T, HEME-CREEiMiE R & 4ol &
27, ZhEBEAEMRE (disuse syndrome) & FESS. FES [XEXAIKIZ L 0 i &
IHE S, PAfEiZlEi S0 2 LN TE 272w, MEazRETL L LI, EM
TEGEREO TR TE 5.

¥/, EROBEICHTL2IAEYTF—va L TeRy FEAWZFE
DL BESNTND [B0]. UNAEYTF— 3 UICFES # W FEITER &
NTCHY, FESICL W E#BHURZ 5252 LT, KINKEOHEEMMEINLD AT
REEN S STV D [51]. ZORITE FOKIEERSICAIL TWnWas Z & TEDY
RWIRZH/FONDO LD EEZDLND.

VI EX Y, FES OfIMHERS 2 /2 L, & b OFIEEEICEN U= H# 2 845
ZEE, HERESC=2—r U B T a VIZBWTIERICRE R ER LR
DI ENbMND. LnLann, BEFES TR A Hl#E FEILMN Sz b on
2. ZO#EH E LT, JelZil 7z ill-posed problem ZfE< LENRH D [20] 7 L
OREDRZET BN 5. AR TIIZED X 5 REZ A 5 FES D% LWl ik
ERET D, HHAPEE CIEH 50, FES OFEAFIE LT OG Hbftho 5|
WAk E GD-611 % Fig. 2.1 12 L, {LEk% Tab. 2.112F &9 5.



F52F BERERYEESUAITY 5

Fig.2.1 Usage example of FES, GD-611 (OG GIKEN)

Table 2.1 Specs of GD-611
BIRAT 1.9[VA]
1 EWE. | 1~100[Hz](5[Hz] HAL)
AR ITEIE | 210[V]p-p (500[Q] AfaiHF)
AR IEDE | 35m[Alrms (500[Q] AfiTF)

2.2 FESIZHWERE - R/ N2 —>

FES |3, \XUIIC LD Bz 0 Z & TEBSEEZIT). 2 TEX
FBUCB LT, SARICRRE T 2 EMOME, B LOWIMTEE L TEXRH 2 —



52 F FRRERYEESUAITY 6

22T Hishii O E 251 LatA3 % [53].

EIBDIELE

W A WS 2 EMUICITIRE DT T EDREENRH Y, FORMA A — % Fig.
221K L, ENENOREZE RIZRT.

[ stimulation device
@ ciectrode

Skin

(a) Surface electrode

(b) Percutaneous electrode (¢) Implanted electode

Fig.2.2 Types of electrode

o FK1HFEMR
PSRN RE T D EMm. MAIIIERICEL N, MR 2R 5
B, HOIALERIISED.

o H R
BRUAY—EMmE bE0h, RELESRET 2EM. OS50
PRI U CIEBERIR AT © 51k, FEIIREEmRI D EALTWD A, KW
(CRET DT ORG RPN ETH S,

o HLAFENH
RPNITHLDIA A T2 T CRRIET 2 MM, R IR mE B L 0 B, SME5
T TERIEST D720, S ERCEES R AT, FFICERNTHS. L
LiET D7 OIS T2 L, MBRRERICE bl AT I
WLETHD.

IEREIC RIS 2 FIIM C & 2 B R, BUAEMZ: & OREBIFIEDL, #EBRE~
DAEBEZEZE LATOT, RERMEAN R TH HREEMTERZIT .
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2.3 RE/ N2 —

Z ZCTFES THWAESH S — AZOWCHIT 5. fRER OFFEIC
Fig. 2.3 1279 7VV AW, ERERH Y, AMEBRIEAICRKY mET 52 &%%<
T2ORIPLOMFNT0 L 72D Z ENEE LV,

> <« PW

=

(a) Pulse waveform

IA ///A\\\:f;/
T ~_~"

(b) Sine waveform

Fig.2.3 Stimulus waveforms

FES TIIZFIC LY, HlfEORE S 243 5. 2R XE2 LI TFIoRT. 72
BPWM FRUL, A AP TOREHAIBETH D

e PWM 5z (Pulse Width Modulation)
Fig. 2.3(a) D7V AME PW 2 ZA{b & 5 XV AR, TIZxT 5 PW O
F (duty F) & VTS 5.

e M 5 (Frequency Modulation)
JARHE (1/T) Z2{e s 5 EAE A H

e AM 5 (Amplitude Modulation)
Fig. 2.3(b) OHIEIRIE A %2t & 2 IRIEZE T

b oL, RN ZE Z S AN ERE 2R D, ooV 2R, R IRE
%k%<¢nﬁ&m%<ﬂ%?5@ﬁm%5.Hmm@ﬁok@%ibﬂﬁﬁ%,
X E P E LTz [53).
i# FER OB AZRET 5. & b OFRITERER « Hih & s —ff
ZRBIE I, BFITP - <0 L UGHE LI <, iR I LTI
%w& I3 %. FESIZX 20T, “HOMBEMO > bEBICL/ERAL, &
O H 1% 45~T75[Hz] D JEEBCINME & L Z LT 0. Ao GD-611 O %L
fEER b 2B ITL, BE B 60[Hz) D—E & L7z,
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WIZ, EEREE 7SV AEOREIC LY, L0 RPRn b7, B0 A
({ERBARETS > - ERGR AN ZIBIN LT, Lo T, ABFZEI281T 5 AR,
JEH 5% 60[Hz) D IEH, AM FIck2EME+ 5.
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AR T, RGET5E FOEEE 1)1 HRETHD A, 2) BEHORES
HERR U 72 KT N COTEBN A 71 © T & 2 7 b RS % 115 & 5 .

3.1 E FOEEER

BN EESF O RIRFRS A2 KB $25 L CEEARZ L%, b MaARED X S I
BEAER L TNDENENI S THDH. b MIEBNHET DS, SHEEOBKZRHBE
DRIFFEEZITWARN D, TURZRBOPNG — oD E2EEH L TWnWD., £2 T,
b MASKEOEBHIE A 45 Tk e LT, TR S ~D ARG SE 5
TdH 5 EMGIC X AMEHAZET HND. 2 2T, BT 20EOMRE DY
REEL LT BT FIEICE B T 5. limura H1%, BUG L7-ENORERD
FEOUICER T 27 OISO EGWZ, Wi - B cEiei, m., m; &
L, X(3.1), B2 TrTFikbibr BXOWENE a2 ERTDHZ LT, ZNE
AUDS A RATAR Y T 5 BAR A BE, BAERRIMEIC & 595 2 & &R LTz [45] [46] [47).

r= e (3.1)
Mme + My
a=me+my (3.2)

AWFFE CHIMER S &3 BB TIX, Fig. 3.1IRT X ICMfipTH 5 B =
SRR OVEMEEE m,, JEMCTo 2 B BEf OTEMEE my KV ERIND r B DR
THEIICHFETDHEINET S, ZOoE%Z FES I X D EEhHIEICHT 2 &
BEZD.

3.2 FESIZ&KAEFER

B RORIE, SN S EAI A 2 AR TE BB E L, OB
WA % = & T 5. Fig. 321009 & 510, HER% L 42 L=
54 L OB T EERS~0 FES IC X 2 RIE %, Zn2N 1, [;[mA] &+ 5. i
Wk 912, ARFFETIE AM FRERALTHY, ZOREICHYST S 1L, I, 258
MEEBIEE, ZRZNOFILIHE LN % MR, JEH S5,
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‘Hand

Flexor 0 .” Elbow

muscle

m f,/

Shoulder

Extensor
T muscle

Fig.3.1 Human model for control of elbow joint angle

Flexor
muscle

I

Elbow

. Extensor
i\ muscle

Shoulder//":] e

' Stimulation device

Fig.3.2 FES model for stimulus to upper extremity

3.3 FESICKA#E7ITO—F

KEIT I, Iy # TR O RO 7 7 0 —F ik a4 5.

3.3.1 BRIt - HiEEE

10

31 HI T A= RrEIc S Xx, 22T (3.3), (3.4) ITH-ehELETdH

% BRI TP (EAA H:Electrical agonist-antagonist muscle ratio)rs,

B

G MEEE (EAA V&M RS Electrical agonist-antagonist muscle activity)ap % EF# T
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5. rg,aglFENEN, BEIAERS LOHERPECT ST 2 SMRET 5.
J— Ie
L+

CLE:]e+If (34)
FRASPULL - ARTEMEEE &2 o SE BB O gt TIk, bbb, ARETEE A E %
T2 me, my ZENENETORKHEM CIEHRLENTVD, 2O rp B &
Wap &MV DBRE, BEHOBITRA DRV RREIME, & MHhAFL %R Uik
D 5D BEIECERT 2 FIREBEZ 2MLERHY, rplI0hb 10OMHE, ag
T 0~2DMEZMRD. L, Iy 2 EFULT 2 FIEICE L Tkt 4 5.

(3.3)

e

3.4 HFESFEFHOFERFEETIL

Fig. 3.3 277 X912, b MBIETEENIC W CHBAFMAE 0 NER IS ET
DR AEBZZ L&, TORKILr Z AT L LT, ##i5% (Neuromuscular sys-
tem) Zf8 TH f VERCS N, BRSNS f 2 AT E L THERSER (Musculoskeletal
system) ZfETONEMSNDET LV TRTZENTEDLERD. ZITIE, T
PSSR K0 HOR T D HEHUHRE~OEENE S % ry, ap, FESIZ X VAN SR~ G-
R DEIEDE rp, ap & LT, MEEEHRE~OEBE ST E OB r (=r,+rp
), a(=ap+ag) THDHE LI, KFRETITRET L2 ZOET VA, P &l
Pz HEd 5 2 & CHEEZEBT L5 P EAFIEET L ThDH L L, #YEERT.

R, a r o a
han 7, f

Musculoskeletal 9;

Neuromuscular
system 3 system

T aE

Fig.3.3 Scheme of control model

3.5 HEDEDA

Fig. 3.3 DT IV EIKORAEEAT 5 12 OIIX £ TR, ERRENEH
ZETMEL, TNOLERBAETIHNERDD. ET /LB I RZORIEDTZHIC
UUFICRTEREITNET VOZY M ZMRGET 5.
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3.5.1 MFIRET FES Fl{EEER

T, MRHAZET UL T D700, FEEINEERVECES T 2 MR ERE T
WZBITDERZITY. Z0FEERIIFig. 3.3 Trd r,a, 20T, rg,ap #AJTE L
7% als, MhEFhfELTANEN OB EZEET 250 THD.
EEROF T ry, ap, 280 TRV — A HREEL DD, #EFH-ROET MELEIT.

3.5.2 FESHIBZMALZEMNS DN HHINEER

hEMHREETT MET B0, FHBEEICIEMFIRE FCFES T—EORIIH %
MZIZ2M O AN T 2FEREZITH. ZOFEBRIIFig. 3.3 TrI fEATEL
T, HAOZRMBEEAE ) & LG EO AN E BN OREEMSEZ2EET 20T
b5, LR T FES filfl R 28 L TEONIZMBEHRET LV E, Z03HE
Bzl L CRONTM B RET VERA LT, Fig. 3.3 IRTETABEYD
ERRET 5.

3.5.3 JEWMFIRET FES Hl{EEER

FR2FEBRTRE LT ET VOREE N RS ThH DO EHERT 572D, Fig. 3.3
TRTREEROEEEZ TG T 2200 FERTHD. MRHRATT IV EFHERRT
TNOHEIFEE TREMRDBA D LD EE L TWDD, OGN Z Y 0% FRFE
T 5012, EAFEEET VL8 R 2 —ya v EBIEA 5. =
ZClErn,an 0T, r,ap EAE LT, HAZMEBEHAE LT 5.

3.5.4 EMG EB5=E

FES fI#1C L 0 I REE A BRI 288D rg, ap &, & bOSBEE R EAE EE)
AR UTZBRD ry,, a, & ORRMEZA ST 572012, FERHRERES T L i
EE A2 L7eRFO EMG Z 53 5 EZBR217V, EEEZIREO v kBT o &8 2K
Bt a2 ET 5. 22 ClErg, ap 20T, m,a, AN E LT, HDENBEEA
oLt 5.
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F4F MHRIREFES flE1XER

AETIIH RS T FES HI#EBRICHOW TR 5. KERRIT, Fig. 3.3105R7
PR RDET M B ET5. ETHafilld 2 ZRRELHH L, EXH
WO & LT rp, ap \CAWDRIBEERE L, I; %, 7, a D me, my & RERICIES
b 2FEEZHAT 5.

4.1 EERIRIE

EBrR R % Fig. 4.1(a)(b) (&~ 7. FESIZ X 2 BEHIE O MR E LT, L
Fail & AP PNICORFRE L, ZERMEEREE T & LT, HICx 3 2 B 1253 5.
Multi Channel Systems #EOHIlHEEE (STG4008) Z V>, *IZRIHE~EKAITE %
FIIn3%. HSxISiniL, Ao b =8ais L O BB _0af <, EmITLLTIZ
7~ Compex 1D performance/energy AR/ K& H L, RIEMR CH 5 2t
IEM L Compex fEDE—H —RA > b & AW TR L7 E# AU ERE L.
FEARAL D AT RFIZIX S I Compex AL B 7 V2 BAA LEEA o BE—F X
RSN E S FES LD TR LK. Fig. 4.10) ISR T X 91, Ao B - Al
B X0 AKFEENICREE, A7V MM TREEZEE, N—FATHEZRTIC
BELTCWD. BEE, 7 v 7 Blktbo 3HihRE 9 (USL06-H5-200N) % H
vy, R A E ST, Rl 2 a e L, 1000[Hz] THUS L7z, FEBRIESE R ER
BT, R & BB O/ T AEIT45°, MO TAEIXI0° ITRENTVND.
WENBMEA (275%, AFIX), B (245%, AH]X), C (21 5%, AFIX), D (24 %%, 47
&), B (24, ARIE), F (245%, GFE) BDERIZRT T4 7 TSIMLEE. #5R
FITIE, TOEBROBE, NRIZOWTHOREAZITV, RANDLERSINO
AR 21572, ERRITKRIOR PR TR RMa R R B S OEREO T, ZEXVE
D D PFTEFREEATE, BT ST

4.2 VRATLIERK

VAT ARETIT 5. ERIEOA A=k Fig. 421081, THCEE
(FES) B XUGHAIZEE (Force) DORMAZAT .



Force*data
to PC "

Harness

(a) Subject fixed by a harness on a chair (b) Measuring instrument

Fig.4.1 Experimental setup

. Force sensor

O Electrode pad

fixed

fixed

M Synchronized —[ FES ]

Fig.4.2 Experimental model

4.2.1 Fl#HEE
FES ZiE XK

Fig. 4.3(a) (CHIBEEEAKRZ R, BIRECEEE X Multi Channel Systems £
STG4008 TH v, frkk% Tab. 4.1ICF LD 5. EBROBEIZIE, Fig. 4.3(b) 25
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T7v NAA v F &I Z L CFES OEBEFRAZYA Z ENAETH Y, HEBREIC
JE DRI LIEN D D6, T2 BbICERATIETEAEE Lo TV 5.

(b) Foot switch

Fig.4.3 Stimulation device

Table 4.1 Specs of stimulation device(STG4008)

BT v o v 8
NU = AT/ 8/8
R[] 53 fif E 20 [usec]
0-100[pA] F TOEG LFFFH | 1.4[psec] @ 10k[Q)]
o AN &R + 16[mA]
A RAEE + 8[V]

R TS

Hishii #5225 [53] $BRA (25 L TR RS H IS AREIS R AL DI 203
TELRV/PNSHEHICTA L ADRWERZER L. Fig. 4412777 Compex
1 performance/energy &/ N R a3 5.
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PREREE FES 18 525k

AR

Fig.4.4 Electrode pad

RIS

I ORI, il

IR

-
—

Y7 b U =7 THERR LT- Y % Fig. 4.5(a)(b)

A e LT, RIEUE B 60[Hz] T—

B

%
EDOEZR 2 AW AM FREABRH L T 7eD, BT 2Rl 3T A — & 13t

: IR§[H] [sec] TH 5.

UM (mA], A

)i

b

(

HORIEOHATHSH. Fig. 4.5(a) 1X, —EORLREA N Z/RL, Fig. 4.5
ERIBATI & 72 5. Fig. 4.6(a)(b) 12, Fig. 4.5(a)(b) OffiHIRA A —T ZRT.

L CENEIVRITREY & Bk L

-
—

SH PR |

.Y

—HAA,

B R R OB L, i

T T T T 1
00:00:02:000 00:00:03:000 00:00:04:000 00:00:05:000 00:00:06:000

T
00:00:01:000

r
00:00:00:000

(a) Constant stimulus

T
00:00:02:500

T
00:00:02:000

T
00:00:01:500

T
00:00:01:000

T
00:00:00:500

(b) Sine waveform stimulus

Fig.4.5 An example of electrical stimulation
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Gi
H~
I

Current[mA]
Current[mA]

Time[sec] Time[sec]
(a) Constant stimulus (b) Sine waveform stimulus

Fig.4.6 Clear stimulus images

4.2.2 FRMMEEE

FERMEREE T COT v RRA v M, T2 bFRENZFNT 28T, Fig.
4.7 (RT Ty 7 ko 3R v (USLO6-H5-200N) % v 5. fIkk% Tab.
2Q1CF DD, ZOEFEIT, BEEICRELZYVa A NENL, BT ND 1, y, 2
$E|17'7ﬁ@ BIEMEEN D HEFHUTLZENTES, WAL, YaAr 2T
ATV M EBEL, HEFHT 5. Rt FIXFig. 4.8 D&BEHMIZHR
EL, EROBRICITEETMEZ 2 7 7 TRIZEEL TV,

Table 4.2 Specs of triaxial force sensor(USL06-H5-200N)
TEASHTE Fy, Fy + 100[N]

TEAETE F, 200[N]
R Sloy =X 120%
156 FH R R 0 P 10~60 °C

CASIZRFS D20 W20 H5

tw
ON

Y

-

Fig.4.7 Triaxial force sensor
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Fig.4.8 Metal component attached force sensor

4.3 RIFERDOERE

EAAHAZRNDIZHTZY, Mhtbbith 2 2& TRIBETRE 1., [, 2 BRI 240
End D, AR TRz L9, #ERE DR A & ik U7 W e KR E 1) ..
DI % b oD 2 e DR R AE I, \Z K> TEIMEZ EH LT 5. RRAIPKE
EVIHEERTE DRI K DT OPTENIR S 12D, DRI ETEIL FES (2 X % #E#)
ERDOSGE, TR AT ST BB FEERIZINGHE LR &2 AT % £ TITEK
MRSV, FHEREN T > 7T O & &, i E O OB M CUUHE 2 & 2
LIGD D RET HZ EIFRNEETH D, ED=, mK - /D RHERIEO R E
T L LT, Fig. 49D X 2727 v 7 IRO—EFIRE « % 0[mA] 2>5 0.5[mA]
RN IITHIN S, FRFEDRAZIE L 5 E THRERZIT 5. AJHIRIE, Ofsec] 25
0.5[sec] £ TO0[mA], 0.5sec] 725 5.5[sec] £ TRE LICHIGRE © & L, R i%‘
KIS B RPER L C 3BT 5. 3EIORERD RIS OIS ERXD - Wy
Bré: L7z 1.5[sec] 726 4.5[sec] DT — & Z KB4k L, AJJEFMEITHT 2 u“j?']q:
Bz Rk 2. 0.5]N] LLEOFEIH IMEDFRD &7 EBHMEO 1step Al % Heb Il
T, R A2 C 2 ECRT O FE i E A SRR & 3 5.

4.3.1 EEBRHER

RE LB OEK « e/ VRIS EGME L Tab., 4.312F &, LB, ZOfkKK -
s/ VR R CIEHME LIc B x 1, If ELTHWS

4.4 HEEFOETILE

AEITIX, EAA B2 AW NBESHIEOERO -0, FOESKHEANS & T4
H DR D B E A2 FEBRCH S L, EAA L FHhE A &+ A% R M
BREE T COMBEERERET 5.
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=

Current[mA]

0 0.5 5.5

Time[sec]

Fig.4.9 Input waveform of constant stimulus

Table 4.3 Maximum and minimum stimulation amplitude for the six subjects

Biceps Triceps
Subject I/ . [mA] I . [mA] I' [mA] I . [mA]
A 15.5 6.5 11.5 4.0
B 11.5 2.5 11.0 5.0
C 11.5 7.0 15.0 8.0
D 12.0 4.5 10.0 6.0
E 14.0 6.0 13.0 6.0
F 12.0 3.5 14.0 8.0

4.5 FEAEI=IZEREE

IEIEI DA A SR D D I2HT- 0, SFEIERFEPTELIE EAALLAEATIL,
EREIIRICEN D RN ZFT S, TDH%, FlHa ATIELRE 188t
Jin 3 DR I L T sin, cos O ERUFET LTI L, HwERIZIERLE TRBL
T 5. UL KEHEO RGBS L, BRSO D, L
Tl b BAF s 2R LI-WE B 20 5id 4 5.

FTATE LT, BEAA LLZ IERLE CTRE L, FEBEORMEMREL RO S, EAA
I 026 1 DfEAER A DO T, FEKE EAA 05 29008 L RE X0.5, JEH
T OEREETD, EAATENE apld 1.0 T—EELT5. LEDEEZEEL, AT
RO EEZ D L rp(t), ap(t) FUTO L S22 5.

2T
—t

re(t) = —0.5sin( T )+ 0.5 (4.1)
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% - D O IERULREGUE I2(t), 13(t) 1, X (3.3) , (3.4) MHLTDO LI

Ié(t) = Tg-ag

27
= —0.5sin(—t
sm(T

)+ 0.5 (4.3)
[}(t) = (1—7¢)-ap

2
~ 05 sin(%t) +0.5 (4.4)

Eiﬁ{tﬁﬁ@ﬁu{%ﬁ%{ﬁ1ﬁ [e(t)’ [f(t) [HIA] ﬁi’ [é(t)’ [t/amax’ [t/am'm’ [}(t)’ [}max’ [}mzn
LDORABRMNOBUTOL IS,

I€<t> = ([émaw - Iémzn)lé(t) + [;mzn
27rt

= (11.0=5.0) - (<0.5sin(Z) +0.5) + 5.0
2
- —3.0sin(%t)+8.o (4.5)

If(t) = (I}max - ]}mm>l}<t) + [}mzn

2
= (11.5—2.5)- (0.5 sin(%t) +0.5) +2.5

27
—t

= 4.5sin( T )+ 7.0 (4.6)



FATE ARG FES il (#5925 21

SHICHAE LTHND T fiT, ERUEET AV THEEILELTO X 5 ([ZB%D
BRI &> TIERGIRIZIRAE S, IEREAN EHICEZIRD Z LD TE LR ET 5.

f(t) a COS(Z;t) + bsin(Q;Tt) +c

Asin(2T7Tt +¢)+c (4.7)

7L, A=Va2+ 1%, sing =a/A, cosd =b/ATHY, AxHNIREE, ¢ %At
PR, ¢ ZHEZEOFOMEE T 5.

4.6 IFEKEEAALLAHEE
4.6.1 EBRRAZR

A (4.1) TRIELE EAA LLOEW T % 0.1~0.5[sec] OHLPFH T 0.025[sec] Z A
(ZZAL S BT 10 A SO A% 33175 5. FHIUBALED 0.5[sec] #2°6
AN =BT 5. A1 EAA B O—#l% Fig. 4.1012/- L, EEEORIEETE
Z Fig. 411177, FEBRITIAS & H O Z R LT\ 5.

1

2‘0.8
506
g 0.4
&= 0.2
0 f :
0 1 2 3 4
Time[sec]

Fig.4.10 An example of sine waveform EAA ratio (T = 0.35)

Fig.4.11 An example of electrical stimuli applied to lateral triceps and biceps
(T =0.35)
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14
12 -
R AR TN
10 - * o L 2
Z g ¢
3 L 2
= 6 - L 4
= ®
=4
¢
2
2 "
0 T T 1
0 0.1 0.2 0.3 0.4 0.5 0.6
Cycle[sec]

Fig.4.12 Amplitude to each cycle calculated by multiple linear regression analysis

4.6.2 HAHDEL

PRFE BB\, ETEEM3RITHOME L, HANERRER
HENE A D ATEZRE O 3 E# 5 8 JEW £ T2 A IESLHE O — & IR
B L S HISEEET 5. ZHUT L0 ATIIEGEE — B kHR T 5 H 1
WENY A, B (4.7) OIELEE TRl 5.

UL EDFNEZ B E 2 TATIEZRIT RIS 2 M) IEKE A KR E D, EEUFOHT
DO RDIZE AN T DHRE A, (HEN ¢, HHEREOHRIMEcE 71y b
L Fig. 4.12~4.14 |2~ ¥, - EEUFET /W K 2 IRk F o Rl 4 45 f5 9 <
ERAEL, A LTZIERE EAA b & 212 Fig. 4.15 1R 7

ROTARNE - AAHEND D, AN— NRKEZ RO ARG ROET MMEEITS. £
7z, Fig. 41400, TO/NEWEE (FEETHHI1ZE) FOEDRTZ RLTHD
HZEMbMND. UL, M EIEROEEREDE NI LI LD EEZLND.
Fipboh, A OB E R ORI SIS B Oz, HUlME
N7 hLTLEIEEZD.
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0.1 0.2 0.3 0.4 0.5 0.6

n
S o
=

Phase lag|deg]
VORI C RS R
S 3 8 3 8
4
¢

-350 - <

-400
Cycle[sec]

Fig.4.13 Phase lag to each cycle calculated by multiple linear regression analysis

6 _
5 - o
7 4 ¢ e S
o] o o
o
= 3 o
< &
> 2 o
1 o
<P} 1 B <><>
£ o
[P} 0 <>
U : T L2 |
-1 ( 0.1 0.2 03 04 0.5 0.6
D
Cycle[sec]

Fig.4.14 Center value to each cycle calculated by multiple linear regression anal-
ysis
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I —0.1

= —0.125
—0.15
—0.175
—0.2
—0.225
—0.25
—0.275
—0.3
—0.325
—0.35
—0.375
—0.4
—0.425
—0.45
—0.475

— —0.5
—EAA ratio

Force[N]
EAA ratio

Fig.4.15 Average data normalized by cycle time, Subject B
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4.7 EEBBDORE

AEFTETIE, BREERER G(s) DEHIZHT-Y, F— FRIKZHWS. EBRER%
BT UTe AR — RERIXN S, BEEBAMAA, BEHOMME, fiHENE 7 1T 17
T DB A RD 5. Fig. 4.12, Fig. 4130 LRD7-45F BIoB T 58—
R % Fig. 4.16, Fig. 41718, ZO7 A UHENE, fitlh : 74 > [dB], #%
il OcPHo) < A JEEL [rad /sec] Td 0, ACARRRXNIEAEH « ALFEEI [deg), B
OcfHih) - A4 JEK [rad /sec] TH D.
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PREREE FES I8 525k
40
35
30
25
20 —]
= 15 %
= 10 *
5 5
0 |
3 =51 ® 100
-10
15
20
25
Angular frequency[rad/sec]
Fig.4.16 Magnitude plot, Subject B
0
0 L5 ] 100
o -100
%}
S -150
N )
= -200 %
2 250 M
2 LIV
== -300
-350 *
-400

Angular frequency[rad/sec]

Fig.4.17 Phase plot, Subject B

26
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PR BICB T DR G(s) ZHEET 5. Fig. 416 02bbnbd K512, I
RSN OAPIRAT RITE R & n IEBNRO CRILCX 2B EBAMA RSB 2D
o, EFFTERIEn ZRET D, 74 URREHG, ZOEERER () (2
B OME NOWRBERETE D, B OEI S U/ 3R IEZ VTR,
1 & 73-42.5[dB/dec] FLEE & 72 5 727=8, -40[dB/dec] DI X % £ 2 IEILFR Tl
LLZ1T 5. 2WBNRDOF A VRN T 2 BB R O A TH 5 B
AIEWIH w, 1E, 2IWEBNRORN— FRHEZH W7 4y T 4 VI LD RETE
L.

T, WERECDBFEILL 2EBENROR— FRKEZ W=7 4T 4 712X
DVRETE D, IHIZ, ERREVHRRIT2RENRTH D LHEE L2223, Fig.
417 7 & /& B B3 CIIAL A AL DO MEXHIE A 180.0[deg] LV b REL DT &b
ML, ZOT ENLMRARIL, LFEEH T[sec] & 2IREBNRD I A7 — FFE T
FHATELEBLAOND. LoT, 2WRENROMAIMRK & Fig. 4.17 Z b3 2
L TAXRFHEB LML, AXRHER e ™ & LT RERBICURE T2 L
MTED.

L EDFND, RIS RD DaZEBE G(s) IZFUL T DO TH D LIRET 5.

w2

— K . n . —TS 4.
G<S) 32 + QCwnS _’_w% € ( 8)

ZInh, BRAEEE W, BEEK( ERK, HAFEHE T ZREL T,

2 RENFRDHR— FRE

T 4T 4 IRV G 2IRENRD R — R OB % Fig. 4.18, Fig. 4.191C
AT ZAUEE (4.8) 20D A X BRI ES o7 BERVTAARERIEL G (s) M HELTF O X
INCHEAE Lk, 2 LARARER w,=1, BER (= {10, 06, 0.3} T

H5.
1

(1 —w?)?+ (2¢w)?
2Cw
1 —w?

|G (jw)| = (4.9)

(G (jw) = —tan™! (4.10)

BRARRY w, 8L VBERKC

REERRIT 2 OBENR ARGE LT=72%, Fig. 4.18 O HARMA AW w,, W=l
BCELBTUID T 4T 4 72T, BRARAER w,, BERECZRETH.
HRA B w, ORTEX, JEIFEE DR/ RIEN HUTE LT ERR & E 5 HE
21[dB] DA RO JEE A & FEZAT 5.

T4 T 4T LT A R E Fig. 4.20 77, 2O, BARAEEE w, 1X
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EHMK

EH K 1%, EHME%E 21[dB] & L7z & &, 20log|K| = 21 OBMfR %= DT,
K=1122 7 %.

LA T

H R JE L w, = 20.5, BOEIRELC = 0.7 ERE L2728, Zhz b &I Fig.
419 7 4o T 4 T EITO . BRARE R w, = 20.5, WEREC =07 DR
Fig. 4.19 & Fig. 4.17 # @R/ b D% Fig. 421" 7. 22T, AXKH%
0.01[sec] A A TEAL S E GG, L FFF#Z 0.05[sec] & L7HEIZ 2 KENRD
PLFRRRIK & 7 — 2 M OFRENR R /NS < Ipodz. 2072 L IEHIL 0.05]sec] &
T5. AFWRFRZEE LT —# K& 2UENRDOAFEFRIN % & o+ T Fig. 4.22
IR

— A, EMG OFH (i~DOAT1) BREIOERE T, 0.01~0.1[sec] F2E
EHE STV D [52]. ARBFZECRIE L2 2 X HEIE 0.05[sec] 72 o772, KBk
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Fig.4.20 Fitted magnitude plot, Subject B
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PR BICRBWTHIE LTI/ T A—=F RN LI EREE G (s) IZULTFD XD

272 %.
420.25 005

52 4+ 28.7s + 420.25
KNRT A—=H1L, w, =205, K=11.22, 7=0.05, (=07Tbh5D.
BWRE DT 4T 4 7 LA — RN % Fig. 4.23-Fig. 4.321Z5R" L, [FE
LI T A= U TIORT. K OEIIEEBRE CREENHD. Ly
5 K IXESHIIC X 2 HIMEICER T 2720, FMEROESLRIZ, KEd
SNOEHANERTELLHITETHLT, AL RDEEZD. £, wy, T
TR L THRBRE CTEND LM, ZhITHET 25 K5 ICBIHRITEIC X v 2E204E
LBbOLEZLND. ZOMIZ IOV THEERE TEBH LD, ZhbD
ZRNZOWTEHREETIIAHATH Y, SBRERALEZENSE S 2 L TERE
FETHUERD 5.

Gp(s) =11.22- (4.11)

Table 4.4 Parameter values for the six subjects

Subject w, [rad/s] K 7 ¢
A 20.9 891 0.045 0.50
B 20.5 1122 0.050 0.70
C 27.9 1.73  0.130  0.60
D 20.9 1.50  0.100 1.00
B 22.3 6.84 0.125 0.65
F 18.0 6.96 0.095 0.60

LLED/RT A —52 Z To R E ORZBEE 7 V2 LU R IORT.

>

_ . 436.81 _,—0.045s
Ga(s) =891 5212095143681 " €

w

_ ) 420.25 . »—0.050s
Gp(s) =11.22 s2128.751420.25 ©

Q

{79, 7841 -0.130s
Go(s) =1.73 s2133.48s+77841 " ©

o

§2+41.85+436.81

&3]

/4. 49720 . _0125s
Gp(s) =6.84 s2128.99s +497.29 €

Fr

).
).
).
). Gp(s)=1.50 28568 ¢=0.100s
).
).

_ _ 324.00 . »—0.095s
Gp(s) = 6.96 52+21.65+324.00 €
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FNENOWERE THRAEN R w,, A RXTA =X K, ARt BIO
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MHEMEEZIT D). LLFXERTIEET, Kb RI2HEREZR LIHHRE B OfER
IZDOWTIH R, ZOHZEDMOPREIZOVWTE KT H.

4.8 FHEEER
AKRHEITIE, A CHRE LTAnER 2, CUT 3 FE O P 525k %1

1
Y

1. RN LT D AT 2 0%
2. AT v RITEALT D5 AR T DINE
3. PiEE o~ REDA XTI vay

4.8.1 ANEAALDER

AT1D EAA I 0~1 OfEZ Y, HNTEATTOEAZIRD. £
BfA WD BRIE, EAA FLZ-1~1 OFPHIZILET 2 4ER N H 5. RO T AnEH
BaEmM, LUTORGEERRFICALE 28T 558, v, =2r. — 1 % AJJEAA
T %,

4.8.2 (1) EHMICELLT HIANICHT HEE

3% EAA FEA )50 & I BARAHIAEME RIS A 8 L7228, MBI 2 o =
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TR CH D LD 2L L, WO 1 (), ria(t) ST B (1)
o) BEBNCERD R DEAIT, 2 (4.12) OEUEAK D oL D = & Th B

afi(t) + 0fa(t) = Slarp(t) + bru ()] (4.12)

RBRE

ZORER DT, EAA LA LI O 2RO JE I 2 RO IEH OB/ —
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1. 0.6(—0.5sin 2%t + 0.5) + 0.4(—0.5sin 2%t + 0.5)

2. 0.6(—0.5sin 2%t + 0.5) 4 0.4(—0.5sin £%¢ + 0.5)

RERER

FBRITE AR L2 BRI D 10 A2 A1 & L. #RaE B O EHE R % Fig.
4.33(a), (b)ITRL, BHEERE OEBRR % 33T TEEL, AN LZEGRIE
O 1 AT L2 Ok L OMBRERED b O EM % Fig. 4.34-Fig.
4391287, 7T 7 OFENIEHE « FHe7) [N], At EAA o, AR - e
[sec] ZFK T

EE

Fig. 4.33(a), (b) 226002 & 512, T AT AE 10 EHIO AITxt LM X
IBRELTW=. £7-Fig. 4.34-Fig. 4390 6bnnd X912, &WaEicBir s
FEERAE R OFLEITHEEE & I ITEVEZ R L TWD. 2D &n b, BRI
VAT NIMIETH D EHIEITE 5.

Fio, #EE BIZBWT, Fig. 414 IR LEEHTLOT T MbE OB EIT

. ZORBFLOT T NI, FEITR A2 XD ISR ORI 9 B A D
BEWMCED2bDTHDEEZLND. OFV, W « BGOSR E =N B %
FAET LD 72, IREWIADOSEEEHER TCOARONDERNRBHRTHL L
%2%. Fig. 414 1R L= T=05 TIHFF0ITEVE L 2> TEY, SHICEME
B (R ERY) SE5E, ZOIREEEZAOREII/NEL /Y, 1EF0IZ
O EBEZ NS, SEIOERFERN O AAF—01, 21I05ENDT=1{03, 04
} DIEGZEAINL, BERTOANTIEFLOT T SBMEEES NN, Tl K
XVWEH (RER) CEREDLELLAICIEY T NaRahhote. KoT, #
A NVARER IR OEE 255 Z LT, FLOT 7 MEISl LN TEx 5 &
EZoD. ORI, SEROEEBOLELITO X A7 TR, REFORT 7
N9 2% &) FES HIENZ IS T Dl 2R LT2hs, i OIE R 28 % 7= S X hE
EEBICBWTHEITET, BEOX A7 THEAEOESHOALNERIND Z
LixrneEZ NS, Lo T, (mERKETHWVEEREA1TO L&, FLov
7 MEEGL TRNWE S Z 5. #RE BLUAOHERE CHHEEBRE A, D, E TlIH
DMEDY 7 MIHERTE T, WA C L F TIXFLoOY 7 FRHERTE DR, %
B RKFEERO EFALOEEBICL 2D EEZ LN, T 5O
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1. BB A IZB W Trp=1 (4[sec]) 75 0.2 %A 0 FTRD I, 0.2
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IZ1ETHINEHE, 02440 £ TRADEIED (% 3[sec]) , ap=1.0
LI 5.
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AT v 7D EAA IZHT 5 EH TR NEHEMHL, 0—1, 1—0, BEEE»SLD
HETE B 2 AT P E AR & o8 T Fig. 451 12R- 7

Fig. 451706, EAAR0—1, 1 =028 T 258 T, TOHAONERDY,
bt AT Y AR AR TE 2. B B OfERICK LTI, 2 2O IERRIT
IFIERI CEE 28D, PFOMETEHELT D22 ENTEDEEZD. 2L, %ibd
HEICE AT U AR L TIE, EAENKE LS, BMACHE L -MMEETT
IMEND D ENDND.
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F72, Fig. 4510669 — i, rp EFEIOBBREHLNITES. 777
Tl rg DRELBRDDIHENTREIIDBIZICRKE S o TS, ZOFRERNG ry
EFESOBRMBIETH D Z L DR TE 2.

WERE A

WERE A ICHOWTIE, rp=1— 00D, FAT v T TH— "= a—FrDDb,
EEEZ ST IETAIEESCNICEMN L TEBY, £72, rg=0—10KITeK %@
LCEFMEEZRD Z LR IERFMICEMNLTWS. AR & Mo & EE
DEWVNZEDZLDTHLEEZD. T7bb, ZOHA, Lk _8EmH OIS
M “HERRICBN TR Z D Z & T, A== a— FRRAELEFITR D F CTHIH
Mo TNDEDEEZ HND. rg=0—1 T, HEBIFIH~DIIORENES
MDD DX I RIRAIBENERETCNDE LB X 5.

WERE C

WERE CIlOWTIE, rp=0— 10D, rp=1I128ET 3N REANRA SN,
EHUER Rt Thotlz B2 6D, T70bb, RKXHNKER I, OIREFREZ,
FADHREAEFLUEL LTV DD, B FORADE U FITENIC LV ERH D, £
I, & I ORI LV REEIEDL OO EVBENRN-T-EEZ LS.
EHC OB R A E LR L T 50 TIERL, B - MO ESEDL HOHYE D
MERMELITRETHDLZENDND. EHITHET X T AT U v ARMERN
WERFE B L L CHFICR OND A THD. Fig. 4.52, Fig. 4530 6bnb &
I, rp=0—>1DHE L rg=1—>0DHET, EHERNRZEZL TS, E AT
U ARHEORMEIR, I, 2L, TRK 22T 5 2 TR TH L0,
FHOBERIZIXEANDFR D 27 U S AREEZZRICAND Z ENEETHLZ &
NOMND.

WERE D

BERE DI OWTIE, HEEMEICKT L CTHAMERN/ NS W, 2oL Tl ag @
L VA ETHDLEEZD.

HERE E

WERE EIlCHOWTIE, Fig. 454128 WT, rg=0—>1DHAL rp=1—0 D5
AT, EUERALZZELTEY, AT U U ARERHERTE 508, HEEMOIEB
PEEDBLRTIE, &% L CHERE BIGEWRFZRFEREZRL TV,
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WEREF

PERFE FIZHOWTIE, #ERE C Rk rp=0—1 OB, rp=1128FEF DM REKR
HAORREND =D IEFUERA 0 Th D AlEEN R IS, BREC, FLb
(2 (1) BRI AT D ATNT T DISEICB N THIMED > 7 R A LD DI
CDOEHIEDOAR+ S SIZEDLDOTHDLEEZLND.
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Fig.4.51 Average value and estimate value to each EAA ratio, Subject B
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Fig.4.54 Average value and estimate value to each EAA ratio, Subject E
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4.10 3)HEERIOTUFEDA ATy

Fig. 3.3 TIUE L7= FES # W =HIE7 LTk, £ b & FES ORGS0
BRMOW (r=r,+re, a=a,+ap) THT—ARROAT)E22D (BIEFMIGL)
& DRRGEFEBRZAT .

4.10.1 =EBRAR

PERA I, & D OEEES D 1y, ap 12X T, FIHPREED SR T £ TIE
HI0N] DA ZMERF LTS H 5. MBI TH D 2R 250, FZRENE=
BTV TNEA LN %R L, £10[N] 1233 2 K/ DI CHRBREICHE T 5.
ZIUT R, YEBRF T Z 1TV £10[N] MR 5.

WHRENT 4 — Ry 7 L CTHIRIFIEA N O RN ZHERTE VWL L
TR, WIMER X ORI ZBtGT 5. FHAUBIAAHA T, BEBRE IO D
10[N] ZAfEFF L, EBRENODT 4 — KAy 7 2% v, AN % Fig. 4.55
2. AEE (4.13) 1277 0.5[sec] IO IEZEE EAA LT ap=1.0 TH 5.
FHHIBHAGR ) © 1.0[sec] #2ITIERLEE A 1.0[sec] 73 AL, 2.0[sec] HfREZET 5. T
B 3FEMEVIRT. LLEE 13YTE L, PIIEA 10]N] A OMASbET, e
3T 5.

re(t) = —0. 53111(55(15 —a))+0.5 (4.13)
2L, a={1, 4, T} THY, #iTa <t <a+lsec] DAATTSND.

EAA ratio

LW

Time[sec]

Force[N]
S
W

10

(a) Pattern 1

Fig.4.55 Input waveform for verification experiment

4.10.2 =EER#EER

Fig. 4.56 (2, ##E B 0 33 70 OFERER & A1 EAA kAR, F7- Fig.
4.57-Fig. 4.62 |[Z2H8E O 3317 OWE) 7T — %, Rk OFERGERIZES< B
N OIEEFE S kh%%ﬁ#%*ioﬁﬁﬁ@ﬁf%é%ﬁ@,AﬁEAA%%T?.
728 Fig. 4.56 (b) 1, HIEI AICLY Triall, 3DHEEEH L TWD
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4.10.3 E%E

(2) 27 v TRIZZEALT D ATNTxET DI B RRBERE SRS R B D < 72w,
FPIFHAA 2R E & U THERE B OFRERICOWTERT S, 0%, 20110
WEREIZ OV TR D,

Fig. 4.57T DK 7 7 7 &7 5.

MBI £10[N] TWFhoga s, HOEHEEMEIC X BRELTHS.

F R O E W HIMEIZEE 35 &, FIHIT £10[N] Ho 7=z n2ih
SIE~EEN LTS, DE VRN AT S D Z LT, #RFILL10[N] DJ)
EHEFFL TN LB 2TV HICHL DL LT, TR D OEEES 1, ap D
Bl Bbind. L-7TC, Fig. 3.3 TIE L7 RIGLA R Y SEH, WA
Ty, ap \IAKAFT 2 TATNTIE CTHANENT 52 &n3bnd. £7-, HIH
OB TEFHAINREAL D LW Z L1, FESZ@EM+5 2L T, BHEDEM
HNCHEROEERESEZ 2L S8, BEMERCR T 2E#H % b2 LI o b n]
RS D, 2T XY Fig. 331 R TETAEZHNT, ry,ap (L DHE, ©oF
DREEORREIC D BT, FIHIRENS OBFRIENER T L5125, S
SITIEANE OIEEY 2 2L I BN D572 51X, FESZ# WS Z & C, EHZEIE
THZELAREE R, UNAE YT —2 g ICBWCEEREEZ R4+ Z 0
TZ5.

WERE A, F

Wb A, FIZoWTiE, JEENC 10[N] Iz TR U 72354 o F M 23 HE e il
MHRELTH, MBMOHON NS RoTWD. Ziug, HEflzhE A
TWb7ed, MfE=a—nr % U TR EHIC@E . 5l LB oK
JERHEF LD LI BHIZHS> TWATDTHD EHERT 5.

#E&E C~E
BB B R BAF e A2 R LTV 5.
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Fig.4.56 Output waveform to human and stimulus order and input rg, Subject
B
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Fig.4.57 Responses to sinusoidal EAA ratio in positive/negative 10[N] force ex-
ertion task, Subject B
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Fig.4.58 Responses to sinusoidal EAA ratio in positive/negative 10[N] force ex-
ertion task, Subject A
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Fig.4.59 Responses to sinusoidal EAA ratio in positive/negative 10[N] force ex-
ertion task Subject C
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Fig.4.60 Responses to sinusoidal EAA ratio in positive/negative 10[N] force ex-
ertion task, Subject D
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Fig.4.61 Responses to sinusoidal EAA ratio in positive/negative 10[N] force ex-
ertion task, Subject E
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Fig.4.62 Responses to sinusoidal EAA ratio in positive/negative 10[N] force ex-
ertion task, Subject F
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4.10.4 FHEmEREDDEE

RFEMATIC LD, FTETEE o DSBEEIRIEIC 5975 2 LRSS TS, EAA
ﬁﬁf@ELOPT%H% (ZRAEIRIMEIC T 55 2 L AT 5720, #BRE B

2L, B4 72 ap(={0.1, 0.3, 0.5, 0.7, 0.9, 1.0 }) T TEAA thrg=0 753
MHIFRT 0.2 AT » ZTIRITHEM S T2 KR ZIT 72, & ap 8O 3 WITE
L L, AJJEAA EEA&bE T Fig. 4.63 IR T. ZO/E ap OEINILE-
TR OB ENEINT D Z & 2R Lz, @RS HEE RIS A I
X LT, #Hx72ap(={0.5 0.8, 1.0 })IZBF 2 HRAEEE w, REEIT - 125
£, ag=1.0 TiX ag=20.9[rad/sec|, ap=0.8 Tl w,=13.9[rad/sec|, ag=0.5 TiZx
w,=12.6[rad/sec] T o7=. LLENG ag 1%, BHMIMEICTFET2EE2015.
70, WEEZZLESEDH 2 LT, AFRHNEIT D2 EBnholz. ag=1.0 T
1% 7=0.05[sec], ap=0.8 TIX7=0.08[sec], ap=0.5 TIL7=0.10[sec] TH>7z.

ZIVETOFES O TIE, BEISIRIMECH O TTEMEDOBEIZE B TE TW\Rho
TR FER STV DD [54], ARWFFTIZIS TP AL & R 2 508 L CHilE <
XA LA RLIEZEE, ZORMBECXT AR FEICRVEL L EZ 5.
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Fig.4.63 Hand force by various EAA activity
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Fig.4.64 Fitted magnitude plot, Subject A with ag=0.8
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Fig.4.65 Phase lag (dead time=0.08) and fitted curve, Subject A with ap=0.8
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Fig.4.66 Fitted magnitude plot, Subject A with ag=0.5
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Fig.4.67 Phase lag (dead time=0.10) and fitted curve, Subject A with ax=0.5
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EF5E FESRIBZEMRAEHN DI
- INEER

ARETILFES JIT A I Z 7208 & ONTFINEBRIZ SN TR~ 5. Fig. 3.3 17
TREKROET VLE B ET 5. £9°, SIOMINEREE - B4 B O B
REE, BEXOFES HIHOHINSGMZ2HT 5.

5.1 ZSRERIRIE

FhRJE & Fig. 5.1(a)(b) (-7 ANEASE 1 B HEOKEENICRES D720
2, A EBia ke L OAEEN 45]° 1122 D &9, BEIZX Y AKRERNICEE, A
AL ¥ 2 & — (& OBFEICHRERE, N—FX A CTHEZFHIZEE L. HE
iR 0 OWMINLEIL90[° ] & Lz, i I0i2 1 Phantom Premium(Geomagic
fh) ZAE L, FIeoEE) S I IEREAN ) 2584 S, T EISEEE WEF-
6A200-4-RG5 & IV CTx 2 RaRA & MIfHINES =7y (Fh)) 205 L7z, EiX
WA NI B R ez Es LT & 5.

f(t) = 2sin(2nt/T) (5.1)

PATBAEIAE 0 1T T =4 A —% SGI50(NA A A Y 7 Z%L) ZfEH L7
> 7 A 1000[Hz] THUAS L7z, #8RE 121X, TOEROBRE, AFIZHONTH
IR EITV, RADNDERBINORE 2157, S 1584501 2[sec] Ki B 477
M T £ T, rp=0.5—7E, ap=1.0 —ED FES #li#%% 5z fi\F7=. BRI
I RERBE FES Hil# 585k &[4k, STG4008, performance/energy AR/ Ny N f#
AL, =% —FKRA 2 bR_RUEHWTEHRR LB S 2 RR L. BI85 1
JEAG & UC b EAA, A s UC BB AR & Uis. BRBRE IR A (24 %,
FRIE), B4k, AFIE), C22mk, HAIE) NEBRIZAT T 47 THIMLE.
FEBRITRFR 7 5o LAt R B L B2 0GR O T, ZEXNED L FTE Fe
TR, BTSN,

5.2 JRTLERK

VAT MMEREFAT D, EREEEOA A—U% Fig. 5211 L, ANk
& (Phantom) , JHEIHEiAAEFHIZERE (Angle) , FHEIFHAIZERE (Force) ORI %
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Gonio meter

Phantom Premium
Electrpde

Force sensor

Fixed

Force data to PC

Movable stand

(a) Subject fixed by a harness on a chair (b) Measuring instrument

Fig.5.1 Experimental setup

N

3O
Y

5.2.1 SARINEE

69

Fig. 5.3 IO NINEEARKZ R, A FII2EE T Geomagic £ Phantom
Premium T&H Y, fLEk% Tab. 5.11CFELH 5. AEEIZCHBEEDER Y N7 —

LATHY, PCOrOOHITNI L VEEDH N ERESEDL I ENTES.

Table 5.1 Specs of Phantom Premium
H 6

KRBT | 22[N]

EEE R ST | 3[N]
TE M 220]g]

5.2.2 FEEAEING

Fig. 5.4 |ZBISifA RS EEARE 2. BEAEISEE I A A A A MY 7

At T=A A —% SG150 TH Y, fLEk%x Tab. 5.2k LD 5. REEE, XH
DFFtO Dy & FIRIZAE 0 1), ORI CTHIISNAEENRELL, £

NEAEITHET 2O TH L. W0 @R EhEdf#t b, ailiiEdst k&
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‘ Force sensor

= Gonio meter

O Electrode pad

A 4

fixed

Synchronized FES

Fig.5.2 Experimental model of external force input

L.

70

SG150 X W EUE L7 F u /5 —& % ADINSTRUMENTS £+ PowerLab % F\»

TPCIZFEk L7z, Fig. 5.5 ICARKEZRL, k% Tab. 5.312F LD 5.

Table 5.2 Specs of SG150

e Jrr

AN L— =

(TN

600000 [=]

Hif

+ 207 J(= 90[" ] D)

FHLE

1[° ](90[° ] DHEIFHN)
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Fig.5.3 Phantom Premium

Table 5.3 Specs of PowerLab

AA v E—H R IM[Q]@100p[F]

AT +2m[V]~410[V]
ADC 4> fikie 16bit

et 7 R 200k[Hz|/ch

5.2.3 FEINE

Fig. 5.6 [Z P ETRUGEER KL ~T. FAEANBGERICIIV a2 —T v 74t
» WEF-6A200-4-RG5 % 5 H. & Phantom Premium & OEEGETICEY 1T THW
5. k% Tab. 5412 F LD 5.
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Fig.5.4 Gonio meter SG150

Fig.5.5 PowrLab

Table 5.4 Specs of WEF-6A200-4-RG5

53R aE 14bit
Yo7V T AR | 2.0k[sps]

TE K& A 200[N]

B R 8 500[N]
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Fig.5.6 Force sensor WEF-6A200-4-RG5

5.3 MBERRODETILE

SWBRF I L, FEERET VICET D AR EE T2/ E LEeT v
{4 %7212, Phantom Premium % W CTIEXEA 112 A S =BROF T
fo EIMBAIAE 0 2WE L7z, IEREANTIHERE A, BioxL, BAHT = {1.0,
1.5, 2.0, 2.5, 3.0, 4.0}, #BHE ClckL, AT ={0.3, 0.5, 1.0, 1.5, 2.0,
2.5, 3.0, 4.0} & U7z, S 4ER] 2[sec] FED DA TIINFE T £C, rp=0.5—1&,
ap=1.0 —ED FES§lli§ % 5:-2 il f7=. & T C3dITF o7 — 220G+ 5. &7
IZBWT, AL CES LA T —%%, 1 Ch2INEEAKE 0 DR
PHIRKAE 1TEBE L, 3FITENETNN O EMELIC L EMT o L. )
D H U7z AT % 2 S U ERUE L 72 FEEE L, sin, cos OEENFET
VTR LTz, ZAUC &0 & T fE AN DHRIE - (AR 7 % 3R D JE I SR 2 45 7.
SHERE IR L, ANNEFkT) fo, HZENBEMAE 0 & LTH A UK &AL E#
Xz RO 7= FE R % Fig. 5.7-Fig. 5.12 (277, #E A lCBW T, 7 A VRO
BT, KA I C—EfE 23.6[dB] & 720, &E A CEARMICEER LTV
5. ZOEEEBEBOMEE kN2 ForT 5 & — 42.7[dB/dec] &7V, TA
FED DB HSRIZ2IKBNR THELITE D L E X bND. #BRE BB\ T,
— M 28.7[dB] T, /) 2 AT £ 0 RO TAHZ 73-37.4[dB/dec], #HR#E C I
BT —EME 21.2[dB], /2 FATlU L0 KD 7 % 53-43.3[dB/dec] TH Y,
IHHL 2 WEBNRTHERTEL EEZONLD. Lo THEHKRIZNX (4.8) Di5iE
B CTETTE D, L L R, KITER, w, TAKRARNEE, < 13
HIERH],  C I3REERERTH D .

R A, B, CIZHRWT, MR G, BARABENE W, I3ZE12.5[rad /sec],
2.1[rad/sec|, 2.7[rad/sec] &72%. #HBRE AITBWTER K 13 20log| K|=23.6 &
725 15.1 ZHWS. #BRE BIZEBW T 20log| K |=28.7 £ 72 5 27.2, #BaE C I
BT 20log|K|=21.2 L7225 1148 Z AWV 5. AKX ©, BEMAK 1TTh
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FNDTA K - AR E, SESER o, { O2WENROT A UK -
MMHHBEENZ 7 4T 4 7L, Rb—ETHLONLHETE S, #RE ATkt
LT =02, #BEBIZxILT (=04, #5E CITR LT =030k b L —
FHL7 (KX ETRDIAEZEN LT D). fER% Fig. 5.13-Fig. 5.18 IZ/”7
TR 2 IRBNFR DT A VRN - (RN TH D, = Z TFig. 5.14, Fig. 5.16,,
Fig. 5.18 128\ T, AXFHH 1 =0 TLL—EH L TWB ), LAXFH © X0 &
WETED., UEOZ Lol A, B, CENTNDOMEERK G(s) 13X (5.2),
(5.3), (5.4)DEHITD.

6.25

“(g) = 151 - — =2 9

Gals) =151 o 635 (52)
441

Gh(s) = 27.2 - 5.3

5(s) s2 4 1.685 + 4.41 (5-3)
7.29

G(s) = 11.48 - (5.4)

s2+1.62s +7.29

UbEOFERL Y, ET5FETFEG 33 IRTHEKREDET LN TE S
TEEIRTIENTE . F, TORESNTEHERRT 2R TIELITES Z
LER LT, RETIVELITRD TR RDOET NV ERES LR OREE, K
BIZTHREET 5.
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Fig.5.8 Phase plot, Subject A
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Fig.5.9 Magnitude plot, Subject B

Fig.5.10 Phase plot, Subject B
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5.4 MlEnar rOo—)L

MR T, BEAATEEEZ 2y ha—4 2% 2 L CHgRIEEZ =2 ha—1T
L2 xR L. HERRICBWTHEERIZS, EAA THMHEIC XY BT Z =
Y=L TE LI EERT. HIEEERE BIZBWT, rp=0.5—7E, ap= {1.0,
05, 0} &Ll ENEND ap 2T D w, RO, LRLERRTZ 40T 47
L= A U, (AR % Fig. 5.19-Fig. 5.22 (2R T. ap=1.0 D & & LiCFEEE
wp,=2.1[rad/sec|, ap=0.5 D & & w,=1.8rad/sec|, ap=0 D & & w, = 1.6[rad/sec]
Lotz IO OFERIT EAA TEMEICE U T HRAEE R w, 281k, T74b
BRIPERZL L THNDZ AR LTEY, BbT5E91C, b M MEEEEZ
HECE L STV D e FoBEIRIMEE, AL 2y ha—LTE L ARRER
o LETRELTND.
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E6E IEWMRIRET FES HIEHEER

ARFETIZFES IZ X 2B EE 0 ORI EERICOW TR~ 5. A%EERIT Fig. 3.3
(R, MR R & AR R ZESIRE G LTz, RERORMEE, Zh X TIEL
ENENDET N E OB ZITO Z 2 AN E T 5. £, JHEAGHMA R DR
FEREER L O FES #l O FUNSAF 2 B4 5.

6.1 RERIRIR

FES B2 0 Z2 72705 5 O 6N FEER D B 5212 35 T Phantom Premium D&
iz 0 & UCAREREZITo72. A1 B EEIE@7J<:’:J$@J RET L0, A
AR E OAREN 45[° [ 1270 KD, BEEIC LV AKREmWNIZEE, AR
Xy ALY —fTXOBREICHEEE, N—FRATHEERFICEE L. KBIHA R0
OHFNLEIF 0[] & Le. AJ1T 5 EAAIZLITN & L7z,

re(t) = —0.5sin(27t/T) + 0.5 (6.1)

FERERET BT G FES #ili A2 0 2 2253 & D4 326 & [Fks, RIS 45 0
1L SG150 Z#fEH LYo 7'V o 7 # 1000[Hz) THUS L, BRI X EERBE
FES #1528k & A4k, STG4008, performance/energy MG/ N> RZEH L, £—
H—T A bR VTR U E B R A R Lie. RSB 3Ef & L TR
foi ARG, AR E U C bl A & L. BB IR A(24 %, A, B(24
ik, AFE), C(225i%, AFIZ)MERIIART T 7 THRIML, Z0 34X FES
RV AN Z 7253 6 DA TIFINERO#ERE A, B, CLR—ThHD. #HHRFITIT
TOEBROBE, NFIZOWTHLREUAZITY, RANLERSINOFRE 1
7o, EBRITIKRKFEE LA ERMGHEEZESOERBO T, ZESVBED HHTE
FhEE I, BTSN,

6.2 RATLIER
VAT MERR AT T D, EREREEDO A A — % Fig. 6.1 177
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&
(=}
I

O Electrode pad

= Gonio meter

N

Synchronized
L<| Angle

Fig.6.1 Experimental model of FES controled under the unconstrained environ-
ment)

6.3 REARDOREFREBFFHE

BRERE ALK L T= {1.0, 2.0, 3.0, 4.0 }, #E& Bicx L T={1.0, 2.0, 3.0},
WERE Cloxt L T= {0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 }, 2WHE Tar=1.0
@ FES #ili#l 217> 7=.

6.3.1 #EE

AN1% EAA tbry, HAZBBIEAE O & LT A R ENABRREX & 3R D 7=
K% Fig. 6.2-Fig. 6.717 7. & A, COFA UREICB T, KAk TE
WAL 720, WD E L 72D DITENT A VT DA HER TE 7. 5k
FBOTA MHEICBWTIE, EFREITHR TE RV, FEEAE<RD DI
ENT A BT DA HERTE . HRE B O A URREICEB VLT, W
KEPFERTE, FRERE < RDDITENT A D 2R TE .
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F7o, R ORARRFEIC W T ABED & < 72 2 DI AR OREXHE A
RELRD ZEDHERTE T2, S BIZm B TIIALAHE L OREHE)S 180.0[deg]
FVBRELRDILEDBRERTE . ZhHDT A M - (RS Fig. 3.3
(SRR R E BB EMRG LIERBEORETH L EEZD.
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6.3.2 &%=

FIRERYE T FES il 5EERIC X 0 15 O N 75 2T 7 /v, FES Bz 7e0
SONITITIMEFRFER L VGONTHBRRET VER/KEGTH2ET, FESAT)
FBR TG DT R BRI EBFERFHATE 2 2 & 2T, 22Tl MRAR
T NV ERER 2B T HIRA EE I w,=20.5rad /sec], LZ K © =0.05[sec]|, P&
FARE (=07 & U7z, AR R 0 B RAJEEE w, £V, 20.5[rad/sec] A oD &
BTIIMBHRITEFMEZRT DT, RBEKDT A VRHEICIBWT, BB AA A
XA RO BRARER w0, ICX D13 THD. #EE AIZB W T Fig. 6212
AT E DI 2.5[rad /sec] BBERBAGR L 70D Z LMD THITHEERE A OfFE
RO BRAEEE w, & —BT 5. #HE CItBWTH Fig. 6.6 12577 X 91g,
DB AG RUT 2. 1rad /sec] TH Y, BEHROBRARER w, I LWMEEZ & 5.
Fio, MWRRAR EERRERA LIZEE, TRENAF OB A IE S
REEROENFHE L THLDLNDITT THSH. Fig. 6.3, Fig. 6.7, Fig. 6.71Z
AT X DI, 3HRF IV T E R IR OHERHE A 180.0[deg] £V
REL o TWD. ZIUE, B HEREZARNAHEN OHEHES 180.0[deg] LV b
RELIBLRV2IWRTET ML LTZZ E0D, MRR EMBERENES LT
72, BEAS R ONAREHR R OB INE S N lzd £ B2 5. FES
HB 2 N 27278 B DA T INFERR & M AREREE T FES Hil4# 55 4 [F B 12 906 L7z
WERE B, #i5rE ClzoW T, Fig. 6.8-Fig. 6.11 [CMRHRET L & B RT
TNEREE LT a ORBEEREOHRREZ EfR Tr7. #HRE Clzo Ttk
FOREBH IR RET NV EMRES LTSS, ®ERKCIRENKREL D, 2
TUTRER T HETADHEE TRWEHEEZ LD, #ERE C DFERICLS 74>
TALTTOMRERET NVDNRTA—=ZERFELTE T A, w,=30.0rad/sec], A
ZHEM © =0.01[sec], JEfREL (=1, K=6 TH-7-. Fig. 6.10, Fig. 6.11 O
WiEZ, ZOMRHETNVERE LIEGEORBEROBRMEICESHBMIT-b0%
Fig. 6.12, Fig. 6.13 2/~

VIEL Y, #ikihR, SR EeSEANTEBISROHEET D2 & T, MR
BREE FICBT 5 Pl A flfe 7 v 2B+ 5 2L TE, ZOETLVEHNL Z
&T, b FORMSEBZHIETE S REENHD LR LT,
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FTTE EMGIWEXEES

RETHE, THETHRARTE, Fig. 3318 TET /LD FES Hl#izi1) 581

m(T7bbr,=0, a,=0 &L, A% rp, ag & LI2HE) O OMGEE, B B
@%ﬁ%@®@ﬁC¢@b%m%4)aE—OkL,Aﬁ%EMGﬁ%@%Tém,
ap & LTe86) 220 ORGE L g3 5.

7.1 ZEERIRIE

KB % Fig. 7.1(a)(b) (289, FES K Z N Z 7208 6 D4 FIHINESR, FE
PREREE T FES HilAE 526k & ARk, A HEEET 1 B B EOAKCEEBNCRE T 57010
A WA s b OFEEN A5(° |12 D KD, BEIC L W AKERNICEE, AR
1L ¥ A ¥ —fFE DOBEEITEKE, ~V N THEZRFICEE L. NEESAE O
PN IX 90[° | & L7z, #BRE A BEBRICAR T 7« 7 T ULT-. Rk
X FES fZ N 2 7253 & OSSR, JEMEEREE T FES il EBROg5RE A
ERI—THD. 7272 UEBREN B 1% FES i 2N 2 7223 5 O AN, FEH
WEREE T FES flfHSEER & 138 H Th 5. #HEREIZIE, TOEBROBE, AFIZD
WTHA R EZITY, RANSERSIMORE 257, ERITRPIORF AT
ARG EI R B S OEGRO T, ZESNED HHTE TR IV, BT,

7.2 JRTLIERK

VAT MMEREHHT D, EBREREDA A—U % Fig. 7.21257%7. EMG O

ZIXAARSEEAOAERT 7 WEB-5000 % vy, EMG HIEEMIL Ambu O
ﬁuﬁﬂﬁﬁﬁ%ﬁﬁb HEAF DBRIC iﬁﬁt EAXF 2T A2, REH
PN 10k[Q] LT & 722 K 5 I A AT o 7. T%miﬂﬁmﬂ%?%&bf
s EEAR, (A& L ks =EEA & LTz, %%%V9®W ZIFATEFR A =
4 A —% SG150 & PowerLab i L 7-.

7.2.1 EMG BR5EE

EMG OBSICIT FEE L2 X 912 WEB-5000 2425, ik, EHE#E =
BRI NTEBY, EHEKRNICT 752z, BHTEREINET—X 5253213
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Gonio meter

Electrode

O Target

(a) Subject fixed by a harness on a chair (b) Measuring instrument

Fig.7.1 Experimental setup of EMG

o7 a7 550THS. KMEE Fig. 7.312~L, k% Tab. 7.11C
FE05.

Table 7.1 Specs of WEB-5000

A Bz e 2 (RN 0.03, 0.01[sec] £20[%] LA
B (IR 0.2, 0.5, 1 m[V]/DIV 43[%] AN
R AT +5m[V] L I
AR 42 p [Vlp-p LA'F

7.3 EBRAST

FHHREREE T FES Hl5RE5R IR 1 2858 A3t L, SRR 2 i
DN DA 2 FrE 2 729012, A T= {0.3, 0.5, 1.0, 1.5, 2.5, 4.0}
DFEEE X 227 217> TH bole. FIINEZ fNZ LT, EEfulE EoALEIC
EHREREE 20[cm] O HASHS 2R Lz, REICA ba ) — A THA I T aED
HN D HEEMAICFEMEZBE S ETH OV, ¥ A7 HOEMG & i E
0 & B L7, EEREICHE L7 EMG 226G - i OfiEEDEES my, m. &
KD, T SIXEHERT O I KEEE IUHER: (Maximum Voluntary Contraction)
DEMG 7—# ZHWTE#SLL, %MVCTELEZ. LFOXD XS 1Zms, me.
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O Electrode pad

= Gonio meter

SynchronizedC

>
5
PR
(0]
7

Fig.7.3 WEB-5000

ZHWTAATEME o, AAfSHULr ZERL, F A7 FDOr ZRD7Z.

a=mys+me (7.1)



Me
r =
my + me

7.3.1 &
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(7.2)

FES JE 2 N2 7253 & OSTIFHINEER, FERHEREL T FES Sl 55 & FRS T
TI3RITT o7 = ZWET 5. FTIBVT, WL THISG LA T =4
Z, MAHTHOMBMAKE O OBRKEPORERAZ 1AM E L, 3EiTenThs
OIAERIC LAMF oY L, 819 i LIE A & T h ks FIERUE

L% b L, sin, cos O E[EFET LV THEL L.

FIYEME « ALAR A % 3K oD J W U ME 2 45 7

7.4 EEBRER

ZHUCE VAT moAH

r& NS, 0B DE LIEBAEDF A UMK, (ARBRX % Fig. 7.4, Fig. 7.51C

Y
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7.5 B

bt N OREER B A Fig. 3.3 DE T /I, MHEHRET LV EHE
RET NVOEIREG EBERTZLE, MRHETET VDT A AREIZFES IZ X 5
HoOGE LR T <, BERBMA RS T E R OBE G R LY &R H L &
EzobNb. Lo T, REMG BAEERIZEIT D7 A AR OB IA ST B %
RICHKIFT D EZ6NDN, Fig. 7.4 0 LIERIA AT 2.5[rad/sec] TH Y, #i
IR OPERFE A O EHEROBERIGR & —ET 5.

Fo, EKRIZ2RENRTET VLT, MARRHEIZ I W TIIALAEE
ALOHEXHEDS 180.0[deg] & W KX 725 Z Lid/evy. Fig. 7.51Z7"7 &L 212 EMG
B SEBR 31 A AAHRFEIE, 12.6[rad/sec] & U & & Tl 180.0[deg] & W K Z
NFEENZ R T 720, FEFIEICKE TS Fig. 3.3 IR TETANKY IO &
BT ZENTE.

7.5.1 PEEFHIEICHITHREIMEDI Y FA—)LIZDNT

JEH R BREE T FES #1525k TlZ, A EMG BUS35R X 0 b AGE R CAAREN
DORHEAY 180.0[deg] 2 LAl > T\ 5. Ziudk, FEHRERSE T FES Hil##EBRICE
WX ag lT—ETH A2, b NOEEICEW TIEEHERIER 21T 9 BRIZ ap
DENRKEL 72D, ZIUTHEWVIEIMEREE D Z LT, MR XOHERKRD
HARAERENEERANCS 7 R L)l &2 NS, £ T ORITICBITS
ap DYH)EA Tab. 72177, ZALOFERELY, b MIBEEET O, Pk
ZHES 5 &[RRI # X 716 THIlMEZ 28 b & CTHH A EE) 2 f|# L Tu
HEEZBND., FESIZXAHIENCBNTY, BEOMIMEEZ —E L L-HIE» 5,
B AT Tl et 2 2 A 7 W CTRIRIRET DT 52 T, L0is
B EBNAIREE 2D B2 bD.

Table 7.2 Averaged ag of various T
T ag
4.0 0.018

2.5 0.027
1.5 0.029
1.0 0.042
0.5 0.16
0.3 0.40
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7.5.2 HIEEAREZHRELT

AR CIXFESHMA A1 & L, MAaEEZHNhET L EDT7 U —REAF
7 ADHEERERZ FWEISEOR TORLTEY, KETIIHRLDa~ R (1
i) Z A E L, IMBEfiAEEZH LT 5 & 2OBEEINEE R LTS, &
oD XD RERBISENELNTEY, ZoEENSHiEIt & v o
A m LT, BEEE A X ERC LI B EIECE D Z LA RT 2 &N
T&7.

Fo, KEOFMEIZL, sintROH IR ESGLT-OICE MR ED X D 72 AT &K
THEMRLTWDENERLTEY, ZRNETRODEETAEZW AT A E L THA
LIEBGAED, AV R—AF AT I 7 ADOHEERERLTNDLESZD.
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AT T, TERAMCHTEINTEY, 2> b —JIClAADTT LOE
MALENTND FES HNZIHWT, @EERET VOEHOZ0HIZ, BIf % BRE)
T ARG T I35 B L7 EMG ###r FiE4 FES ITGH L, 55U ~7 OHfL T
BRAEST D72 DDET IV, P SGHI#ETET V2 RE L.

ARET VX EMG AT FIE TIRE SN ishitt (AA b)) - ATEMEES (AA TEMERE)
%, FESIZBWCTEKIGIEIL (EAA ) « BRAOFIETEE (EAA IETEE) (G
M L7eb 0T, B R o BB Y 95 B4 A, M2 2 02kl LR
HiZHET 2D TH D, AV S HEE 7 TR R & B RO A r—

FiATERSN, ZOFTFTNLOZYNEERTIH-OICEZREET ML, £
NHEMEAE L TRYMELZ MR L.

F9, WRBRE TICBWTHRARDET Wb EITo7=. TORES, EAA k%
AN, FRNDZHTET DB RN, DAEMRE 2UGENRDO N A r— Kib
HELTET M TEDZLER L. ZOETAOIE LT, 1) #EiricZ
BT D ATNCHT BINE DR, 2) AT v TIRICELT D ATNIH T D IE O
R, 3) HGEE g~ REDA X T 7 v a U OEREIT- T2, Zhb OfER)
5, B LMRIRETNVERNT, BELISEERICFENEZHIBEICEZ5Z &
L1z, F£72, FESHRKIC LY v hOESES 22 b S5 et 2 md 2 L
MNTETz. MAT, BEAATEHEEICE VAIENMERIC2 S he— L TEH 2 & AR
L.

WIZ, FEHRE FICBW AR ROET Vb EITo 7. TORER, &
LTz N, MBEEAEL N ET2HEKRN 2RENRT
ETMMETELZ EER LT, E2, IEKRIZEBW TS EAATEMEEIZ X 0 |IME
MEEICay ha—/LTEXHZ AR,

ZDWIAT > T FEHRERBE T FES $il#1328012 K - T, ERofAn R & gk
A LIEREBRORMEEZRG L, ERETA20%A LIEGAOMRMEE O
W2 AT o 7o R, BEERME & M —BE A2 R L, 1R L7 Pl sl 7 v 0%
MM A RS LN T2,

X HIT, FEMAFEREE T FES fil# 325k & Ak OBREE F T EMG B8535 217\,
N ORERZHIEEERISIC, $228 L2 e 7 VBRI L TS a2 Et Lz, iS5,
FES #I##l T - fEES) T CRBED 2IRBIVRORMEE RO LB X L NHEK R %
HLTWDIZHED LT, IEREREREE T FES Hil#1525k & [FkE S & k< 180.0[deg]
Bz AMAHENERL, BRLEEFANEERFEICLED THDHZ L a5
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L7c. F7z, FFETEIe NOMEEBRNIIIMEEE, T2 bRk —ET
372K, FAZITE L TELESERRNLEHZEIH L WL EE2RLEATH
5. SRR T D SHIEE T UL, PR ERIMEE S L CHIETE S, 2
D END, VSR ERMIPEE X A 725 U THEISEICA bS5 LT, B b
O REE BB TV OVEEERRS (X > Tk hoOEE) A FES I KV HlE T X 2 mTREMER
H5D.

bz e, #2292 FES OFfAHI#HE T Vi, FESICXL Db o)
HENC R L CHERI 2 TFERTHL Z ENmEN, £, =a—a UV F—3
COSBICENTY, b NOREHIEICE L-HIENRRETH S AN LA TH
HEEZLID.

AT, BELEPHEARIETET LVEZHWT, B0 hoEdhy 2 7 &g
L DR EHEID T\,
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