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THE MORDELL-WEIL GROUPS OF
UNIRATIONAL QUASI-ELLIPTIC SURFACES
IN CHARACTERISTIC 2

HIROYUKI ITO

ABSTRACT. We continue to study the Mordell-Weil groups of unirational quasi-elliptic
surfaces. We classify them in the case of rational quasi-elliptic surfaces in characteristic
2 and show how to construct them from the projective plane. In the classification, a key
role is played by a theorem which guarantees that the relevant properties of unirational
quasi-elliptic surfaces are determined explicitly by the equations of the surfaces as affine
hypersurface. \

1. Introduction

This is the first of a series of papers on the Mordell-Weil groups of unirational quasi-
elliptic surfaces in characterictic 2. In our previous paper [5], we defined a group structure,
which we call the Mordell-Weil group, on the set of K-rational points of a quasi-elliptic
curve over the function field K of a nonsingular complete curve, or equivalently, on the set
of sections of a quasi-elliptic fibration over a nonsingular complete curve. In that paper,
we proved that the Mordell-Weil group of a unirational quasi-elliptic surface is a torsion
group and isomorphic to (Z/pZ)®" with r > 0, and classified the degenerate fibers of a
quasi-elliptic fibration, the torsion-rank r of the Mordell-Weil group and the Néron-Severi
group in the case where the characteristic of the ground field % is 3.

In the present paper, we continue to study the same question in the case of characteristic
2. Considerable differences and difficulties turn out to be involved, compared to the case
of characteristic 3.

For example, the Weierstrass form of a quasi-elliptic curve in characteristic 2 is more
complicated, and more cases have to be considered in the classification. In this paper,
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we treat the Weierstrass form of a quasi-elliptic curve over the rational function field in
characteristic 2 and classify the degenerate fibers, the Mordell-Weil group and the Néron-
Severi group of a rational quasi-elliptic surface in characteristic 2. The first main theorem
is Theorem 1.1 below, which generalizes a result in Miyanishi [7]. In Theorem 5.2 we

classify degenerate fibers and the torsion-rank.

Theorem 1.1. Let k be an algebraically closed field of characteristic 2 and let K =
k(z,y,t) be an algebraic function field of transcendence degree 2 generated by x,y,t over
k such that y2 = z° + o(t)z + Y(t) with o(t), ¥(t) € k[t] and either ©(t) ¢ k[t]?> or
W(t) ¢ k[t]2. Define m by

m = max{| deg o(1)], [5 deg (1)},

where (2] signifies the greatest integer not exceeding z. Assume further that the following

conditions hold:

(1) ¢(t) has no monomial terms of degree congruent to 0 modulo 4.

(2) ¥(t) has no monomial terms of even degree.

(3) For every root a of o(t)¢'(t)2 + ¢/(t)2 = 0,

min{va(p(t)) — 4, va(¥(t)) — 6} <0,

where v, s the (t — a)-adic valuation of k(t) so normalized that v,(t — o) = 1.

Then we have the following:

(a) If m = 0, then K is rational over k. If m > 1, then K is not rational over k and
a minimal model H egists.

(b) Ifm =1, then H is a (supersingular) K3 surface.

(¢) If m > 1, then po(H) = pg(ﬁ) = m, dim H'(H, Ogz) = 0, the r-genus P.(H) =
r(m — 1) + 1 for every positive integer v, and the Kodaira dimension x(H) = 1,

where p, is the arithmetic genus and p, is the geometric genus.

For the proof in Section 3, we use a method of double coverings as was used by Miyan-
ishi [7] to obtain analogous results in characteristic 3 and partially in characteristic 2, but

we have to look into singularities of the ramification loci more carefully. Moreover, we
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exhibit the configuration of degenerate fibers of a rational quasi-elliptic surface and its

sections, and show how to obtain it from P2 by blowing up nine points (see Section 5).

The author would like to thank Professors Masayoshi Miyanishi and De-Qi Zhang for
stimulating discussions on this subject and Professor Igor V.Dolgachev for calling his
attention to the book of Cossec-Dolgachev [4]. The author also extends his gratitude to

the referee for precious advice on the improvement of this paper.

2. The Mordell-Weil group of a quasi-elliptic surface

Let X be a nonsingular projective surface over an algebraically closed field k of char-
acteristic p. X is said to be a quasi-elliptic surface if there exists a morphism f: X — C
onto a nonsingular projective curve C such that almost all fibers of f are irreducible
singular rational curves of arithmetic genus 1. The morphism f (or X itself) is called a
quasi-elliptic fibration. It is a well-known fact that such surfaces exist only if p = 2 or 3
(cf. [10]).

In the present paper, we consider exclusively the case where X is unirational, i.e., the
case where C = P! (cf. [7]), and assume that every quasi-elliptic surface has a section,
denoted by O, which is a morphism from C to X such that fo O = ide.

For a quasi-elliptic surface f : X — C, we use the following notation:

X, : the generic fiberof f: X — C

P : the unique singular point of X, (cf. [7])

K =k(C) : the function field of C

E := X, — P, which is a smooth algebraic curve over K

R = {v € C; f~}(v) is reducible }
my—1
Y (v) =00+ D 10,iOu; : the irreducible decomposition of f~Y(v) for v € R,

=1

where ©,; (0 < ¢ < m, — 1) are the irreducible components of f~1(v), m, is
the number of the irreducible components and ©, is the unique component of
f~(v) meeting the zero section (O).

E(K) : the Mordell-Weil group, which is, by the definition, the set of all K-rational

points of F, and endowed with a natural structure of the additive group (cf. [5]).
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NS(X) : the Néron-Severi group of X
T : the trivial lattice, which is, by definition, the subgroup of the Néron-Severi group

generated by the zero section (O) and all the irreducible components of the fibers.

For every P € E(K), we denote by (P) the prime divisor of X which is the image
of C' by the morphism C — X induced by P, and we define a map ¢ from E(K) to
NS(X)q = NS(X) &2 Q by

(Ou,1 - P)
p(P)=(P)=(0)=((P-0) = (O*))F = 3 _(Ou1,"+ , Ovm,-1)A;" E :
veR N
where (P - O) is the abbreviation for ((P) - (O)) and A, is the negative definite matrix
((Ov,i - ©y))ij>1 of size (m, — 1). This ¢ is a homomorphism and induces a natural

isomorphism
(2.1) FE(K) ~ NS(X)/T
(cf. [5, §2]). We can define the height pairing < , > on E(K) via this isomorphism,

< P,Q>= —(p(P)-9(Q))

for P,Q € E(K), where the right hand side is induced by the intersection pairing on
NS(X)q. The explicit form of this height pairing is

<PQ>=x+(P-0)+(Q-0)—(P-Q)- >_ Contr,(P,Q),

vER
where

0 if P or ) passes through O,4

Contr,(P,Q) =
(=470 i (P-0y,) =(Q-0,;) =1 withi,j >1,

and x is the Euler-Poincaré characteristic of X. In particular,

(2.2) < P,P>=2x+2(P-0)- > Contr,(P),

vER
where

0 if P passes through 9,

Contr,(P) =
(A7 i (P-O,;) =1withi>1,

(cf. [8]).
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3. Proof of Theorem 1.1
Assume p = 2. As in Miyanishi (7, (1.4)], X is birational over k to a hypersurface in
the affine 3-space A® defined by
(3.1) y2 =23 + p(t)z + ¥(t)

with ¢(t),¥(t) € k[t] such that either ¢(t) & k[t]? or ¥(t) ¢ k[t]?. Let

At) = p(t)¢'(t)* + 4'(t)* € klt],

where ¢'(t) and 9/(t) are the derivatives of ((t) and %(t), respectively. By a birational
transformation 7 = 1/t, £ = z/t>™*? and 5 = y/t>™*3, X is also birational to the affine
hypersurface

0" =&+ (1) + ¥(7),
where (1) = 74" H4p(1/7), ¥(7) = 5™ +8y(1/7) and m = max{[deg (t)/4], [deg ¥(t)/6]}.
We set Ax(7) = &(7)® ()% + ¥'(7)2. By a straightforward computation, we have
(3.2) Au(r) = THAC),
We call A(t) or Ay (7) the discriminant of X.

Lemma 3.1. By a suitable choice of coordinates (x,vy,t), we may assume that the follow-

ing conditions are satisfied:

(1) ¢(t) has no monomial terms of degree congruent to 0 modulo 4.
(2) ¥(t) has no monomial terms of even degree.

(3) min{va(p(t)) — 4,va(¥(t)) — 6} < 0 for all roots a of A(t) = 0.

Proof. If the condition (3) is not satisfied for some root o of A(t) = 0, divide both sides
of (3.1) by (t+)® and replace the coordinates (z,y,t) by (z/(t+ )2, y/(t+)3,t). After
a succession of operations of this kind, we may assume that the condition (3) is fulfilled.

Suppose (t) is written in the form

P(t) = @o(t) + p1(t)?,

with (), p1(t) € k[t] such that ¢o(t) satisfies the condition (1).
After a transformation (z,y,t) — (z + ¢1(t)%, y + ¢1(t)z + p1(t)3,t) we have

y* = 2% 4+ oo(t)z + po(t)p1(t)? + 9(t)
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which satisfies the condition (3). As for the condition (2), the monomial terms of even

degree in ¥(t) can be absorbed by y-term. [

Remark 1. The above operations to get the conditions (1) and (2) fulfilled do not change
the discriminant A(t).

Proof of Theorem 1.1 consists of the subsequent Lemmas 3.2 ~ 3.8. Let X be the
algebraic function field as in Theorem 1.1. We assume taht ((t) and v¥(t) in the equation
(3.1) satisfy the additional conditions in Lemma 3.1. A rough idea of our proof is, first
of all, to construct a nonsingular model H of K as a double covering of a rational surface
obtained from P! x P! by blowing-up, which turns out to be a quasi-elliptic surface with a
section, and secondly to contract all (—1)-curves contained in the fibers of the quasi-elliptic
fibration to obtain a relatively minimal model H of H. Then, by virtue of Miyanishi {7}, it
suffices to show that x(Oz) = m+1 with the notation as in the statement of the theorem

(cf. [7, Lemmas 1.5 and 1.6]).

Lemma 3.2. After a change of coordinates x and y, we can rewrite the equation (3.1) in

the form
y* = 2° + o(t)a® + B(t)z +7(t),

where a(t), B(t), v(t) are polynomials in k[t] having no monomial terms of even degree

and the integer m defined in Theorem 1.1 is given as

m = max{[3 dega(t)}, [ deg (1)}, [5 degr(1]).

Proof. Write ¢(t) = o(t)? + 8(t) and ¥(t) = 7(t) with a and 8 having no monomial terms
of even degree. Then the coordinate change (z,y) — (z + o,y + (af)1/?) will give the
above form with ¥(t) = 7(t). It is easy to find that the integer m in Theorem 1.1 is given

as above. [

Put A(z,t) = 23 + a(t)z? + B(t)z + 7(t) as a polynomial in k[z,#]. Consider a hyper-
surface y? = A(z,t) in the projective 3-space P? with the affine (z,y,t) space embedded
in P} as (z,y,t) — [z,y,t,1], which is birational to a double covering of F} := P x PL.
Let po : Hy — Fp be the normalization of Fy in K. The equation A(z,t) = 0 defines a

closed curve C on Fj.
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Now we introduce the following notation: Consider the P!-fibration F := {la;l, is
defined by ¢t = a} on Fy defined by the second projection p, : Fy — P}. We denote by
lo the fiber ¢t = oo and by S, the cross-section z = co. Let & : F — F; be the shortest
succession of blowing-up of Fy at the singular points of C and their infinitely near singular
points such that the proper transform C = &'(C) of C on F becomes nonsingular. Let
Se = 0(Se) and Iy, := () be the proper transforms under & of S,, and l,. We
denote by a, b, c the degrees of a(t), B(t), v(¢), respectively.

We shall describe the configuration of C on Fy and 6 !(l,, UC U S,) on F.

Lemma 3.3. (0) We distinguish the following four cases by means of the degrees of a(t),
8(t) and 4(2)
Da=b2c(M)b>a, b2 () c>a, ¢>b; (IV)a>b, a>c.
The configuration of lo U C U Sy, on Fy for each case is shown in Figure 1.
(1) In the case (I), C has no singular points on lo, and S, and & is the identity morphism.
(2) In the case (II), we have the following three cases:
(II-'1) a/2 < b/4 and b=1 (mod 4); thenb=4m + 1, a < 2
(II-2) a/2 < b/4 and b= 3 (mod 4); thenb=4m +3, a<2m+1 and ¢ < b.
(II-3) a/2 > b/4.

The configurations of 6 (lo U C U Ss) of these cases are given in Figure 2.

m and ¢ < b.

(3) In the case (II1), we have the following three cases:

(III-1) max{a/2,b/4} < /6.

(I1I-2) max{a/2,b/4} > ¢/6 and a/2 < b/4.

(ITI-3) max{a/2,b/4} > ¢/6 and a/2 > b/4.

In the case (III-1), we have m = [c/6]. Hence c = 6m+1, 6m+3 or 6m+5. According
to the values of C, the case (III-1) is divided into three subcases.

(II-'1-1) c=6m + 1, a < 2m and b < 4m.

(III-'1-2) c=6m + 3, a

2m+1 and b<4m + 1.
(III-1-3) c=6m + 5, a <

<
<2m+1andbd

dm + 3.
The configurations are given in Figure 3.
In the case (III-2), we have m = [b/4]. Hence b =4m + 1 or 4m + 3. According to the

values of b, the case (I111-2) is divided into two subcases.
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(II1-2-1) b=4m +1, a
(I11-2-2) b=4m + 3, a

2m andc < 6m + 1.

AN/

2m+1 and ¢ < 6m + 3.

The configurations are given in Figure 3.

In the case (III-3), we have m = [a/2]. Hence a = 2m + 1. In this case, we have three
subcases.

(III-3-1) (c—a)/2=c—b.

(III-3-2) (c—a)/2 < c—b.

(I1I-3-3) (¢ — a)/2 > c—b.

The configurations are given in Figure 3.

(4) In the case (IV), the configuration of (I, U C U S,,) is given in Figure 4.

C
C C
L
I I oo
4y (1) (1) (V)
FIGURE 1

Case (II-1)
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(C—' . E2m+1) = 2.

Case (II-3)

(C-Ss)=2a—0band (C-Ey_) =2.
FIGURE 2

Case (III-1-1)

-(2m+1)

Case (I1I-1-3)
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Case (11I-2-1)

Elc—a)/2-
—(cZLa)/2 (c—a)/2-1

(C - Sw) = (3a — c)/2 and k is some positive integer.
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Case (11I-3-3)

(C - So) = a and k is some positive integer.

FIGURE 4

Proof. (0) It is easy to see that the cases (I) ~ (IV) exhaust all possible cases. In each
of the four cases, the configuration of I, U C U S, is elucidated by locating the singular
points of C and writing a local equation of C which will be treated below in each case.
(1) Write

alt) = cpt® +ct* 1+ - 4 ¢
(3.3) B(t) = dot® + dytt™r +--- + d,

Y(t) = ept® + et + - +e..
Then £372A(1/€,1/7) is written as

(3.4) T+ (ot et + et + (do +diT + -+ dy7)E
3.4
+ (€0 + e+ -+ + e.7) 7 = 0,

where £ = 1/z and 7 = 1/t, and we may assume codgeg # 0. This is the equation for
C near the point Py : £ = 0 and 7 = 0, and it can be formally (analytically) written as
&+ 7 = 0. Thus, C is smooth at the points P := S., Nl and meets S, with order of
contact a and intersects /,, transversally at three distinct points. Thence we obtain the

above description for C at P,.
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(2) In this case, C has a singular point at P, := Sy Nly, and C intersects transversally
lo at the point (z,7) = (0,0), where 7 = 1/t (see Figure 1). Indeed, C is formally written

at P, as
4 (co+ear+--+ ™) TP + €2 = 0,

where lo, and S, are defined respectively by 7 = 0 and ¢ = 0.
By blowing-up of P, and (I—1) infinitely near points lying on S, we obtain coordinates

&1,-0 , & such that
E = Tfl’ 61 = 7-62,"' ’ £l—l = T€1,

and that the proper transform C of C is given by
Pt (ot ar+ 4l + 2 =0

provided b > 2]l and b > a + . To describe the configuration of 71(l,, UC U Sw) on F
we distinguish three subcases. |

Consider first the case b/4 > a/2. Since ¢ < b, we have m = [b/4] by Lemma 3.2.
Noting that b # 0 (mod 2) by hypothesis, we have either b = 4m + 1 or b = 4m + 3. If
b =4m+ 1 then a < 2m and we can take | = 2m. Then C is also smooth at the point
(§2m = 0, 7 = 0). This is the subcase (II-1) above. If b = 4m + 3 then a < 2m + 1 and
we can take [ = 2m + 1. Then C is smooth at the points (€ame; =0, 7 = 0). This is the
subcase (II-2) above. Consider next the case b/4 < a/2. Then m = [a/2] and a = 2m + 1.
So, b € 4m + 1. In this case, we can take | = b — a, and C is written at the points

({I — 0, T = 0) as
T2 4 (o + e+ - - +eam)& + & =0.

Since cp # 0, C meets the curve E; as two points § = 0 and & = ¢y. This is the subcase

(II-3) above.
(3) The formal equation for C at P,, is given by

(ot ar+ T+ (dg + diT + - + Ay T2 + 8 = 0.

Thus we have (C-lw) =3 and (C - S,) = ¢ (see Figure 1).
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As in Case II, the blowing-up of P, and (r — 1) infinitely near points of P,, lying on

S« allows us to introduce &, -+, &, such that

§E=716, &L =78, -, &1 =TE

and that proper transform C of C is defined by
c—3r a\, c—a—-2r by, c~b—r¢2 3
T (ot T+ -+ )T &+ (do+dim+ -+ dyT)T E+E =0

provided c 2 3r,c>a+2randc> b+r.

We further distinguish three cases.

Consider the case (III-1), where m = [c¢/6] by Lemma 3.2. Then we can take r =
2m, r=2m+land r =2m+1 accordingasc=6m+1, c=6m + 3 and ¢ = 6m + 5.

In the case ¢ = 6m + 5, i.e., the case (III-1-3), the equation for Cis equivalent to
T2+ (co+ 1T + - -+ + 7)) T2, + (do+dym+ - +dp) T2+ =0,

where 722 (or 72!) stands for a monic monomial in 7 of degree > 2 (or > 1). So, we have
to blow up the point (& = 0, 7 = 0) to desingularize C. The other cases can be handled
similarly.

Consider the case (III-2), where m = [b/4]. Then, for 7 = ¢ — b, we have
72 4 (gt T+ )T (do + Ay + -+ T+ 2 =0,

where 3b—2c¢ > 0 and 2b—a—c > 0 under the hypothesis. So, € meets the last exceptional
curve E._ at two points (§, = 0, 7 = 0) and (¢, = dy, 7 = 0), where the latter point
is a smooth point of €. Near the point (. = 0, 7 = 0), the equation for Cis formally

equivalent to
T2 4 (o + 17 + -+ coT)TRTO¢ + (2 = 0.
Introduce (3, -+, ¢ by
C=7C, *++y (o1 = TCs.

Then the equation becomes

7_3b—2c—2s + (CO + T+ + caTa)T2b—-a—c—sCs + Cs2 =0.



14 HIROYUKI ITO

provided 3b —2c¢~2s 2 0and 2b—a—c— s> 0. If b = 4m + 1, i.e., the case (I1I-2-1),
put l =3m —~(c—1)/2 and s = 2l. Then

3b—-2c-2s=land2b—a—c—s=2m+1—a>1.

So, the proper transform C of € after these s blowing-up is smooth. If b = 4m + 3, i.e,,
the case (III-2-2), put I = 3m — (¢ — 3)/2 and s = 2] + 1. Then

3b—2c—2s=land2b—a—-c—s=2m+2—a> 1.

Hence C is also desingularized.

Consider the case (III-3), where m = [a/2]. Looking at the equation
Tt (co T A A QTG 4 (o + dyT 4+ dyT) TP TER 4 83 = 0

for 6’, we can now compare the 7-degrees of the second and third terms and distinguish

three cases:

(III-3-1) ¢c—a—2r=0andc—b—7r =0,
(II-3-2) c—a—2r=0andc—~b—7r>0,
(II-3-3) c—a—-2r>0and c—b—r =0.

The desingularization process for C' at P, is more or less similar to those treated above.
We only note that we need more attention in the case (III-3-2).

(4) This case can be treated in a similar fashion. Note that C' meets [, at two points
(=0, 7=0)and (£ =0, 7=0) when a > ¢, (z = eo/co, T = 0) when a = ¢, using the
same notation (3.3), (3.4) in the case I, where the latter point is a singular point (Figure

1). The desingularization is as illustrated in Figure 4. [

We may write (*A) uniquely in the form (6*4) = B — 2Z, where B is a divisor
whose coefficient at each prime divisor is 0 or 1 and where Z is some divisor. Let D be
an effective divisor whose support is contained in the union &£ of the exceptional curves
which arise from the blowing-up at the singular points and their infinitely near points
of C in the éfﬁne part A2 = Fy — S, Uly. Let D; and D, be the divisors determined
uniquely by the conditions that D, is an effective divisor whose coefficient at each prime
divisor is 0 or 1, Dy > 0, Dy + 2D, = D and Supp(l_)l U Dy) C £. We note that in the

previous configuration of (I, U C U Ss), an irreducible component is drawn by an
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unbroken (resp. broken) line if it is contained in Supp B (resp. not contained in Supp B).

We consider four cases separately.

Casel. a=b2c

C +

—~

o0 + Seo + Dy

N o
I

2 °°+(m+1)l_°°—D2.

Casell. b>a,b2c

(II-1)
B=C+lew+Sw+(Es+Es+---+ Eyn) + Dy
Z=25.+02m+1)(le+E)+(2m+2)(Es+ E3) +---
+ 3m(Eom-2 + Eom-1) + (3m + 1) Ey,, — Ds.
(11-2)
B=C+le+Se+(Es+Es+--++ Eap) + Dy
Z=25.+02m+2)(le+ E))+(2m +3)(Ey + E3) + -
+ (3m + 2)(Eam + Egpmy1) — Ds.
(11-3)

B=C+lo+8uw+ (Es+Es+--+Ey0)+ D,

Z=2'w+b—i2r—1(l'w+E1)+%—E(E2+E3)+---
+ B B st Bra) + 22 - D,
CaseIll. c¢>a, c>b
(II-1-1) '
B=C+lo+Sw+Ei+Ey+---+ Eppy+ Dy
Z=280+Bm+1)(lew+E+Ey+---+ Eop) — Da.
(111-1-2)

o+ S+ Er+ Ey+ -+ + Epyy + Dy

N
il
Cy
+

_=2S°°+(3m+2)(f°°+E’1+E2+---+E’2m+1)—D2.
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(I11-1-3)
B=C’+i°°+»§oo+E1+E2++E2m+1+D1
Z

2500 + (3m -+ 3)(i°° + El + Ez +---+ E-'2m+1) + (3m + 4)E2m+2 - Dg.

(111-2-1)

B=C+lo+Su+E1+E+ - + By + Fo+ Fy+ -+ Fomecyr + Dy
+1 - _ _ ~ 1 +3
U+ Brt Byt oo+ Beg) + 2R 4+ 25

+ 3m(F6m—c—1 + Fﬁm—c) + (3m + 1)F6m—c+1 - D2-

Z =25+

(F2+F3)+"'

(II1-2-2)
B=C+lw+Sc+Ei+E+ - +E 4+ Fy+ Fy+ - Fop_cr3 + D,
_ - 1. — _ _ 1. 3, = _
Z=25°°+c+ (l.,O+E1+E2+...+E_b)+C+ F1+c+ (Fy+ F3) +---

2 2 2
+ (3m + 1)(Fom—ct1 + Fom—ct2) + (3m + 2)(Fom—ct3 + Fom—css) — Do

(1I1-3-1)
B=CHlow+Su+E1+ B+ +E._y + D
Z=2S‘°o+C;I(l’w+E1+E2+---+E_b)fD2.
(I11-3-2)
B=C+l,+ Seo + E1 + Ea + -+ + Ey, + Dy
Z=2§°°+C;I(Tw+El+E2+---+Ec_Ta)+cglE%H-k---
2c——a;2k+1Ek.—D2,

where k is some positive integer.

(111-3-3)

B=CHlo+Sw+Ei+Er+- -+ Ecy+ Eepyo+ Ecppa+ -+ Eyo + D

R _ —1,. _
Z=25°o+02 (loo+E1+E2+"'+Ec-—b)+cT(E—b+l+E—b+2)
c—3, - _ a—2b+2c+1, — =
+ 5 (Eecbts + Eempya) + -+ + 5 (Eb—a-1 + Ep—a) — Ds.
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CaselV. a>b, a>c

Ct+lw+So+Ei+Ey+---+Ep+ Dy

B
VA 2§m+(m+1)fm+mE’1+(m—1)E‘2+-~-+(m+1—k)E_’k—Dg,
where k is some positive integer.

Remark 2. In the above configurations of components and decompositions of (*A4) into
B and Z, we cannot explicitly determine the number of exceptional curves in Case (111-

3-2) and Case IV. The following lemma enables us to deal with the situation:

Lemma 3.4. Let 7 =1/t and £ = 1/z. Suppose that the C has a singularity at the point
T = § = 0 which is locally defined by the equation

n’ = 1(U(1,§)8 + *V(T)é + W (1)), 1>0, s3>0,

where either U(7,€) = Uy(7) € k(7] with Up(0) # 0 or U(T,€) = ua(7)E2+ 7 uy (7)€ +uo(7)
with ui(7) € k[1], u;(0) #0 (1 = 0,1,2) and h > s, and where V(7),W(7) € k[r] with
V(0)-W(0) # 0. Then one can resolve its singularity by a finite succession of blowing-up
at the singular point and its infinitely near singular points. Furthermore, the dual graph of
the configuration of the exceptional divisors is as given in Figure 5, where k is a positive
integer and the components belonging to B in the decomposition (6*A) = B — 2Z are

indicated as black vertices.

FIGURE 5

Proof. By blowing-up at 7 = £ = 0 and its infinitely near singular points, the lemma can

be proved by induction on s. O

Let 0 : F — F be the shortest succession of blowings-up of F such that if one writes
((60)*A) in the form ((60)*A) = B — 2Z with divisors B and Z uniquely determined as
above, every irreducible component of B is a connected component of Supp(B), that is,

Supp(B) is nonsingular.

Lemma 3.5. Let H be the normalization of F in K. Then H is nonsingular.
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Proof. Let p denote the normalization morphism H — F. Let Q be a point of H and
P = p(Q) € F. If 6o(P) is not a singular point of C, then Q is a simple point by the
same method as in 7, (2.1)]. Suppose Go(P) is a singular point of C which lies on the
fiber over ¢ = oco. Since we have the configuration of (60)7!(le, U C U S,) one can show
by the same argument as in [7, (2.6.2)] that Q is a simple point. The case where 5o (P) is
a singular point of CN A} = C N (Fy — {z = 0} U {t = oo}) can be treated similarly. I

In subsequent arguments we need the following well-known lemma (cf. [1]).

Lemma 3.6. (1) Let Dy, Dy be divisors on F. Then
(p7!(D1) - p™(D2)) = 2(D1 - Dy).

(2) If D is an irreducible curve contained in the support of B, then p~}(D) = 2A,

where A is a nonsingular curve on H. Moreover, if D = P}, then A = P}.

Now let q := psgop : H — Pi, C := 0'(C), So := 0’(S8s). Since €, 5., C Supp(B)
we have C, S, C Supp(B). Thus we can write p~}(C) = 2T and p~}(5,,) = 28, with
nonsingular curves I' and ¥, on H.

Let | = {t = 7} be a general member of F, and let I = (6¢)'(I). Then p~1(I) — p~()N
Yo is easily shown to be isomorphic to a curve y2 = A(z,v) and p,(p~1(1)) = 1. Thus

we obtain:
Lemma 3.7. ¢: H — P} is a quasi-elliptic fibration with a regular cross-section T, .

Let us illustrate the weighted graph of ¢~!(c0)UZ,,. In Figure 6, a white (resp. black)
vertex corresponds to a component of ¢7!(c0) U £, which is not contained in Supp(B)
(resp. contained in Supp(B)). The weight at a vertex is the self-intersection number of
the corresponding component. Two vertices are joined by a single (resp. double) edge if
the corresponding components meet each other transversally at one point (resp. touch
each other at one point with multiplicity 2). If omitted, the weight of a vertex is —2.

Casel. a=b2>c

2a -1
‘("‘i_lL_I_;_.‘ .T. ‘~—o—<

oo
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Casell. b>a,b2c

(11-1)
2m
—-(m+1) I - ~ ~
Lo 4 -1 -4 4 -1
(11-2)

I el e

Too 4 -1 -4 -1 4 -1

CaseIll. ¢>a, c>D

(I11-1-1)

4m +1
~-(m+1) - % ~

Do -3 -1
(I11-1-2)

4m + 2
~(m+1) s e >

—_—O——O—e

pIN -3 -1
(I11-1-3)
4m + 3
I e e
Yoo 6 -1 -4 1
(111-2-1)
I 6m—c+1 I 2(c—b
_(m + 1 P A —_ - ( A ) .
Yoo -4 -1 -4 -1
(111-2-2)

: 6m-—c+4 2ec—>b
1 A A
—(m+ : > —

T 4 -1 -6 -1 -1 4 -1

19
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(I11-3-1)
da—c-1 c—a
—(m+1§ ! - A — \/ ¢ ~ ~
“ee e e e O @
Yo -3 -1
(I11-3-2) c—a
3a—-c—1
c—a)—1
(III—33) ( )
2(2a-b)—1 2b—a—c—1
Yo -4 -1 -4
o
CaseIV. a>b, a>c
(a+k)-1
—(m+1) T - ~
*—O—e—O0—» *r—O0——O—0—O0——

oo

FIGURE 6

Now contract all (—1)-curves contained in ¢g~!(c0) to obtain the minimal form of ¢~!(o0)
(Figure 7). Note that no (—1)-curves apear in Cases I and IV.
CaselIl. b>a, b2>c

(1I-1) (I1-2)
—-(m+1) | —(m+1)
Too Lo
(11-3)

—(m+1) l - 2(2a _“b) ! ~ :

oo
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CaseIIl. ¢>a, c>b

(11I-1-1) (111-1-2) (111-1-3)
irreducible curve
—(m+1) —(m+1) —(m +1) with a cusp
e——o
Lo Yoo Yoo
(I11-2-1) (IT1-2-2)
—-(m+1) l , —(m+1)
T Yoo
(I11-3-1)
Ja—-c-1
) |
Lo
(I11-3-2)
2k +4a —2c-1
—(m+1) - ~— ~
@ .o @ O - O S O o e
Lo
(I11-3-3)
2(2a — b)
—(m-+—12>—i—o—’—— +&—<
FIGURE 7

To complete the proof Theorem 1.1, we need the following lemma.

Lemma 3.8. If¢~1(v) is a reducible singular fiber lying over the pointt = v with v # oo,
then v is a solution of A(t) = 0, and the contraction of the (—1)-curves contained in ¢~ ()

does not affect the self-intersection number of Lo

Proof. We may assume that C has a singularity at the point £ = ¢t = 0 after a change
of variables (z,t) — (z + B(7)Y/?,t +7), and that C is defined locally by the equation
23 + a(t)2? + B(t)r + (t) = 0 with ¢ dividing o(t), B(t) and v(t). Then, blowing-up the
singular point z = ¢t = 0 and its infinitely near singular points, taking the normalization
of Fy in K as before and contracting all (-1)-curves in the fiber of ¢ so obtained, one

can easily find that the component of the singular fiber of ¢ over ¢t = 0 which intersects
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Yo cannot be contracted by the blowing-down of all (-1)-curves in g7!(0). We leave the

details to the reader. See also [7]. O

Therefore we have (X2) = —(m + 1).

Let G : H — P} be the quasi-elliptic fibration which is obtained from q: H — Piby
contracting all (—1)-curves contained in the fibers. Let S, denote the proper transform
of T under this contraction. Lemma 3.8 thus means that (£2,) = —(m + 1).

Meanwhile, the canonical divisor formula for a quasi-elliptic fibration (see, e.g., [3])
implies

Kg ~ (x(Og) — 2)F,
where F is a general fiber of §. Since ., is a cross-section of G, S0 is isomorphic to Pi.

Then, applying the arithmetic genus formula to )AZOO, we obtain

whence x(Og) = m + 1. By virtue of the arguments in [7], we then complete the proof
of Theorem 1.1.

Let £ = R'§.Oz. Then deg L = —x(Og) = —(m + 1). Hence deg(£¥12 @ w8?) =
12(m +1) — 4 = 12m + 8. By the remark given before Lemma 3.1, we have

Aoo(T) — T12m+8A(l).
T

This implies that {A(t), A(7)} gives rise to a section of [(P}, £8(12 ® w8?), which
we call the discriminant of the quasi-elliptic fibration § : H— Pl

Thus we have an equality
(3.5) 12x(0g) — 4 = deg(4),
where (A) is the divisor on P! corresponding to the section { A(t), Awo(7)} of [(PL, LE(-12g
w?).

4. Reducible singular fibers and the torsion-rank

In this section, we consider reducible singular fibers which appear in a quasi-elliptic
fibration in characteristic 2 and give the conditions for a combination of reducible singular

fibers to exhaust all degenerate fibers of a quasi-elliptic fibration.
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To analyze the reducible singular fibers, we consider a Weierstrass equation in the local

case, that is, C = Spec k[[]].

Lemma 4.1. Let f : X — C = Spec k[[t] be a quasi-elliptic surface with a section defined
by |

y* =2 + otz + P(t)
with ¢(t), ¥(t) € k([t]] and either ©(t) ¢ k[[t]]? or ¥(t) ¢ K[[t]]?>. Then the equation of X

can be put into a form

(4.1) =23+ (a*t? + B%™)x + ~2tk
such that

(4.2) B#0 ory#0,

(4.3) s=1lorl<m<3orl<k<K5,

where each of o, (3, 7y is either a unit in k[[t]] or a zero, and each of s, m, k is a positive
odd integer (resp. zero) if the corresponding coefficient o, 32,42 is not equal to zero (resp.

ts equal to zero).

Proof. By Lemma 3.1 we may assume that ¢(t) and 9(t) satisfy the conditions (1), (2),
(3) in Theorem 1.1. Note that Lemma 3.1 holds also for k[[t]] instead of k[t]. Hence we

can write
i>0 i>0 k>0
Let i := min{¢ with o; # 0} if a; # 0 for some 7 and i3 = —1 otherwise; let jp :=

min{j with 8; # 0} if §; # 0 for some j and jo = —1 otherwise; let kg := min{k with -y, #
0} if 7 # 0 for some k and kg = —1 otherwise.

We set @ = of + o1t +--- and s = 2+ 1if ig > 0, B = B} + Bjypat +---
and m = 2jo+1if jo > 0, v = v, +Vi,pt +---, and k = 2kg + 1 if kg > 0, where
o = a}“,ﬂ; = ﬂ}“ and v;, = 7,1/4. Otherwise, weset a =s=0ifjg=—-1,8=m =0if
Jo=—lor~vy=k=0if kg = —1, respectively. Then the conditions of the assertion are

satisfied in view of Lemma 3.1. O
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Using this local Weierstrass equation, we can classify the reducible singular fibers as

follows:

Proposition 4.2. (cf [4, (5.5.10)]) Let f X — C be a quasi-elliptic surface defined by
(4.1), (4.2) and (4.3) in Lemma 4.1. Then the fiber over t = 0 is determined as

1)m2k#0 or m=0 (2)k>m#0 or k=0
type  v(4d) ks type  v(4d) m s
II 0 1 20 III 1 1 20
Ip* 4 3 >0 1 738 #£1
I 8 5 #1 Ipm—4™ 2m 23 1

Iok-6" 2k—2 25 1
Here v denotes the valuation of k[[t] with v(t) = 1 and A stands for the polynomial A(t).

Now, let us return to the global situation, i.e., C is the projective line P'. By the above
classification, we know all possible types of the reducible singular fibers of X, and we have
relations among the Euler-Poincaré characteristics, the number of the reducible singular
fibers of respective types and the torsion-rank. Let v(S) denote the number of singular
fibers of type S (cf. the classification by Kodaira [6] ). Then, from the equality (3.5) and

Proposition 4.2, we have:

Proposition 4.3. Let f : X — C be a unirational quasi-elliptic surface with section in
characteristic 2. Then

(4.4) 12 — 4 = Y (2k + 4)u(I5,) + 8v(I1*) + v(I1I) + T (I1I%),
k>0

where x is the Euler-Poincaré characteristic of X.

Let T be the trivial lattice generated by the zero section and all the irreducible com-
ponents of the fibers. We have a natural decomposition

T=<0, F>a(T,),

vER

where T, is the lattice generated by all the irreducible components of f~!(v) except the

irreducible component meeting the zero section (O). Hence,

det T = — H det T, = — 9 k0 2V(I3)+¥ (I (1)
vER

7
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since the lattice T, for the fiber of type II* is unimodular. Note that the exponent of
det T is an even integer by (4.4). By (2.1), we have

(4.5) det NS(X) = det T/|E(K)J*.

Since the right hand side of (4.5) has even exponent as remarked above, we can write
(4.6) det NS(X) = —22 with o9 € Z, 0p 2 0.

By comparison of the exponents of (4.5) and (4.6), we have:

Proposition 4.4. Let the notation be as in Proposition 4.3. Then
1
oo+r= 5{2 2u(L5) + v(III) + v(II17)},
k>0

where T is the torsion-rank of the Mordell-Weil group (cf. the Introduction,).

Remark 3. The above invariant oy is called the Artin invariant when X is a supersingular
K3 surface and takes a value between 1 and 10. It plays a very important role in the

theory of moduli space of supersingular K'3 surfaces (cf. Artin [2]).

Proposition 4.5. For a section P(# O), we have

v(I1I) + %V(III*) +> (1 + 2)})(1;).

b0

2x+2(P-0) < :‘12-
Proof. For a torsion point P € E(K), we have < P, P >= 0 where <, > is the height
pairing on E(K') defined in Section 2 (cf. Shioda [9]). Thus, the assertion is a consequence

of (2.2) and straightforward computations of Contr,(P). O

In the next section, we use this proposition to check whether two sections are intersect

each other.

5. Rational quasi-elliptic surfaces

In this section, we study the relationship between reducible singular fibers of rational
quasi-elliptic fibrations and their Mordell-Weil groups and look into the configurations of

sections and reducible singular fibers on rational quasi-elliptic surfaces. Let f : X — P!
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be a rational quasi-elliptic surface with a section O. Then by virtue of Theorem 1.1 we

may start with an affine expression for X:
(5.1) =2+ o)z +¥(t), @(t) = agt® + ast® + art, P(t) = bst® + byt + byt,

where ©(t) ¢ k[t]* or ¥(t) ¢ k[t]*>. To determine the reducible singular fibers, we look as

the discriminant A(t) of X, given as

(5.2) A(t) = ()¢’ (1) + (¥ (1))
- = b5t® + a3t” + a203t® + a1a2t® + b2t* + a2agt® + a2ayt® + adt + b2

Set
dy = a%b5 + ajazb; + agbl, dy := araza3 + bg, d3 = ag + aja;3.

The following formulas suggest how d;, d2 and dj are incorporated into concrete compu-

tations:

(1) A'(t) = (ast? + a;)3 = ¢'(¢)%.

(2) Aar/ag) = di/a3 = ¥/(yfar/as)?, if a3 # 0.

(3) A(t) = (£ + a1/a3)?A1(t) + adt(t? + a1 /a3)?, Ai(t) = b2t* + aga2t® + b2 + a2b2 /a2,
Ar(yJar/a3) = dy, if dy = 0.

(4) A(t) = (8 + ar/ag)3As(t), As(t) = b2 + a3t + aga2 + ayb2/ag, if d; = dp = 0.
Moreover Az(y/a1/az) = 0 if and only if ds = 0

By virtue of Proposition 4.3 we have a list of all the possible types of reducible singular

fibers in the case of rational quasi-elliptic surfaces:

Proposition 5.1. There are seven possible patterns of reducible singular fibers in terms
of their types:

(a) one 1T,

(b) one I3,

(c) one Il and one IIT*,

(d) two Iy’s,

(e) one I} and two I11’s,

(f) one I and four IIl’s,

(g) eight III’s



MORDELL-WEIL GROUPS OF QUASI-ELLIPTIC SURFACES 27

Proof. Since X is assumed to be rational, we have y = 1. Hence the right hand side

equals 8 in the formula in Proposition 4.3. Now it is easy to list up all possibilities. [
Now we state a classification theorem by means of the given equation for X.

Theorem 5.2. (1) The types of reducible singular fibers are classified into seven cases
(a) ~ (g) as follows:
(i) Suppose ¢ € K%. Then necessarily have d; = 0. If dy = d3 = 0 then the type
is (a); if dp = 0 and d3 # 0 then the type is (b); if d2 # 0 then the type is (d).
(ii) Suppose ¢ ¢ K2. If d; = dy = d3 = 0 then the type is (c); if dy = do = 0 and
d3 # 0 then the type is (e); if dy = 0 and da # 0 then the type is (f); if dy # 0
then the type is (g).
(2) The torsion-rank is determined uniquely by the type of reducible singular fibers as

in Table 1.

Proof. (1) To determine the type of the reducible singular fibers, we look at the dis-
criminant divisor A on P! which corresponds to the polynomial A(t) (cf. (5.2)). By

Proposition 4.2, one can find out easily that the possible types of the divisor A are as

follows:
(T1) 8h - (a), (b)
(Tz) 7P+ Py .. (¢
(T3) 4P, +4P cen (d)
(Ty) 6P+ P+ P; ... (e)
(Ts) 4Pi+ P+ P;+ Py + Ps . (D)
(Te) Pi+Py+---+Ps ... ()

where P, Py, - - - Py are distinct points of PL.

We start from the equation given in (5.1). We consider also the equation
72 =&+ (a17> + ao7? + agT)€ + (by7° + by + byT).

(See the paragraph below Lemma 3.1 in Section 3.) Moreover, note that b;, b3, bs cannot

be simultaneously zero, for otherwise X is singular.
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The pattern of

reducible fibers.

The defining equation.

nonzero section

with a € k and b € k*

(a) y =2+ 0
(b) y? =2° + 1%z + ¢ 1| (82 +1¢,13)
(c) y’ =2° + % 1 (0,0)
(d) V=2 +at’z+ 2| (ut,0) withud+au+1=0
with a € k
(e) v’ =2+ (8 +t)z 2 | (0,0)
(t+1,t24+1)
(2 +t,83+1)
(f) y' =22+ (8 +at’ +t)z 3(0,0)
with ¢ € k&* (al/zt,al/4 (t2 +t)
(@ Y2(t2 + at + 1),a"34(t* + (a + 1)t? + (a + 1)t + 1))
(w2 + ut, u=32(3 + al2ut? + ut))
(ut +u~ Y ul/2(t2 + o'/ 201t 4+ u2))
with u? 4+ a/2u+1=0
(8) y? =23+ (B +at? + bty + ¢ | 4| (ut,ul/2(s2 + b1/%1))

(=12 4 ut 4 bu™,
w3283 4 (b+ au?) /262 + (b2 + abu?)t + b3/2))
with w3 +au+1=0

(v™2E% 4 vt,v™3/2(£ + aV/2ut? + b1/2021))

(vt + by~ v=3/2(v2e? + a}/2b1/2pt + b3/2))
with vt +av?+v4+b=0

(t?/(t2 +b), (a1/2t4 +13 4 al/zbtz)/(t + bl/z)a)
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(i) Suppose first ¢ € K2, i.e., a; = a3 = 0. Then ¢’ = 0 and ¢ # 0. Thus d; = 0
and A(t) = ¥/(£)2 = (0% + by/%t + bl/%)*. Clearly the type of A is (T}) if and only if
bz = 0 while the type of A is (T3) if and only if b3 # 0. If b3 = 0, then A = 8P;. Hence
the reducible singular fiber over P; is II* if a; = 0 and I} if a; # 0 by Proposition 4.2.
Here note that dy = b% and d3 = a3 in this case. If b3 # 0, then A = 4P; + 4P, and the
reducible singular fibers over P, and P; are of type Ij.

(ii) Next, suppose ¢ ¢ K2. The possibilities for the type of A are (T3), (T4), (T5) and
(Ts). We can show that d; # 0 if and only if the roots of A(¢) = 0 are all simple. Hence,
if d; # 0 the type of A is (Ts). By the formula given before Proposition 5.1, the type of A
is (T5) if dy =0 and dy # 0, (Ty) if dy = dp = 0 and d3 # 0, and (T3) if dy = dp = d3 = 0.

(2) When we pick up one standard form among the rational quasi-elliptic surfaces

having the same fiber type, we make frequent use of the following lemma.
Lemma 5.3. Suppose X is defined by an affine equation
(5.3) y* =2 + (po(t) + axt®)z + (vo(t) + bit)

with po(t), Yo(t) € k[t] and ax by # 0. If 2l # 3k, then X is isomorphic to the one defined

by the same equation as (5.3) with ar, = b; = 1.

For the proof of this lemma, one can easily check that two surfaces given in the statement
are isomorphic to each other by a suitable change of variables as in [5, Lemma 3.6].

The calculation of rational points in Table 1 is based on the method to be explained in
Section 6. The last statement of the theorem is clear by Proposition 4.4, since gy = 0 for

rational surfaces. [

In the rest of this section, we describe how the reducible singular fibers and sections
intersect each other for each of the types classified in Theorem 5.2. For each of the types
(a), (b), (¢), (d) and (e) in Table 1, the configurations are simple (cf. Figure 8), and we

can easily find out how they are constructed from P? by blowing up nine points.

Remark 4. By the blowing-down of the nine PV’s which are drawn as bold lines in each
figure, one can obtain the configuration of curves in P2 for each of the types (a), (b), (c)

and (d) as in Figure 9 below, where C,, C, are curves of degree 3 with cusp, C, is a conic,
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type (b) o
O P
t='0 t =00 t=20 t=o0
type (c) type (d) o
0
..__F_ ’/& . A\\
//‘( P >,\\
\\& Py )//
- L~
o A ! \E P j/
t;O t = oo t=0 t= o0
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type (e)
0
R
Q :
P J
t=0 t=o00 t=1

FIGURE 8

L, and I are lines, and the intersection of these curves are described as
(Cb : Lbl) = (CC ' Lcl) = (CC ’ ch) =2, (Cﬂ ’ La) = (Cb ' Lbz) =3.

In the case of the type (e), we can easily check that we obtain a configuration of four

lines, a conic and a cubic with cusp in P2, which we do not give here.

The cases (f) and (g) are more complicated. In the case (f), the reducible singular fibers
are of type III over t = 0,00, a1, ag, where a; and ay are two solutions of the equation
t2 + at +1 = 0 with a # 0 and Iy over t = 1. We name their components as in Figure 10.

Then the configuration is as in Table 2.

In Table 2, P, = (0,0), P; = (a/2,aV/4(¢2 + 1)), Py = (a"Y?(t? + at +1),a 343 + (a +
D2+ (a+1)t+1)), Qi = (w7 2+ uit, u; (3 + 0l 2ut? +u2t)), R = (wit+ujL, ul?(2 +
at’?u;'t + u7?)) (4 = 1,2) are all sections, where u; (i = 1,2) are the two roots of the

equation 4?2 + a'?u +1 = 0.

Example 1. After blowing down the sections and irreducible components of the fibers
(for example, Q1, R1, Q2, Ra, P2, P3, P1, 01,1, 0, 4 in this order), one can obtain a configura-

tion of curves in P2 which consist of four conics corresponding to @4 for 8 = 0,00, @, @,
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TABLE 2

B=0|f=c|B=a1 |f=a
Sections intersecting | O, Ry | O0,Q2 ] O0,Q2| O, R3

B0 R,P; | P, Q1 | B, | o, Q1

Sections intersecting | P, Q2 | P, Rz | P1, Rz | P1, Q2

6,1 P | Ry, P | B3, Q1 | B, P
7=1

Sections intersecting ©,0 | O, P,

Sections intersecting @,,1 | Q2, Rs3

Sections intersecting O,z | P, Ry

Sections intersecting ©,,3 | Q1, Ps

and eight lines corresponding to @z for § = 0,00,a;, a2, 0,0; 1,012 and O 3.

In the case (g), there are eight reducible singular fibers of type III over the seven roots
of the equation A(¢t) = 0 and t = oco. Since the torsion-rank r is 4 in this case, there
are sixteen sections whose configuration together with an example of a single reducible
singular fiber (the fiber over ¢ = 0), say, is shown in Figure 11.

In Figure 11, the seven sections A;, As,--- , A7 are those which intersect the same
component of the fiber as the zero section. T is a unique section intersecting O. Here,
each section intersects only one other section. Hence one can divide sixteen sections into
eight pairs, each consisting of two mutually intersecting sections.

Concretely, for the equation given in Table 1, we can put

2 ql/2pt 4 3 4 ql/2pe2
240 (t+b1/2)3 )

Ai = (w72 ut + by L uT (8 + (b + aud) P2+ 0%2) (6=1,2,3)

T=(

Ajys = (vt + bvj"l, 0;3/2(v]2-t2 + a2 2yt 4 5%/2)) (j = 1,- -+ ,4),

where u; (i = 1,2, 3) are the three roots of the equation u3+au+1 = 0and v; (j = 1,--- ,4)
are the four roots of the equation v* + av? + v + b = 0. The same situation occurs
on the other reducible singular fibers. If one names the fiber components in Figure
11 as in Figure 10 (the fiber on the left hand side), one can blow down the following
nine sections and components so that one obtains a configuration on P? consisting of

O, Al, A2, e ,A6,T -+ A7, @0,1 in this order.



34 HIROYUKI ITO

O

Ay

Aa

Ase

Aq

N
_ -

T
T+ A

T+ A,

K T + Ag

T+ Aq

Ficure 11

Remark 5. The sections are all disjoint except in the case (g).

This is an immediate consequence of the formula in Proposition 4.5.

6. Calculation of the Mordell-Weil group

We introduce a method of calculating the Mordell-Weil groups in characteristic 2. We

start with an equation

(6.1)
y? = 2® + o(t)z + ¢(t) with ¢(t), ¥(t) € k[t] and either o(t) ¢ K2 or 9(t) ¢ K>

which satisfies
(6.2) min{va(p(t)) — 4, va(¥(t)) — 6} < 0

for any root o of A(t) = 0, where v, is the (¢t — a)-adic valuation with v,(t — a) = 1.

Suppose f(t), g(t) and h(t) are polynomials in k[t] such that (f(t)/h(t),g(t)/h(t)) is a



MORDELL-WEIL GROUPS OF QUASI-ELLIPTIC SURFACES 35
solution of (6.1) and ged(f(t), g(t), h(t)) = 1. Substituting it into (6.1), we obtain
(6.3) @*h = f3 + pfh® + yhd.

Here and in what follows f, g, h, ¢, ¥, etc. stand for f(t), g(t), h(t), ¢(t), ¥(t) etc.,

for the sake of simplicity of the notation. First, we have
h=h3 f=fihh  with hy, fi € k[t] and ged(f1,h1) =1
in the same way as in characteristic 3 (cf. [5, §5]). Hence we have
g = f} + o fult + IS,
In view of (6.2) and Theorem 1.1, one gets
(6.4) degp(t) <4x,  degi(t) < 6x,

where x = x(Ox) for a quasi-elliptic surface X defined by the equation (6.1). Now, let

us consider an equation in the form
(6.5) G(t)? = F(t)* + () F(t) + T(¢)

where F(t), G(t), 8(t), U(t) € k[t], B(t) ¢ k[t]? or T(t) ¢ k[t]?.

Then we have the following:
Lemma 6.1. (i) If F' # 0 then
deg F < max{deg® — 1, ;— deg ¥ — %}
deg G < % max{3 deg F,deg ® + deg F,deg ¥}.
(i) If ' = 0 then,
F=G=0 when ¥ =0,
deg F < deg¥ — 1 when ¥’ # 0.
Proof. Differentiating both sides of (6.5), we have
(6.6) F?F' + (8F) + ¥ = 0.
Thus F? divides ($F) + ¥', which implies

2deg F < max{deg®+ degF — 1,deg¥ — 1}, whenever F' # 0.
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So we obtain (i). If F' =0, (6.6) becomes
¢ -F+3 =0.
We are done by the assumptions on @ and ¥. [J

Now applying this lemma to F = f,,G = g,¢ = ph*, ¥ = h¢, and making use of
(6.4), we have
deg fi <4(x+d)—2, degg <6(x+d) -3,

where d = deg h;. Note that a bound for d can be obtained by looking at the configuration

of reducible singular fibers. More precisely, we have the following;:

Lemma 6.2. Let P(# O) be a rational point of the form (f1(t)/h1(¢)?, g(t)/h1(t)?) on an
affine open set and let d = degh;. Then the following inequality holds:
1 3 1 b
d < —v(I) + —v(III) + > (5 + =)v{;) — x-
4 4 Z27 8
Proof. Suppose (P) and (O) intersect each other on the fiber over v € P!. Then the

z-coordinate fi(t)/hi(t)? of P must have a pole at ¢ = v if v # oo, since the section (O)
is taken as the section at infinity of the affine open set. Let v be a root of h;(t) = 0.
Then, since (fi(t), h1(t)) = 1, the z-coordinate f1(¢)/h1(t)? of P has a pole of order equal
to the multiplicity of a root v in hy(¢)2 = 0, and (P) intersects (O) on the fiber over t = v
with multiplicity equal to the multiplicity of the root v in hy(t) = 0. Thus we have the
inequality d < (P-0O). The inequality in the statement follows from this with the formula

in Proposition 4.5 taken into account. [J
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