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Fig. 1.1 Names for respective parts and welded parts of eyeglasses.

(O : Only one side of welded parts)
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TEDO L —FRIEHOFHEIZCONVWTEE OIS D% Table 1.1 12
AT RV —FEBICHVWOENLD ER LV —FEJRE LT, REV
A L —H L YAG(Yttrium Aluminum Garnet) L — ¥V RN EH TH 5.
REEH AL —F O E T, 9400 nm £ 7= (X 10600nm TH VY, &— A
i 'E BPP (Beam Parameter Product) (X 3 mm-mrad 2> % 15 mm-mrad

T, AT =D)L 2BE TIE, 0.1lmmBEBEO ARy MMRIZENLT
T, MmNV —EBEOBEENFEITEL. L2rLL, EEN 10um T
DL, T77A4ANRXN—METHLIAFETIIRRENANTLE D
T7AN—BRENTERN. TOED, V=¥ A LLOEE
DR T DR E,AEBRGICBIT2HHEESCKERMEICH BN H 5.
FEREDOLV—FEHEEZ Ar TAFHKANTITY &, Ar 7T X<
DAEAL, HHEEFERBICEDAFL—FHERNBEL, BEALD
B DR EOBENH S ). —F, YAG L —HF 0 Eix, 1064
nmoOFRALTHY, 774 N—RENAET, BEELE AR v B
AW 3RTEHEBREDEMER VAT LA 2HEELL T, AERK
fimCcEL TS, L2AL, E— A E BPP A 25 mm-mrad 7> 5 100
mm-mrad THOENERHEV RS 2L, mi/ITHEHT 2EIX
0.6 MMATHE D ARy NRICENLIND Z ENRZ V. TR RBIEDRIX
REET AL —F R 10%L FTHY, YAG L —HFIZBWTIE, 2%
W&ﬁw\

THE, LWL —FHPE L THEERL —FREL L. FEK
L—H O 1L 800 nm 25 1030 nm TH Y, 7 7 A N —{BEN A
BETHD. FERIEDRIZIO~50%LEIIFFIIELS, BEEEL IO
F 7=/ TcE, AENIES /PR TELS. L2L, E—A
mBIX AR —A LTy A MAORGTMHEZFSH, BPP 2 300 mm-mrad
WY, BIROEEE, TL—Y s, AR EICHVWLERNT
W5, FTRIETE, 774NN BEF4A4 7 bifilkfbanTEH Y,
KW itk O 7] TEEZ 0.2mm O 7 7 A N— XN AR LR, B— A
i’ BPP & 20 mm-mrad ¥ T FEIN TV 5.

R, OBBELPFEEILAIL—VIX, T4 A7 L —HFBLO7
AN—L—HF LI dEH Nk - &8 b - B EE ek 2 FTRE 72
mEEL - THDH. L—FOEKEIE, 1030 nm I X T 1070 nm T
HY, YAGL—FDOHE 1064 nm (2 <, 77 A4 N —(zkNalHE T
HbH. T A AT L= LT A R—=—L—FDODE—LNE BPPIXZ N
Zi, 8 mm-mrad 75 12 mm-mrad, 2 mm-mrad 7> 5 12 mm-mrad
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EREBHT ALV —HFLREL EIZTEALTWD. BRDFITE W T,
FTAARATZL—YFN21 %, 77 A X—L —HF N2 LtEL, L—WF
TR L L Ci L T B 5582,

Table 1.1 Trend of laser oscillators.

Laser | Wavelenath Beam Lasing Maximum Output Oscillator size

system (] g quality efficiency power Transmission | stability (floor

Y [mm-mrad] [%] [KW] [%] [m]@10kW)
:3'5" 1030 8-12 21 16 Fiber <2 3x15
aser

IF'ber 1070 2-12 22 100 Fiber <2 2x1
aser
LD | g00-1030 | 20-100 30-50 20 Fiber <2 1x1
laser (>%¢Direct) x
YAG .

acer 1064 25-100 2 10 Fiber <5 6x1
co, 9400- . 5x15
laser 10600 3-15 10 45 Mirror <10

1.2 XHMROEW

L= E2BRE LomEsT, M cCEREESZMATE 52
W, IRE7 L —2E8MICEEZSDT L ERSEET DL ENATRE L
L. THEA LIV REICHEHERBERSr I ~—27 b D &
IDMBICIFFFICAY v FDBREL, THEFA L OWEBIENDH. iz
L—HHDRAFRy "EE/NHNESLS L, @NY—EBEIZTH LT, X
D IRERICEREM CTMAT 2 2 LN T, WU ICARE L H
25 R BEEERETTEDL., ZRICE > TEHMBEEZM 5 720
OFEFRF OB REMSIND. T —FHEHESETERA 5
EEBY, BRO LX) RWHESM AL 2R BELMATE D
=0, WHEMNEORENREFES T, BRET7 L —L0MEEO M LI
LOoRTFDHZENRIFHETE D,

F TR TIE, VL—PICKDTF X MBS BB
THEMEHTRELE LT, L=V ORI EEE, V-V IEEXRRTH D
ANy 2O R A AR ORI F L OV IS A IS KB RNy o Il 7
BIZoWTHFLE., FXrOoMMBEREZEOICHEI E LT, 74
VEIRSE T L — A OEBEIC L, VW EEgEEEA L, ERE
BEOREMIRT 22 2HENET S, S50, MEMER EEERE
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1.3 FBWXDERK
AKX TIE, HFLEIPOLEFEITEIVEEKINLTEY, TR %E
Fig. 1.2 7 a0 —F ¥ — NIRRT .
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F2E HEMBEBIUEREE

U

$B3FE FIOOL—FHEREL—T Fa4E /SLAYAGL—YBERD R v/4
BERKICEHIHEMEHE B 5 0D 1= b 0D L —47 i 5 Sl 4
BBREEEICE TAL—F IR |:> “RINVRBEBD - DIENT—L—H
XIEBEABRERICKDIRNNVIRELS 8 i i 0
FNOBE — LAERRICRIZT R DRE

U

B5E FHURRBHEIL—LOL—TRHMERE
(REFIL—LOGREREEE-TREEHORE
REGHICEETOIZRFORE
LR ERETL—LEBADEE - B EAOTE

b
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U

| 7 #H |

Fig. 1.2 Flow chart of this paper.
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7 EAEINCB I 2 ROBREIZ OV TR TWN D,

H2wWL, AWMXTHEMULEMEE, BE - ZHCHEL -V
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L— ) 10kW O E#ERICE T 2RI EEZHE L, KRIZAN Y
Z LG EOBEMEICSOWT, 3ot X MERBEREE AW TR
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B A4FETIE, SVAYAG L —HBEHEICLDIMT ¥ o DRE T
xtL, AN X KOO0 L —HFHEICHEZBRFTL TS, A
WL, V=P REF ORI X OB IOV T, &iEE G
BEMEREXEERER oM BERICE S X, Yo 2 R0BERERED A
Y7 uebAE=2HX ) U TEFELTCOEMEEFML TWDE. F2
Vo ARBERRICRETOIARy X ET X =T o VKL, REK
M & B 72 IR A B RIS L, RIS K OV S A %D A diE s A s
EBREL TV,

BHEETIE, FHALUOHORE T L—2 ML, 7L R YAG
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BewmETIE, FHXUEREMEBOEAEIZOVWTHRFTLTWVDS.
FP, VU NEF—R T ANR—L—WICLABEHEE - 58T —
BEOFMCTHF X o 7 VI = A ALOS0 MK O b & 2 iE
EATo7. BohlmERTFIC L, liEEABMERRICLD,
WHRELZFMLU-. FE L ETAI=T L0 BMEESAERMEIC
DWW, BFHEMEBRL SEM, — /L X — 8t X B EDS (2
FOVHEL, FE L ETAI =T LAOEBEEMEICOWT, MIEL TW
5.

— %, PEHEKL—-FE2HNWT, FHXL L V=TIV T TTR
F v PET OBEBHEAZFEML TWDH. (FRLE-ZEAMKT TR L,
FlEREAWRBRZITV, EAREZFML TW5D. BRENS LN
THEARBEIZOWT, TEM TE MBI ZE 21T\, EDS o HIZ XLV
BEAREICER SN D KIS ERMEOBERMICONTHRFTL TWVWD.
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FLAMPEAMICK T T F ¥ UL EEE X OFE IS0 TH N
TW5A., B#HIZ, =0 Y=T7 V27753 2F v s PA HBEHE7L —
LSS E F X UM E LAMPEES L, EAREIZOWTHEMML TW 5.
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F2F HEMHEBSIURREE

2.1 #E#H#H

KR THWZEBRM L, TEHMT X S22 THDH. KW
A RZBITHIF/MS % Table 2.1 1273, BRBMHEAM S6 1>\ T
i, BBEEZRTLL WD, MTF X OMBOMEZE T EICikRE & &
DIWMEIZCEIVFAEINLTWD. JISHKIZEB W TIX, O, Fe A7
<, MW 1frb, O, FeOGHENESEWA4FEETO 4F
HERHESNTWDL. M EHEZERT L2085~ &bEKO 20 JISL
RO, @mmE, SEmENERINDI DB TIEL, O, Fe & FH
BEXNEWVWHEEBMPAERAIND., Toh T, MELNIMEONNT R
CENRNTWDEPL, US2EM AR ELERMSL TS &7,
Table 2.1 2R THERM SL I oW TIiX, F % > O WM O H &
CHWE. M S2 o Tk, EHO V-V HEERICBT R
AN OB RABERICHER L. S3 TN IAVEIAE L % EEeY,
WH L, IS LA WERM EoREBRICH W, M S4
X, A EE2EFHMICEASE, SV A YAG L — P X 2 s B

Table 2.1 Chemical compositions of pure titanium.

Chemical Composition (%)

Marks Sample
C Fe N 0 H Ti
Titanium sheet
1 . . .01 111 .0014 Bal.
S 420x50x20tmm 0.006 0.068 0.015 0 0.00 a
Titanium sheet
2 . .04 . 11 .001 Bal.
S 100x50><12tmm 0.00 0.0 0.00 0 0.00 a
Titanium parts
S3 t 0.004 0.04 0.003 0.113 | 0.0025 Bal.
40x1x3 mm
gq | Titaniumsheet |\ o 00 1 6054 | 0.002 | 0.064 | 0.0000 | Bal.
40x3x2 mm
Titanium sheet
.01 .02 .01 .04 .001 Bal.
S5 70><30><0.3tmm 0.0 0.0 0.0 0.0 0.00 a
Titanium sheet
. .2 . .2 .01 Bal.
S6 70x30x1tmm 0.08 0.25 0.03 0.20 0.013 a
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J

DFFEMICH W, 3 M S5 X F X v T A=y A0 REEEM
Brows, s S6 3 F 4L TR F v LORMBES DORR
WZREA L 7.
BESBEZICHWEEBIZITEMNMY LI =7 45 A1050 TH D,
Z DAL H K & Table 2.2 1289 . F 4 & O AF=ITH 1000 K T
HY, BEEETIEN 10, BVEEREEINIF[OENED D .
BMEAGICHWES 9 2AF vy 7 MBHE, =20 P=T7 V77T A
Fo 7 ThHY, TOFTH, FIZLTERHTHOEERAM & L THEH
Eh, v —¥V@&@aMtsa+5K8 ) F L7174 —FK (PET)
N L. s, RERME, L7 RMELZ £ L Oz Table 2.3
2T . MIEEILXS838K THY, FHXLyOEA LD, D TEW
ZENDOND.

Table 2.2 Chemical compositions of aluminum.

Chemical Composition (%)

Sample - -
Cu Fe Ti Si Mn Al

A1050 shteet

.02 2 . 11 .01 Bal.
70x30x0.3' mm 0.0 0.26 0.03 0 0.0 a

Table 2.3 Molecular formula, thermal properties and optical features of 2 mm

thick PET sheet.

Engineering plastic Polyethylene terephthalate

Q 0

\ 4
(Molecular formula) Pe c fH

F o-ch, |

Glass-transition

temperature 348 K
Decomposition

temperature 538 K
Transmissivity at

wavelength of 84 %
laser used
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2.2 EREE
221 L—VYREFSLUVUTOEIH#EF

(1) EHMABEREREIGMMEITARIL—FVEE

F YA L —HPE, V—PHEIZFig. 210X HICENT 4 27
THEREIN TR —FThds. 2nICky, [RiEHEIKHE]
lkERkE LTHEAMEZA LS N TE S, L—VHEEICX
YAG (Yttrium Aluminum Garnet) fdiZ Yb (A v 7T VU E D LA) &
FR—=7L7bonHwvwbin, #AFREALET 100~200 um TH Y,
BEREEFMIOmMmEETHL. L—VEHEICHAHAE -7 B8
ETHZET, V—VEEORBIIFEm T - FMICHB SN, L—
FhREENBOBREARENIFTETH RS, ik, oy N
V=PI R_RTAL X R 2 IMEERBCTE, XL TELE
E—amBEHEL LN TE D %Y,

AMIEETHERHLET 4 A7 L—FRIEZRIT MLV TR-E RN
16 kW O i IR M Do F ¢+ 27 L —H (FX : TruDisk-16002) T &
D, FEIZ1030nm TH 5. B D L —H¥ E— L0 BPP (Beam
Parameter Product) fE (%X 8 mm-mrad T, =27 200 um O X7 7 A
NR=ZED v —FMIT~y FNZEIND. BEREHFBIOCL—F 0
T~y FROWNBLEE% Fig. 2.2 27 .

Ty AN—=IZ LV mEINT V=Y, ESEEE 200 mm o =
VA= a by X ERERE 280 mm O£ L o X TREK S Lz
L—%MT~y K (Fr> 78 :BEODD700° ) ICXVWEXSH
5., V=ML ~y FOAKRYy MR, E— ALK, E—LF— KB

High Excitation
reflectance  |ight

coating \/

Heat sink | Laser light
,,?‘
A\
Adhesive Disk-type laser Output
medium  medium mirror

Fig. 2.1 Configuration diagram of disk laser resonator.
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T =27 R —HEIZTHONT, PRIMES DR Y —F =% —%
Mo, BlE Lz, ZoME/MEE Fig. 2312537, L—F 2Ky K
BlZHOWTIE, V—FH)4kw THEL, 86 %L —HF D AH = *x
NE—NRNEEINLIBRTHEHBLE., ToE, EAMEICE VT 280
um FTEXINTWS., FRPovARAGHAEMREL, L—HF T —
IOKWIZBIT AL —=F & —27 U —%E T 320 kWmm?> ThH 5.

(a) Oscillator (b) Welding head

Fig. 2.2 General view of disk laser apparatus used.

Beam diameter [mm] 0.28

Focusing
properties

Power density

(kW/mmz2)

[J 200~

il 170~ 200

[ 140~170

[ 110~140
80~110

Focusing distance (mm)

|

B s50-~20
B 30-~50
B 20~30
B 13~20

Laser beam profile

Fig. 2.3 Laser beam focusing situation, beam diameter,

focusing properties and beam profile.
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(2) RNLAHEEBEESWHIAEERE YAGL—TEE

YAG (Yttrium Aluminum Garnet) L — %%, Y|z L - T YAG
WO N (AT LA FTR23) 2EMEA AL LTHE
1064 nm O FA K EZHRET HEEL—F THD. L —FRIEITIE
2ODKEEFON, HEEMICEIET 28 REIK TIiX, #EA0 0
T2 707, BiHBICEET S N AR TIE, NARARITHOD
7Ty vaZ IR HwWL, RIFETHWE YAG L —HF X% F T
HDH. 7 YAG L — T ORI 7 7L YAG 7 v N (YAG
EmErREIEToOL s7mBRobL D) BNE BT FEITICEI L, W
A CEHROERBNT 2oDEEMBIZS A LI cFNFE
NEBEIN TS . EXHFOoORNMTEKS a2 —T 73 TWVWT,
hWERZ 7o RSN DMEXREIEHO - FOoESMEICH D
T, M OESMEICHD YAGE v FIZEF L THRHE I DM
el oTWNDH., XN YAGH v FIZEFR L THRHFNEINLS & YAG B
y RiEhiE S, EmME SNl m o Fmictidmy mans.
ERHLZL—FRIERTEAA U RAIERR & RKFELHH T 50 W DX
b ARERA YAG L —H (L 0 SLW-050) TH YV, P E X 1064 nm
ThH. L= RIEZFBIOL—V ML~y NKOHNE G HEZ Fig. 2.4
ZRT . L—F N, BIESRND I TR 400 um O T 7 A N — T
AR EN, V=PI T~y Rzt L. L—FIT~y FiX, £
GSHREE 7O Mmoo = U A —T g L X ESEEE 50 mm OE L
VALY ARy PEEK 300 umIZERXL TV D.

Fig. 2.4 General view of pulsed Nd:YAG laser system.
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) NLRABEERNGCL—FEIEHHEE

-1 FEHHBABEXRKENILR YAGL—H

W ) R R %L 2 NdIYAG L — W E T, HR O YAG
V=Y TIEARAETH V-V REPIZENT, E—27 XU —¢
BEHBMNEZ2EHIELI LN TEL LV EETHD. T0HNEE
B % Fig. 2519 . HAEMZIE, 2 ¥vF 727 7 28 ML-2351A %
R—ZAEEBEBINTEBY, Ao mBICXE>» T, L—VRELH
NEDOAAL v TF o 7EROELEZELIEDLZENTE, BE—F X
J—Z5KWEU TFTOLBETICBWT, 0.1 ms B CTHETE 5.
TR, A E 0 BB &2 0 2 Ak S B 72 55 R & Fig. 2.6 (2”7 .

[\
\

Fig. 2.5 General view of adaptively-controllable pulsed
Nd:YAG laser system.

|-| trias:s CHE leve
11111 *1 /8 Csr:0FF

: ‘ Command pulse ‘j 500 psidiv

=
=

EeRT T ehE BT L g i
SamY Sok sTmY 5k | [

L OFF W DAk R LG [cscalc ]

PN o

# MEM & Erig:SINGLE (Hl leve 1 36% S
lllll X1 -6 SEr:OFF

Adaptively-controlled|  '5g0 usldiv :
laser beam pulse e -

sehi LTI < LN
Semv 3o% sSamv Zex

Fig. 2.6 Relationship between command pulse shape and

adaptively-controllable Nd:YAG laser pulse shape.
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ER S DOFESEFEICK L, 0.lms LHNOKER TL —H#F U —R
BRELTWVWIONHERINS.

3)-2 L—¥mI~AyF

L—=HFMLT A~y FRIZoWT,@nfl#TcHEHNT LI & a2rRiRe L,
VT NEALE=FT U THEZATDO2M L~y RZHWZ. T
~y ROANBEHEA Fig. 2712 L, BAEMR2 L —¥FINT~y Ko
BERIZ>WT, Fig. 2.8 ICRT. E=XFESOREICHO VT, L
—PEEN RN RERICEB YT, BT RXAX—BESLME T T, [EH
B, MEBLOERAKIDIRE T 2 W E5R 4 2 m ke ©F I HiE
TEHLaBEL, oV —1tESE, ZANCHNT D
FENRREHTHL D EEZT-. 2T, KX, B EE L O0E
WEBGB RO 3MEOT =X 2R ELEL. 2L, @mEEEGE
=XICEALTE, "RV —FEEOHR+ ms BREOKM TIX,
BB NFE T TCERWED, WETo v A2 MBAT LD 0E =4
EH L LTHKAABLOAKKFN I EOETFEH V. =% O
Fix, v—¥FHoEEE L.

Fig. 2.8 (2 - & 91T, & Hil 8 A KL AR N L 2 YAG L — L&
MNE, T30 uMmDAT ATy 7 AT 7 48— (S| 7
FAN=) ZRAVWTEEL, V=¥ (EE : 1064 nm) &1L —F
MIA~y R~E X, 1064 nm O R IZX L 99 %L EST S ¥ 25 4 A
rvuaA >y 7 I7—=1THOET, BABEHES50mm oL L X X
DB DZEICXY, WES~BHETLIMIEFTRERS> TS,
Lo Aotz 1:2THY, BRHEARy FEIT 150 um &2 5.

Fig. 2.7 General view of laser welding head equipped

with in-process monitoring sensors.
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InGaAs sensor

Interference filter
(%:1,300 nm)
Notch filter ¥
(%:1,064 nm)

(:632 nm)

106 4 — =
Dichroic mirror 2 '

Dichroic mirror 3

Interference filter
(%:1,064 nm)

Dichroic mirror 1 /_._. . 77774 Fundamental YAG
Sl fiber Laser beam

Focusing lens =
(f:50 mm) Protectglass

Samples
Fig. 2.8 Schematic drawing of laser welding head equipped with-in

process monitoring sensors.

WIT, E=ZHFRIE, KK, BEHEBIR L -V RN XM
DE B G RN ARERER SR> TWD., L—VREBEBE,
HICHHAMEBBLOR TN R->TL D, ZORKNEIZZE A 70 A
v 7 I7—1T1RUTFTOREBIZIKTFIN, TDH%, ¥4 7ua1y
7 IT7—2TCKH, ¥4 vy IT7—3TCxmL, HLEISHNF
RPERNT DA A R RS E N S . e AR R & R
He+sZsicky, V—HLEEGHMNPLOL—HFFETL— 2%
DB LN, BREMEHER S OKEEOEHZ 58P LT
TORFFEROoTWVWD. KA EFHATL2FEFELLT, Si7r b
A —FzEzHWk., ESEEFZROE U FA— &% 0.1 mm (2%
E L, FrldE S 0.l mm & 72 5.

—J, V=PRIV AV OBEMPIBEBT D &, BWME» 5
BRSO N AT D B X, B L Xk o THK S 4, 1300
nm OFE%EZ 90 W EFZwRIT D 2D X A 70,y IT7—1 L2
ZZEBL, SHIECLV—PFORNIEAEZ ODBLU TITHEIYD /) vF 7
4V Z — & MR 10 nm @ 1300 nm F¥ 7 o VX 2 FHE L% I,

™
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INnGaAs 7 + N A A A —RIZCXVHMEND. 74 bV —HOH
g4 e LT, 2Lk Yol s RIcERLETY T A2 HAHL
72, B\RE 2 FE L TWAEBEIIER 05 mm TH 5.

(3)-3 HERHHEIRT L

BISHIE S 27 2%, oniz®T=FY) U 7EENLDOBEHRIC K
D, L—HPIRBEREEL Y T LEZ A LTHB L, FTESHET OB
RizxtL, VL= AR_"IF A= EHGEro@EYICHEIEDL &5 H
ELLTWn5.

AFIETIE, "NVALV—FICLDIARy ME#EZIRLEL TS
e, LY OREBRKEMIZE ms 268+ ms o TH Y,
WISHIE 21T 9 72D 2iE, &5 —HREWKRERIC X 56828 %%
ThbH. T, 1A 7 vH7D 150us CTHIFEEZITH> Z & & LT

A > AT 5 OB % Fig. 2.9 (2R3 . & A A g o
IWAYAG L —HTEEMNLOL—VEN, K77 A4 3—= 2L YL —HF
MT~y R~fmpt &, RAMICHBEEIND. V-V REFIT, L
— P IMIT A~y RO 250 % — 2k 0, S IRE & B KRS58

Infrared ray sensor Adaptive control system
(% :1.300 um) ( PC: Real time OS)

>/

Laser welding head | T

Interference filter —
Notch filter | B n L
H [ |
Dichroic mirror 2 I / * ==
I I

Reflected light sensor
(2:1.064 pm)

<&
<

Dichroic mirror 1

Fiber (¢: 300 pum)

High speed
camera

Adaptively-controllable
,@ pulsed YAG laser
v (2:1.064 pm)

Shielding gas: Ar

Side nozzle \

Light source: @—»

He-Ne laser

Fig. 2.9 Schematic experimental set-up of adaptively-controllable
pulsed YAG laser, sample, in-process monitoring,

high-speed camera and laser adaptive control system.
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FEZUTNLEALCHAIL, TOoOF—2 2Kk, AELT IR
FERICH LT, @Rl —HFE—7 T =B X/ R R EEFR Z
HE L, WS A L AR S L 2 YAG L — YA (2 150 ps R T
T4 — KNy 7 FTHZENRARETHD. Lizno- T, NILAL—HF
DV RHIZENTYS, KELBIOBBHFN I L 2R T =
t2xAxE=ZL, BELTI2BEGREEZGELILODICLER L —WF
=7 RNRU—BIXRANVZARE KR O LV —FNF A — & & il f#l T
LEBREBERE o TWND.

4) EMHEVILEFL—TEE

PERL -V OBEIIEAKTH DD, il Hiké o x X —¥%T
D OBERL —F ERAPICR RS20, H@EITEE L —F & X
LTEZOLND. PERKL—VIIXA A —FDO—FTHY, XA
F— RN TZERO —HNICEREIALTCL—YF LD, 0O
o, PEHEEKL VIS A — L —% (DL) RV —¥ X4 4 — K
(LD) &mEiEn % °%.

H-1 BRHAS KNFEHAXRL—V

KL —HHEEIL, L—F—F 4 RO HE KT 3 kKW O E K
L—HHEETHL. REEOIBGTEZ Fig. 2.10 (a), (b)F X U (c)
R . RL—HHEEBEZX, L—HY~y FRIZAX v 7 (¥4 X
05x3um’ DT I v —DWALTL—FR—%BE L D) ZHo
HA VI "NAATTHY, JKE 800/940+x10nm O L —HF &2 FHKIKT 5.
BRINEZLV—VE—2Fal) A—va Ly X2@Eil L TEN
FEEE 100 mm (F100) O L > X2 ko> THE SN, BEEAfMETOE
— ATBIRIE Fig. 211 T X o R ER D, 272 L, AMFET
T, 2V A —Ta vy X eERX LR LEDOBIZHAEYF A4 Y — (4
EX%R) 2t LT, E—20EWMBLOEO RS %21
H, F100 L > XMl HEFIZ X, Fig. 2.11(b)IC "7 74 v E— Ak %
7=
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Homogenizer

Focusing lens

(b) Power supply (c) Chiller

Fig. 2.10 General view of 3kW diode laser used in this study.

Focusing lens Beam transverse mode and profile

(@) F100

(Without homogenizer) i
Beam shape: 0.3 x 2.1 mm

(b) F100
(With homogenizer)

Beam shape: 0.6 x 11 mm

Fig. 2.11 Beam transverse modes and profiles of 3 kW LD with different focusing

lenses.
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(4)-2 BRHA200 WL BHL—H

Ry —VIEEDZ, A= FF 77T 4 v 7RO EKRET) 200W O ¥
HARKL—VEETHDL AEBI T 7 AR D TV HFXEHRY,
WR 807 nm DLV —VhERIETH., REFEDOHIBGTEZ Fig. 2.12
QB LOMIICRT. KFEICBWTI, EREESEEZEY—2 % H
££ 06 mm, BAO% 02207 7 A4 X"—T/miEL, EAEBE 100 mm
DL ATHENSHTEEREZIT- -,

(a) Oscillator (b) Power supply and chiller

Fig. 2.12 General view of laser diode apparatus used in this study.

(5) EFMRBREROSVINMNE—FIPAN—L—HEE

L—Hbr—2azlL—VolECLEKICEE N CHET S L,
E—2ANOBEIT K THERSELrOSHREZE > TWNWDH I &N
Rohd., 20Xz R X —0MESMIREELZE—2F— L&
FEATWD., HLICRRBELREDL, ZOMRESANPEFFFETWV D
EZADERGHAEEL TS IO E—FREY U VE— RE L
TH T A5 E BFEATH S 2,

AL —HEEIT, IPG 74 b= XM HERKHT 2 kW (B KX :
YLS-2000-SM) & A Kt/ 500 W (513X © YLR-500-AC) O 38 5t 76 =
My v I NE—RT77ANRN—L—PEETHL. BRERGeaBLVL—
PMI~y ROABEEIZHOWT, Fig.2.13 12T, AL — P HE
X, WEEE L L EE 107T0nm O LV —HFERIEL, 77 AR "—ICkDY
RESIND. R 2kW OEEE O T~y Nix, £ OHEH 300 mm
DaYRr—a by X ELERE300mm oEXL X T, &K
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(a) Oscillator (2 kW) (b) Welding head (2 kW)

(a) Oscillator (500 W) (b) Welding head (500 W)

Fig. 2.13 General view of single mode fiber laser apparatus used.

H 77500 W HEBEOI T~y Nix, £SHEBE200mm o2l A —v
gL X EESEREE200mmOEN L XXV RSN TEBY,
ML~y FIZXvEXIND.

2.2.2 BE - -SWEE
(1) ZEXRTXBEBHEEE
v—%%%ﬁm%ﬁéﬁﬁﬁm%®%~f~w%@,%@mm%
DL WA Z AR R D 728, @ E X %A v B A e 4
KAy 25T a (KR IT 2> b — by 25 o8
TOSRAY-HSC-TW2599 ) Z HHWTHZE %2 To7=. Z DY AT LD}
Bl % Fig. 2.14 2R .
v A v T =0 A X @BEAEE (Eias h=27 28 10801,
RKEIE :230kV, R KEFR : 1mA, e BEE : 4pum) &, 2=
T —H A XWEAMEE (TITAN E 225HP, & KEJE : 225 kV, &
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Fig. 2.14 New type X-ray transmission real-time observation system
for observing keyhole and three-dimensional melt flows

in molten pool.

KEW : 3.5 mA, fEEE :0.4mm) ORI EF-T-RIFEH
LTWa., M AE2EBELE XBIZ, BEICEASA A VA T v
T AT (FEAEFEM 01lms), MmEEIAT (T2 A RAXA—VT 7
Jva v —f: MEMRECAM GX-8) Z#H L THBIZLETX5H. Z 0O X%
ERBIOXBEBEE X, TLENBaRy P77 — A2 K0
ENTEBY, HEEOHER TN L OBHEAED D OF B ] 6E
o TWab., Fio, —BMIC, RKERE L BEARERE TIE X KiEiE
FO(RILE) I2EZR W s, BEERICBT 25 (FENIR
W) ZEETHI1CE, Pr—H% &L THMIZHOME %2 oA Te
ERbol. 22 T, WEFMICEITREICER gl mm O R %E & 1T,
FL—H & L THERO0S5mm OEMEE IR (WC) Z2HOHIAALK. WC
ERITBEBENEZR L2720, XBOFWENKLS, BROENEKRN D =
YETANOBMOEBENELN, WCERDONEERSHICBETE .
CO2FMDOXBBERBRB RIS TRRDZ FRANLHMEM E2 AT
LA BRBRL, KGR LEZ 2HET —ZOWHEZE42F)H L CTLP
TAHZLELTXBEBRRAITX FmOMEBELKRD, 5FET2RTTLMN
BT ol b —HVEHOUWMEZ 3R{LT D ENTX D,

2) BEEBER 724 ILEAFGEEEEETAH A AS
EBIEBIVNFELEZICBNC, 20 ANDIEMM, L—
FERINV—LBLORARy XOBERIZIE, GEHEDAT (Fv oA
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A—=VF7 ) Y—fl: MEMRECAM Gx-1) #fiH L7=. = D4 #
HEH% Fig. 215 1277 . AEEEEF A H A T 1% 131 5 # 0 [H &
wBFEF2HAL, £/ 7 1T ISO 20000 FH%4, # 7 — T ISO 5000 A
YomEEr =N EHEIhTWwWs., £/, 7171 —ATiEK
& 2,000 frames/s, 3 E| 7 L — A Tl & 200,000 frames/s £ T D #x
EWRARETHD. ABEEETA I ATIL4GBORKAEAETY &
HH L TWs 7=, B x1E 10,000 frames/s TILK 1.6 # [ o 50 & 2
AEECH Y, FkE L7-EET — ¥ 1L 1000BASE-T % 72 i% USB2.0 @
Xy MU= HERICED PCIcmEKEL, PC THHY 7 b
[GXLink] ZH W THEBLEL L OT =X ORIFENAIETH D .
AT, RAMBRmOBEM ST 2 LV EHICBET 720,
e & LT8R L —F (R RLV—F NTU—:30W, K :976
nm) ZHWT, B/ Z7a@EEI AT ETHT7 o (FLKE: 973
nm, FfEIE :5nm) A EDLETHERLE. -t MERmD 7
N—LBRBBLIORRARNy X OEEFHICHOWTIE, T#H 7 0% (300~
900 nm) ZAHAGHLE THEHH L.

Fig. 2.15 General view of high speed video
camera (MEMRECAM Gx-1)

(3) SIEA R

VL=V EREBELLETF XY OBREREZFMT 220, &
MEFR A — 277 7 (AGS-500G) # Wiz, i F %
vERFEMEEO LV —FESWOEEOFMIZ O W TIE,
B ER o v a — & B H OB T e R B
(AG-10kNE) % Al v 7=
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(4) AR
V-V EERE L IEEREA oM Eo LIt HAET D
Oy —AMEHFEHWCHEIZRELL., By — A IR
BRIZFig. 216 I " T KO EFEOREREZ S DX A YE Nk %
e LTHWSD., ZOoEAEFIHERMIZL TIL6°THDL. ZDOFET
ETEEOMBEP THLLSY, AT LH2EFEBOLEAHOMARDE S
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HV = 1.854 x —
d
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/\\

~Z

136°

Fig. 2.16 Vickers indenter

%) hoy—AFYBRIRXAEEE
HEI3EICBWT, Lo VIEEBORNREZMET SN TE D
) —AMUVEBAERLLEZ., o) —X NI EBOHBEEZ
Fig. 217 1" 9 . Hw U —X MUEE, L= LoWRINEZ R E X
CHETEDLEINNTWDLHFIETHL., FREEE LT, M ITHEA
SN —P IOV —Z2HEL L TKIZELIRD FIETHD.
Fig. 217 IZ " T X oo, REBEIINTICAKRZT ST Z &N TE 5
IZ7>oTRY, KoAoBLOHOZEZEALENR TR v — X EVE &
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Fig. 2.17 General view of calorimetric welding jig.
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Fig. 3.1 Schematic experimental set-up for water-calorimetric measurement

of laser absorption.
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Fig. 3.2 Water temperature increase induced by melt-run welding

at 10 kW laser power and 50 mm/s welding speed.
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Fig. 3.3 Schematic illustration of calorimetric measurement system for

calibration of heat input and temperature.
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Fig. 3.4 Calibration values at various water mass flow rates.
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(Fiber core: 200 pum)

TRUMPF

LASER
TruDisk 16002

Disk laser
Power :10 kW
Micro focused [ A:1030 nm ]
X-ray source assembly BPP: 8mm-mrad
[Peak voltage: 230 kV ]
Peak current: 1 mA

Laser welding head
Image intensifier
High speed camera
for X-ray transmission

High speed
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Shielding
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................. High speed camera
for X-ray transmission
. -
-
- &
Mini focused RIS
S O
X-ray source 4‘&&
assembly
Peak voltage: 225 kV] Specimen High speed camera
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Fig. 3.5 Schematic experimental setup for observing spatters in high-power disk

laser welding of pure titanium plate.

6 mm 1 1,2,3,7,9mm

Trace (tungsten carbide)
0.5 mm in sphere size

12mm

Fig. 3.6 Dimensions of titanium specimen used for X-ray transmission in-situ

observation.
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Fig. 3.7 Bead surfaces and cross sections of titanium weld beads
produced by disk laser welding at 10 kW power and various

welding speeds, and laser absorption during welding.
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Fig. 3.8 High-speed images of spattering with schematic illustration of spatter
formation during disk laser welding of Ti plate at 10 kW power and 17

mm/s welding speed.
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Fig. 3.9 Typical examples of high speed observation pictures, showing
formation locations of spatters from molten metal around keyhole

inlet.

38



100 ,
Keyhole inlet Side Spatter below 1 mm diameter

Spatter over 1 mm diameter
Front

80 ]
Molten pool  Side Side

60 I|?ear \l/

Front

40 -

Ratio of the locations occurred
elongated molten metal [%]

N
o
]

17 mm/s | 50 mm/s | 100 mm/s | 200 mm/s | 300 mm/s
Welding speed [mm/s]

Fig.3.10 Effect of welding speed on distribution of occurrence

locations and sizes of spatters.
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Fig. 3.11 Keyhole location and melt flows in molten pool during high power laser
welding of thick plate of pure titanium, showing concavity or underfill
on top surface, bubbles generation in molten pool and melt flow pattern

observed by platinum (Pt) melting during laser welding.
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Fig. 3.12 Three-dimensional X-ray transmission in-situ observation results

during laser welding of titanium plate at 10kW power and 17mm/s

welding speed. (a) Three-dimensional visualization of melt flows

calculated from 20 tracers; and (b) mean and maximum velocity of
tracer (WC) in respective areas.
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Fig. 3.13 Summary of characteristics of spattering in laser welding of titanium
plate after 2 seconds from start of laser irradiation. (a)
two-dimensional trajectory of tracer (WC); (b) velocity of tracer (WC)
with elapsed time; and (c¢) micro-focused X-ray transmission in-situ
observation result and schematic illustration of tracer and elongated

melt with elapsed time.
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Fig. 3.14 Summary of characteristics of no spattering in laser welding of
titanium plate after 0.5 seconds from start of laser irradiation. (a)
two-dimensional trajectory of tracer (WC); (b) velocity of tracer (WC)
with elapsed time; and (c) micro-focused X-ray transmission in-situ
observation result and schematic illustration of tracer and elongated

melt with elapsed time.
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Fig. 3.15 Ultra high-speed video camera observation results, showing images,
profile and height of laser-induced plume during high-power laser

welding of titanium plate.
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Fig. 3.16 High-speed images of spatter and plume together with schematic
illustration of spatter formation during high-power laser welding of

titanium plate.
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Fig. 3.17 Relationship among plume occurrence, measured height of
elongated molten metal, and velocity as function of time

after 0.5 seconds from start of laser irradiation.
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Fig. 3.18 X-ray transmission in-situ observation results and high-speed

images of spatter and plume together during high-power laser

welding of titanium plate.
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Fig. 4.1 General view of jig for YAG laser

butt welding of titanium.
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| Peak power: P, Pulse width: W |

Fig. 4.2 Surfaces and cross sections of micro butt

seam welding of pure titanium.
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AYAG laser beam[kw], @Heat radiation[ x 1.5 uW], OReflected light[ X 0.25 mw]

Power
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Fig. 4.3 Monitoring results of typical butt weld of pure titanium, showing YAG
laser pulse shape, reflected light and heat radiation signals, and

high-speed observation images of spatters occurring from spot molten

pool.
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Fig. 4.4 Features of spatter generation during laser irradiation

at 1.6 kW peak power.
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Fig. 4.5 Relationship between spatter generation and heat radiation

from Ti subjected to pulsed laser 1.6 kW peak power.
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Table 4.1 Generation rate of spatter at each laser peak power.

Welding condition (@) (b) (©
Peak power, P 0.4 kw 0.8 kW 1.6 kW
Pulse width, W 30 ms 10 ms 5ms
: Average
Generation Rate 0.47
of spatter fromOto1lms 0 0.53
bellow 100 pm Average
[mm?/s] from 1 ms onward 0.18 0.88 0.5
. Average
Generation Rate | from 0 to 1 ms 0 0.65 12.4
of spatter
over 100 um
[mm3/s] Average 0.05 0.58 2
from 1 ms onward ’
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Fig. 4.6 Flow chart of adaptive control for reduction of spatters.
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Fig. 4.7 Monitoring results under adaptive control for reduction of spatters.
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Fig. 4.8 Pulsed YAG laser welding results of Ti sheets under

adaptive control for reduction in spattering.

Table 4.2 Generation rate under adaptive control for reduction

in spattering at 1.6 kW laser power.

Under Without

adaptive control adaptive control
Irradiation time of 1.6 kW
Laser power I1ms-1.8ms 5ms
Generation rate of spatter 1.48 12.4 2
over 100 um [mm3/s] ' (0-1ms) (1-5ms)
Generation rate of spatter 0.53 0.5
bellow 100 pm [mm3/s] 0.48 (0-1ms)  1-5ms)

4.6 >—LBEERICRETREOEE

EEOREFEZEIZEBWNWT, T XTOREGEHTORMME ZERITR
T ZEFRETHL. 22T, E— 273U —0.4, 088 L 1.6kwW
TENETNOWE R Z 15,58 X0 2ms © 3FEHEO B X)L 2K
Z AW, 0, 40, 50, 60, 90 5 X ' 100 um ORI BN FET 256
DIEERBE 2 7=, —fl & LT, £ 40 F KO 100 pm 0 B 2N 77
ELEGAOEETRID & WmERE Fig. 4.9 1277 . 0.4 kW TIiI,
R EBL OB ARSI, BEIICE > TIEFEAEED LRV,

0.8 kW L £, BRI 100 um D4, 2246 J5 W\ O 5l £ 25 iR i
WL 2, IR T U — T 4 VDAL 2.
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Fig. 4.9 Pulsed YAG laser butt welding results of Ti sheets with gaps.
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Fig. 4.10 Features of pulsed YAG laser butt welding results produced in
Ti sheets with gaps.
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Fig. 4.11 Monitoring results during pulsed YAG laser welding under adaptive
control for underfilling, showing laser pulse shape, reflected laser

and heat radiation signals, high-speed observation images of spot

molten pools and corss sections of Ti joints with gaps.
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Fig. 4.12 High-speed video images during pulsed YAG laser welding and their
schematic representation showing formation of bridged molten pools

over gaps.
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Fig. 4.13 Relationship between gaps and monitoring signals

in pulsed YAG laser welding.
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Fig. 4.14 Flow chart of adaptive control for underfilling in pulsed

YAG laser welding.

fkF ESICHRSE, WM OERZKFF XTI 7T Z 4 AHE L
(KREBREZMHETIZT8OUW 2B DI L), TORLEREIALRZE
L7002, 1.6 KW IZZEF L, 0.8 mm DORIALIES (B & ¢ 58
1.7 uW) IR o RT, VL—VHRKFNEZEFELLL. ZOoKDOA 7
nkt2E=XY) TR E Fig. 4.15 12039 KA LR E 2N 80 pW %
#x75.4ms TIE, BRIMARMICELZDR > TEREIATWD Z &
WEHEBERERENPOERTE, ZTOHIT 1L6KWIZ L —F T — R
EEIN, BAHEREN 1T W 2B 25 & L —VREMMEL L
TEL, HICHENEFICHELEZ EDPHERTE H.

60 um 2 5 100 um O PR ICEB W TH LN EBEHR O R im & Mm%
Fig. 416 IZ/RT.Fig. 49 R T RKRERT U H—T7 4 VORAEITIR

64



53, I KTH 0.15 mm T,

E7o, WAL, 100 pm BREOKF T, 0.42mm 25 0.70 mm |
KighEEZ KL

60 Ll EEINTZ/ENEGE O L.

A YAG laser, O Reflected light, @ Heat radiation

A A
£
LI A s T 4 =
~
o .
0.8 [ W S e T T T 2 &

o
LI

YAG laser [kW], Heat radiation [ X 2 pW]

0.5 mm
5.4 6.1 7.3 [ms]

Fig. 4.15 Monitoring results under adaptive control for reduction of

underfilling in pulsed YAG laser welding.
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Fig. 4.16 Welding results under adaptive control for reduction of
underfilling in pulsed YAG laser welding with each gap.
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Fig. 4.17 Comparison between laser seam welding results in Ti butt joint
sheets without adaptive control and under adaptive control for

reduction of underfilling with 100 um-gap.
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Fig. 5.1 Welded parts of eyeglass frame.
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Fig. 5.2 Schematic illustration of experimental set-up in pulsed YAG

laser welding.
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Fig. 5.3 Laser welding method for parts of eyeglass frame.
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Fig. 5.4 Test method for evaluation peeling strength.
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Fig. 5.5 Method of cyclic bending test.
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Fig. 5.6 Surfaces, cross sections, weld bead widths and penetration depths

of laser welds made at several powers of 0.4 kW to 0.8 kW.
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Fig. 5.7 Influence of laser power on ratio of porosity area to weld
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Fig. 5.8 Cause and effect diagram for production of ideal laser weld.
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Table 5.1 Combination of factors by L12 orthogonal arrays.

1 2 3 4 5 6 7 8 9 10 11
P Q R S T U \ W X Y z
Angle of |Processing [Chamfering Tited j_ig Tilted jig - Bending bDéi\t/«‘:‘:ec:
No. | welding |of welding [of welding | \verical | " (\eiging | Bending | Guard 1 e cton| Pickling  [welded part | ~SStone
9 9 9 welding Aerding | oag glass . 9 P defatting
surface  |surface surface irection) direction) of fiber and gas
shield nozzle
1 0° WEDM Square 0° 0° Not New Not Not 5mm Practice
2 0° WEDM Square 0° 0° Practice Used Practice | Practice 15mm Not
3 0° WEDM C0.2 1° 1° Not New Not Practice 15mm Not
4 0° Machining | Square 1° 1° Not Used Practice Not 5mm Not
5 0° Machining C0.2 0° 1° Practice New Practice Not 15mm Practice
6 0° Machining C0.2 1° 0° Practice Used Not Practice 5mm Practice
7 1° WEDM Cc0.2 1° 0° Not Used Practice Not 15mm Practice
8 1° WEDM C0.2 0° 1° Practice Used Not Not 5mm Not
9 1° WEDM Square 1° 1° Practice New Practice | Practice 5mm Practice
10 1° Machining C0.2 0° 0° Not New Practice | Practice 5mm Not
11 1° Machining | Square 1° 0° Practice New Not Not 15mm Not
12 1° Machinin: Square 0° 1° Not Used Not Practice 15mm Practice
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DEAHLBFERSIEHORKFAE LT, BEOBABICLI L —F~y N
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NH IP~EB S ELE0E ST LEBELNELEZEZ A,0.4
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Fig. 5.9 Relationship between tensile strength and combination of factors.
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Fig. 5.10 Relationship between laser weld penetration

and defocused distance.
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Fig. 5.11 Tensile test results of Ti welded joint and SEM images of

fracture surfaces.
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Fig. 5.12 Cross sections and qualitative analysis results of each weld bead.
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Fig. 5.13 Component surfaces and welded parts produced by laser

micro welding and conventional welding process.
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Fig. 5.14 Comparison of peeling strength of welded joint between

laser micro welding and conventional welding.
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Welding

method Laser micro welding Conventional welding process
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welded part
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Fig. 5.15 Surfaces of welded parts after peeling strength test,

showing sound welds and fracture in hinge.
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Fig. 5.16 Surfaces of welded parts deformation after cyclic bending test.
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Fig. 5.17 Microstructure of welded part on components of eyeglass frame.
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Fig. 5.18 Hardness profiles of laser welded part and conventional

weld of eyeglass frame.
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Fig. 6.1 Schematic experimental set-up for 2 kW single-mode (SM) fiber laser

welding of Ti and Al dissimilar metals.
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Metal: Titanium
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(a) Using 3 kW LD beam
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N2 shielding gas
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(b) Using 200W LD beam

Fig. 6.2 Schematic experimental set-up of diode laser joining method
between titanium and PET.
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Fig. 6.3 Setting-up situation of tensile test specimen and schematic of loading on

sample with jig for preventing test specimen from bending.
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Ti (laser irradiation) — Al (bottom side) Al (laser irradiation) — Ti (bottom side)

Welding 167 mm/s 833 mm/s 167 mm/s 833 mm/s
speed

Weldln direction— | . |Fwelding direction-—][ 1" 111" 1 |
o [ I

surface -\ NG

0.5mm

Cross
section

0.4mm

Bottom |
surface

0.5mm

Fig. 6.4 Photographs of top and bottom surface appearances and cross-sectional
SEM photos of Ti and Al dissimilar welds made with single mode fiber

laser at welding speeds of 167 and 833 mm/s.
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(a) Obtained loads of tensile shear test
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(b) Tensile shear test results of strength

Fig. 6.5 Results of tensile test for Ti and Al similar and dissimilar welds. (a)

tensile shear load; (b) tensile shear strength.

90



Al (L — W BEME) -Ti (JEM) <k, Ti (L—FRHMA) -Al (&K
) 2R, 2ERELTEVEETAMMBEZRL T\, BH#EHRE
FE167 mm/sTIXEMDO ©— RERmICH AN MR I L, ﬁﬁ?ﬁ%ﬂ
HMoEAEREEGIZEHEBEOTIHNAGTEL, BEABELS+2ICIA D
oY il el ,%&%f@ﬁﬁﬁ,miﬁ_%meMLtk%z%h
L. Al (L—HBRHEM) -Ti (JEM) OB HESE33 mm/sTiL,
MEmES O mER T NICHEEL LT, AR TR L Wiz, L
LK OMEEERDLTI (L—FRHM) -Al (JEM) ©833 mm/s
O FGEE ST, WEMTHKL T, ZoERZLLHHIZON

X, BREOTI(Fig. 64T O HE) N L —HFREESICHEET D &,
%%ﬁﬁ%ﬁ@N%K%hé&wiﬁ%ﬁ%ﬁ%?é%%ﬁ%é.
T bbb, Ti (L—FREMA) -Al (JEM) OMAHE T833mm/sd
/é,%E#Bwn%fmeHm&gﬁd%wwﬁw VR B BB C A T S
ol FE A, WEHOAEKMEOEBKI O MRS 5 0 E N
b .

UEoSIETAWEERBRERID, TikAlO RHEE&RM B OB
BIL,AIREM OBEZEI DV LB VWRERELND Z BRI N
BEHEE D833 mMmM/IsOLEMHITRB W T, T o5 iEE A K| E I
167 mm/sk vV H&m <, ELOMETIZTE W TIX, Al (L — VB EH)
STi (JEM)D) o5 EE AW MmENTI (L—YREM) -Al (EM/) X
DEWIZ ENHHLE., a2+ 57290, EDSIETL — 8BS
WHMIZBITA2TIEAIORAERE L AKMBO o 21TV, BEESO
R EBRBEIEEMDOERMEBIZOWWTHIEIZTILERD D.

6.3.3 FARAUVETFILSZOLDL—YYEHBERICE TS ERME
SliRE AWM sRE N B2 o K IZODWTHRIET 2729, Tik Al
Téﬁéﬂtiﬁ%%% OWTHEEZIT-7=. WA ITHEIX, SEM
CEXOWHEBER X OVEETO P LR EICE T H2EDSIC L 5846
%s'%ﬁmbt. Z O fEF % Fig. 6.6127~c7 . Fig. 6.6 (a)¥ &L U'(b)ix
Al (L —HFBREM) -Ti (JEM) oE\ERMEEGHEIC %Té%n%ﬂm
P EE 167 mm/sE L U833 mmisORBRAE R TH Y, (0)iF, WL T
MWr L7=Ti (L—HHHEM) -Al (EH) oFELEAGTICB T 2HE
833 mm/sORBRAE R TH 5. Fig. 6.6(a) Tix, AN O it
WHEMIZBWT, MkEbn Ao, £72, AUNTEM BT OIZ
EIICEY AL TWDN, TIOgHE@HIZREN TH - 7. 167

91



Al Ti Al Ti
Laser irradiation Bottom Side

Laser irradiation Bottom Side

AK
TiK

(a) 167 mm/s Al — Ti (b) 833 mm/s Al — Ti

Ti Al
Laser irradiation Bottom Side

AK
TiK

(c) 833 mm/s Ti - Al

Fig. 6.6 Cross-sectional SEM photos and EDX line analysis results across

centerline of dissimilar weld metals made at 1 kW laser power

and different welding speeds.
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Welding speed 3mm/s 4 mm/s 5.5mm/s 6.5 mm/s 7.5 mm/s

30.6 J/mm

Heat input 76.7 J/mm 57.5J/mm 41.8 J/mm 35.4J/mm

Laser Power

230 W
Power density
34.8 W/mm?
— e T e
Welding speed 7 mm/s 8 mm/s 10 mm/s 12 mm/s 16 mm/s

Heat input 65.7 J/mm 57.5J/mm 46 J/mm 38.3J/mm 28.7 J/mm

g

Laser Power
460 W
Power density
69.7 W/mm?

Fig. 6.7 Surface appearances of LD direct joints of Ti and PET produced at
different welding speeds at laser power of 230 W and 460 W.
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[] : Base plastic yielding
— . —230W QO : Base plastic fracture
A : Interface fracture
— - — 460W ® O+A
3000
B P ----p BT
Z 2500 ' 2 N 230 W, 5.5 mm/s
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o 2000 O —
S . A
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O 1500 / \
= .
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D 1000 /.
9 A Mo
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0 1 1 1 1 1 1 1 1
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Heat input [J/mm]

460 W, 12 mm/s

Fig. 6.8 Tensile shear loads of LD-welded joints of Ti and PET produced at 230W

and 460W laser power as function of laser irradiation heat input.
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- 2500 [

230 W, 5.5 mm/s

Fig. 6.9 TEM photo near interface of titanium/PET joint made with LD beam.
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230 W, 5.5 mm/s

Fig. 6.10 EDX analysis of titanium/PET interface.
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EIectronte' Phosphoric acid (0.012 %), Energization time: 3 min.

SEM images
of
metal surface

Voltage

Sllver
(Non oxidized)

Color

Oxide film [ Thick

Surface
appearances

P: 170 W
v: 4.5 mm/s

Fig. 6.11 SEM images of oxidized Ti surface, and surface appearances of laser

joint part of oxidized Ti and PET.

Laser power: 170 W
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Non oxidized

3000 — —— Gold
—_ —.—- Blue
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= 2500 °
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P 500

O: Base plastic fracture
0 " " " " " " " A Interface fracture
0 2 4 6 8 10 12 14 16 @ O+A

Welding speed [mm/s]
Fig. 6.12 Tensile shear loads of laser joints of oxidized Ti and PET at

170 W laser power as function of welding speed.
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Irradiation condition: P = 170 W, v = 4.5 mm/s
Radiation coefficient €: 0.29 (Non oxidized, Gold), 0.33 (Blue)

Ti plate

Silver (Non oxidized) Gold

Fig. 6.13 Observation results of oxidized Ti surface temperatures observed
and measured by radiation thermometer during laser direct

irradiation.
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Fig. 6.14 Effects of oxide layer and weldinging speed on bubbles sizes in

laser joint parts of oxidized Ti and PET.
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|H * 13.5mm
15 mm1 mm 12 mm
40 mm 3 mm
( I 3 mm
(a) Temple (PA) (b) Sheet (Titanium)
e et —

(c) Temple and titanium sheet joined

Fig. 6.15 Joining parts of eyeglass frame.

Fiber laser beam 1mm-mmoe- :
Power, P: 60, 70 W % |
Wave length, 4:1070 nm I

Defocus: +16mm L

4

Metal: Titanium

Plastic: PA (Temple) WELd;ngssgeed/
V:i4.0~0.0 mM/s

Fig. 6.16 Schematic experimental set-up of fiber laser joining method between

titanium and temple (PA).
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direction
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Fig. 6.17 Test method for evaluation peeling strength.
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EOVHBEERE 81 N2 5L, WWTL—H T —70 WLV #HE 4.5
mm/s 235V THEERIE 78 N Th o 72, RO HEERE B H LT
L —H XD —70W, FEEE 5.4mm/s 28 5 FHEERBRE ORBR A

Laser power 60 W 70W 70W 70w

Welding speed | 4.5 mm/s |4.5 mm/s |5.4 mm/s | 6.3 mm/s

Surface
appearances

Peeling

Strength 45N 78 N 81N 63 N

Fig. 6.18 Surface appearances of fiber laser joints of Ti and PA produced
at different travelling speeds and 60 W and 70 W laser power.
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Joined of surface

(a) Temple (PA) and sheet (Titanium) after peeling strength test

I

Plastic | | Joined part
(b) Joined surface of

o (c) Deformation of titanium sheet
titanium sheet

Fig. 6.19 Parts of titanium and temple (PA) joined with fiber laser beam
after peeling strength test.
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