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Introduction and results. In this paper we give a sufficient condition
for second order differential operators to be hypoelliptic. The condition is
also necessary for a special class of differential operators.

Let Q be an open set in R” and let P=p(x, D,) be a second order differ-
ential operator with coefficients in C*(Q), that is,

) 2%, Do) = 310D Dey 3D, -6, Dey = —idsy,

where coefficients aj(x), bj(x) and ¢(x) belong to C=(Q). We assume that
a;(x), bj(x) are real valued and aj(x) satisfy for any x in Q

& .élaik(x) E;£:20 for all E€R".

Let log <D.> denote a pseudodifferential operator with symbol log <>, where
<E>=(1+]&|3)*.

Theorem 1. Assume that for any €>0 and any compact set K of Q there
exists a constant C, g such that

®) ll(log<D>)ull <€l|Pul|+ Cp,kllull, v€CT(K) .
Then P is hypoelliptic in Q. Furthermore we have
“4) WF Py =WFv  for v€9'(Q).

Corollary 2. Assume that for any €>0 and any compact set K of Q there
exists a constant C, g such that

(5) [l(log <D D)ul*< & Re(Pu, u)+C, llull?, u=CF(K).
Then we have (4).

Proof of Corollary. For u=C7(K) take ¢, Y =Cq(Q) such that =1 on
K and 4»=1 on supp ¢. Note

(log<D.D)u = yr(log<DDyu+(1—) (log<{D.>)p u
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and (1—+) (log<D,>)p €5~ (see Chapter 2 of [5]). Since yr(log<D,>)u belongs
to C7, in view of the above formula we may replace # in (5) by (log<D,>)u.
Since the principal symbol of [P, log<D,>] is purely imaginary we have

Re ([P, log<Dlu, (log<D:p)u) < C(l|(log<D>)ull*+lull") .
In view of this it is clear that (5) implies (3). Q.E.D.

The estimate (3) is not always necessary for the hypoellipticity. We have a
counter example Ay(x, D,)=D3 +exp(—1/|x,|®)D3, for §=1 given by [Fedii [2]
(cf. [8]). In fact, A, is hypoelliptic for any §>0, but when §=1 the estimate
(3) does not hold for some small €0 (see Remark 3.1 in Section 3). However,
for a class of differential operators, the estimate (3) is necessary to be hypoelliptic.

The result concerning the necessity can be discussed for some class of
operators of higher order. Let m be an even positive integer and let P, be a
differential operator of the form

Py=Dr+J(x,D;)  in RyXR:,

where A(x, D,) is a differential operator of order m with C*=-coefficients. We
assume that JA(x, D,) is formally self-adjoint in an open set Q of R} and bounded
from below, that is, there exists a real ¢, such that

(6) (A%, Dyu, w)y=collull?  for us LA(Q) satisfying Aus L*(Q) .

Theorem 3. Let P, be the above operator. Assume that P, is hypoelliptic
in RyxQ. Then for any x, & there exists a neighborhood o of x, such that for
any €>0 the estimate

@) [|(log<D;, D,>)™*u||* <& Re(Pyu,u)+ Cl|ull?, u€C§(R; X »)
holds with a constant Cs,.

RemarRk. When m=2 the estimate (5) follows from (7). In fact, for any
compact set K of R, X, let K’ be the projection of K to £, and take the parti-
tion of unity 3} ¢p3(x)=1 over K'. Since Re([Py, ¢,]4, p;u) is majorated by a
constant times of ||u]]?, we have (7) for uC§(R,;x K'), which implies (5). In
view of the proof of Corollary 2, the estimate (3) also follows from (7).

Our two theorems are applicable to the hypoellipticity of operators consider-
ed in [10] and [11]. Especially, an application shows that D}+ D3 +exp(—1/
|, |%)DZ, (8>0) is hypoelliptic in R? if and only if § satisfies §<<1 (cf. Theorem
8.41 of [6]). As another application we give:

Proposition 4. Set P,=D}+x3D; +D},+D, (o(x,)% (x)?)D.,, where o, <
C=, a(s)>0 (s=£0), >0, o(0)=0 and so’(s)=0. Then P, is hypoelliptic in R* if
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and only if o(s) satisfies
(8) lsl-:? [s*2log o(s)| = 0.
ReEMARK. If o(s)=exp(—1/]s|?) for >0 then (8) means §<<1/2.

The plan of this paper is as follows: In Section 1 we prove Theorem 1.
The idea of the proof is the same as in Section 5 of [11], though we employ the
microlocalization method by Hormander [4]. In Section 2 we prove Theorem
3 by using the interpolation method similar to the one in Métivier [7], where
nonanalytic hypoellipticity for operators of the same form as (6) was studied
(cf. Baouendi-Goulaouic [1]). The proof given in Section 2 is nothing but C*-
version of [7]. Section 3 is devoted to the proof of Proposition 4.

We finally remark that the criterion of Theorem 1 applies to second order
differential operators with finite degeneracy studied by Hormander [3] and
Oleinik-Radkevich [13], because for such operators we have the sub-elliptic
estimate |[u||s = C(||Pul|+|lull), §>0.

1. Proof of Theorem 1

Before proving the theorem we introduce some notations. When ¢, yr&
C7(R") satisfy =1 in a neighborhood of supp ¢, we write ¢&=r. For a
pseudodifferential operator Q=q(x, D,) we denote by o(Q) the symbol g(x, £).
We denote by Q%) a pseudodifferential operator with symbol gf§(x, &) =D%0%g(x,&)
for multi-indices ¢ and 8.

Here and throughout the present paper P=p(x, D,) denotes the second
order differential operator in Introduction satisfying the condition (2). For the
brevity we assume Q=R". Without loss of generality we may assume that
coefficients of P are defined in R” and belong to B~(R"). As proved by [13],
it follows from (2) that

(1 SIPOull < CRe(Pu, w) + ), v C5(K),
and

(12) 3 IKD> Pl <C(Re 3 (DLD>™Pu, DLD,>™u)+|lulf), ue C(K),

hold with some constant C=Cy, where D;=D,,. In fact, (1.1) follows from
(2.6.6) and (2.6.9) of [13], and (1.2) follows from (2.6.14) of [13].

Write p(x, £)=i-0 pa(x, &), where p, is positively homogeneous in & of
degree k. Let h(x)ECF(RY) be 1 for |x| =1/5 and vanish for |x|=7/24. For
¥ = (%o, &)eR*x S*~! we consider a microlocalized pseudodifferential operator

(13)  Py=py Ay, AD,) = hz Paot Ay, E-AD YHOD, /3
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with a small parameter A>>0 (see [4] and Section 2 of [9]).
It is clear that for any muti-indices & and B we have

(1.4) 10705 py(Ny, An) | < Cy ph ™AL 0<AT,

with a constant C, g independent of .

Let (P®)y and (P,)y be microlocalized operators defined from symbols of
P® and P, by the similar formula as (1.3). From estimates (3), (1.1) and
(1.2) we have the following:

Lemma 1.1. For any real s>0 and any ov=(xo, £)ER*X S*™* there exists
a constant C(s, vv) such that for 0<A=1

(15) (log X™*)*|| Ho|| = [|[HoPyol|+-C(s, 7)lI0ll, vES,,

where H=h(AD,)h(\y) and Hy=h(\D,[2)h(\y[2). Furthermore, for any vy ER" X
S~ there exists a constant Cy such that for 0O<A =<1

(1.6) 'g;‘.llIH(P‘“’)yvlléCy(IIHPwIHIleI), veS,,
and
(17) S IVH(P)l SCAIHPyw o), vES,

Proof. Set v(y)=(exp(—iA"%x*E)w(x)) | s=ry+s, for wES,. Then we have

exp(—in"%x-E)p(x, D,)h(AN2D,—&)/3)w(x)

1.8
9 = (Pyv) (A7 (x—2x0))

and for real s’ we have
exp(—in"x-&) | D, | h(\D,—E)w(x)

(1.9) =] §0+ny|"k(ny)v) A Hx—xp)) -

Indeed, both formulas are easily seen if we note the change of variables
x—xp = Ny, E—N"E, =271y,
Furthermore we have

exp(—in"%x-&) (log<D,>)*h(A2D,— & )uw(x)

(1.10) - .
= (H((logA™"+-7(D,; N))*R(AD,)v) (A~} (%— o)) »

where 7(n; \)=(log(\*+ [Ap+&2))/4. Ttis clear that {r(n; A)h(Ay); O<A=1}
and {r(n; N)*h(An); 0<A=1} are bounded sets in S9,, as pseudodifferential
operators in R. Note that {h(hzf—fo); 0<A=1} is a bounded set in S?,, as a
pseudodifferential operator in R}, because A*<(31/24)|£|~* on supp A(A%E—&,)).
We shall prove (1.6). Substitute u=h(x—xp)h(N*D,—Eo)w="h(x—xo)h(A\2D,— &)
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(\D,—&)[3)w for wE S, into (1.1). Then we have
(1.11) 1«:u2=1 1A(A2D,—Eo)h(ot— o) POR(A*D,— &) [3)w]

= C(Re(h(A*D,—E)h(x—x0) Ph(A*D,— &) |3)w, h(A*D ,—Eo)h(x— x0)w)

+Hlwllf), wes,,
In fact, we can majorate the terms concerning commutators among h(x—xp),
h(A*D,—&) and P appearing in the right hand side by a constant times of

[lz|l?, because, their symbols are purely imaginary. In view of (1.8) and the
same formula with P replaced by P we have

(L12)  SHP)wlP<Cy(Re(HPy, Ho)+Ilolf), 0 €S, ,

which gives (1.6) together with Schwartz inequality. Similarly it follows from
(1.2) that

S D, | ~H(ND,— E)h(x—x0) Piayh(N*D,— &) [3)w]

l@|=1

(1.13) < C(Re 3 (DKD,>™ WD, —Eh(x—x) PH(MD,—E) 3w,
DD, > W(ND,—EYh(x— xo)w)+|w][?) .
From this we obtain (1.7) if we note (1.9) and

exp(—in"2x+&)D KD,> h(ND ,—E )w(x)

(1.9) _
= (ri(Dy; A)o) (A l(x_xo)) ’

where 7;(n; A)=(An;+&;) M+ | A& %) Y2h(Ay) belongs to S%, uniformly
with respect to O<A=1. We shall prove (1.5). Substituting u=nh(x—x,)
h(A*D,—E)h(A2D,—&,)/3)w into (3) we have for any £>0 and some constant C,

l|(log <D >)h(ND ,— Eo)h(x— xo)wl|

<&(||h(A2D,—E)h(x— x0) Ph((A2D ,—&y)[3)w0|
+I[A(A2D,—&y), h(x—x)[PR((MD,—&)/3)w]|
+I[P, h(x— xo)h(A*D,—E)h((ND,—E&y)/3)w0ll)
+Collwl| 58(11+Iz+13)+ce”w” .

Note A(A2D,—E)h(x— x0)=h(N*D ,—Eo)h(x—xo)h((x—%0)/2) and

o (BOND ,— Eh(e— %)) — h(x— x)h(N2E—Ey)

— 33 Dih(x—x)0h(NE— E)esSr?,

uniformly with respect to 0<<A=<1. Then we see that I, is estimated above
by a constant times of

J=R((N2D,— &) [2)h((x—x0)[2) PR(A*D,— ;) [3)ao] |+ Il |,
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because A(ANE—&)/2)=1 on supp 8ZE(NE—&;). Since D2h(x—x0)32h(A\?D,—&))
= D%h(x—x0)02h(A2D ,—E)h((x—x)o/2) mod $~=, I, is also estimated above by J
with a constant factor. Noting
[P, h(x—x)h(N2D,—&)]
- %}_(—1)'5'D:h(x—xo)8§h(x2D,—Eo)Pf;’;}ES?,O

we see that I, is estimated above by a constant times of

(Do~ o) 2) (2 —20)[2)PR(WD,— o) 3w
+ 11D, | “h(ND,— &) [2)h((x—20) [ 2)Pwh(A*Ds—Er) )l -+l -

By substituting u=h((x—=x0)/2)h((A*D,—E&)[2)h(A*D,—E,)/3)w into (1.1) and
(1.2), we have (1.11) and (1.13) with A(A2D,—&)h(x—=x,) replaced by A(\*D,—
&)/2)h((x—x0)/2). Using these estimates together with Schwartz’s inequality,
from the estimations for I; (j=1, 2, 3) we have with a constant ¢>0 independent
of €

(log <D, h(\D,—Eh(x—s5)w]
< cEl|A((VD,— B 2)h((x—20) 2)PH(MD— E)3Yel |+ C ]

In view of (1.8) and (1.10), we obtain
(log M| Hol| S €| HoPyol[+-Celloll - if 0<A=N,
where A,>0 is a sufficiently small number such that for 0<A=),
llr(Dy; M)A(AD,)ol| = (log A7")[|A(AD,)o|| -

Taking s=&7? we obtain (1.5) when 0<A=A,. The estimate (1.5) for A, <A =1
is obvious. Q.E.D.

Estimates (1.6) and (1.7) can be strengthened to the following form:

Corollary. For any yER"X S*™! there exists a constant C} such that for
any s>0 estimates

(1.6)' IEIIIH(P‘”)-/?)HéCé((IOg A7) T HPyo||+-(log A7) || Hol[+|l0]]) ,
and
(17 3 INHPw)ollS Ci((1og A=) IIHPyvl|+(log A=) Holl-+ o)
holds if 0<A<1.

Proof. The estimate (1.6)’ is a direct consequence of (1.12) because

Re(HPyv, Ho) < (log A~*)%|| HPyo|[*+(log A~*)*|| Ho|[* .
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We also have (1.7)’ by the similar estimate as (1.12) that is derived from (1.13).
Q.E.D.

Note that ||v||<||Ho||+||(1—H)v|| and that for any s>0 and any yER"X
S"~! there exists a small positive number Ag=Ny(s, ¥)<<1 such that

(1.14) (log A== 14-2(C(s, 7)+C' logA™*) i 0<A=N,,

where C(s, ) and Cj are the same constants as in (1.5) and (1.6)’, respectively.
Then it follows from (1.5) that

(1.15) (log A=*)||Ho|| = 2(|[HoPyo||4-C(s, M)I[(1—H)ol]), v€S,,
if 0<ASN,.

Note that for |a|=1

{ a(PP)=03p(Ny, M) = ATa((PD)y)  if M| =3)5,

(1.16)
O‘(Py(w)ED?Pv(ky: >"’7) = 7\40‘((P(u))y) .

Since supp #(\y) is contained in {y; |An|=3/5}, we see that for |a|=1,
H(\P{—(P™),) is L*-bounded uniformly with respect to 0<A=\,. Together
with (1.14) and (1.15), the estimate (1.6)" gives

31 I HAP0]| < Ci(log M=) (| HPyo|+4]|HoPyoll)

1.17 la=1
0 +@2C(s, N+CHA—H)oll, v€S8,, FOA=Z,.

From (1.7)" we also have
(1.18) DHENPyael|SG, vES, i 0<A=h,

where G denotes the right hand side of (1.17). For a while we assume 0<A=<
(s, ) for fixed s>0 and yER" X S*72.

For a real x>0 and an integer k>0 we denote by A, a pseudodifferential
operator with a symbol (14+#<{g>)7*. It is easy to check that for any a the
estimate

(1.19) [95((1+#<EX) ™) | S CoED™™(14-4<ED) ™
holds with a constant C,, independent of «. Set
(1.20) k(3 N) = (1407254 N""9D) *h(Ny) .

Then it follows from (1.19) that for any @ the estimate
(1.21) |87ke(N; 1) | SCaMR(ni V), M9 =1/5,

holds with another constant C; independent of « and A.
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Set hy(x)=h(x/8) for a small 0<8=1/10. Fix an integer N=3. Takea
sequence {h{}J-1C C5(RY) such that

(1.22) hs = hehia: - -<hy ’chy ' = hyyShys
and for any « the estimate

(1.23) | D3| < CY/N'™

holds with a constant C4’ independent of N and j (C¢’=1).

Lemma 1.2. Write

(1.24) AD,)ke(Dy; MY (MD,)1E* (A )
= hg()‘D.v)k&(Dy; )»)hé()»y)—i—r(y, Dy;x).

Then for any integer I there exists a constant C, independent of N and N such that
(1.25) lIr(y, D,; A)o|| S CAINH#*H+2 o], vES,.

Proof. Consider the expansion formula of the simplified symbol of
Hy(AD)k(D,; Mi(Ny) (1—hi* (AD,)h{*'(\y)) (See Chapter 2 of [5]). Noting
(1.21) and (1.23) we obtain (1.25) by means of the Calderén Vaillancourt theorem
(See Chapter 7 of [5]). Q.E.D.

To make clear the discussion below we prove the following simple lemma.

Lemma 1.3. Let N be a fixed positive integer and let A satisfy O<A=1.
For any finite sequence of positive numbers {C} .. there exists a constant C} such
that

(1.26) 3} OIS+ CINAY.

Proof. Set R:I?;as}f {Cj,1}. When NA=<1/2R we have
31 C(NAMPSR 3 (12RP < 3 (1/2) <1 .

If NA=1/2R then we have
SO NP SR 3 (NV) (N S (R 33 (2RYH) (NA)
It suffices to set C/=R 3}}_,(2R)*%. Q.E.D.

Set H{=h{(AD,)k(D,; Mhj(ry) and substitute H{v into (1.15). Then for any
s>0 there exists a constant C, independent of #, A and IV such that

(127)  (log A" llHiol| <2I|PyHivl+CANHjo]|, veES, .
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Indeed, considering the expansion formulas of the simplified symbols of (1—H)
Hj and (1—H,)PyH{ and using (1.23), (1.21) and (1.4), by Calderon-Vaillantcourt
theorem we see that for any s>>0 there exists a constant C, such that

(1 —H)Hiol |+ |1 — H)PyHipl S CAN*H||o]|, vES,.
Similarly, it follows from (1.17) and (1.18) that for any s>0 estimates
(1.28) 3 IIMPywHioll<5C;(log 2™ IPyHiel |4+ CaN=+ o]

and
(1.29) IEIIINPm)HgvHéSCKIOgX”)"lleHévIl—FCSNSN‘+2”+‘II“OH, vEeS,

hold with a constant C,.

Lemma 1.4. There exists a constant M independent of N, x and N such
that for any s>0

(1.30)  |IPyH{v|| < M| HyyPyol|+MN(log A~*) HIPyH{ 0| |4-C AN+ o] ,
vES,, if logA"*=MN,
where C, is a constant independent of ), x and N. Hence Hy=hy(\D,)k(D,; \)
hs(Xy).
Proof. It is clear that
(1.31) 1P, Hiv|| < || H{Pyo||+ I[Py, HiJol| .

Noting Aj(x)="Hhj(x)h,s(x) and considering the expansion formula of the simplified
symbol of H{, we have

. . [s/21+1
|1HiPyol| = ||Hihos(My)Pyol| =< (1+ qZ;i CANNY )| lhs(AD ) kchys(N y) Pyol|
+ Cssts+2n+GI l.v“
for some constant C; and C,. Here we used the estimate
[[(BE(AD,)ke) D0|| < Co(NN) ! |Bps(AD, k0|

which follows from (1.21), (1.23) and the fact that h,(x)=1 on supp D3hi(x).
Using Lemma 1.3 we have

1 Pyol| < 2I| Hyy Pyl + C AN o]

Here and throughout the proof of the lemma we denote by the same notation
C, different constants independent of A, « and N (, depending on s). We
shall estimate the second term of the right hand side of (1.31). In view of
Lemma 1.2 it suffices to estimate ||[Py, H{JH{*'0||, where H{"'=h{*'(AD,)hi*!
(Ay). Write
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[Py, Hi] = [Py, D,k JH(Ny)+ki(\D,) [Py, Bi(A)] .
Note that the expansion formula

[Py, H{(AD,)k ] = (— 1) (B(\D,)k) Pyw/a!+R(y, Dy5 N,

<[m[s[s/2] +1

where R is a negligible operator, in the sense of
[|Ro]| = CaAN***|o]| .

In view of (1.4), (1.21) and (1.23), we see that there exist constants }; and M,
independent of s, #, A and N such that

I[Py, (%Dy)kx]hé(hy)H ol SMN 3 RAPyohi (M) Hi ol
3D NS ik, HO)HE ol CAN*+5543 o

holds with some constants C;’. Consider the expansion formula of the sim-
plified symbol of kAj(Ay) and use Lemma 1.3. Then the second term of the
right hand side of (1.32) is estimated above by

(1.33) 2M,N?||H{+ ||+ C AN+ [y ||
For |a| =1 the estimate

e\ Pyyhi(Ny)Hi 0|
SIINPywkH§ 0| |+ M N||Hi 0| |+ C AN+ o ||

holds with a constant M, independent of s, x, A and N. Here we used Lemma
1.3 to estimate terms corresponding to [k APy, #i(Ay)] and [APye), k. From
(1.29) we obtain

B Pycah(Ny)H ol | < 2C(log M%) Y|Py H{ o[+ M NI Hi ||

1.
(134) FONNSo ) Ja] = 1

From (1.32)—(1.34) we see that the estimate

I[Py, Bi(\D,)k Hi(N y)H{ ||
S (MNY|H{ ||+ M N(log X=°) Y| PsHi+ 0| |-+ C AN+ g

holds with a suitable constant M, larger than Cj and M; (j=1, 2, 3). If we use
(1.27) with j replaced by j+1 to estimate the first term of the right hand side, we
can estimate ||[Py, k§(AD,)k]hi(AD,)H{**0|| by the right hand side of (1.30) with
another suitable M larger than M,, because (MN)*/(logA"*)*<MN/logA~* if
logA*=MN. Noting ||k} ()»Dy)z'ill =<||khs(AD,)?|| for DES,, we can also
estimate the term ||k (A D,) [Py, h{(Ay)|H{* 0|| by using (1.28) instead of (1.29).
We have estimated the second term of the right hand side of (1.31). So we ob-
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tain the desired estimate. Q.E.D.
From (1.27) and (1.30) we have

Lemma 1.5. For any integer N =3 there exists a constant M independent
of N, N\ and « such that for any s>0

(1.35) (log A"\l Hyol| < (log A™*)¥|| Hy Pyo| | (MN)¥|[o] |+ C NIN****+9g]| ,
vES,, f OAZIN(s, ),
where C, is a constant independent of x, N and N.
Proof. In view of Hy=Hj it follows from (1.27) that
(log X™)M[|Hyol|/2= (log X *)" (|| PsHiv| |+ CA'N*+H|[o]]) .
Applying (1.30) to the first term of the right hand side. Then we have
(log M%)V ||Hyw||/2< M(log A~%)Y ~%||H,sPyv||+MN(log A ~%)¥ 3| Py Ho||
+2C(log A=)V INNT#HE[g]|  if log A= MN .

Use (1.30) for the second term of the right hand side and use repeatedly (IN-3)
times. 'Then we obtain

(log M~ ||Holl[2= M3 (log =)~ MNY|| HxPyol
=0 N-2 ) ,
(1.36) +(MNY*~||PHY || +-(log A~*)* *(1+ 3} (log A~) /(MNY)
X C SN2t |9|| if logA™*=MN .

Note that HY~'=H,y, and hyys&hys. By means of similar formulas as (1.6) and
(1.7) (together with (1.16) we have

1PyHE " || < M(|| HpsPyoll+loll)
taking another larger M if necessary. If log A™*=MN, it follows from (1.36) that
(log A=)V (| H;ol| = (log A ™) || Hs Pyol|+-(MN)* |||
+Cs(10g 7\,_3)N7\,"Ns+2"+6“‘0“ .

When log A™*<MN this estimate still holds because of the second term of the
right hand side. Noting (logA™*)"A*=(log A™*)" exp(—log A"*)< N, we obtain
(1.35). Q.E.D.

The estimate (1.35) with N =2 also follows from (1.27) with j=1 because
for a suitable constant M’ we have

1PyHzo|| < M (|| HysPyoll+-1loll)
similarly as the estimate after (1.36). Thus, (1.35) holds for any N=0,1,2,--.
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Let 7 be a small parameter chosen later on. Multiply both sides of (1.35)
by 77/N! and sum up with respect to N=0, 1,2, ---. 'Then we obtain

A7 Hyol| SN HuPyoll-+ (S (MNT)* [N14-C, 33 N-424)] o]

because 23 (7log A )Y /NI=A"*". Choose 7 such that Me7<1 and 0<r<1.
Then, by using Stirling formula N¥/N!<e" we have

(1.37) X—ﬂllHBW”éh_sTHstPv‘v”‘{‘ C;”‘D” ’ ‘UESJ ’

for another constant C!. Note that 7 is independent of s because M is so.
Hence we can replace st in (1.37) by 2s'+2s” for any real s’,s”>0. Multiply
A*” by (1.37) with st replaced by 2s’+2s”. Then we see that there exists a

r M

constant Co=C(s’, s”, v) independent of « and A\ such that

(1.38) A Hyol| <3| By Pyoll+Con o]
veS,  if N>0 is sufflciently small .

Taking another large C, if necessary, we may assume that (1.38) holds for 0<<A
<1. Note that for any £&,&.8"}, any 0<&’ =<1 and any real § the estimate

Cllhy(AD,)2lI< | Et-AD, | lihy(AD, )0l < Cllky(AD,)ell, 2€S,
holds for some constant C=C5 g because
C*=|E+E|°<C on supp hy(E).

Substitute v(y)=h(AD,)¥(y) into (1.38) for D(y)=exp(—iA"%x+E)w(%) | s=py+ s,
weS,. Then in view of (1.8), (1.20), (1.9) and the above estimate, we see
that there exists a constant C§ such that

|lhs(7\'2Dx“ Zio) |D,| "Ax,khs(x—xo)ﬂ?Hz
(1.39) S Ci(|lhys(W2D,—&y) | D, ¥ A thas(x— x0) P(x, D )w|?
+”h(7\'sz_§0) |Dx| _s”wllz_l—)\‘“wuz—s”)’ wES, ’ 7f 0<7\'§1 .
Here we used the fact that

Oy (VD,—Eh(x—x0) (1—h(VD,—Ep); 0<A=1}
N Vohyy(MD—Eolaa(x—2)P(, D) (1—h(AD,—E5)[3)); 0<A<1}

are contained in a bounded set of Sl‘,é”.
To complete the proof of Theorem 1 we prepare the followings:

DeFiNITION 1.6.  For 8>>0and & & S"~! we say that a function y+(&) € C~(R")
belongs to Wz, if 4 satisfies
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0S¥=1, (&) =1 for |/|E]—&|=<8/12 and |E|21/3,
W(E) =0 for |£/|E|—&|=8/10 or |E|<1/2,
Yr(t€) = Yr(£) for t=1 and E=.8*!.

Proposition 1.7 (cf. Proposition 2.2 of [9]). Let &,&S" and let h(x)EC¥
be a function defined at the beginning of this section. Set hy(x)=h(x/8) for a §>0.
If \rs and by belong to Wy z, and W43z, respectively, then for any s>0 there exists a
constant C ;>0 such that

CHNDYull S | 11D~ Bl Adn-+ 2
S CRADYP+HI),  wes,
Proof. Setr=|&|, 0=E/|E|. Then

(1.40)

1 . 1 3
Sollha(th,—éo)qu/xdx — Ssn_ldegodxjo hs(NrO—E)2 | 2(r0) PN (r~'dr) .
It is easy to see that h(Ar6—&)=1 on
{0, r,A\)eS" X R, X[0,1]; 0=suppyrs and |Ar—1|=<8§/10} .

Therefore the integral is estimated below by

V{1+8§/10)/r

2 “ 2,81
Ss"*‘ps(e) dasl—a/mm(re)l 4 drg‘/(l—s/m)/r
This give the first inequality of (1.40). Another inequality easily follows if we
note that supp hy(Ar8—&) is contained in

{0, 7, \);Us(0) =1 and |Nr—1]|<78/24} . Q.E.D.
Apply Proposition 1.7 to (1.39). Then we see that for any y=(x, &)<

r M

R*x S*™Y, any s’, s">0, any integer 2>0 and any x>0 there exists a constant
C"”"=C"(v,s',s”, k) independent of x such that

[rs(D) A bts(x—xo)aol |3
éC”(II‘I;‘S(D:)A:,khzs(x—xo)P(xy D:)'w”i"}"”w”-z—s”) ’ ZUES,

if Yrs(8) EWs 5, and Yrs(8) E Wigs i,

From now on we shall prove (4). Let (%, &) T*R"\0 and let uc 9'(R").
Set &E,=&,/|E,]. Suppose that (%, £&)%EWF Pu. Then there exists a §>0 such
that Jrs(D,)hys(x—x0)Pucs Hy for any real s'>0 if Jrs(§) EWyg¢,. Since hyy(x—
xo)u &’ we have hyy(x—xo)ucs H_ g+ for some s”>0. Choose k>0 in (1.41) such
that k=s"+s"+2. Then, by taking a sequence {w,} 7. C S, such that

(1.41)

‘ZUj - h4s(x—xo)u in H_s/l N
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from (1.41) we see that

| le,k\P‘a(Dz)hs(x —xo)ul l?/
§C"(“\17‘8(Dx)hza(x—xo)1) u”?"f‘||h4s(x—xo)u“2—s~) ’

if Yry(E) EWs,5, and Yrs(8) EWi4s,,, Here we used the fact that ||A, 4| <||w|| for
weL?. Letting « tend to 0 in (1.42), we have yry(D,)hs(x—x)usH,y. Since s’
is arbitrary, we have (x,, &)&EWF u. Now the proof of Theorem 1 has been
completed.

(1.42)

2. Proof of Theorem 3

As stated in Introduction, the method used here is only a version of the
one in [7]. Let P, be the differential operator in Introduction, that is,

2.1) Py= Dr+J(x,D,) in R,XR:,

where A(x, D,) is formally self-adjoint in an open set Q of R" and bounded
below. Following [7], for s=1 we introduce G°(Q; A) the space of us L} Q)
such that AuweL*Q) for k=1, 2, -+ and moreover there exists a constant M

satisfying
(2.2) ”Jku”Lz(n)§Mk+1(k!)m, k=1,2--.

We also introduce the space G°(Q; A) of usLi (Q) whose restriction in any
0, is in G°(Qy; A).

Proposition 2.1.  Assume that G'(Q; A)&E C=(Q). Then P, is not hypoelliptic
in R, X Q (cf. Corollaries 3.6-3.7 of [7] and see also [1]).

Proof. There exists a 4, G'(Q; A) such that #,eC=(Q). The series
u(t, %) = 33 (#)™(— ) o) (m)!

is strongly convergent in L*(Q) for some O=1; X Q,, where I;=(—3, §)CR, and
0,&0. We have Pu=0 and % is not C* in O because #,=#(0, +) is not C* in
Q. Q.E.D.

Note that for any open set ©&=Q
Re(Py, u) = || D7 2u|P+(Au, u), u€C§(R; X w) .
For the proof of Theorem 3 it suffices to show:

Proposition 2.2.  Assume that GY(Q; A)C C=(Q). Then for any x, < there
exists a neighborhood of w of x, such that for any €>0 the estimate

(2.3) [|(log <D D)™ u| P < &(Au, #)+ Cellull®, us Ci(w)
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holds with a constant C,. (cf. Theorem 3.5 of [7]).

In the proof of Proposition 2.2 we may replace A by A-+p for any real p
because G{(Q; A)=G'(Q; A+p). Taking a large x>0, in view of (6) we may
assume that (Au, #)>0 for u€ L*(Q) satisfying Aucs L*(Q). Therefore, we have
the Friedrichs extension (4, D(4)) in L*(Q) of A(x, D,), as a positive self-adjoint
realization.

For the proof of (2.3) it suffices to show that for any £>0 and any >0
there exists a C,, such that

(24) l(log<DD)"ulP=é€llAull*+Ce,, |u|?, #ECT(w).

In fact, the estimate (2.3) follows immediately from (2.4) with r=1/2. From
now on we shall prove (2.4). We may assume that x, is the origin. We use the
same notation as in [7] p. 840-849. Let v =C5(Q) equal 1 in [T=((—a, a))"€Q.
The hypothesis of the proposition implies that v Dj(4)=>yuc S for a fixed
6>0 because D‘(A)ESLJODé(A) CGY(Q; A). The Banach closed graph theorem

shows that for any integer 2>0 there exists a constant M, such that
AN
(2.3) sup [<E>™Mru(E) | < My(Ns(w))"*, uc Dy(4) .

In view of (3.4) of [7], it is clear that for any % there exists a constant Mj(=1)
such that

(2.6) ],f(u)ge“ll(L+1)"u||%z<n>§Méll<§>2"«erullz s

where Ji(u) denotes Jy(#) defined from the spectrum resolution of L. Here
(L, D(L)) is the realization of Legendre operator

L= é‘, 9,,(x3—a*)0,;

defined in [5] p. 845. In what follows, to make clear the correspondance we often
use the superscript 4 or L such as Ji(u), Ji(u). Set Ky={&; <E>=M}My,,.
Then from (2.5) and (2.6) we have

2.7)  Ji@)=|(MiMyo/[<E>)M z<§>’k+2@<§>'ll 22+ M i”(@”\ﬂ IZ2epxp
=S Ni(w)+Cillulliz), v Dy(4),

with a constant C,. Set u(t)=F4(¢t)u. Then the estimate (2.7) and Lemma
3.1 of [7] show that for any >0 and 2>0

1, ()= exp (— Bty )T ) £ 2

2.8) g
<2J#(u)+Cillulliz), usD(A)

holds with a constant C;. We need replace Lemma 3.2 of [7] by
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Lemma 2.3. Let t—u(t) be a measurable mapping from [1, o) to L*(TI) and
let I, ((u(+)) denote the integral defined by the formula (2.8). Assume that for reals
8>0, r>0 and an integer k>0 the integral I, y(u(+)) is bounded. Then the integral

U= ru(t) % is convergent, u€ D((log(L+-1))™) and for a constant C independent
1
of k we have

(2.9) k|| (log(L-1)) "1 |3 200y < CI, 4(ue(+)) -

The proof of the lemma is parallel to the one of Lemma 3.2 of [7] if we set
o (2, \)=exp(2k log A—3&e/"#/™) and t(A)=e"'((k/S)log A)". We remark that the
estimate

Idog(L+ DYl = [ (log M) 11F2 (Ve 2

holds similarly to (3.4) of [7]. 'The detail is omitted.
Set w=((—a/2, a/2))". Then for the proof of Proposition 2.2 it remains
to show

(2.10) [1(log <D D)™ ul*< C(||(log(L+1))™u| >+ |1u]?), uE Ce(w) -

In fact, from (2.8)—(2.10) we have (2.4) since we can take any large A.

From now on we shall prove (2.10). Let {A;; 0<<A\;<<A,<<---} be the set
of eigenvalues of (L, D(L)) and let P;(x) be the normalized eigenfunction (Le-
gendre polynomial) associated with A;. Then, for € C§(w), (log(L-+1))"u is
defined by

(2.11) (log(L+-1))"u = ;1; (log(xj+1))"(P}, %) 2P ().
Here we remark that v&C=(II) belongs to D“(L)Eﬁ D(L) and hence to

D((log(L+1))™) because 33 (log(n;+1))|(P;, v)|?°<C 33 A2|(P;,v)|% Note
that (log(L-+1))"=(L+1)(L+1)"*(log(L+1))™ and let T' be a contour of Figure
1:

Fig. 1.
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Since the similar formulas to (2.11) hold for (L+1)~*(log(L+-1))™ and (L—&)™,
by the residue caculus we have
(L+1)""(log (L4-1))™ u

(2.12) _ i Sr(g_}_l)—l(log(g_{_ D)™(L—8) ' udt , ueCi(w).

We shall approximate (L—&)™ by a pseudodifferential operator by using the
argument in Chapter 8 of [5]. Let -£ be a second order differential operator
with real valued B=-coefficients such that .L=_ in a neighborhood of . We
may assume that the symbol (x, £) of L satisfies CyiE>*<] (%, E)<CKEY? for
large |E]. Then we have

1T@ (x, &) (I(%, £)—8) ™| S Copl&>™™
(2.13) for large |E| and (€Qf=C\Q;
(cf. (1.4) of Chapter 8 of [5]).

Here Q: denotse the interior of clockwise-oriented Jordan curve I'{ that is
defined as in Figure 2:

r_
N

By means of Lemma 2.2 of Chapter 8 of [5] we have a parametrix Q(£)=0
(%, Dy; £) of L—¢ such that

(L—t) O(¢) = I+R(x, D,; ¢),

where symbols ¢(£)=q(x, &; §) and r(§)=r(x, £; {) are analytic with respect to
£ e0Qf and satisfy for large |£| and £ €Q§

(2.14) g(6) = ((x, £)—5)7(1+a(x, £; ),

ry= C(T!<E>2’
r,=cKED .

Fig. 2.
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IBE) | S Cap(KES- 1L ) KES™
- { aﬁzgai?)'l sci(<<§>> '+' e
(2.16) [7E(E) | < Cag, (<KEY¥H-1E1)KE>™Y
for any N>0. In II we have
(2.17) L= (L= u—0F) u) = u—(L—E) OC) u

= (L=L) &) u—RE) u=RE) u, uECi(w),

where the symbol of F({) satisfies the inequality similar to (2.16). In fact, for
$(x)€ C5(IT) such that ¢=1 in a neighborhood of @, we see that (L—_L) Q)¢
is a regularizer in the sense of (2.16). It follows from (2.17) that

L—=)"u=0C)ut+(L—C)*R&)u inIl.
From this and (2.12) we have

(log (L+1)" u = (L+1) ——S E+1) " (og(E+1))™ Q(O)u dt

2.18)
o SF(IOg(§+1))""(L—é‘) ' RE)udt inTI.

Since it follows from (2.16) for (R ()) that
IZ—8) RE&)ullzan=C || lull ,

the L*(II) norm of the second term of the right hand side of (2.18) is estimated
above by constant times of [lu|l. In view of (2.14) and (2.15), the residue
calculus shows that

oo [ €+ Hog+1)™ 0 at

is a pseudodifferential operator with principal symbol (To+1)"Y(log (754-1))™,
where T,=1I,(x, ) is the principal symhol of L and To(x, E)=21_\(a*—AP)EL
in a neighborhood of @. Therefore, noting the product formula of pseudo-
differential operators, from (2.18) we obtain

[l (log <D, >)""ul| < C (Il (log (L+1)) "l | +-lull) , uECT(w),
where Jr& C5(I1) satisfies 0=<4r=<1 and yr=1 in a neighborhood w, of @. Since
(1—) (log<D))"p =S~ for p € C5(w,) satisfying =1 on @, we have (2.10).
3. Proof of Proposition 4

First we shall prove the sufficiency of (8). For the proof it suffices to
show the estimate (5) by Corollary 2 in Introduction. Note that
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(3.1) Re (P, u, u) = ||x, D, ulP+ Dy, u|[*+llo(2,) E(x) D, il [*
+ID,, ull?, ueS,

Here and in what follows we denote the variable ¢ of P, by w, Let |||u]|/?
denote the right hand side of (3.1) and let f(§)C>~(R*) be a symbol in Si,0
such that

{0§f§1,f=1 on {|§]=2|&[}n{lEI=1},
supp fC{IE]|=3|&IFN{lE1=1/2} .

For any compact set K of R* the estimate
IKD(1—f(D,)) ul*<= C(lllull*+1lull’) , v€CF(K),

holds with a constant Cj because for some constants C% and C¥ we have

3.2) I fullP< Ml P+ Ckllul, u€CF(K),
3-3) KDY ulP< C¥ (Il D, el P+ 1Dy ul P+ [1ul?) , wECFT(K),

(see [3], [14]). Hence, to derive (1) it suffices to show that for any £>0 and
compact set any K there exists a constant C, x such that

(3.4) lI(log<D.,) ful P<é&lllull*+ Ci gllul , ueCF(K).

In deriving (3.4) for a fixed K we may assume that o and { belong to 3=,
and a(%)=0, (|%,| 1), £(x)=&, for constants oy, §,=>0. Let ¢o(2), Pi(2), pt)
and ¢4(f) be C=-functions in [0, o) such that 0=¢;=<1,

supp ¢,C[0,1) , ¢o=10n[0,1/2],
supp $:<[0,2) , é=10n][0,3/2],
supp $,C(3/2, ), ¢ =1in[2,00) ,
supp ¢3C (1, 0) , @ = 14n [3/2, o)

and

(3-5) $rtp. =1 in [0, ).

Let « be a small positive constant such that «<1/4 and set X;(x,, £)=¢;(o ()

<E*) (j=0, -+, 3).

Lemma 3.1. It follows that X;(x,, D,) belongs to S, Furthermore we
have

(3.6) X+%, = 1.
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Proof. (3.6) is the direct consequence of (3.5). Since o is non-negative
we have

(3.7) |do (%) /dxy| < Co o (1) 2

and hence for any j

(38) & o) ldi | < C; ()0

where a, denotes max (a, 0). From the Leibniz formula we have |+ 8| =+0

X8 (2, E) = 3 CipP(o(x) h)

0Lk +B]
1 k
X | 30 Colratpl gt Tghy T gh B B

alyirak=a

Bl+e +Bk=p8

where h=<g>*. Using (3.8) and |A®| < C; h<{E>7'#, we obtain
XBISC_ 3 60 () B) ol 9me 1R

o<hS[@+Bl
Since for k=0 we have
1250(x) h<2 on supp ¢{(a(x,) k),
we see X (x;, £)EST,. Q.E.D.

Lemma 3.2. For any real s and any N>0 there exists a constant C==
C(s, N) such that for j=2, 3

3.9) [1%; ully=< C(llo(2) E(x) wllgsoct-lledll - , wES .

Proof. Let a(x, £) denote the simplified symbol of a pseudo-differential
operator

<D™ o(%,) E(2)+Xo(21, D)

Then a(x, £) belongs to Si« and satisfies the (H)-condition in the following
sence:
i) There exists a constant C,>>0 such that

(3.10) a(x, £)=C, for large |E| .

ii) For any o and B there exists a constant C,g such that

(3.11) | ag)(x, E)|a(x, E)| S Cug<EX 171"l for large |E| .

Indeed, if ao(x, &)=0(x;) &(x)<ED*+Xo(x1, ) then a(x, £)—ay(x, E)eSTx! and
hence it suffices to show that ay(x, £) satisfies the (H)-condition. In view of (3.7)
and (3.8) it is not difficult to check (3.11) for gy, by the same way as in the proof
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of Proposition 5.3 of [8]. Since a(x, ) satisfies the (H)-condition there exists
a parametrix b(x, D,)E 87, such that

b(x, D,) a(x, D;)=I mod S
(cf. Theorem 5.4 in Chapter 2 of [5]). Note that for j=2, 3
(3.12) X;=Xba=X;b<D>* (%) {(x) mod S~

because supp ¢oNsupp ¢;=@. Since X,b{D D" % the estimate (3.9) is the
direct consequence of (3.12). Q.E.D.

Substituting D, « instead of u into (3.9) with s=—2« we have

l |<Dx>_” Dx3 X;ul lz

(3.13) S C(llo(x) &) Do+l , j=2,3,u€S,

for some constant C. In order to show for a fixed compact set K
(3.14) ll(log<D.>) X, ful = Elllull*+ Cellull , ue CT(K)
we prepare the following lemma.

Lemma 3.3. Set I.={t€R'; |t|<<u} for u>0. Then for any s>0
there exists a constant C, independent of u such that

(3.15) lell<C, wllell, for veCs(lL).

The lemma seems to be fairly well-known, but we give the proof for the
convenience of the reader.

Proof. First we shall prove that for any £>0 there exists a u,™>0 such
that

(3.16) loll<élloll, for veCs(ls,).

Suppose that there exist an >0 and {v;} 7., C C7 such that

supp v;Clu;, p;—0(j—>00),
”‘vj“s =1, ”’Uj“>50 .

In view of the weak compactness of the Hilbert space we have a subsequence
{v;,}¥-1 such that v;, weakly converges some v, in H,. Note that {v;} is a
compact set in L* by means of the Rellich theorem. Taking a subsequence of
{v;,} if necessary, we may assume that v;, converges some w5 in L?. We have
v,=94 because both convergences are the one in §’. It follows from supp v,=
{0} that v, is a linear sum of derivatives of Dirac 8. In view of v, H, we have
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2,=0, which is contradictory to ||v||=&, From (3.16) we have for some p,>0
(3.17) BN (n)ll  for vECT(lL,),

where 9 is the Fourier transform of v. The estimate (3.15) easily follows from
(3.17) if we take the change of variable from ¢ to ut/p. Q.E.D.

Let ¢,(t) be a C=-function in [0, o) such that ¢,=1 in [0,2] and supp ¢,C
[0,3). Set

Xa(x1, &) = Pa(o (2)<ED™) .

It follows from the condition (8) that for any >0 there exists a M,>0 such
that

(3.18)  lx|<E(logd&>)" onsupp Xu(w, £)  if |&IZM,,

because (x,, &;)Esupp X, implies o(x;)<E;>*=<3. Let # denote the Fourier
transform of uE€ &, with respect to x; variable. Setting v(x,)=X,(x;, *) %(x,, +) in
(3.15) with s=1/2, in view of (3.18) we have

[1X4(x1, £5) tell 2202 = C € (log<E:>) IKD DY Xy |22k
i |&I=M,,

for some constant C; independent of &.  Multiplying both sides by (log<£;>)* and
integrating with respect to x,, x, and &; we have

[I(log<D,,>) Xy(21, D.,) ulP< C, E[<KD DY* Xy(21, Dy,) il P
+Cllull? .
Noting X(#,, D,,) X,(%,, D,) = X,(%,, D,), we obtain

ll(log<D.) X, full?

3.19
¢19) <6CIKD > X, ful -+ Cllull, ueS.

In view of (3.3) we have for a fixed compact set K

KDY X, ful < Cx(|l%; D, ful P+11Ds, full?
Dy, X,) ful P+ [1ull) , vECF(K) .

Since (D,, X,) (x, £)€S1« and X,=1 on supp D, X,, we obtain

(D2, %) ful = C(IKD>" X, ful*+|lul[?)
=C(IKD>™™ Doy X, ful P+-|1ull?), uES.

Using (3.13) with j=3 and (3.2), from (3.20) and (3.21) we have
KDY X, ful P < Ci(lllull*+[1ull*) , u€CF(K).

(3.20)

(3.21)
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Combinig this and (3.19) we obtain (3.14). The estimate (3.4) follows from
(3.14) and (3.13) with j=2. We have proved the estimate (5) for P,.

From now on we shall prove the necessity of (8). Suppose that (8) is not
satisfied but P, is hypoelliptic. Then there exists a §>0 and a sequence
{s;} #=1 such that

(3.22) {s" =0 (o),

a(sy) exp(287* s, | 5 <1

Without loss of generality, we may assume s5,>0. Set A,=exp(—3~!sz¥%).
Then it follows from (3.22) that

(3.23) Ai2o(s/log Mit) <1 for 0<s<1,

because o is non-decreasing in R,. By means of Theorem 3 and its remark
we see that for any £>0 and any compact set K of R* there exists a constant
C, ¢ such that

(3.24) |(log<D.) ul*<& Re(P; u, )+ Co kllull*, u€CF(K) .
(Recall that the variable ¢ of P, is denoted by x, in this section.) Note

[1(1og<D.>) dpo(Ai Dsy—1) ull=<|(log<DD) ull, uECF(K).
Since ¢ is bounded on K, in view of (3.1) we have

[I(log<D.,>) ¢o(Ai Dy, —1) ul|
(3.25) =E&(|lxz Dy, ull+1|1Dy, ul|+lo (21) Dy, ul| 411D, ull)
+CE,K”uH ’ uECS’(K) .

Set v(y)= ,I:Il ¢o(2| y;—1/2|) and consider the change of variables

y = (log Ai®)? %y, v, = (log Ai%) x,,

;V3=7w?1x3, Vs = X4 .
Let uy(x) denote the function v after the above change of variables. Then
the support of #y(x) is contained in {|x| <4} if A, is small enough. Substitute

exp(ini? x;) t(x) into (3.25) and take the change of variables from x to y. Then,
by using the similar formula as (1.10) we have

2 log M [Ipo(Me D) @l
=<&(8 log Mg'(||y2 Dy, vl|+D;, 2ll)
+Ai|lo (31/(log Ai*)) D,y vl|
+2i e (91/(log Ai*Y?) @l 1D, vll)+Celloll

(3.26)
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because a pseudodifferential operator in R,, with a symbol (log (At (g 75+ 1)%)%)
¢o(Ms 73) is L2-bounded unifromly with respect to A;.  Note ¢y(A; D,,)v converges
v in L* when A, tends to 0. Then, there exists a ¢,=>0 such that

”‘1’0(7\% D.vs) v||=¢
if M=o for a sufficiently small \, .

Since it follows from (3.23) that A;” o (3,/(log Ai®)*)=<1 on supp v and also on
supp D,,v, there exist constants ¢, ¢, independent of € and C7 such that

2¢ log My '=<c¢, Elog ANy +¢, E4+C! if M=Np.
Setting E=c¢,/c, we have a contradiction when A\, tends to 0.

Remark 3.1. By the similar way as in the proof of the necessity of (8), we
can show that the estimate (3) dose not hold with some small &>0 for 4,
(%, D,)=Dj +exp(—1/|x,|%) D, when §=1. This fact also can be seen by
considering the eigenvalue problem for a differential operator —d?*/dx*+exp(—1/
|x|%) »* with Dirichlet boundary condition. It was proved in [10] that the
smallest eigenvalue is estimated above by (log »)* with a constant factor.

Remark 3.2. Let P; be a differential operator
2t} D2+ D% +o (w)? (5 Di+-D2) in R,

where s C*, 0(0)=0, o(s)>0 (s+0) and so’(s)=0. By the same way as in this
section we can prove that P; is hypoelliptic in R® if and only if o satisfies (8).
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