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   Introduction Chapter 1

 

1.1 Background 

1.1.1 Multiphase flows 

Multiphase flow is the ‘phenomenon’ that is composed of states of matter like gas 

state, liquid state, solid state. They can be classified according to the combination of the 

different phases into four categories: gas-liquid, gas-solid, liquid-solid or three phase 

flows. It is worthwhile to notice that multiphase flows are ubiquitous and have wide 

application areas. Virtually most of the processing technologies deal with multiphase 

flow, for example: spray drying, pollution control, papermaking, pneumatic transport, 

fluidized beds, slurry flows, hydro and sediment transport
1
. The amount of granular 

material, coal, grain, ore, etc. that is transported every year is enormous. It is roughly 

estimated according to one of the surveys
2
 of NASA (National Aeronautics & Space 

Administration) that the transport and handling operations of granular materials using 

hoppers, chutes, belts and pneumatic conveyors account for one trillion dollars a year in 

gross sales in United States (with 63 percent of capacity). Hence, it is important to study 

these processes to increase their efficiency and effectiveness.   

 

Multiphase flows which will be discussed in this thesis are the fluid-solid multiphase 

flows that contain the liquid-solid and gas-solid flows. In the fluid-solid multiphase 

flows, the solid phase cannot be limited to particles; they might be cells, leaves, or 

snowflakes. In the particle inertia dominant flows, the particle-particle and particle-wall 

interactions are also important in addition to the forces due to the interstitial fluid. If the 

particles become motionless the problem is reduced to flow through a porous medium in 

which the viscous and pressure forces on the particle surface is the primary mechanism 

affecting the gas flow (e.g. pebble-bed heat exchanger in which inert gases like helium 

or nitrogen passes through stationary balls of hot nuclear fuel). On the other hand in 

moving-particle cases, particles experience different fluid drag owing to the changing 

arrangements of neighbor particles. These are called hydrodynamic interactions
3
 and are 

long range which makes the suspension microstructure constantly changing.  
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1.1.2 Hindered settling 

The topic which is specifically studied in this thesis is hindered settling. The main 

motivation is that the results from hindered settling can be easily applied to other 

fluid-solid multiphase processes e.g. aerosols, sprays, separation processes, spreading 

of nuclear wastes, pneumatic transport, circulating fluidized bed, cleaning of water etc. 

Hindered settling is the settling of suspension through fluid under the action of body 

force and inter-particle hydrodynamics interactions.  

 

The main sources of interferences between particles are inter-particle 

hydrodynamic interactions and particle-particle collisions. The inter-particle 

hydrodynamic interactions are formed when the fluid structures from one particle are 

experienced by another particle. These interactions make hindered settling a dynamic 

and complex process as the particles are constantly changing their positions and make 

it necessary to track each particle. Moreover, these long range interactions can lead to 

either particle dispersion or clustering depending upon the imposed boundary and 

initial conditions. All these characteristics of hindered settling make it quite 

challenging both in experiments and numerical simulations. 

 

 

1.1.3 Importance of numerical simulations 

Experiments can be performed for the study of multiphase flows but they pose two 

severe limitations. First the quality of experiments strongly depends on how well the 

experimental conditions are controlled. For example, in experiments involving solid 

particle suspensions, the results depend on the polydispersity and non-sphericity of 

particles. Furthermore, during experiments change in temperature can change the 

viscosity of suspended fluid and thus the settling Reynolds number. Thus to get a better 

understanding by experiments, one must put great effort in improving the experimental 

conditions such that the factor of interest can be isolated and other non-ideal effects 

can be minimized. Second, even in well-controlled experiments, quantities such as the 

fluctuations in particle velocities, drag force on particles and microstructures during 

settling are difficult to measure. These quantities are important for the understanding of 

the rheology of the suspension.  

 

Computer simulations can be a very useful tool for the understanding of such flows, 
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design and scale-up of such processes. In simulations, the methods which are widely 

used for designing these systems must be capable of simulating large size systems and 

should not be computationally very expensive. These methods include 

Eulerian-Eulerian (e.g. two-fluid models
4,5

) and Eulerian-Lagrangian methods (e.g. 

CFD-DEM model
6-10

). The Eulerian-Eulerian approaches fall under the category of 

mesoscopic simulations. The two-fluid model assumes both the gas and the solid 

phases as inter-penetrating continua and is computationally cost-efficient when the 

volume fractions of the phases are comparable, or when the interactions within and 

between the phases play a significant role in determining the hydrodynamics of the 

system. On the other hand, the Eulerian-Lagrangian approaches are classified into 

mesoscopic and microscopic simulations. In the Eulerian-Lagrangian mesoscopic 

simulations, the flow of continuum fluid is described by the local averaged fluid 

equations that can be solved by Computational Fluid Dynamics (CFD), for  

particle-particle interactions Discrete Element Methods
11

 (DEM) can be used. These 

methods are computationally more expensive in dense solid flows, however require 

less assumptions and the particle properties like particle size and density distributions 

can be directly taken into account in the simulation.  

 

In either of the above two approaches, flow domain is divided into cells, the size of 

which is smaller than the mesoscopic structures like bubbles or clusters of particles but 

larger than the particle size. The model equations rely on various constitutive relations 

to account for the unknown terms emerging from averaging-fluid-particle drag, 

added-mass, lift, history force, solid phase stresses and fluid phase stresses. With the 

advancement of computing power and numerical methods microscopic 

Eulerian-Lagrangian or particle resolved direct numerical simulation (DNS) has 

become possible. In DNS the grid size is smaller than the size of particle thus it 

eliminates the need of additional closure terms in the fluid equations. These closure 

terms are necessary for other two approaches mentioned before. Reliable and accurate 

results can be obtained in DNS by careful selection of grid and simulation parameters. 

By using DNS one can have a better control of parameters which can certainly increase 

the insight for understanding the suspensions. The aim of this thesis is by using DNS 

provide more accurate correlations for fluid-solid flows and increase the understanding 

of these flows.  
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1.2 Purpose and outline of thesis 

The aim of this thesis is to give possible explanations of the phenomena occurring in 

hindered settling for different ranges of Reynolds number and solid volume fractions. In 

chapter 2 the details of the methods which are used in the simulations are given. The 

main investigations are given in chapter 3 to 5. At the end in chapter 6, the thesis is 

concluded by principal investigations. The explanation about following the mentioned 

sequence of thesis and importance of this study is given in the following paragraphs. 

 

Before actually performing the simulations for hindered settling, first it is necessary 

to study the parameters e.g. grid resolution, domain size, flow direction and ensemble 

averaging which can affect the results. In Chapter 3 these parameters are studied 

extensively to make sure that the results in the coming chapters will be reliable. In 

Chapter 3, besides the study of affecting parameters, drag force on fixed spheres are 

also studied. Drag force on fixed spheres are studied by Hill et al.
12,13

, Beetstra et al.
14

 

and Tenneti et al.
15

 using numerical simulations. The primary objective of the study by 

Hill et al.
12,13

 was to investigate the relationship of average drag force with Reynolds 

number up to Re≤100. The objective of the study by Beetstra et al.
14

 was to propose a 

drag correlation for Reynolds number up to 1000. Both of these studies employed 

Lattice Boltzmann method (LBM). Tenneti et al.
15

 used Immersed Boundary method  

(IBM) and proposed a drag correlation for Reynolds number up to 300. The novelty of 

chapter 3 is to study the relationship of average drag force on spheres with Reynolds 

number up to Re≤1000. It benchmark the study done by Hill et al.
12,13

 and also present 

the change of slope of the linear curve between average drag force and Reynolds 

number  which was not studied by Hill et al.
12,13

. At the end of this chapter, possible 

explanation of this change of slope is given and a new drag correlation is proposed 

which is valid for Reynolds number 1000 and more reliable than the relation proposed 

by Beetstra et al.
14

   

 

The main objectives of this thesis and the study of hindered settling are covered in 

chapter 4 and 5. In these chapters, solid volume fractions and Reynolds number are 

studied up to 0.4 and 300 respectively. The literature review about low Reynolds 

number can be found in Chapter 4. This thesis is focused on the study of hindered 

settling for moderate and high Reynolds number. For moderate Reynolds number 

(Re≤20), Climent and Maxey
16

, Yin and Koch
17,18

 performed numerical simulations. 
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The work of Climent and Maxey
16

 was focused on the benchmarking of their force 

coupling method and code and not on the explanation of phenomenon occurring in 

hindered settling. Yin and Koch
17,18

 used an LBM code for studying hindered settling. 

They used SUSP3D
19,20

 code developed by Ladd. In SUSP3D code, the effective 

diameter that was approximated by the comparison with the theoretical equation was 

used and it can give unreliable results. Moreover, their simulations were more focused 

for dense suspensions. For high Reynolds number (about Re>175), Kajishima and 

Takiguchi
21

, Kajishima
22

 and Douchev et al.
23

 performed numerical simulations. All 

these work were more focused on particle clusters formation for very dilute suspension 

and turbulence enhancement by these clusters. The objective of Chapter 4 is to study the 

effects of two body (characteristics of dilute suspension) and multi-body (characteristics 

of dense suspension) interactions in hindered settling for moderate Reynolds number 

(Re≤50). The novelty of this chapter is the study of non-linearity of average settling 

velocity due to the increase in two body interactions with Reynolds number, the study of 

the paradox of increase in velocity fluctuations with domain size which is generally 

present in numerical simulations for moderate Reynolds number and dispersion of 

particles in dilute suspension by increase in Reynolds numbers.  

 

In Chapter 4, it is observed that the effects of Reynolds number are about negligible 

for high solid volume fractions. Thus in Chapter 5, dilute suspension is studied in detail. 

The novelty of chapter 5 is the study of inverse effect of solid volume on particle 

clustering at high range of Reynolds number and proposing that the ratio of average 

particle velocity to fluid velocity fluctuations can be used as an indicator of particle 

clustering in particle induced turbulence. Previously
24

, this ratio was used as a measure 

of particle clustering for point particles in homogenous turbulence.  
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   Formulation Chapter 2

 

In this thesis, for particle-fluid interactions Immersed Boundary Method (IBM) is 

used. IBM lies in the category of particle resolved direct numerical simulations (DNS) 

and for particle-particle interactions Discrete Element Method (DEM) is used. The 

reason for using IBM is that IBM can capture the flow structures formed during 

settling and the underlying physical phenomenon without any empirical relation. Since 

the particles simulated in the simulations are of finite size thus point particle DNS 

approach which employs one-way coupling is not sufficient. Furthermore in hindered 

settling, particles settle freely and sometimes collide with each other. The reason for 

using DEM is to model these particle-particle collisions. The description of these 

methods is given in the following sections. 

 

2.1 Fluid calculations 

2.1.1 Introduction 

For fluid calculations Immersed Boundary Method (IBM) is used. IBM is a method 

first proposed by Peskin
25

 to simulate cardiac mechanics and associated blood flow. 

The distinguishing feature of this method is that the entire simulation is carried out on 

a Cartesian grid, which does not conform to the geometry of the heart, and a novel 

procedure is formulated for imposing the effect of the immersed boundary (IB) on the 

flow. After the introduction of this method by Peskin, numerous modifications, 

refinements and a number of variants of this approach have been proposed.  

 

2.1.2 Immersed Boundary Method (IBM) 

2.1.2.1 Fluid equations and steps in IBM 

The basic equations for fluid flow are the equations of continuity and incompressible 

Navier-Stokes equation which are given by: 

 

        (2.1) 

    

  
              

  

 
 (2.2) 
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where    is the fluid velocity,   is the density,   is the kinematic viscosity and   is 

the pressure.  

 

The IBM used in current simulations is proposed by Kajishima et al.
26

. It is a 

body-force type IBM in which fluid can be liquid or gas but it is assumed to be 

incompressible and Newtonian. The solid particles are assumed to be rigid spheres and 

the grid for performing fluid calculations remains fixed. The grid size used for 

discretizing the computational domain is smaller than the size of particles and fluid flow 

equations are solved by assuming that the fluid occupies the entire flow field and the 

effect of particles is expressed by a body force in the momentum equation which 

constrains the no slip boundary condition at the particles surface. For improving the 

efficiency of numerical integration fluid-particle volume-weighted velocity ( ) is 

defined, which is given by: 

 

               (2.3) 

 

where    is the velocity inside the solid particle and   is the volume fraction of 

particle at a target cell.   takes the value zero for fluid and one for particle and in the 

range of zero to one at the particle interfacial cell. The velocity inside the solid particle 

is defined by: 

 

            (2.4) 

 

where    is the velocity of particle center,    is the angular velocity of particle 

rotation and   is the unit vector from the center of rotation to the surface. For the case 

of no slip and no permeable conditions at the interface (     ), the continuity 

restriction should also be satisfied for  . The momentum equation of fluid in IBM is 

given by: 

 

   

  
           

  

 
    (2.5) 

 

where    is the force to modify the flow predicted as if the field is occupied by fluid to 

the velocity defined by Eq. (2.3). The time-marching of Eq. (2.5) consist of time 

integral which is given by: 
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   ( 
  

 
               )

  

 (2.6) 

 

where 𝑛0 denotes the previous time step,     is the forcing term in discretized form 

and    is the time increment. The time-marching consists of two steps. In the first step 

the fluid velocity is predicted by using Eq. (2.2) without    : 

 

 
 ̃     

   ( 
  

 
           )

  

 (2.7) 

 

Then this predicted velocity ( ̃) should be modified by     to meet the definition of 

     . For the cell inside the particle (   ),        
     

  ̃ /   gives 

        . For the cell occupied by fluid (   ) Eq. (2.6) is identical to Eq. (2.7) 

because of      . For the calculation of    , first order linear interpolation of   is 

used. The forcing term is given by: 

 

 
       

     
  ̃ /   

(2.8) 

 

The fluid force 𝑭  and fluid moment 𝑴  on a particle are calculated by the volume 

integral equations given by: 

 

 

𝑭    ∫      

  

    (2.9) 

 

𝑴     ∫        

  

    (2.10) 

  

where 𝑉  is the volume of cube whose sides are equal to the sphere diameter and 

enclosing all the interfacial cells,    and    are the external forces and moments 

respectively.  

 

2.1.2.2 Calculation of 𝜶 in IBM 

Evaluation of   in a cell is critical in this method. It can be calculated with exact 
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geometrical shape of surface. But this is very time consuming especially in 

three-dimensional computations. In the original method by Kajishima et al.
26

, the 

surface is approximated by tangential planes normal to the relative vector from the 

center of particle to a center of interfacial cells. Although this method reduces the 

computational time, but in three-dimensional simulations, it is not so easy to generate 

the tangential planes at each interfacial cell. Besides, when the number of particles 

increases, it is expected that it still occupy significant part of total computation time. To 

solve these problems, Tsuji et al.
27

 proposed a new method which they called 

Subdivision Volume Counting (SVC). In this method, each interfacial cell is subdivided 

into small elements. If the length between the center of particle and element is shorter 

than the particle radius, the volume of the element is counted as particle in this cell. This 

can be seen in Fig. 2.1. 

 

Fig. 2.1  Subdivision volume counting method27
 

 

where  𝑥 =mesh size,    is the particle diameter and 𝑁𝑠𝑢𝑏 is the number of 

sub-divisions in  𝑥. In simulations, it is observed that for fine resolutions i.e.   / 𝑥

≧16, 𝑁𝑠𝑢𝑏≧6 takes the volume in the cell with an error of order of magnitude 

O(10
-5

). In all studied cases,   / 𝑥≧16 thus 𝑁𝑠𝑢𝑏=6 is used.  

 

2.1.2.3 Time marching of fluid equation 

In simulations for advancing the unsteady fluid equation Eq. (2.7) to the next time 

step, fractional step method is used. In this method, pressure is used to enforce 

continuity. This method consists of predictor and corrector step. In the predictor step 

(Eq. (2.12) and Eq. (2.13)) the momentum equation is solved, without taking into 

account of pressure term and only convective 𝑪 and diffusive 𝑫 terms are solved 

sequentially. In the corrector step Eq. (2.14), the poison equation for pressure is solved 
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so that continuity equation is satisfied. The time advancement of fractional step method 

is as follows: 

 

 ̃      ̃      𝑪  𝑫       (2.11) 

  

 ̃   ̃      𝑪    (2.12) 

  

 ̃    ̃     𝑫    (2.13) 

  

 ̃      ̃           (2.14) 

 

where  ̃  and  ̃   are the fluid velocities at the fractional step. In the simulations 

the fluid equations are discretized by staggered grid in the orthogonal coordinate system 

shown in Fig. 2.2. Staggered grid has a property that the pressure oscillations in the 

solution can be prevented.  

 

Fig. 2.2  Variable array of three dimensional staggered grid 

 

2.1.2.4 Spatial difference approximation for convection term 

The convection term in the Navier Stokes equation is given by Eq. (2.15). It can be 

seen that it has non-linear terms，the convection term in the Cartesian coordinate 

system is given by Eq. (2.15). 
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 𝑤

  

  
 

 

   𝑢
 𝑤

 𝑥
  

 𝑤

  
 𝑤

 𝑤

  
 

(2.15) 

 

where 𝑢,   and 𝑤 are the components of fluid velocity and   ,    and    are 

convective term in x, y and z Navier-Stokes equations. The difference stencil used in 

simulation is given by Fig. 2.3 and the interpolation terms for the convection terms are 

given by Eq. (2.16), Eq. (2.17) and Eq. (2.18) in the calculation of x component of 

convection term in the Navier-Stokes equation. 

 

Fig. 2.3  Discretization stencil for convection term 
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(2.16) 

  

        
 

  
(                                    )

 
 

    
(𝑢          𝑢        𝑢        𝑢       ) 

 

(2.17) 

  

        
 

  
( 𝑤         𝑤       𝑤        𝑤       )

 
 

    
(𝑢          𝑢        𝑢        𝑢       ) 

(2.18) 

 

where cxi,j,k，cyi,j,k and czi,j,k are the interpolation terms in x, y and z directions, 

respectively. The convection term discretization represented by Ai,j,k in x-direction is 

given by: 

 

       
 

  
(  𝑥          𝑥        𝑥         𝑥       )

 
 

  
(                                        )

 
 

  
(                                        ) 

 

(2.19) 

 

The y and z directions convection terms can also be discretized in a similar way. 

 

2.1.2.5 Spatial difference approximation for viscous term 

The viscous term in Navier-Stokes equation in the Cartesian coordinate system is 

given by Eq. (2.20). 
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(2.20) 

 

where   ,    and    are the diffusive terms in x, y and z Navier-Stokes equations. 

In the simulations, central differencing with fourth order accuracy is used. The viscous 

term discretization represented by Bi,j,k in the x-direction is given by: 
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(2.21) 

 

The y and z directions viscous terms can be discretized in a similar way. 

 

2.1.2.6 Solution of Poison’s equation for pressure 

As mentioned in Section 2.1.4 that the correction step of fractional step method 

consists of solving the poison’s equation for pressure for satisfying the continuity 

equation. The poison equation is elliptic form of partial differential equation with a 

non-zero term 𝑓 𝑥      on the right hand side. It can be written as: 

 

   

 𝑥 
 

   

   
 

   

   
 𝑓 𝑥      (2.22) 
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During simulations, fourth order central differencing is used. In discretized form, Eq. 

(2.22) can be written as: 

   

                                                 

    𝑥  

  
                                                 

       
 

  
                                                 

       
 𝑓      

(2.23) 

In simulations, same grid spacing is used in all directions i.e.  𝑥        and 

for solving Eq. (2.22) point successive over-relaxation method (PSOR) is used. In 

PSOR, pressure at every grid point is evaluated using initial guessed values of 

neighboring grid points. Iterations are carried out until a specified convergence criteria 

is met (In present simulations it is 0.05). In order to speed-up the convergence process 

an over-relaxation parameter (𝑤 ) is multiplied. The iteration process for PSOR 

method is given by Eq. (2.24). The superscript    shows pressure at old iteration and 

     shows pressure at new iteration.  

 

      
           

   
𝑤 

  
          

             
           

  

           
              

             
             

  

         
             

              
             

  

           
           

             
              

    

     𝑥  𝑓        

(2.24) 

 

2.2 Particle motion 

During the simulations the particles are assumed to be spherical. In hindered settling 

the particles settle freely and develop relative motion with respect to each other. 

Sometimes this relative motion leads to particle-particle contact or particle-particle 

collision. In order to eliminate the non-physical situations of particle overlaps different 

approaches are used by different researchers. One approach
28

 is to use artificial 

repulsion potential when the particles are in the vicinity of other particles. This 

approach is easy to implement but is generally reasonable for dilute suspensions. 

Another approach is to use hard sphere model. Hard sphere model assumes the 

particles to be rigid and solves the impulse equations of dynamics for the calculation of 

inter-particle forces. The hard sphere model is computationally less expensive but is 
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only applicable for modeling binary collisions or semi-dilute suspensions. One more 

approach which is reasonable for both dilute and dense suspensions is soft sphere 

model or discrete element method (DEM). DEM uses mechanical elements such as 

spring and dash-pot for modeling the contact force. The range of solid volume 

fractions (ratio of volume of particle to volume of the domain) studied in the present 

study will be explained in chapters 4 and 5. This study encompasses both dilute and 

dense suspensions thus DEM is used in the present simulations.  

 

 

2.3 Discrete Element Method 

The contact force model between particles in DEM is illustrated in Fig. 2.4. 

 

 

Fig.2.4  Contact force model 

 

The contact force is divided into normal  𝐶  and  𝐶𝑡  tangential components which 

are given by: 

 

 𝐶  (   𝛿  𝜂 𝑽   𝒏)𝒏 (2.25) 

 𝐶𝑡  min[   𝑡𝜹𝑡  𝜂𝑡𝑽𝑠    𝜇 | 𝐶 |𝒕] (2.26) 

 

where 𝛿  and 𝜹𝑡  are the displacements of particle caused by the normal and 

tangential forces respectively, k is the spring constant, 𝜂 is the damping coefficient, 

𝜇  is the friction coefficient, 𝒕 is the tangential unit vector and 𝒏 is the normal unit 

vector．𝑽𝑠   is the tangential direction relative velocity of particle j with respect to 

particle i and can be expressed by Eq. (2.27). It is to be noted that 𝜹𝑡 is a vector and 

its direction is generally not equal to the slip velocity vector 𝑽𝑠  in three-dimensional 

motion.  
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𝑽𝑠    (𝑽   𝒏)𝒏              𝒏 (2.27) 

 

𝒕 is the tangential unit vector which is given by: 

 

𝒕  
𝑽𝑠𝑖𝑗

|𝑽𝑠𝑖𝑗|
 (2.28) 

 

The function min[  𝐵] in Eq. (2.26) gives the smaller value of either A or B. It is used 

to take account the sliding of particles. 

 

2.3.1 Viscous damping coefficient and stiffness 

After modeling the contact forces between particles the next step is to determine the 

stiffness and the damping coefficient. During the contact of particles the dashpots 

represents the energy dissipation. The viscous damping coefficient is calculated from 

the coefficient of restitution (Tsuji et al, 1993). It is assumed that the collision between 

particles and the collision between particle and wall is head-on-collision in the normal 

direction. Thus the repulsive force can be calculated by the equation of motion for 

one-dimensional spring mass damped oscillation system given by the following 

equation. 

 

0  pm x x kx  (2.29) 

 

Solving Eq. (2.29) under the initial conditions v=vi at t=0, x=0. where x is the 

displacement, v is the velocity and vi is the initial velocity. 

 

   0sin exp iv
x qt t

q
  (2.30) 

      0 0exp cos siniv
x t q qt qt

q
     (2.31) 

 

where  

 

0 
k

mp
  (2.32) 
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2 m kp


   

(2.33) 

0

21 q    (2.34) 

 

As can be seen from Eq. (2.30) the period of oscillation is 2π/q. At half period of 

oscillation i.e. t=π/q, the velocity will be: 

 

  𝑥|̇𝑡=𝜋
𝑞⁄
        0 /   (2.35) 

 

We can obtain the following relationship from the definition of coefficient of 

restitution ep. 

 

𝑒   
  ⁄      0 /   (2.36) 

 

Viscous damping coefficient ratio γ can be obtained by Eq. (2.34) and Eq. (2.36) which 

is given by: 

 

 22 ln

ln

p

p

e

e







  
(2.37) 

 

Therefore the viscous damping coefficient η can be obtained by Eq. (2.33) which is 

given by: 

 

 
km

e

e
p

p

p

22 ln

ln2






  

(2.38) 

 

In the above derivation it was assumed that the coefficient of restitution ep is constant. 

Thus it is possible to analytically obtain the viscous damping coefficient by Eq. (2.38). 

 

Stiffness can be determined from the material properties like Young’s modulus and 

Poisson’s ratio. However it is often difficult in practice to use the stiffness calculated 

by the Hertzian theory, because the time step required for numerical integration 

becomes so small that an excessive amount of computational time is needed. The time 

step should be one-tenth of natural oscillation period of a spring-mass system (Tsuji et 

al., 1993) which is given by Eq. (2.39).  
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2
m

t
k

  (2.39) 

 

Fortunately for fluid-particle multiphase flows the results based on the stiffness much 

smaller than an actual value are not very different from those based on the precise 

value. Thus a much smaller value can be used for simulations.  

 

2.3.2 Lubrication Force 

IBM resolves the hydrodynamics and fluid force on particles at all times except when 

the gap between colliding particles becomes comparable to the grid step. To overcome 

this problem, Simenov and Calantoni
29

 proposed a method to introduce analytical 

expressions of lubrication force for such small inter-particle distances in DNS. Details 

of this method can be find in the reference
29

. The normal component  𝑙  of lubrication 

force on jth particle due to relative translation with respect to ith particle along the line 

of center is given by. 

 

 𝑙    𝜇  𝜆 Ω (
 

 
(
 

Ω
 

 

Ω𝑟𝑒𝑠
)  

 

  
 n (

Ω

Ω𝑟𝑒𝑠
)) (𝑼   𝒆  )𝒆   (2.40) 

 

where 𝜇 is viscosity, 𝑼   is relative translation velocity 𝑼   𝑼  𝑼 , 𝒆   is the 

unit vector from the center of particle i to particle j and 𝜆 Ω  is a step function given 

by 

 

𝜆 Ω  {  
 
 

   
Ω𝑟𝑒𝑠 > Ω > Ω𝑐𝑢𝑡

otherwse
 (2.41) 

 

Ω𝑟𝑒𝑠 is dependent on grid size. In the present simulations Ω𝑟𝑒𝑠 is taken to be 1.5 

times  𝑥 and Ω𝑐𝑢𝑡 to be 10
-4

mm. 

 

The tangential force  𝑙𝑡 and torque 𝑻𝑡𝑡 on the jth particle due to relative translation 

with respect to ith particle in the direction perpendicular to the line of centers is given 

by. 
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 𝑙𝑡     𝜇  𝜆 Ω  n (
Ω

Ω𝑟𝑒𝑠
) (

 

 
(𝑼    𝑼   𝒆   𝒆  )) (2.42) 

𝑻𝑡𝑡     𝜇  
 𝜆 Ω  n (

Ω

Ω𝑟𝑒𝑠
)(

 

8
(𝒆   𝑼  )) (2.43) 

2.4 Parallelization 

In order to reduce the computational time the fluid part of the code is parallelized 

with standard 1D domain decomposition using MPI routines
24

. As an example in Fig. 

2.5 rectangular computational grid is divided among four nodes or processors. Each 

processor performs its own calculations and also communicates with neighbor 

processors.  

 

 

Fig. 2.5  Communication between neighbor nodes in global region 

 

However the calculation of particle contacts in DEM part is not parallelized and 

information such as update of particle contact is performed at every computer node. 

The main reason for adopting this strategy is the number of particles simulated is of the 

order of 10
3
, thus the parallelization of the DEM will not make big difference on the 

computational time. Furthermore, in parallelization of DEM part another problem 

arises i.e. the number of particles assigned with each node will be different this arises 

the problem of waiting time in some nodes. In the present approach every node is 

simulating same number of particles thus the above mentioned problem can be 

ignored.  
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2.5 Time marching of particles 

For time marching of particle velocity Adams-Bashforth method is used.  

 

𝑽     
 𝑽   

 
 t

 𝑚 
(

 (𝑭𝐼𝐵  
 𝑭𝐷𝐸𝑀  

 𝑭𝑙𝑢𝑏  
 𝑭𝑔  

)

 (𝑭𝐼𝐵    
 𝑭𝐷𝐸𝑀    

 𝑭𝑙𝑢𝑏    
 𝑭𝑔    

)
) 

 

(2.44) 

 

      
     

 
 t

 𝐼 
(

 (𝑭𝐼𝐵  
 𝑭𝐷𝐸𝑀  

 𝑭𝑙𝑢𝑏  
)

 (𝑭𝐼𝐵    
 𝑭𝐷𝐸𝑀    

 𝑭𝑙𝑢𝑏    
)
) 

 

(2.45) 

 

where 𝑽  and   are the particle translational and rotational velocities. 𝑭𝐼𝐵, 𝑭𝐷𝐸𝑀, 

𝑭𝑙𝑢𝑏  and 𝑭𝑔  are the forces due to IBM, DEM, lubrication force and gravity 

respectively. 𝐼  is the moment of inertia. For time marching of particle displacement 

𝑿 , Crank-Nicholson method is used. 

 

𝑿     
 𝑿   

  t (
𝑽   

 𝑽     

 
) 

 

(2.46) 

 

2.6 Flowchart 

Fig. 2.6 shows the flow chart of the calculation used in the present thesis. 
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Fig. 2.6  Flowchart of the calculation 

START 

Initialization : u, v, w, p, up, vp, wp 

Calculation of the convection term 

Calculation of the viscous term 

Calculation of the frictional velocity 

Calculation of the Poisson equation 

convergence test 

correction of the velocity 

Calculation of the particle position 

Calculation of the interactive force: fp 

Calculation of the coupling velocity 

Judgment of the collision in the DEM 

Calculation of the particle translate and angular velocity 

Calculation of the velocity in a particle 

Start calculation of the fluid in the step n+1 

End calculation of the fluid in the step n+1 

Start calculation of the particle in the step n+1 

yes 

no 

End calculation of the particle in the step n+1 

End 

Time update 
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  Benchmarking of IBM and drag force Chapter 3

calculation on monodisperse spheres 

 In the previous chapter, the methodology of IBM-DEM simulation is given. In 

this chapter, using Immersed Boundary Method, direct numerical simulations are made 

for the fluid flow through fixed monodisperse spheres. The objectives of this chapter 

are twofold: first is to make benchmarking and grid independency studies for IBM and 

simulation code and second is to propose drag correlation and study underlying physics. 

The drag correlation proposed in this chapter is useful for performing 

Eulerian-Eulerian and Eulerian-Lagrangian mesoscopic simulations. The simulations 

results and the drag correlation are valid for solid volume fractions from 0.05 to 0.5 

and Reynolds number based on superficial velocity from 0.01 to 1000. The sequence of 

this chapter is: In Section 3.1, introduction and modeling approaches for the flows is 

given. In Section 3.2, literature review and motivation of the present research is given. 

It is followed by simulation setup in Section 3.3, results and their discussions in 

Section 3.4, curve fitting in Section 3.5 and the physics of the proposed relation in 

Section 3.6. 

 

3.1 Introduction 

In either Eulerian-Eulerian or Eulerian-Lagrangian mesoscopic approaches, flow 

domain is divided into computational grid for fluid flow calculations. The size of grid 

cell in these approaches is smaller than the mesoscopic structures like bubbles or 

clusters, but larger than the particle diameter. For accounting fluid-particle drag, 

Saffman lift force, history force, particle phase stresses and fluid phase stresses; one has 

to rely on various constitutive relations. Among all these forces, the fluid-particle drag 

is particularly important. The drag correlation can be obtained from theory, 

experimentation or direct numerical simulations (DNS). The details of previous 

researches in the respective area are given in the next section. Among them, DNS is one 

of the most promising areas. DNS gives better control of setup like particle size, shape 

without any requirement of closure relations. Furthermore, DNS gives better insight and 

understanding of the underlying physics. Thus DNS is used to propose the drag 

correlation in the present thesis.  
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3.2 Literature review 

The drag force is the primary force to suspend and transport particles and has a 

significant influence on the results. For example, Benyahia
30

, Gomez and Milioli
31

, 

Heynderickx et al.
32

 and Wang et al.
33

 compared solid volume fraction variations in the 

riser of circulating fluidized bed. They observed that the drag laws based on empirical 

relations give more homogenous structures in comparison with experiments. Du et al.
34

 

compared voidage, particle velocity profiles and solid flow patterns by different drag 

relations in spouted beds. They observed that different drag relations change the spout 

shape profiles in spouted bed. Bokkers et al.
35

 analyzed the effect of drag law in bubble 

formation and  Leboreiro et al.
36

 simulated segregation in a fluidized bed.  

 

In literature, research for obtaining the drag correlations can be classified into three 

categories: theoretical, experimental and numerical simulations. Theoretically, there is 

little information available for drag force on particles and particle clouds. Most of the 

studies are limited to low Reynolds number (Re) and solid volume fractions (φ) which 

are usually used in literature for benchmarking simulation codes rather than for actual 

applications. Some of the examples of theoretical works are the work of Hashimoto
37

, 

Sangani and Acrivos
38

, Kim and Russel
39

 and Goldstein
40

.  

 

Experimentally, some empirical relations are obtained by measurements of pressure 

drop in packed beds and calculation of average settling velocity in sedimentations. For 

example, Ergun
41

 proposed a relation for pressure drop in packed bed based on his 

experiments, Richardson and Zaki
42

 proposed a drag relation by calculation of hindered 

settling velocity at different solid volume fractions. Wen and Yu
43

 also conducted a 

series of fluidization experiments and proposed a drag relation. Based on these 

empirical relations some modifications can also be found in literature. For example, one 

of the most widely used relations in chemical engineering is the relation proposed by 

Gidaspow
44

. He combined Ergun
41

 and Wen and Yu
43

 relation. He suggested the use of 

Ergun
41

 relation for φ>0.2 and Wen and Yu
43

 relation for φ<0.2. One of the shortcoming 

of this relation is at φ=0.2, there is a discontinuity in the calculation of drag force and 

this discontinuity increases with the Reynolds number. Di Felice
45

 suggested that the 

exponent in Wen and Yu
43

 equation should not be constant but a function of Reynolds 

number. Syamlal et al.
46

 proposed their drag relation by modifying the terminal velocity 

correlations of Richardson and Zaki
42

. 
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In numerical simulations, some of the early works for the calculation of drag force is 

in porous media and cylinders by Koch and Ladd
47

, Andrade et al.
48

 and Rojas and 

Koplik
49

. Later, three dimensional simulations are performed by Hill et al.
12,13

 for drag 

force calculation for ordered and random arrangements of mono-disperse spheres for 

Reynolds number up to 100. Van der Hoef et al.
50

 extended the work for poly-disperse 

spheres and Stokes flow condition. Beetstra et al.
14

 simulated flow through 

poly-disperse spheres for Reynolds number up to 1000. Yin and Sundaresan
51,52

 and 

Holloway et al.
53

 performed simulations for Stokes and moderate Reynolds number  

for poly-disperse spheres with relative motion. All these simulations are performed 

using SUSP3D code based on lattice Boltzmann method (LBM) developed by Ladd
19,20

. 

Recently Tenneti et al.
15

 proposed a new drag relation using IBM with much refined 

grid resolution up to Re=300. Their work raised number of controversies in the drag 

relation proposed by LBM. For example: Their proposed relation showed large 

deviations from the relation proposed by Beetstra et al.
14

 (about 37% over-estimation at 

Re=300). Furthermore, they also observed that the simulation setup used by Holloway 

et al.
53

 do not satisfy the Galilean invariance of particles and may result an error of 

about 10%. So the conclusion is: In literature there is still ambiguity in the development 

of drag relation even for mono-disperse spheres by direct numerical simulation and 

further investigations are possible. The innovative ideas which will be proposed in this 

chapter are: (1) the drag relation for extended range of Reynolds number and solid 

volume fractions and (2) the explanation of physics behind the difference of average 

drag force for low and high solid volume fractions. This study can also be used for 

benchmarking the ambiguity of the simulation results of Beetstra et al.
14

 as pointed out 

by Tenneti et al.
15

 for extended range of Reynolds number. Because of the frequent use 

of some of the references in this chapter from now on we will use HEL for Hill et al.
12,13

, 

BEL for Beetstra et al.
14

 and TEL for Tenneti et al.
15

 

 

3.3 Simulation setup 

The cubic computational domain with length L in each side is discretized with 

regular Cartesian grid. For making random assemblies, the particles configurations are 

obtained by elastic collisions (in the absence of ambient fluid) of spheres from regular 

arrangements. The solid volume fraction (𝜑) is defined by Eq. (3.1). The Reynolds 

number (𝑅𝑒) used in this chapter is based on the superficial velocity (𝑈𝑠 ) which is the 
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product of magnitude of average slip velocity between the solid and gas (𝑢) and void 

fraction    𝜑  given by Eq. (3.2). 

 

 
𝜑  

𝑛 𝑉 

𝑉
 (3.1) 

   

 
𝑅𝑒  

𝑈𝑠   

 
 (3.2) 

   

 𝑈𝑠     𝜑 𝑢 (3.3) 

 

where 𝑛  is the number of particles in the domain, 𝑉  is the volume of a single 

particle and 𝑉 is the volume of computational domain. The average drag force (Fd) is 

calculated by averaging of drag force over all particles in the domain.  

 

In the limit of infinite dilution and when inertial effects can be neglected, the drag 

force takes the Stokes form: 

 

  𝑠    𝜇  𝑈𝑠  (3.4) 

  

where 𝜇 is the viscosity and  𝑠 is the Stokes drag. For convenience and to get rid of 

small values, the drag force is made dimensionless by Stokes-Einstein drag. 

 

 
 ̂  

  

  𝜇  𝑈𝑠 
 (3.5) 

 

The range of solid volume fraction and Reynolds number analyzed in the current 

simulation are φ 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5; Re=0.01, 10, 50, 100, 200, 400, 600, 

800 and 1000 respectively. The randomly arranged particles under no relative motion 

with respect to each other are forced to move with the same constant velocity (vp) 

without any gravity effects. This is the Galilean invariant of fixed particles. The reason 

for choosing moving particles in comparison with fixed particles is due to the no-slip 

boundary condition imposed by IBM proposed by Kajishima et al.
26

. As mentioned in 

Subsection 2.1.2, in IBM the effects of solid particles on fluid are imposed by 

modifying the computational grid both inside and at the surface of particles. In case of 

fixed particles, the modification of fluid grid at the same surface grid points of 
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particles result in overestimation of drag force. However for moving particles this 

effect is reduced resulting in more reliable calculation of drag force. The motion of 

particles increases the average fluid velocity and associated volume flow rate in the 

direction of particles motion due to no slip boundary condition at particle surface. At 

every time step this increase in volume flow rate is calculated. Then a negative volume 

flow rate is applied at every time instant to counter balance the increase in volume 

flow rate due to motion of particles. This makes the average fluid velocity in the 

domain to about zero (For example in the case of average particle velocity of O(10) the 

average fluid velocity in the domain was O(10
-4

)). It follows from this setup that the 

superficial velocity is equal to the particle velocity. Periodic boundary condition is 

used in all directions. All the simulations are carried out till quasi-steady state is 

obtained i.e. the fluctuations in the calculation of average drag force on spheres 

become reasonably small (± .8% of quasi-steady state average drag force). 

 

Fig. 3.1  Simulation Setup 

 

 Fixed arrangements of particles give better control over the simulation setup and thus 

is a good example for the checking the code. Later, the grid-independent and reliable 

setup is used for studying the free settling suspension. It is also to be noted that similar 

type of setup was used by BEL. HEL kept the particles fixed and allow the fluid to 

flow by applying pressure as a uniform body force and calculated the average particle 

Reynolds number. This kind of setup results in Reynolds number as a variable which 

need to be calculated, thus resulting in lesser control over Reynolds number selection. 

TEL also used fixed particles but rather than applying the body force they applied 

constant volume flow rate at a given Reynolds number. The simulation setup of BEL 

and TEL gives much better control over the flow Reynolds number. 
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3.4 Selection of parameters 

In order for the drag correlation and results in the later chapters to be reliable, the 

parameters which are affecting the simulations are carefully studied and discussed in 

the next sub-sections. 

 

3.4.1 Ensemble averaging of simulation results 

In order to get statistically invariant results, ensemble averaging is performed for 

five independent random particle arrangements. Ensemble averaged drag force ( ) is 

later used for curve-fitting.  

 

 
  

 ̂

 
 (3.6) 

where  ̂ is the summation of drag force for five independent random particle 

arrangements. Relative standard deviation (𝑅𝑆𝐷) is used for calculating the difference 

of values between different particle arrangements which is given by:  

 
𝑅𝑆𝐷  

 t n  r   e i tion  o    t 

  er  e o    t 
     

(3.7) 

A lower value of 𝑅𝑆𝐷 indicates a lower scatter in data about the average and vice 

versa. The 𝑅𝑆𝐷 of simulation results for different φ and Re studied is shown in Fig. 

3.2. It can be seen from Fig. 3.2 that 𝑅𝑆𝐷’s in simulations are less than 7% which 

shows simulation results to have small scatter about the average value.  

 

Fig. 3.2  Relative standard deviation of F on spheres from five 

independent random assemblies of particles at Re=0.01, 10, 50, 100, 200, 

400, 600, 800, 1000 
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3.4.2 Effect of domain size 

Another parameter which may affect the simulation results is the domain size. Small 

domain leads to less reliable results because of averaging over smaller number of 

particles and large interactions between periodic images. But computational time 

increases with L
3 

with the increase of domain size L. Test cases for L/  =5, 10, 15 at 

  /△x=24 under the conditions of φ=0.05 and 0.4 at Re=0.01, 100, 600 and 1000. Fig. 

3.3 shows RSD for these test cases. It is observed that the value of RSD for all these test 

cases is either comparable or about the same as observed in ensemble averaging. In 

this study, L/  =10 for φ≤0.1 and L/  =5 for φ>0.1 is used for keeping reasonable 

number of particles in the computational domain.  

 

 

Fig. 3.3  Relative standard deviation of F on spheres for L/  =5, 10 and 15 

at   /△x=24 for particles at Re=0.01, 100, 600 and 1000 

 

3.4.3 Effect of flow direction 

HEL, in his simulations for regular arrangements of particles for non-Stokes regime 

in a fully periodic domain, observed that the direction of fluid flow relative to particles 

affects the drag force calculation. For random arrangement of particles, direction in 

which the particles move relative to fluid also affect the drag force especially for 

φ=0.05 and Re≧100. Particle motion along the axis directions resulted in reduced drag 

force on the spheres (e.g. particle motion along one of the axis at φ=0.05 and Re=1000 

resulted in about 9% lesser value than the average obtained from the other directions) 
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because of the interactions of spheres with the wakes of their own periodic images. At 

higher solid volume fraction the downstream wakes are diffused among particles and 

this effect becomes less important. This effect was also observed in a similar problem 

in the direct numerical simulation of free settling particles in fully periodic domain by 

Yin and Koch
17

.  

 

Based on the foregoing discussion, particle motion at an angle of about 10 degrees 

from the axis direction is used in the present simulations. This deviation angle in 

particle motion enlarges the distance between a particle and its own periodic image in 

the moving direction about six times of the length of one of side of computational 

domain. Thus in all simulations, the deviation angle 10 degrees between particle 

motion and the axis of periodic domain is used. 

 

3.4.4 Effect of grid resolution 

Selection of proper grid size is very important to resolve the microscopic fluid flow 

around particles in direct numerical simulations. In the simulation Reynolds number up 

to 1000 is investigated which is far beyond the laminar region
1
. Furthermore, in 

simulations more than one sphere is used; so the inter-particle distance between 

spheres is also important. The principal objective in this subsection is to obtain the grid 

converged solution by resolving accurately the flow field around the particles. Thus to 

ensure grid independent results, two test cases for solid volume fractions i.e. φ=0.05 

and 0.4 and for each φ analyzed four Reynolds number i.e. Re=0.01, 100, 600 and 

1000. For each Reynolds number the grid resolution is increased in steps of eight grid 

points per particle diameter i.e. if the initial studied   /△x is 8 then the second refined 

  /△x is going to be 16 and so on. The grid resolution kept increasing until the 

percentage difference between two successive grid sizes becomes less that 2%. The 

reason for this smaller value of percentage difference is to be more accurate and 

reliable. The percentage difference is defined by: 

 

 
 𝑟%  

 ́    

 ́
     

(3.8) 

 

where  ́ and    is the average drag force on less and more refined grids respectively. 

The grid-independent results for φ=0.05 is later used for φ=0.05 and 0.1, φ=0.4 is used 

for φ=0.2, 0.3, 0.4 and 0.5. 
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(a) φ=0.05 

 

(b)  φ=0.4 

Fig. 3.4  Er% of of  ́ from F* 

 

3.5 Results 

In this section, benchmarking for the calculation of average drag force for regular 

and random arrangement of particles, curve fitting of simulation data for randomly 

arranged particles, drag correlation and the underlying physics for the drag relation is 

given.  
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3.5.1 Drag force for regular arrangement of particles 

The reason for simulations of regular arrangements (e.g. face centered cubic, simple 

cubic) of particles in periodic domains is: it gives an idea about the flow structures and 

drag force in packed beds. Moreover in literature there are various analytical and 

numerical results available for benchmarking. For regular arrangements of particles 

constant volume flow is applied and particles are kept fixed. 

 

For Stokes flow regime (i.e. Re≤1) there are various theoretical and simulation 

results available. The relation of Sangani and Acrivos
38

 and the results of HEL, Zick and 

Homsy
54

 and TEL is used for comparison. The mathematical relation of Sangani and 

Acrivos
38

 for simple cubic arrangement of particles is given by: 

 

 
     .    𝜑

 
  𝜑   .    𝜑   .    𝜑

 
   .    𝜑

 0
 

   𝜑
  
   

(3.9) 

 

  /△x for simple cubic arrangements varies from 16 to 32 for φ=0.05 to 0.523. For 

face centered cubic arrangements,   /△x varies from 24 to 80 for φ=0.05 to 0.653. Fig. 

3.5 shows the variation of F with solid volume fractions. The results of Zick and Homsy 

(mentioned as Zick in Fig, 3.5)
54

 and TEL showed quantitative agreement with the 

current simulation results. Moreover, reasonable qualitative agreement is observed 

between the current simulation results and the results of HEL and the theoretical relation 

of Sangani and Acrivos
38

.  
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(a) 

 

(b) 

Fig. 3.5  Variation of F on spheres with solid volume fraction in Stokes flow 

regime for (a) Simple Cubic (b) Face Centered cubic arrangement of spheres. 

 

In moderate Reynolds number, the inertial effects of fluid become important. The 

results are compared with the simulation results of TEL because of lack of available 

theoretical studies. Fig. 3.6 shows the variation of F with Reynolds number and for 

different solid volume fractions. Current simulation results showed good quantitative 

agreement with the results of TEL. 
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(a) 

 

(b) 

Fig. 3.6 Variation of F on spheres with Reynolds number for various solid volume 

fractions for (a) Simple Cubic (b) Face Centered cubic arrangement of spheres 

 

3.5.2 Drag force for random arrangements of particles 

For Stokes flow and random arrangement of particles, the relation of Koch and 

Sangani
55

 and simulation results of Ladd
56

, Van der Hoef et al.
50

 and HEL are used for 

comparison. The mathematical relation of Koch and Sangani
55

 is given by. 

 



34 

 

 

  

{
 
 

 
    

 

√ 
√𝜑  

   
  

𝜑  n𝜑    .  𝜑

   . 8 𝜑  8. 8𝜑  8.  𝜑 
  𝜑   .  

  𝜑

   𝜑 
 𝜑 >  .  

 (3.10) 

 

Fig. 3.7 shows the variation of F with solid volume fraction. It can be seen that there is 

good agreement between the present simulation results and the results of literature.  

 

 

Fig. 3.7 Variation of F on spheres with solid volume fraction; in Stokes flow 

regime for random arrangement of spheres 

 

In Fig. 3.8, simulation data (symbols) for the studied range of solid volume fraction 

and Reynolds number is given. The error bars are scatter in the data. For comparison of 

average drag force on particles, the simulation results of BEL, HEL and TEL is used in 

Fig. 3.8. The range of solid volume fraction and Reynolds number studied by these 

researchers are given in the Table 3.1.  
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Fig. 3.8 Variation of F on monodisperse spheres with Reynolds number for 

various solid volume fractions for random arrangement of spheres. The error bars 

in the graph are the scatter in data due to the different particle arrangements. 

 

Table 3.1 Range of solid volume fraction and Reynolds number studied in literature by 

other researchers 

 Re φ 

Beetstra et al. (2007) 1000 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 

Tenneti et al. (2011) 300 0.1, 0.2, 0.3, 0.4, 0.5 

Hill et al. (2001) 100 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 

 

Simulation results showed good agreement with the results of TEL and HEL. One 

particular point that was also observed by TEL, is the over estimation of F in the 

simulation results of BEL. This difference increases more and more as the solid 

volume fraction and Reynolds number increases (for instance the value of F calculated 

by BEL for φ=0.4 and φ=0.5 at Re=1000 becomes more than two times the value 

calculated by the current simulations). The main reason for this deviation is grid 

resolution used by BEL. Their space resolution was not sufficient enough to resolve 

the fluid length scales of the problem. In all their work, constant resolution of 17.5 

lattice units per particle diameter was used for φ≤0.3 and for φ>0.3 averaging over two 

resolutions i.e. 17.5 and 25.5 is used for the calculation of F.  
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(a)                                   (b)                        

            

(c)                                    (d)     

 

 

(e) 

Fig. 3.9 Variation of F on spheres with Reynolds number for (a) φ=0.1  

(b) φ=0.2 (c) φ=0.3 (d) φ=0.4 (e) φ=0.5 
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As it is already proved in grid resolution study, as the Reynolds number and solid 

volume increases the requirement of more refined grid also increases. It is possible that 

the grid used by BEL is too coarse for performing simulations up to the mentioned φ 

and Re. Another factor that may affect the simulation results of BEL is the large 

scattering in their results (more than 2.5 times the standard deviation). TEL and HEL 

take care of this point more carefully. For example HEL improved the grid from 9.6 to 

33.6 lattice unit for φ=0.1 to 0.5 and TEL for Re>100 improved the grid from 

  /△x=30 to 60 for φ=0.1 to 0.4. Since the grid resolution used in the present 

simulations are better than BEL and simulation results are in agreement with HEL and 

TEL thus it can be concluded that the results in the present thesis are reliable. In 

Subsection 3.5.5, these results are fitted to obtain the drag relation. 

 

3.5.3 Forms of drag correlation 

In literature
13,14,41,43,45

, basically two classes of relations can be found for F. The 

first class of relations is given by: 

 

       0  𝑓 𝜑 𝑅𝑒 (3.11) 

 

where  𝑅𝑒 0 is the drag force in the limit of Stokes flow and the second term is added 

to account for inertial force, let it to be denoted by  int  𝑓 𝜑 𝑅𝑒. In the standard 

form, it is assumed that both     0 and 𝑓 𝜑  are the functions of only solid volume 

fraction and hence the variation of  int  with Reynolds number is linear. Ergun 

equation for packed beds is in this form. The variation of  int with Reynolds number 

is plotted in Fig. 3.10. For observing the general trend,  int is normalized by  int at 

Re=200 for each φ.  int calculated from the Ergun equation for φ=0.05 and 0.5 is also 

plotted for comparison. The general trend of the data for φ≧0.2 is shown by small 

dashed black line. 

 

It can be seen that the assumption of  int to be a single linear function of Reynolds 

number for 10≤Re≤1000 is not reasonable. Ergun relation based on this assumption 

will lead to overestimation of drag force on particles at higher Reynolds number. This 

over-estimation will be particularly more prominent for low solid volume fractions as 

can be seen in Fig. 3.9.  int follows a linear law with Reynolds number up to about 

100≤Re≤200 and later the linear law decreases its angle with the Reynolds number axis. 

HEL proposed single linear relationship between  int and Reynolds number. Since the 
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range of Reynolds numbers studied by HEL was less than about 100, thus their 

findings are correct. The reason for this change of slope will be explained in the next 

sub-section. 

 

 

Fig. 3.10 Variation of  int with Reynolds number. 

 

In the second class of relations the expression for F can be written as the product of 

drag force on a single particle (Fo) and power law function of voidage. It can be written 

as: 

 

        𝜑  n (3.12) 

 

Wen and Yu
43

 and Di Felice
45

 relations lies in this class. Wen and Yu
43

 proposed a 

constant value equal to 3.7 for exponent n, while Di Felice
45

 proposed that n should be 

the function of Reynolds number. The expression for n proposed by Di Felice
45

 is 

given by: 

 

 
𝑛   .   .  e  [

   .   o 𝑅𝑒  

 
] (3.13) 

 

From simulation data,  /   is calculated and for observing the general trend, it is 

normalized by  / 𝑜 at Re=200 for each φ. For   , the drag correlation of Schiller and 
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Naumann
57

 is used. It is denoted by  rati  and shown in Fig. 3.11.  rati  calculated 

from Wen and Yu
43

 and Di Felice
45

 is also shown in figure. 

 

In Wen and Yu
43

 relation, as n has a constant value thus the variation of  rati  with 

Reynolds number remains equal to one. Di Felice
45

 relation shows that initially  rati  

decreases with Reynolds number, obtain a minimum and then increases again for all φ.  

Current simulations show similar trend like Di Felice
45

. However the increase of  rati  

after Re>200 for 0.1<φ≤0.5 is relatively slower than for φ≤0.05. The reason for this 

behavior of  rati  will be explained in the next sub-section. 

 

 

(a)   

 

 

(b) 

Fig. 3.11 Variation of  rati  with Reynolds number (a) from simulation (b) 

from Di Felice
45

. 
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3.5.4 Effects of Reynolds number on fluid flow 

For understanding the effect of Reynolds number on flow and vortical structures, 

iso-surfaces of     and distribution of magnitude of vorticity are examined. The 

reason for the use of iso-surfaces of     is to identify the tube-like high vortical 

structures from the flow field. It was proposed by Tanaka and Kida 
58

 and details can 

be found in the mentioned reference. The basic idea is to take the divergence of the 

incompressible Navier-Stokes equation and thus forming the pressure Laplacian term 

on one side of the equation and difference of vorticity and strain rate tensor terms on 

the other side. In vortex tubes, vorticity dominates the strain rate. Thus positive values 

of iso-surfaces of     show the regions of vortex tubes.  

   

 

 

 

 

 

 

 

 

 

(a)                      (b) 

 

 

 

 

 

 

 

 

 

 

 

          (c)                     (d) 

Fig. 3.12 Iso-surfaces of    =1.5 10
6
 around single sphere (a) Re=100 (b) 

Re=250 (b) Re=300 (d) Re=450. 
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The effect of Reynolds number on the flow around a single sphere is first explained 

as an example and later this concept is extended for group of spheres. For single sphere 

problem, periodic domain is taken with dimensions equal to twelve diameters of 

particle in the flow and six diameters in the cross-flow direction. The range of 

Reynolds number studied are Re=100, 200, 250, 300 and 450. It was observed in the 

previous subsection that  int and  rati  changes its trend in these ranges of Reynolds 

number. The iso-surfaces of    =1.5 10
6
 is used for visualization of fluid wakes 

around spheres and shown in Fig. 3.12. Flow is directed perpendicular to the horizontal 

plane. 

 

It can be seen that the wakes from a single sphere remain axisymmetric and attached 

ring type for Re=100. At Re=250, an unattached ring is formed on the downstream side 

of sphere and further increase in Reynolds number enables unsteady vortex shedding 

as can be seen for Re=300 and 450. It is not shown here, but any further increase in 

Reynolds number alters the orientation, shape and period of vortex shedding. These 

vortices increase the turbulent kinetic energy and fluid velocity fluctuations both along 

and perpendicular to the flow direction
21,22

.  

 

Fig. 3.13 Iso-surfaces of    =1.5 10
6
 for φ=0.05 and Re=200. 

 

In randomly arranged spheres in the computational domain, particle pairs which are 

very close, act like a single identity. As Reynolds number is directly proportional to the 

sphere diameter, thus unsteady vortex shedding starts for lower ranges of Reynolds 

F
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number. For elaborating this point, the iso-surfaces of    =1.5 10
6 

for case φ=0.05 

and Re=200 is shown in Fig. 3.13. 

 

It can be seen in the lower enlarged view in Fig. 3.13 that unsteady vortex shedding 

starts around close particles even at Re=200. However, for single particles under 

identical conditions the vortex ring remains attached. The reason for the change of 

slope of  int and  rati  for 100≤Re≤200 in Fig. 3.10 and Fig. 3.11 is due to the 

entrapment of particles in these wakes. As particles in the downstream wakes, 

experience reduced drag, thus the increase of  int with Reynolds number decreases in 

comparison with particles which are not in wakes. It can be seen in Fig. 3.10 and Fig. 

3.11 that for φ≧0.2 and Re>200, the trend of  int and  rati  is about same. Fig. 

3.14and Fig. 3.15 shows the distribution of magnitude of vorticity intensity for φ=0.05 

and φ=0.4 for different Reynolds number.  

 

 

(a)                                        (b)                           

  

 

             (c)                                       (d) 

Fig. 3.14 Non-dimensional plot of vorticity intensity for φ=0.05 (a) Re=10 

(b) Re=200 (c) Re=400 (d) Re=1000. 

 

Flow Direction 
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These plots are non-dimensionalized with  p/  . For φ=0.05 because of the 

relatively larger inter-particle spacing wake structures develop with Reynolds number 

and there are regions of low or zero vorticity. However for φ=0.4 and Re>200 the 

whole computational domain is filled with high fluid shear regions. The saturation of 

 rati  and  int after φ≧0.2 may be due to relatively smaller inter-particle spacing 

which lead to similar flow structures. 

 

 

            (a)                                    (b) 

 

 

          

  (c)                                    (d)                      

Fig. 3.15 Non-dimensional plot of vorticity intensity for φ=0.4 (a) Re=10 (b) 

Re=200 (c) Re=400 (d) Re=1000. 

 

3.5.5 Curve fitting 

It is observed that for curve fitting the simulation data for monodisperse spheres 

either drag form described before can be used. However, the literature assumptions 

Flow Direction 
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need to be modified. In the present thesis, the drag form of Eq. (3.11) is used. To 

accommodate the change of slope and obtain better fit the equation consists of two 

parts: one for Re≤200 and other for 200<Re≤1000.  

 

  

{
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 (3.14) 

 

Curve fitting is done using MATLAB. Initially the data for Stokes flow condition is 

fitted to obtain the first part of Eq. (3.14) i.e.     0. The curve fitting of     0 

involves only φ. Later the inertial drag force i.e.  int is obtained by subtracting the 

viscous drag force from the simulation data. The standard form of  int in Eq. (3.11) is 

𝑓 𝜑 𝑅𝑒. During curve fitting, for each studied Reynolds number, various functions for 

𝑓 𝜑  e.g. polynomial, power, rational functions etc. are tested to observe which 

function best follow the trend of the simulation data. When the best function is 

obtained then the multiplying factors and the exponents of φ are obtained by iterations 

to give the best possible fit for the simulation data.  

 

To show goodness of fit, absolute percentage deviation (Er%) is plotted in Fig. 3.16. 

It can be seen that the curve fitted equation reasonably follows the simulation data. 

 

 

Fig. 3.16 Percentage error between simulation and Eq. (3.14)  

 

3.6 Conclusions 

In the present chapter, direct numerical simulations are used for the simulations of 

fluid flow through fixed monodisperse spheres. Extensive studies are done for the 
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parameters (e.g. domain size, gird resolution, flow direction) that can affect the results. 

The range of the parameters studied are φ=0.05-0.5 and Re=0.01-1000. The simulation 

results showed good agreement with most of the simulations data of literature both for 

regular and random arrangements of monodisperse particles for Re<300. For 

Re=400-1000, better predictions are made, thus the present simulation results are valid 

for wide range of parameters. In addition, a new drag relation for randomly arranged 

monodisperse system based on the results of present simulation is given by Eq. (3.14). 

The current drag relation can be used for closing the momentum transfer term in the 

mesoscopic model. The benchmarking studies done in this chapter show the reliability 

of the IBM, grid resolution and code used in the simulations. In later chapters, the 

same code and grid resolution are used for free settling particles. 
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  Particle settling for moderate Reynolds Chapter 4

number 

In the previous chapter, it was shown that the IBM and simulation code used in this 

thesis is capable for performing simulations for high Reynolds number and solid 

volume fractions. Moreover, the grid resolutions for different simulations conditions 

were also studied in detail in previous chapter. In this chapter, similar simulation 

conditions are used, the only difference is particles are allowed to move freely and the 

condition of zero relative motion between particles is removed. Thus the 

hydrodynamic interactions between particles become important and the particle 

microstructures are affected by their relative position with their neighbors’. The 

studied Reynolds number based on the terminal velocity of particle ranges from 0.1 to 

50. The solid volume fraction ranges from that corresponding to a single particle in a 

calculation domain to 0.4. The objectives of this chapter are the calculation of average 

or hindered settling velocity and development of its mathematical relation and the 

study of velocity fluctuations during settling. The sequence of this chapter is: in 

Section 4.1 introduction to sedimentation and literature review is given. It is followed 

by simulation setup in Section 4.2, discussion of the obtained results in Section 4.3, 

explanation of physics in Section 4.4 and conclusions in Section 4.5. 

 

4.1 Introduction  

The transport properties of sedimenting particles play an important role in many 

natural and industrial processes. It uses gravitational force to separate particles from 

fluid streams. Some of its specific applications are separating dirt and debris from 

incoming raw material, crystals from their mother liquor, dust or product particles from 

air streams and removal of contaminants in ground water etc. The understanding of 

sedimentation is still challenging because of the long-range hydrodynamic interactions 

between particles and constantly changing particle arrangements during settling. 

 

Reasonable data from literature is available by experiments
59-64

, by theory
65,66

 and 

numerical simulations
67-69

 for low Reynolds number (Re<0.1). Most of the researches 

in this regime of Reynolds number are primarily focused on the paradox of divergence 

of velocity fluctuations with the increase of domain size. Theoretical studies
66

 and 
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computer simulations
3,19,67,68

 argued that in Stokes flow regime the velocity 

fluctuations keep on increasing with the increase in domain size. However, larger scale 

experiments
59-61

 have found no such evidence. Recent experiments by Segre
62

 

answered this question that the computational domain size should be large enough to 

accurately capture the whirls formed in settling.  

 

In hindered settling, moderate Reynolds regime (Re1-210) and high Reynolds 

number regime (Re>300) pose greater difficulty. In moderate and high Reynolds 

number regimes, wakes are formed around particles. Thus the computational grid 

should be fine enough to capture the flow structures. Some of the hot topics for high 

Reynolds number regime are the particle clustering due to turbulence for small solid 

volume fractions
21-23

, turbulence modulation by particle clusters
70

 and the effect of 

finite size particles on the flow structure
24

.  

 

For moderate and high Reynolds number regime the numerical simulations for 

particle settling are scarce. These regimes pose greater difficulty because of the 

requirement to resolve smaller scale flow structures. Based on the author’s knowledge, 

only three studies are available in literature for moderate Reynolds number regime i.e. 

Climent and Maxey
16

 and two studies by Yin and Koch
17,18

. The work of Climent and 

Maxey
16

 is limited to 0<Re<10 and 0.01< <0.12 and the work of Yin and Koch
17,18

 

is limited to 1<Re<20 and 0.005< <0.4. The work of Climent and Maxey
16

 was 

more focused on the benchmarking studies of their force coupling method code rather 

than explanation of new phenomenon in dilute suspensions. The studies of Yin and 

Koch
17,18

 were more focused for dense suspensions. Moreover, they used the SUSP3D 

code developed by Ladd
19,20

. In SUSP3D code the surface of sphere is approximated 

by stair shape and effective diameter for simulation is defined based on the drag force 

on the cubic arrangement of monodisperse spheres for Stokes condition using the 

analytical solution by Hasimoto
37

. For higher Reynolds number regime according to 

the author’s knowledge there are also three investigations in literature i.e. Kajishima 

and Takiguchi
21

, Kajishima
21

 and Doychev and Uhlmann
23

. These investigations were 

principally focused on particle clustering due to turbulence for very dilute suspensions 

(the maximum solid volume fraction studied was ≤0.4%) and turbulence modulation 

by particle clusters.  

 

The theme of this chapter and the next chapter is to study hindered settling for both 

dilute (in which two body hydrodynamic interactions are important) and dense 
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suspension (in which multi-body hydrodynamic interactions are important) for Re≤300. 

IBM uses spherical shape of particles and original particle diameter is used without 

any priori benchmarking studies thus the results of IBM are more reliable than the 

simulations done using SUSP3D code. The new concepts that are presented in this 

chapter are deviation of average settling velocity  from standard power law of 

literature and it’s possible explanation, study of the screening of velocity fluctuations 

with domain size for moderate Reynolds number and the particle structure formations.  

 

4.2 Simulation setup 

In simulations, cubic computational domain of length L in each direction is used. 

Similar like in previous chapter, periodic boundary condition and zero volume flow 

rate at every time step is used to mimic the unbounded suspension (for details about 

the imposition of zero volume flow rate please read Section 3.3). The initial particles 

configurations are random and are obtained by elastic collisions (in the absence of 

ambient fluid) of spheres from regular arrangements. The numbers of spheres used in 

the domain are taken to obtain desired solid volume fractionhe density of particles 

and fluid is taken to be 2500 kg/m
3
 and 1000 kg/m

3 
respectively. It is analogous to 

settling of aluminium particles in water. The diameter of particles used in simulations 

is 1.2 mm. The direction in which the particles settle for both single and multiple 

particles are taken to be away from the periodic axis i.e. X, Y and Z Cartesian 

directions and usually at an angle between 10-30 degrees to reduce the chances of 

particles to interact with their own wakes. It can be obtained by resolving the gravity 

components in two or three Cartesian directions. Three different initial particle 

distributions are studied for each case to get statistically reliable results. Furthermore 

all the results presented in the next section are time averaged for about 300-500 Stokes 

time (t’=t 𝑈𝑠/   where t’ is Stokes time, t is the actual time, 𝑈𝑠  is the terminal velocity 

of single particle and    is the particle diameter). The studied Reynolds number are 

Re0.1, 1, 10, 20, 30, 40 and 50; solid volume fraction from single sphere to 0.4. The 

particle Reynolds number is controlled by changing the gravity magnitude and in this 

chapter it is defined as: 

 

 

𝑅𝑒  
𝑈𝑠  

 
       (4.1) 
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The parameters shown in Table 4.1 are used for DEM solver: 

Table 4.1: DEM parameters 

Coefficient of Restitution [-] 0.9 

Normal Spring Constant [N/m] 800 

Coefficient of Particle Friction [-] 0.25 

 

η can be obtained by Eq. (2.42). The normal spring constant is set to 800N/m that is 

much smaller than the actual value to increase the time step. It was evaluated that the 

estimated collision time is much smaller than the other physical time scales in the 

phenomenon and the maximum deformation of particle is much smaller than the 

particle diameter. It is observed in some test cases that the parameters used in DEM 

solver negligibly affect the particle settling results. 

 

4.3 Results 

In this section benchmarking of terminal velocity of single particle, calculation of 

average settling velocity, velocity fluctuations and structure formation during settling 

are given. 

 

4.3.1 Calculation of terminal velocity 

The settling or terminal velocity (𝑈𝑠) of a single particle provides the simplest case 

for benchmarking of free settling particles. There are plenty of literature data and 

mathematical relations available for terminal velocity calculation. The relations of 

Hartman et al.
71

 for the calculation of terminal velocity in an infinite medium is used 

for benchmarking.  

 

 
 o  0

𝑈𝑠  

𝜐
    o  0 𝑅  

(4.2) 

   (  .          .        .    )    .      (4.3) 

 𝑅   .       .  8  sin  .8 8   .     (4.4) 
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Table 4.2: Comparison of terminal velocity by simulation and (4.2) 

Re 𝑈𝑠(m/s) by 

Eq.(4.2)  

𝑈𝑠(m/s) by 

Simulation 

Percentage 

Difference 

1 0.00068 0.000683 0.4 

10 0.0068 0.00671 1.3 

20 0.013 0.0127 2.3 

30 0.020 0.0195 2.5 

40 0.0267 0.0261 2.2 

50 0.033 0.0321 2.7 

 

The deviation between the equation and the simulation is observed to be less than 

2.7% for all the cases. The terminal velocity calculated by simulations is used to 

normalize the hindered settling velocity in the next subsection. 

 

4.3.2 Hindered settling velocity 

4.3.2.1 Effect of domain Size 

For analysing the effect of domain size six cases of solid volume fractions and 

Reynolds number are studied: 

 

Table 4.3: Test cases for domain sizes for different φ and Re 

Re  L/   

1 0.01 10, 25, 50 

50 0.01 10, 25, 50 

1 0.05 10, 20, 25 

50 0.05 10, 20, 25 

1 0.2 5, 10, 15 

50 0.2 5, 10, 15 

 

The averaged particle velocity showed more variation with increasing domain size 

for low solid volume fractions and low Reynolds number (e.g. in the case of Re=1 and 

the percentage difference from the largest domain sizedecreases from 10.8% 
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to 3.1% for increasing L/   from 10 to 25 and in the case of Re=50 and 

itdecreases from 2.4% to 0.2% for increasing L/   =10 to 25). The reason for 

the comparatively larger variation observed in the cases of low solid volume fractions 

is the small number of particles to give statistically reliable results and this tendency is 

more remarkable for the case of low Reynolds number due to the long range 

hydrodynamic interactions. The domain size in any case is selected in such a way that 

the percentage difference between two successive domain sizes is less than 5%. For 

≤ and for  L/  =25 and L/  =10 is used respectively. 

 

4.3.2.2 Results and curve fitting 

It is well known that the mean settling velocity of uniform sized spheres is less than 

the terminal velocity of an isolated sphere due to the inter-particle interactions. It is 

also observed in literature [e.g. work of Ham and Homsy
72

, Al-Naafa and Selim
73

 etc.]. 

Experimentally, it is not easy to obtain the average particle settling velocity especially 

for dilute suspensions because generally in experiments the average settling velocity is 

measured by the motion of fluid solid interface which is difficult to track for dilute 

suspension. Even for the measurement of particle terminal velocity uncertainty up to 

10% in the experimental results are possible (Di Felice
74

). Thus numerical simulations 

give more reliable results by better control over the simulation setup and particle 

velocity calculations.  

 

For comparison, the power law formula of Richardson and Zaki
42

 (R&Z) is used. 

This relation is obtained by the experimental results of R&Z and is widely used in 

chemical engineering applications. In this relation, hindered settling velocity is 

expressed in terms of the terminal velocity of a single particle and void fraction. It is 

given by the following equation: 

 

 
𝑈  

𝑉 

𝑈𝑠
    𝜑    (4.7) 

 

where 𝑛𝑒 is the power-law exponent which depends on the terminal particle Reynolds 

number and 𝑉  is the average settling velocity. The equation of 𝑛𝑒 proposed by R&Z 

is: 
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𝑛𝑒  {

 .  𝑅𝑒   . 
 . 𝑅𝑒 0.0  .   e   
 . 𝑅𝑒 0.   𝑅𝑒     

 . 𝑅𝑒 >    

 (4.8) 

 

Garside and Al-Dibouni
75

 (G&D) proposed another equation of ne by a single 

correlation given by Eq. (4.9). 

 

  .  𝑛𝑒

𝑛𝑒   . 
  . 𝑅𝑒0.  (4.9) 

 

In simulations, the mean settling velocity of particles is calculated after fully 

developed or steady state of fluid. The time evolution of average settling velocity of 

particles is shown in Fig. 4.1. 

 

 

Fig. 4.1  Time evolution of average settling velocity of particles 

 

The comparison between the simulation data and the correlation by R&Z (Eq. (4.7) 

and (4.8)) in shown in Fig. 4.2 and the percentage difference between them is shown in 

Fig. 4.3. 
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Fig. 4.2  Comparison of simulation data points (Black dots) and 

correlations of Eq.(4.7) and (4.8) 

 

  

Fig. 4.3  Percentage difference of simulation data points 

and correlations of Eq.(4.7) and (4.8) 

 

It can be observed that: 

1. Simulation data reasonably agree with R&Z relation for low Reynolds number i.e. 

Re0.1 and all studied φ. For Re>0.1, in very dilute (φ≤0.01) and dilute regimes 

(φ>0.01 & φ≤0.1) the value of U by simulations is less than the prediction of R&Z 

and the difference keep increasing with the increase of Reynolds number (e.g. for 

φ=0.01 the percentage difference between the simulation data and R&Z correlation 

increases from 3.6% to 14.4% with increase of Re from 0.1 to 50). Moreover for 

φ≤0.01 simulation results for U rapidly approaches the terminal velocity of single 

particle.  

2. For dense case (φ≧0.2) the simulation results are in reasonable agreement with 

R&Z correlation for all the range of studied Reynolds number (the max percentage 

difference between the simulation data and R&Z correlation in this range is 3.3% 

at Re=50). 

 

It will be explained later in Subsection 4.3.4 that two-body hydrodynamic interactions 
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dominate in dilute suspensions and multi-body hydrodynamic interactions dominate in 

dense suspensions. Dense suspensions have generally random particle arrangements 

during settling and do not support any particular particles configurations due to smaller 

inter-particle distances. For dilute suspensions, the two particle interactions vary with 

the change in the Reynolds number and contribute to different particle structures as 

will be explained later. The limits of Reynolds number proposed by R&Z are based on 

these particle structures formed in sedimentation. These particle arrangements are 

different at different solid volume fractions as will be explained in Subsection 4.4.3 

and thus affect the hindered settling velocity. Similar behaviour of over-estimation of 

hindered settling velocity by R&Z was observed by the experiments of Di Felice
74

 for 

dilute suspensions (φ≤0.05) and Re= 0.01-1000. The author thinks that the exponent ne 

to be the function of only Reynolds number is not sufficient to describe the averaged 

particle velocity at different solid volume fractions. The author proposes that in the 

exponent besides Reynolds number there should also be a function of solid volume 

fraction for φ>0.01 and a constant term for φ≤0.01 to accommodate the changing 

particle arrangements during settling. Moreover, it is also observed that the averaged 

particle velocity during settling for φ≤0.01 and φ>0.01 are quite different and difficult 

to be expressed by single relation. Thus, the following relation is proposed for hindered 

settling velocity: 

 

 𝑈     𝜑    (4.10) 

 for 𝜑   .   

𝑛𝑒  {
 .  𝑅𝑒   . 

 . 𝑅𝑒 0.0   .  8  .   e   
 . 𝑅𝑒 0.    .    𝑅𝑒    

 
(4.11) 

 for  .   𝜑   .  

𝑛𝑒  {

 .  𝑅𝑒   . 
 . 𝑅𝑒 0.0  8.    𝜑   .   .   e   

 . 𝑅𝑒 0.   .     𝜑   .    𝑅𝑒    
 

(4.12) 

 

To visualize the effect of Eqs. (4.10), (4.11) and (4.12), simulation results are 

compared in Fig. 4.4 for Re=0.1, 1, 20 and 50. 
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(a) 

  

(b) 

  

(c) 

 

(d) 

Fig. 4.4  Hindered Settling Velocity as function of (1-φ) (a) Re=0.1 (b) Re=1 

(c) Re=20  (d) Re=50 

 

It can be seen that Eqs. (4.10), (4.11) and (4.12) gives much better fit to the 

simulation data points in comparison with other relations. Quantitatively, the 

percentage difference between this improved correlation and the simulation data is less 

than 3% for all the Reynolds numbers. It can be also seen that in the dilute region of 

1-φ>0.99, U markedly reduces with increasing φ and deviates from R&Z correlation. 

The same tendency is also observed in the results by Yin and Koch
17

, however, the 

deviation from R&Z correlation with increasing φ is more gradual than the present 

result.  

 

4.3.3 Velocity fluctuations 

When the particles settle under gravity, all the particles are not settled with the 

same averaged velocity but develop some deviations and fluctuations about the mean 
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or average settling velocity. These deviations are called velocity fluctuations. The 

origin of these fluctuations is the hydrodynamic interactions between particles. These 

inter-particle hydrodynamic interactions are the primary source of mixing. Particle 

velocity fluctuations induce fluid velocity fluctuations. For low range of Reynolds 

number, Caflish and Luke
66

  proposed that the hydrodynamic interactions among 

randomly distributed sedimenting particles lead to linear growth of the particle velocity 

fluctuations with the size of the suspension. Later numerical simulations
68,76

 subject to 

periodic boundary conditions and low Reynolds number benchmarked the studies done 

by Caflish and Luke
66

. Recently, Segre
62

 explained by experiments that there is a 

characteristic length of vortices above which the effect of domain size on velocity 

fluctuations becomes negligible. In the range of Oseen-wake interactions and dilute 

suspension; Koch
77

 based on his theoretical study showed that wakes around particles 

should screen the velocity fluctuations with domain size. In this section, the effect of 

domain size on velocity fluctuations is discussed for both low and moderate Reynolds 

number i.e. Re=1, 50. In this subsection, only the results for φ=0.01 are shown for 

studying the velocity fluctuations and it is shown that similar trend is observed for 

higher solid volume fractions. For studying velocity fluctuations, variance of particle 

and fluid velocity is used and it is non-dimensionalized by the square of terminal 

velocity of single particle. The domain sizes studied for both cases are L/  =10, 15, 25, 

35 and 50. Fig. 4.5 shows the velocity fluctuations in vertical and horizontal direction.  

 

 

 

 

Fig. 4.5  Velocity fluctuations for and Re=1 and 50 (a)Vertical Direction 

(b) Horizontal Direction. 

 

 

(a) 

 

(b) 

 

2
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It can be seen in Fig. 4.5 that for Re=1, the velocity fluctuations keep increasing 

with domain size. However, for Re=50 the increase of velocity fluctuations with 

domain size is much less pronounced. Moreover, comparison of vertical and horizontal 

velocity fluctuations indicates that anisotropy is still strong. Particle velocity 

fluctuations in the vertical direction is greater than the horizontal ones (about 7.5 times 

for Re=1 and 12 times for Re=50) indicating the influence of forcing due to gravity. 

Another important point is that the fluid velocity fluctuation is larger than the particle 

velocity fluctuation. However the variation of fluid velocity fluctuations with domain 

size is about parallel to the variance of particle velocity for both Reynolds number. The 

physical reason for this behavior of velocity fluctuations will be explained later.  

 

To further elaborate the above mentioned point, snapshots of particle settling for 

different domains are shown in Figs. 4.6 and 4.7 for Re=1 and 50 respectively. 

Particles are coloured by settling velocity. The legend is non-dimensionalized by 

average settling velocity. Thus greater colour variations of particles in the domain 

show greater particle velocity fluctuations. It can be seen that for Re=1 the velocity 

fluctuations of particles is higher than for Re=50. 

 

The reason for the relatively larger increase in velocity fluctuations with the domain 

size for Stokes flow condition is due to the larger affecting area around particles. 

However for moderate Reynolds number this region reduces. Thus the effect of domain 

size on velocity fluctuations decreases. Thus the paradox of divergence of velocity 

fluctuation with domain size is not valid for moderate Reynolds number. 
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(a) 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

Fig. 4.6  Velocity fluctuations for and Re=1 (a) L/  =10  

(b) L/  =25 (c) L/  =50 
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(a) 

(b) 

 

 

 

 

 

 

 

 

 

 

 

(c)  

Fig. 4.7  Velocity fluctuations forand Re=50 (a) L/  =10  

(b) L/  =25 (c) L/  =35 

 

4.3.4 Structure formation in suspension 

In literature
67

, it is evident that two particles in Stokes flow condition fall with 

weak but broad wakes and give rise to the long range velocity perturbations. However 

in the case of moderate Reynolds number, the symmetrical flow structure around the 

particle breaks and the wakes from the leading particle affect the downstream particle 

and thus leading to drafting kissing and tumbling scenario
78

 (DKT). In the next 

subsections particle structures formed during hindered settling are discussed. It will be 

clear that DKT plays an important role in particle structures formed during settling and 

thus described in this subsection. Particle wakes are the regions of low drag for 

downstream particles. As the downstream particle experiences reduced drag it moves 

faster till it touches the leading particle which is called kissing. The approach phase of 

downstream particle is called drafting. Particles in the touching arrangement are 
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unstable and try to separate and form horizontally separated pairs. This is called 

tumbling. All these three phases for two particles are shown in Figs. 4.8 and 4.9. DKT 

is a two body event and is present for dilute suspensions. Moreover, in dilute 

suspensions (in the present chapter ≤) as the solid volume fraction increases the 

chances of DKT decreases due to the increase of multi-body interactions. It can be 

visualized that DKT will have a large effect on particle settling. It is observed that 

wakes for Re≤0.2 supports no DKT, for 0.2≤ Re ≤1 wakes are strong enough to support 

DK and for about Re>1 wakes becomes sufficiently strong to promote all the three 

phases of DKT. The frequency of DKT depends upon the Reynolds number i.e. the 

larger the Reynolds number more frequent will be DKT for particles.  

 

   

 

Fig. 4.8 Particle arrangements during DKT 

 

    

Fig. 4.9 Fluid vorticity during DKT 

 

In the case of more than two particles these interactions become much more 

complex and anisotropic. Thus the structures of particles should be non-random. It is 

obvious that these particle structures are difficult to study experimentally and that’s 

why in literature
78-80

 experimental work is primarily focused for two dimensions and 

low solid volume fractions.  

 

In DNS it is possible to keep track of all particles accurately for long durations. For 

the analysis of structure under the effect of different solid volume fraction and 

Reynolds number, particle clusters (which are local group of particles with large 
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correlations) and radial distribution function (RDF) are studied. 

 

4.3.4.1 Cluster analysis 

In hindered settling, clusters are close groups of particles. In simulations, clusters 

are defined in a mathematical way with the property that each particle lies within a 

distance 𝑎   of another particle in the cluster. Particles which do not have a 

neighbour particle in a cluster within 𝑎   are not considered in the same cluster. 

Similar method was proposed by Herrmann et al.
81

 for percolation problem, i.e. two 

particles of diameter     and     with positions    and    are considered to be in 

the same cluster if: 

 

 

|     |  
𝑎(       )

 
 (4.13) 

 

As mono-disperse spheres are considered in this study so both     and     are   . 

The parameter 𝑎 is critical in cluster size classification. The domain size and the solid 

volume fraction can give some idea for its selection but still it is not explicit. Wylie and 

Koch
82

 proposed that this parameter should be larger than the lubrication cut-off 

distance (they took lubrication cut-off distance equal to 0.01  ) and smaller than the 

particle radius for their results to remain independent with this parameter. Xiong et 

al.
83

 studied this parameter and observed that the results remain qualitatively same by 

changing it from 1.05 to 1.2 of particle diameter. In the present simulations, 𝑎 is 

studied for φ=0.05 and Re=50. The reason for φ=0.05 is that it gives more degree of 

freedom for its value selection (i.e. large value of a is possible without forcing all the 

particles into one single cluster) and Re=50 is that the temporal integration and 

disintegration of particle clusters is more frequent for Re=50. The values of a analyzed 

in simulation are 1.05, 1.1, 1.15, 1.2, 1.25, 1.5 and 2. For its understanding, the time 

evolution of 𝑁𝑐 (percentage of particles participating in cluster of any size) is studied 

by taking the above mentioned values of a. 𝑁𝑐 is defined by Eq. (4.15). 

 

 
𝑁  

𝑛𝑐 

𝑛 
     (4.14) 

 

𝑁𝑐  ∑𝑁 

𝑀

 = 

 (4.15) 
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where 𝑛  is the total number of particles, 𝑛𝑐  is the number of particles participating 

in the clusters of size i, 𝑁  is the percentage of particles participating in cluster of size 

i, M is the maximum cluster size formed in the simulations. The size of a cluster is 

defined as the number of particles that compose the cluster. The time evolution of Nc 

for φ=0.05 and Re=50 is shown in Fig. 4.10. 

 

It can be seen from Fig. 4.10 that for 𝑎   .   the temporal evolution patterns are 

almost not affected. However for a=1.5 and 2, the circle around a particle in which the 

neighbor is considered to be in the same cluster becomes so big that it cannot capture 

the sharp formation and dissolution of particle clusters. For both a=1.5 and 2 about 

more than 50% of particles are observed to be in clusters even for φ=0.05 which is 

clearly incorrect from physics. Based on the above discussions, a =1.05 is used 

throughout simulations because it is expected to work well for all high solid volume 

fractions. 

 

 

Fig. 4.10  Time evolution of percentage of particles as clusters  

(φ=0.05 and Re=50) 

 

After the steady state is established, the fraction of particles as single particles 𝑁 , 

two particle clusters (doublets) 𝑁 , three particle clusters (triplets) 𝑁  and clusters of 

more than three particles 𝑁   are calculated and results are time averaged for about 

300 Stokes time after the establishment of steady state. The results for Re=1, 10, 20, 30, 

40 and 50 are shown in Fig. 4.11. For φ=0.01 the particles only formed doublets so 
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they are only shown in two particle cluster. 

 

 

   

 

 

Fig. 4.11  Percentage of particles participating in clusters of (a) Single 

particle size (b) Two particle size (c) Three particle size (d) More than 

three particle size 

 

It can be observed from Fig. 4.11 that for the same Reynolds number the particle 

clustering phenomenon becomes more pronounced by increase in solid volume fraction. 

This is indicated by the decrease in the fraction of particles being alone as the solids 

hold up increases from 0.01 to 0.4. These results are consistent with the statistical 

intuition as the solid volume fraction increases the average inter-particle distance 

decreases and hence the more particles move collectively.  

 

The Reynolds number adversely affects the degree of particle clustering and this 

effect is more evident for low solid volume fractions. For example, for φand 

Re=50 about all of the particles are not participating in any cluster and for φ the 

fraction of particles that are not participating in any clusters increases from about 0.56 

to 0.91 for increase of Reynolds number from 1 to 50. The effect of Reynolds number 

becomes lesser as the solid volume fraction increases and almost no effect for φ 0.3 

and 0.4. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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One more thing that needs to be discussed in this section is the effect of domain size 

on particle clustering. It is observed that for Re≤1 and φ≤0.01, the percentage of single 

particles decreases (i.e. from about 99% to 95% for L/dp from 10 to 50) or in other 

words particle clustering increases with the domain size. However for Re>1 and 

φ≤0.01 or φ>0.01 and all studied range of Reynolds number, domain size negligibly 

affects the particle clustering. Thus the conclusion of this section i.e. particle clustering 

is inversely proportional to the Reynolds number for dilute suspension and about 

independent with Reynolds number for dense suspension is still valid for larger domain 

sizes.  

 

4.3.4.2 Radial Distribution Function (RDF) 

Another measure of the suspension microstructure is the radial distribution function 

(RDF). RDF is commonly used for analyzing the structures of molecules in solids
84,85

, 

liquids
86

 and gas
87

 or to study the packing of different arrangements of spheres
88

. It is 

usually plotted as a function of the inter-particle distances. In the present and the next 

chapter it is used to give the information about overall structures formed in the 

suspension. Some of its features are: its value is always zero for distances less than 

particle diameter as particles cannot approach more closer than particle diameter, 

appearance of peaks at long range indicates a high degree of ordering and at very long 

range RDF tends to a value of 1 which happens because RDF describes the average 

number density at this range. The definition of RDF g(r) is given by the equation: 

 

 g(r) 
  𝑟 

 𝜋  𝑟  𝑟
 (4.16) 

 

where 𝑛    is the number of particles in the shell of radius  ,    is the number 

density and    is the shell radius. This function is averaged over all particles to give 

the information for overall structure. Furthermore, the RDF’s shown in the Fig. 4.12 

are time averaged for 300 Stokes time after steady state. For comparison with the RDF 

for hard sphere molecules, the RDF for the Percus-Yevick equation
70,89

 is used and 

shown in Fig. 4.12 by HS.  
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Fig. 4.12  Radial distribution function for (a) 5 (b)  

 

For dense cases (φ=0.2) there is no significant effect of Reynolds number on RDF 

and it is quite similar like hard sphere distributions for all the Reynolds number. 

However, for relatively dilute case (φ=0.05), It can be seen that the particle 

distributions in settling is different from the random distribution of spheres. For 

Re=0.1-1 the particles show more close pairs with higher peaks of RDF at smaller shell 

radius in comparison with random distribution of particles. However as the Reynolds 

number increases for Re>1, RDF changes both in magnitude of the peak value and the 

region where this peak lies (the peak value shifts to r/dp =2 and the peak value changes 

from 1.35 to 1.18 for Re=30-50). However, at long inter-particle distances i.e. r/dp≧3 

the particles distributions show randomness with RDF1. The reason for decrease in 

the particle clustering and the behavior of RDF with Reynolds number will be 

explained in the next section. 

 

For studying the effect of domain size on RDF, two cases have been studied i.e 

1 and Re=1 and 50. Like velocity fluctuations in the previous section RDF 

changes with the increase in domain size for Re=1. However for Re=50 the effect of 

domain size on RDF is negligible for L/dp≥25. 

(a) 

 

(b) 
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Fig. 4.13  Radial distribution function for 1  

(a) Re=1 (b) Re=50. 

 

4.4 Physics of hindered settling, velocity fluctuations and 

microstructures 

For explaining the physics, the problem is need to be divided into three cases i.e.   

Case 1: Low solid volume fraction (φ≤0.1) and low Reynolds number (Re≤1) 

Case 2: Low solid volume fraction (φ≤0.1) and moderate Reynolds number (Re>1)  

Case 3: High solid volume fraction (φ>0.1) and low and moderate Reynolds number. 

 

For Case 1, the flow around the particles remains axisymmetric. Because of the 

hydrodynamic interactions between particles, the particles form pairs but because of 

the absence of strong wakes they remain in contact for longer times and remain stable 

in the form of particle pairs. The behavior of near particle pairs and high peaks of RDF 

at r/dp=1 for Case 1 in Fig. 4.12 can be due to weak wake interactions. Similar 

phenomenon was also observed in the simulations of Hamid et al.
90

 and Brady et al.
91

 

in their investigations of the effects of hydrodynamic forces on non-Brownian settling 

particles. 

  

For Case 2 as the Reynolds number increases from the Stokes condition, fluid 

inertia breaks the symmetrical flow around the particles and wakes are generated from 

particles. These wakes from the leading particles reduces the drag for the trailing 

particle. The trailing particle therefore approaches the leading particle. Koch
77

 

proposed if the particles’ inertia is small then the trailing sphere drifts away from the 

(a) (b) 
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wake of leading particle under the effect of Saffman lift force rather than touching the 

leading particle. However, if the particles’ inertia is large the two spheres come into 

contact with each other and then the trailing sphere rotate and the particles form 

horizontal pairs. This horizontal arrangement of particles is unstable and makes the 

particles to move away from each other into pairs at some separation distance 

perpendicular to the settling direction (DKT). After DKT the particles remain separated 

as the particles experience repulsion fluid force in side-by-side arrangements. In the 

case of low φ, there is plenty of space for particles to move thus the DKT events can 

occur more easily. This leads to separated particles perpendicular to the gravity 

direction, less probable particle pairs and decrease of the magnitude of RDF for 

smaller shells. 

 

For Case 3 because of the smaller inter-particle distances the multi body interactions 

dominates the DKT effects. This leads to relatively isotropic particle structures similar 

to the distribution of hard sphere molecules as was observed in the RDF and makes the 

particles distribution independent of the Reynolds number.  

 

A sequential snapshots of one of the DKT events observed in the simulation for 

=0.05 and Re=50 are shown in Fig. 4.14. In this case the particles have sufficient 

inertia that enables the particles to kiss rather than drift-out from the wakes during the 

drafting stage.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 

 

 

 

 

 

 

 

 

(f) 

Fig. 4.14  Sequential snapshots of Drafting-Kissing and Tumbling (DKT) 

event observed in the present simulation ( Re=50) (Arrow shows 

gravity direction) 

 

To see the interactions of wakes between particles, distributions of magnitude of 
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vorticity in the computational domain are shown in Fig. 4.15, which shows the contour 

plots of the slice at the middle of the computational domain for φ=0.05 and 0.3; Re=1 

and 50. In the figure the circles are the particle cross-sections. The magnitude of 

vorticity is non-dimensionalized by 𝑉p/  . 

 

 (a)  

 

(b) 

 

(c) 

 

(d) 

Fig. 4.15  Contour plot of magnitude of vorticity (a) φ=0.05 and Re=1 (b) 

φ=0.05 and Re=50 (c) φ=0.3 and Re=1 (d) φ=0.3 and Re=50 (Arrow shows 

gravity direction) 
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It can be seen that as the Reynolds number increases the intensity and area of 

vorticity region around the particles also increases and thus the downstream wakes 

affects greater region. On the other hand when the solid volume fraction increases the 

downstream wakes structures are perturbed among many particles because of small 

inter-particle spacing. 

The deviation of average particle velocity from the power law of Richardson and 

Zaki was only observed for the case of φ=0.05 and Re=50. This can be due to the 

particle microstructures which are developed from the DKT events. As it is already 

explained that DKT events will lead to horizontally separated particles and thus the 

drag force experienced by each particle will be increased because of absence of 

particle motions in the wakes of other particles for longer times. Thus this reduces the 

average particle velocity of spheres in comparison with the power law associated with 

the random sphere distributions.  

 

4.5 Conclusions 

In this chapter, the dynamics of settling particles is studied numerically by using 

Immersed Boundary Method and Discrete Element Method. The Reynolds number 

based on the terminal velocity of particle ranges from 0.1 to 50 and the solid volume 

fraction ranges from single sphere to 0.4.  

It is found that the settling velocity for low solid volume fractions and moderate 

Reynolds number largely deviates from the established power law of Richardson and 

Zaki. This deviation is observed in the region of 0.002<φ<0.1 in which two body 

interactions or effects of DKT are observed to be dominant. For dense suspensions 

φ>0.1 the smaller inter-particle distances diminishes the wake structures necessary for 

DKT. DKT leads to horizontally separated particle pairs and thus increase in the drag 

force on particles. The increase in drag force decreases the average settling velocity 

and this is the reason for the deviation from Richardson and Zaki relation and 

nonlinearity in the average settling velocity for monodisperse spherical particles. By 

using the present simulation data, curve fitting is done and a new correlation is 

proposed for average settling velocity. Furthermore, the effect of domain size on 

velocity fluctuations of particles and fluid is also studied for both low and moderate 

range of Reynolds number. The increase of velocity fluctuations with domain size 

diminishes for moderate Reynolds number due to the decrease in the region affected by 
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particles by increase in Reynolds number. It is also observed that the Reynolds number 

has an adverse effect on particle pairing and clustering for dilute suspension in the 

present range of Re. The reason for this phenomenon can also be DKT as it supports 

horizontally separated pairs and not particle clusters. Furthermore, it was observed in 

this chapter that for studying the nonlinear effects in settling, dilute suspensions are the 

best candidates. In the next chapter, dilute suspensions are studied in more detail.  
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   Particle settling for dilute suspension Chapter 5

 

In the previous chapter it was observed that the dilute suspension showed a strong 

nonlinearity and deviation from expected settling behaviour. In this chapter, in order to 

clarify the physics of this strong nonlinearity, dilute suspension settling is studied in 

more detail for the extended range of Reynolds number. The sequence of this chapter is 

as follows in Section 5.1 brief introduction and literature review are given, it is 

followed by simulation setup in Section 5.2, discussion of results in Section 5.3 and 

conclusions in Section 5.4.  

 

5.1 Introduction 

In the previous chapter, particles dispersion in hindered settling was studied. 

Furthermore, it was observed that solid volume fraction inversely affect this two body 

event in settling. DKT showed strong effects for φ≤0.01 mild effects 0.01<φ≤0.1 and 

about no effects for 0.1<φ≤0.4. In this chapter, effects of particle clusters on average 

settling velocity, velocity fluctuations and particle structures are studied for φ≤0.05 and 

1<Re≤300. Furthermore, it is studied how solid volume fraction adversely affects the 

particle clusters in dilute suspension. For point particles in externally induced 

homogenous turbulence it is proposed
24

 that ratio of average settling velocity of 

particle to fluid velocity fluctuation is a good criteria for measuring particle clustering. 

In this chapter, this ratio is studied for particle induced turbulence.  

 

5.2 Simulation Setup 

As shown in the previous chapters, periodic domain is used in all the three 

directions. The particles are settled under the action of gravity with zero volume flow 

rate in the domain to mimic the unbounded suspension. For the conditions of particles 

and fluid please read Section 4.2. For investigations φ 0.005, 0.01, 0.03, 0.05 and Re 

1, 50, 100, 175, 250, 300 are studied. The settling Reynolds number is controlled by 

changing the gravity magnitude. The Reynolds number (Re) is based on the terminal 

velocity of single particle. 

 

All the results which will be discussed later are time averaged for about 1000 
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Stokes time after steady state is obtained. For φ=0.005, 0.01 L/  =170 is used and for 

φ=0.03, 0.05 L/  =100 is used in the horizontal two directions. The domain size in the 

gravity direction is elongated two times than the other two directions. These domain 

sizes ensured sufficient number of particles for obtaining the averaged results. The 

number of particles in the computational domain for φ=0.005, 0.01, 0.03 and 0.05 are 

11729, 23458, 14324 and 23874 respectively.  

5.3 Results and discussion 

5.3.1 Time evolution of average Reynolds number  

The temporal evolution of average settling Reynolds number (𝑅𝑒  𝑉    ⁄ ) of 

particles is shown in Fig. 5.1. The average fluid velocity is zero during simulations, 

thus the Reynolds number based on the slip velocity between particles and fluid and 

the average particle settling velocity are same. In all the studied cases of φ and Re, as 

can be seen in Fig. 5.1, the mean settling velocity initially increases and reaches a peak 

value, then it decreases and approaches a steady state. Furthermore, fluctuations in the 

average settling velocity about the steady state increase with the increase in the 

Reynolds number. These fluctuations and existence of peaks and valleys are due to the 

changing microstructures during settling. Velocity fluctuations in the average settling 

velocity and their relation with microstructures is explained in detail by Xiong et al.
83

 

 

In Fig. 5.1 the broken lines correspond to the Reynolds numbers calculated from Eq. 

(4.7). It can be seen that for φ=0.005 and 0.01, the average settling velocity from 

simulations for Re=175, 250 and 300 is usually greater than the Reynolds number 

calculated from Eq. (4.7). Moreover, for the other cases, it is less than the value 

predicted by Eq. (4.7).  

 

For more clarification, the ratio of Rep to Re is calculated with void fraction (1-φ) in 

Fig. 5.2 and 𝑛  with φ for different Re in Fig. 5.3. The general trend of Rep/Re is 

shown by solid black line for 1≤Re≤100 and black dashed line for 175≤Re≤300 in Fig. 

5.2. In Fig. 5.3 the two blue dashed lines shows the upper and lower limit of 𝑛  from 

Eq. (4.8) for 1≤Re≤300. As Eq. (4.8) is independent with solid volume fraction thus 

straight lines are obtained. 
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Fig. 5.1.  Time evolution of settling Reynolds number (a) φ=0.005 

(b) φ=0.01(c) φ=0.03 (d) φ=0.05 (Re=300, 250 175, 100 and 50 is 

represented by orange, blue, purple, green and red color respectively) 

 

 

Fig. 5.2. Variation of Rep/Re with (1-φ) 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Fig. 5.3. Variation of ne with Re and φ 

 

It can be seen in Fig. 5.3 that Eq. (4.8) shown by blue dashed line is not a suitable 

approximation for 𝑛  in the studied range of Re and φ. The trend of 𝑛  observed by 

simulations is as follows. 

 

1. For 0.005≤φ≤0.01 and 1≤Re≤100, 𝑛  decreases with Reynolds number. 

2. For 0.005≤φ≤0.01 and 175≤Re≤300, 𝑛  increases with Reynolds number.  

3. For 0.03≤φ≤0.05 and 1≤Re≤300 𝑛  varies with in the range of 9 to 4.  

 

In the studied range of Reynolds number and solid volume fraction a better way for 

the development of average settling velocity relation is to introduce a multiplication 

factor    in Eq. (4.11). The improved relation is given by:  

 

 𝑅𝑒    𝑅𝑒   𝜑    (5.1) 

 

In the above relation, 𝑛  remains the same as proposed by Richardson and Zaki
42

. 

This method was proposed by De Felice
74

 for more concentrated suspensions, i.e. 

φ>0.05. The equation for    is given by Eq. (5.2). The lines of curve fitting are shown 

by solid black line in Fig. 5.4. 

 

 
   {  .      .     

 .      . 8   .  

 .    𝜑   .  
 .   𝜑   .  

 

where    o 𝑅𝑒 

(5.2) 
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Fig. 5.4.  Variation of    with Re and φ 

 

The studied behavior of averaged settling velocity is due to the different 

microstructures formed at different Reynolds number and will be discussed in the next 

section. 

 

5.3.2 Particle structures during settling 

In the previous chapter it was observed that the particles make structures during 

settling due to hydrodynamic interactions. The radial distribution function (RDF) for 

the studied cases is shown in Fig. 5.5. For comparison with the hard spheres structure 

(HS), RDF of the Percus-Yevick 
70,89

 equation is also shown.   
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Fig. 5.5.  Radial distribution function for (a) φ=0.005 (b) φ=0.01  

(c) φ=0.03 (d) φ=0.05 

 

It can be seen that in about all the studied cases, RDF of the particles settling under 

gravity and that of hard spheres is different. In case of φ=0.005, 0.01, RDF shows 

closer particle pairs for Re=300, 250, 175 and 1. Moreover in these cases, the peak 

value at r /   =1 and the region of r in which RDF>1 is inversely proportional to the 

Reynolds number. For φ=0.005, 0.01 and Re=50, 100 the RDF around r /   =1 is 

smaller than the HS distribution indicating most of the particles separated with each 

other. For φ=0.03, 0.05 weak particle clustering is observed for Re=1. However, further 

increase in Reynolds number has negligible effect on RDF.  

 

Another way for characterizing the particle clustering is to calculate nearest 

neighbor distance ( 𝑁𝑁).  𝑁𝑁 is defined by. 

 

 

 𝑁𝑁  
 

𝑛 
∑ min

 =        
    

  

 = 

  (5.3) 

 

(a) 

 

 

(c) (d) 

 

(b) 
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where      is the distance between centres of particles i and j which is given by  

Eq. (5.4).  

        |     | (5.4) 

 

   and    are the position vectors of particle i and j respectively. The function 

min
 =        

 in Eq. (5.3) is a function that gives the minimum      for particle i and j=1 to 

𝑛  and j is not equal to i. Fig. 5.6 shows the time evolution of  𝑁𝑁 non-

dimensionalized by  𝑁𝑁 
 which is the initial value of  𝑁𝑁 (i.e. for random 

arrangements of particles). Thus at Stokes times equal to zero the value of 

 𝑁𝑁  𝑁𝑁 
⁄   is equal to one.  

 

 

 

  

Fig. 5.6.  𝑁𝑁  𝑁𝑁 
⁄  for (a) φ=0.005 (b) φ=0.01 (c) φ=0.03 (d) φ=0.05 

 

Similar like RDF, for φ=0.005, 0.01  𝑁𝑁  𝑁𝑁 
⁄  becomes less than one as the time 

evolves and become steady for Re=300, 250, 175 and 1. This indicates higher degree 

of clustering.  For φ=0.005, 0.01 and Re=50, 100  𝑁𝑁  𝑁𝑁 
⁄  becomes greater than 

one showing separated particles. For φ≧0.03 the effects of Reynolds number on 

(a) 

 

 

(c) 

 

(d) 

 

(b) 
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 𝑁𝑁  𝑁𝑁 
⁄  diminishes.  

 

The explanation of particle structures for Re≤50 was explained in detail in the 

previous chapter. By observing the trend of  𝑁𝑁  𝑁𝑁 
⁄  and RDF for Re=100 i.e. 

particle dispersion, similar discussion can be made. However for Re≧175 particles are 

showing clusters which increases with the increase in Reynolds number. In these range 

of Reynolds number, the downstream wakes become strong and the particles can 

interact with each other over large distances. When particles enter in the wakes of 

upstream particles they become entrapped and remain in these high fluid shear regions, 

thus making vertically elongated closed particle pairs or clusters and voids in low fluid 

shear regions. These clusters are quite robust and they persist over long time intervals. 

Furthermore, these clusters fall faster than the average and this is the reason for higher 

average settling velocity of particles for Re≧175 in comparison with Eq. (4.11). The 

above discussion is valid for φ=0.005 and 0.01. For φ =0.03 and 0.05, the ratio of 

average inter-particle distance to the particle diameter is 2.1 and 2.5 respectively as 

compared to 3.7 and 4.7 for φ=0.005 and 0.01. The ratio of average inter-particle 

distance to particle diameter (𝑙   ⁄ ) is calculated by Eq. (5.5). 

 

   𝑙 

  
 (

 

 𝜑
)

 
 ⁄

 (5.5) 

The smaller inter-particle distance makes the wakes structures perturbed and thus 

long chain particle clusters are not formed. This behavior was also observed and 

explained by Kajishima
52,53

. For further explanation, Figs. 5.7 and 5.8 shows the 

distributions of particles in the computational domain for φ=0.005 and 0.05 

respectively at t’=1500 (t’=t 𝑈𝑠/   where t’ is Stokes time, t is the actual time, 𝑈𝑠  is 

the terminal velocity of single particle and    is the particle diameter). For 

understanding the effects of vortices the iso-surfaces of    =10
4
 are also calculated 

and shown in the enlarged view of small section of the computational domain. In Fig. 

5.7 (b) and (c), it can be seen that due to particle-particle wake interactions vertical 

elongated particle clusters are formed. These elongated clusters make the regions of 

high particle densities and voidage in the computational domain (especially for 

Re=300) as can be seen in the top view. Particles also cluster for Re=175 as can be seen 

is in Fig. 5.7(b) and Fig. 5.8(b). For single particle case, Re=175 corresponds to 

axi-symmetric vortex flow regime without any vortex shedding. But since the particles 

come close to each other (for φ=0.005 due to particle-particle wake interactions and for 

φ=0.05 due to smaller inter-particle spacing) they act as single identities and 
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consequently the effective Reynolds number increases. The shedding of vortices can be 

particularly seen in Fig. 5.7(b) and (c). Each particle shed vortices but since the 

particles are in clusters, the vortices are mixed and very long elongated hair-pin 

vortices are formed especially for φ=0.005. These long vortices increase the effects of 

upstream particles and hence the entrapment of downstream particles get further 

increased resulting in long elongated vertical clusters. However for φ=0.05, because of 

relatively smaller inter-particle distances the wakes are shared among lots of particles 

even with those which are not in line with the upstream particles. Thus the effects of 

wakes on particle clustering get diffused.  

 
 

 

Fig. 5.7.  Particle distribution in the computational domain for φ=0.005  

(a) Re=50 (b) Re=175 (c) Re=300 

(b) 

 

(a) 

 

(c) 
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Fig. 5.8.  Particle distribution in the computational domain for φ=0.05 

 (a) Re=50 (b) Re=175 (c) Re=300 

 

 

(a) 

 

(b) 

 

(c) 
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One more interesting point which is observed in simulations is that particle 

clustering is a dynamic phenomenon. The downstream vortices from particles are the 

regions of high fluid shear. When particles move in high fluid shear regions, they 

experience Saffman lift force
92

 due to the difference of pressure distribution on the 

particle. Furthermore when particles collide, they also develop rotation. Rotating 

particles develop lift force due to the Magnus effect
93

. Both these lift forces on 

particles are sometimes forcing the particles to remain in the same cluster and 

sometimes forcing them to break-away from one cluster and joins another cluster. Thus 

in this way, the high density regions of particles kept changing their locations in the 

computational domain during settling.  

 

5.3.3 Fluid velocity fluctuation 

This section is related to the turbulence modulation due to particles. In the present 

case, there is no external source of turbulence thus any fluctuation or disturbance in the 

fluid velocity is due to particles. For quantification of turbulence, both along and 

perpendicular to the gravity direction, RMS values of fluid velocity fluctuations (𝑈́𝑟𝑚𝑠) 

is used and φ=0.005 and 0.05 is used as an example in Fig. 5.9. The velocity 

fluctuations are non-dimensionalized with the terminal velocity. 

  

Fig. 5.9.  Time evolution of fluid velocity fluctuations (a) φ=0.005 (b) φ=0.05. 

Solid line is for fluctuations in the gravity direction and dashed line is for 

fluctuations perpendicular to the gravity direction      

 

It can be inferred from Fig. 5.9 that the fluid velocity fluctuations for higher 

Reynolds number are higher. For φ=0.005, the velocity fluctuations for Re=300 are 

about 4 times higher than for Re=50. On the other hand for φ=0.05, the velocity 

fluctuations for Re=300 are about 1.5 times higher than for Re=50. The larger increase 

(a) 

 

(b) 
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in the velocity fluctuations with the Reynolds number for φ=0.005 can be due to the 

enhancements of particle clusters or structures.  

 

One more point that can be noticed from Fig. 5.9 is that the fluid velocity 

fluctuations in both directions synchronize with each other. However, the fluid velocity 

fluctuations in the gravity direction are more dominant and have larger value than in 

the direction perpendicular to gravity. For φ=0.005 and 0.05 the ratio of fluid velocity 

fluctuations in the gravity direction to the fluid velocity fluctuations perpendicular to 

the gravity direction are about 2 and 3 respectively. This anisotropy in the velocity 

fluctuations is due to the wake effects in the settling direction and was also observed 

by Parthasarathy et al.
94,95

 and Xiong et al.
83

. The smaller anisotropy observed for 

φ=0.005 can be due to complex three dimensional interactions between clusters. 

 

Jin et al.
24

 studied preferential concentration of settling particles in isotropic 

turbulence, for both point and finite-sized particles by numerical simulations. They 

observed that when point particles fall under the action of gravity in turbulent flow 

they develop mean drift velocity with the surrounding fluid which increases with the 

increase in the settling velocity of particles. This increase in drift velocity, drives the 

particles away from the clustered regions (high strain rate regions of turbulent flow) 

and thus make the particle arrangements more uniform. For the quantitative measure of 

this phenomenon they used ratio of average settling velocity to root mean square of 

fluid velocity fluctuations (𝑉 𝑈́𝑟𝑚𝑠⁄ ). Jin et al.
24

 proposed that this ratio is inversely 

proportional to particle clustering. The variation of this ratio with studied Reynolds 

number and solid volume fraction is shown in Fig. 5.10.  
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Fig. 5.10.  Variation of 𝑉 𝑈́𝑟𝑚𝑠⁄  with Re 

 

From Fig. 5.10, it can be seen that for all φ, the qualitative trend of 𝑉 𝑈́𝑟𝑚𝑠⁄  with 

Re is about same. 𝑉 𝑈́𝑟𝑚𝑠⁄  is maximum at Re=50 and then it decreases with the 

increase in the Reynolds number till Re=300. Furthermore, 𝑉 𝑈́𝑟𝑚𝑠⁄  decreases with 

the increase in φ.  

 

To see the relationship between 𝑉 𝑈́𝑟𝑚𝑠⁄  and particle clustering; plot between 

𝑉 𝑈́𝑟𝑚𝑠⁄  and time averaged  𝑁𝑁  𝑁𝑁 
⁄  is shown in Fig. 5.11.  
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Fig. 5.11.  Variation of  𝑁𝑁  𝑁𝑁 
⁄  with 𝑉 𝑈́𝑟𝑚𝑠⁄  

 

It can be seen that  𝑁𝑁  𝑁𝑁 
⁄  increases with the increase in 𝑉 𝑈́𝑟𝑚𝑠⁄ . Thus it can 

be inferred that 𝑉 𝑈́𝑟𝑚𝑠⁄  can be an indicator of particle clustering for free settling 

without any external source of turbulence. It is because of the relatively larger increase 

in fluid velocity fluctuations in comparison with average settling velocity when 

particles form clusters.  

 

5.4 Conclusions 

In this chapter, in order to clarify the physics of the strong nonlinearity observed in 

the dilute range in the previous chapter, settling dynamics of finite sized particles are 

investigated by DNS using Immersed Boundary Method and Dscrete Element Method. 

It is observed that for φ=0.005 and 0.01 particles form clusters for Re=175, 250, 300. 

The iso-surfaces of     showed that the wake structures between particles promote 

clustering for these cases. However for the rest of studied cases strong particle 

clustering is not observed. This is because either the cluster promoting wake structure 

is not developed or attenuated due to smaller inter-particle distance. Weak wakes for 

Re=50 and 100 promote drafting-kissing and tumbling scenario which lead to 

separated particles. Clustered particle enhances averaging settling velocity and fluid 

velocity fluctuations in comparison with non-clustered particles. It was found that there 

is a strong correlation between  𝑁𝑁  𝑁𝑁 
⁄ . 
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   Conclusions Chapter 6

 

In the present thesis, particle resolved direct numerical simulations are used to study 

hindered settling. The main objective is to study the effects of Reynolds number and 

solid volume fraction on the settling of monodisperse spheres. The range of Reynolds 

number in this thesis varies from 0.1 to 50 for dense suspension and up to 300 for dilute 

suspension. The conclusions of this thesis are given below: 

 

In Chapter 1, the background, aims and objectives of this thesis is given. In Chapter 

2, details of formulation are given. In this thesis, Immersed Boundary Method and 

Discrete Element Method is used. Thus in Chapter 2, details of the equations of the 

mentioned methods are given. 

 

In Chapter 3, fluid flow through fixed arrangements of particles are studied and 

extensive literature data are compared for benchmarking the present simulation code. 

Reynolds number is varied from 0.01 to 1000 and solid volume fraction is varied from 

0.05 to 0.5. The simulations results showed good agreement with most of the available 

results with the exception of Beetstra et al.
14

. The main reason for this was the 

overestimation of drag force by Beetstra et al.
14

 due to the use of relatively coarse grid. 

The variation of average drag force on spheres with Reynolds number is studied and it 

is observed that At the end, a new drag relation for randomly arranged monodisperse 

particles is proposed given by Eq. (3.14). The results of Chapter 3 gave a platform for 

performing simulations on more complex free settling particles in Chapters 4 and 5.  

 

In Chapter 4, particle settling is studied for moderate Reynolds number (1≤Re≤50) 

and wide range of solid volume fractions (0.002≤φ≤0.4). The present simulations 

showed deviation of average settling velocity from the standard power law of 

Richardson and Zaki
42

 for moderate Reynolds number and dilute suspension. It was 

found that the strong nonlinearity is caused by Drafting-Kissing and Tumbling (DKT) 

phenomenon. DKT is a phenomenon caused by particles binary interactions, finally 

make a horizontally separated particle pair that enhances the fluid drag on the particles. 

The effects of DKT and deviation from power law diminish with the increase in solid 

volume fraction due to the lack of space to make a binary interaction. At the end, the  

simulation results are curve fitted to propose a new relation for average settling velocity 

given by Eq. (4.10)-(4.12).  
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Chapter 4 introduced more specific problem in particle settling in dilute suspension 

regime. Thus in Chapter 5, particle settling is studied with particular emphasis on 

dilute suspension (0.005≤φ≤0.05) and with relatively higher Reynolds number 

(175≤Re≤300). For higher Reynolds number, the strong inter-particle wakes promoted 

particle clusters due to entrapment of particles in high fluid shear regions. This led to 

increase in settling velocity and fluid velocity fluctuations. The relation for average 

settling in dilute regime is given by Eq. (5.1) and (5.2).  

 

This thesis can be used for further studies in hindered settling. In the present thesis, 

effects of Stokes number or external source of inter-particle attractions like magnetic 

force is not studied. These areas can be investigated by using the results from this 

thesis. 
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