Title	Development of the Catalytic Reactions of Organochalcogen Compounds with Allenes and Isocyanides
Author（s）	城，大輔
Citation	大阪大学，2015，博士論文
Version Type	VoR
URL	https：／／doi．org／10．18910／52132
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．library．osaka－u．ac．jp／
Osaka University

Doctoral Dissertation

Development of the Catalytic Reactions of Organochalcogen Compounds with Allenes and Isocyanides

Daisuke Shiro

January 2015

Department of Applied Chemistry, Graduate School of Engineering, Osaka University

Development of the Catalytic Reactions of

Organochalcogen Compounds with Allenes and Isocyanides

有機カルコゲン化合物と アレンおよびイソシアニドとの触媒反応の開発

Daisuke Shiro

January 2015

Department of Applied Chemistry，
Graduate School of Engineering，
Osaka University

Preface

The study described in this thesis has been carried out (2009-2015) under the direction of Professor Nobuaki Kambe at Department of Applied Chemistry, Graduate School of Engineering, Osaka University. The objective of this thesis is concerned with studies on the developments of catalytic reactions of organochalcogen compounds such as chalcogenocarbamates and sulfenamides with allenes and isocyanides via cleavage of carbon-chalcogen bond and nitrogen sulfur bond using palladium and Lewis acid catalysts.

Department of Applied Chemistry
Graduate School of Engineering, Osaka University
Suita, Osaka, Japan
January, 2015

Daisuke Shiro

Contents

General Introduction 1
Chapter 1 Palladium-Catalyzed Decarbonylative Rearrangement of \boldsymbol{N}-Allenyl Seleno- and Tellurocarbamates
1-1 Introduction 6
1-2 Results and Discussion 7
1-3 Conclusions 12
1-4 Experimental Section 13
1-5 References and Notes 18
Chapter 2 Palladium-Catalyzed Insertion Reactions of Isocyanides into Thiocarbamates and Selenocarbamates
2-1 Introduction 20
2-2 Results and Discussion 21
2-3 Conclusions 26
2-4 Experimental Section 26
2-5 References and Notes 50
Chapter $3 \mathrm{AlCl}_{3}$-Catalyzed Insertion of Isocyanides into Nitrogen-Sulfur Bonds of Sulfenamides
3-1 Introduction 53
3-2 Results and Discussion 54
3-3 Conclusions 59
3-4 Experimental Section 60
3-5 References and Notes 67
Summary 69
List of Publications 70
Acknowledgement 71

General Introduction

Insertion reaction of an unsaturated organic molecule into a carbon-heteroatom bond is synthetically very useful transformation since a new carbon-carbon bond is constructed and heteroatom functionality is introduced in one step with high atom efficacy. A number of insertion reactions have been accomplished by the use of transition metal catalysts or under radical, cationic or anionic conditions (Figure 1).

Figure 1. Insertion reactions via cleavage of carbon-heteroatom bonds.

Many research groups including our group have focused on the utilization of chalcogen atoms ${ }^{1}$ and have developed a variety of insertion reactions of unsaturated organic molecules into carbon-chalcogen bonds of organochalcogen compounds. ${ }^{2}$

Among them, transition metal-catalyzed insertion reactions of alkynes into carbon-chalcogen bonds of organochalcogen compounds have been most energetically investigated 3 (Scheme 1). Bold lines in the corresponding products represent the parts of generating olefins derived from alkynes. Ando's group has reported the pioneering work in 1991, ${ }^{3 a}$ and many other research groups have developed several types of addition reactions. Our group has also disclosed palladium-catalyzed carbothio- ${ }^{3 \mathrm{~h}, 3 \mathrm{j}}$ and selenation ${ }^{3 \mathrm{c}}$ or platinum-catalyzed vinylselenation ${ }^{38}$ of alkynes with high regio- and stereoselectivity.

Scheme 1. Transition metal-catalyzed insertion of alkynes into organochalcogen compounds.

Insertion reactions of allenes into carbon-chalcogen bonds of organochalcogen compounds have also been reported; however, the numbers of reports are much fewer than those of alkynes. Recently, our group has reported inter- and intramolecular regio- and stereoselective carbo- and vinylselenation of allenes (Scheme 2). ${ }^{4}$

Scheme 2. Transition metal-catalyzed addition of allenes to organochalcogen compounds.

Transition metal-catalyzed insertion reactions of carbon monoxide into carbon-chalcogen bonds of organochalcogen compounds have also been reported by Alper's and Komiya's groups (Scheme 3). ${ }^{5}$

Scheme 3. Transition metal-catalyzed insertion of carbon monoxide into organochalcogen compounds.

On the contrary, transition metal-catalyzed insertion reaction of isocyanides into carbon-heteroatom bonds has never been attained. Since imine derivatives, the expected products, have been employed as versatile building blocks for the syntheses of pharmacologically active compounds and natural products, the design of new catalytic insertion reactions of isocyanides will bring about productive outcomes.

Based on these backgrounds, the present study was performed aiming at development of new insertion reactions of allenes and isocyanides into carbon-chalcogen bonds and nitrogen-sulfur bonds of organochalcogen compounds. The following findings would be good representations showing great potential of organochalcogen compounds for various catalytic transformation in organic chemistry.

In chapter 1, palladium-catalyzed insertion of allenes into carbon-chalcogen bonds of chalcogenocarbamates was undertaken to prepare α, β-unsaturated four-membered lactams. As a result, unprecedented decarbonylative rearrangement of N -allenyl seleno- and tellurocarbamates proceeded giving rise to 1-azadienes (Eq. 1).

In chapter 2, palladium-catalyzed insertion reactions of isocyanides into thiocarbamates and selenocarbamates are developed (Eq. 2).

$$
\mathrm{Z}=\mathrm{S}, \mathrm{Se}
$$

Finally, insertion reactions of isocyanides into nitrogen-sulfur bonds of sulfenamides in the presence of transition metal catalysts have been investigated. Although transition metal catalysts examined such as $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ were not effective, Lewis acid catalysts exhibited high catalytic activities. Thus, in chapter 3, AlCl_{3}-catalyzed insertion of isocyanides into nitrogen-sulfur bonds of sulfenamides is described (Eq. 3).

$$
\begin{equation*}
\mathrm{R}_{2} \mathrm{~N}-\mathrm{SAr}+\mathrm{R}^{\prime} \mathrm{NC} \xrightarrow{\text { Lewis Acid cat. }} \mathrm{R}_{2} \mathrm{~N}^{\mathrm{NR}^{\prime}} \tag{3}
\end{equation*}
$$

References and notes

(1) Fujiwara, S.; Kambe, N. Top. Curr. Chem. 2005, 251, 87.
(2) (a) Kuniyasu, H. In Catalytic Heterofunctionalization; Togni, A., Grützmacher, H., Eds.; Wiley-VCH: Weinheim, 2001; p 217. (b) Kuniyasu, H.; Kurosawa, H. Chem. - Eur. J. 2002, 8, 2660. (c) Kuniyasu, H.; Kambe, N. Chem. Lett. 2006, 35, 1320. (d) Kuniyasu, H.; Kambe, N. J. Synth. Org. Chem. Jpn. 2009, 67, 701. (e) Fujiwara, S.; Toyofuku, M.; Kuniyasu, H.; Kambe, N. Pure Appl. Chem. 2010, 82, 565.
(3) (a) Choi, N.; Kabe, Y.; Ando, W. Tetrahedron Lett. 1991, 32, 4573. (b) Hua, R.; Takeda, H.; Onozawa, S.; Abe, Y.; Tanaka, M. J. Am. Chem. Soc. 2001, 123, 2899. (c) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2005, 127, 9706. (d) Kamiya, I.; Kawakami, J.; Yano, S.; Nomoto, A.; Ogawa, A. Organometallics 2006, 25, 3562. (e) Hua, R.; Takeda, H.; Onozawa, S.; Abe, Y.; Tanaka, M. Org. Lett. 2007, 9, 263. (f) Yamashita, K.; Takeda, H.; Kashiwabara, T.; Hua, R.; Shimada, S.; Tanaka, M. Tetrahedron Lett. 2007, 48, 6655. (g) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2008, 130, 10504. (h) Minami, Y.; Kuniyasu, H.; Miyafuji, K.; Kambe, N. Chem. Commun. 2009, 3080. (i) Mitamura, T.; Ogawa, A. Tetrahedron Lett. 2010, 51, 3538. (j) Minami, Y.; Kuniyasu, H.; Sanagawa, A.; Kambe, N. Org. Lett. 2010, 12, 3744. (k) Inami, T.; Kurahashi, T.; Matsubara, S. Chem. Commun. 2015, 51, 1285.
(4) (a) Toyofuku, M.; Murase, E.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. Org. Lett. 2008, 10, 3957. (b) Toyofuku, M.; Murase, E.; Nagai, H.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. Eur. J. Org. Chem. 2009, 3141. (c) Fujiwara, S.; Okuyama, M.; Tsuda, S.; Iwasaki, T.; Kuniyasu, H.; Kambe, N. Tetrahedron 2012, 68, 10523. (d) Tsuda, S.; Okuyama, M.; Fujiwara, S.; Iwasaki, T.; Kuniyasu, H.; Kambe, N. Heterocycles 2015, 90, 1323.
(5) (a) Khumtaveeporn, K.; Alper, H. J. Org. Chem. 1994, 59, 1414. (b) Crudden, C. M.; Alper, H. J. Org. Chem. 1995, 60, 5579. (c) Furuya, M.; Tsutsuminai, S.; Nagasawa, H.; Komine, N.; Hirano M.; Komiya, S. Chem. Commun. 2003, 2046.

Chapter 1

Palladium-Catalyzed Decarbonylative Rearrangement of N-Allenyl Seleno- and Tellurocarbamates

1-1 Introduction

Transition metal catalyzed addition of heteroatom-containing compounds to unsaturated hydrocarbons has been well exploited as one of the most straightforward methods for the introduction of heteroatom functionalities to organic molecules. ${ }^{1}$ This transformation becomes more attractive and useful if carbon-carbon bonds can be created concomitantly with carbon-heteroatom bond formation. A promising approach to achieve this transformation is the insertion of an unsaturated carbon unit over a carbon-heteroatom bond. This type of transformation has been extensively explored using transition metal catalysts. ${ }^{2}$ For example, it was reported that carbamoselenoates $\mathbf{1}$ having a terminal alkynyl moiety on the nitrogen atom underwent selenocarbamoylation of alkynes intramolecularly with high regio- and stereoselectivities to afford four- to eight-membered lactams $\mathbf{2}$ having an exocyclic double bond in high yields by the use of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as a catalyst (eq 1). ${ }^{3}$

The treatment of vinylselenides $\mathbf{3}$ having a alkynyl-methyl group on the nitrogen atom with $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ afforded six-membered lactam frameworks $\mathbf{4}$ or 5 having a dienone unit by cis-vinylselenation of alkynes (eq 2). ${ }^{4}$

$\operatorname{Pd}(0)$-catalyzed selenocarbamoylation of allene, where carbamoselenoates $\mathbf{6}$ with a terminal allenyl group on the nitrogen atom afforded the corresponding α, β-unsaturated lactams 7 bearing an allylselenide moiety with perfect regioselectivity was also demonstrated (Eq. (3)). ${ }^{5}$

In this chapter, the reaction of seleno- and tellurocarbamate $\mathbf{8}$ possessing an allenyl group on the nitrogen atom was examined and unexpectedly it was found that the decarbonylative rearrangement occurred, giving rise to 1 -azadienes $\mathbf{1 0}$ without the formation of a four-membered lactam 9 (Eq. (4)).

1-2 Results and Discussion

At first, the reaction of $\mathbf{8}$ was carried out under similar conditions as employed in Eq. (3). Thus, when a toluene solution containing selenocarbamate 8a and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ was heated at $80^{\circ} \mathrm{C}$ for $5 \mathrm{~h}, 1$-azadiene 10a was obtained in 36% yield (Table 1, entry 1). $\mathrm{Ni}(\operatorname{cod})_{2}$ and $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ were also effective as a catalyst albeit in lower yields (entries 2 and 3). The use of aprotic and polar solvents such as $\mathrm{CH}_{3} \mathrm{CN}$, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) afforded the product in better yields. Among them, DMF gave the best yield of 58% (entries 4-8). In all entries, diphenyl diselenide and several unidentified compounds were detected as by-products.

Table 1. Reaction of $\mathbf{8 a}$ with Group 10 metal complexes in various solvents.

		alyst 5 mo ent, $80^{\circ} \mathrm{C}$,		
entry	catalyst	solvent	conv. (\%) ${ }^{a}$	yield (\%) ${ }^{\text {a }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	toluene	77	36
2	$\mathrm{Ni}(\mathrm{cod})_{2}$	toluene	>95	28
3	$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$	toluene	17	<5
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{CH}_{3} \mathrm{CN}$	>95	53
5	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	DMF	>95	58
6	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	DMSO	92	52
7	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	dioxane	63	33
8	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	EtOH	77	20

[^0]In Table 2, results obtained using monodentate and bidentate phosphine ligands were summarized. Triarylphosphines bearing electron-donating or -withdrawing groups afforded similar results (entries 1-3). Monodentate alkyl phosphines and phosphites were not effective for the synthesis of 1-azadiene 10a (entries 4-8). Interestingly, a four-membered lactam 11, not incorporating selenium, was obtained as the major product when PPhMe_{2} was employed (entry 5). To suppress decarbonylation, the reaction was performed under pressurized carbon monoxide (20 atm); however, the yield of lactam 11 was not improved (entry 6). The use of electron-rich and sterically less hindered phosphine ligands tends to favor the lactam formation. However, PCy_{3} gave nearly $1: 1$ mixture of $\mathbf{1 0 a}$ and $\mathbf{1 1}$, indicating that selectivity of products cannot be simply explained (entry 7). Bidentate ligands such as 1,4-bis(diphenylphosphino)butane (dppb) and 1,2-bis(diphenylphosphino)ethane (dppe) afforded only azadiene 10a like PPh_{3} (entry 1) in a similar manner with lower yields, respectively (entries 1, 9, 10). Both 1,5-bis(diphenylphosphino)pentane (dppen) and 1,6-bis(diphenylphosphino)hexane (dpphex) gave mixtures of $\mathbf{1 0 a}$ and $\mathbf{1 1}$ with nearly $3: 1$ and 2:1 ratio, respectively, as in the case of $\mathrm{PPh}_{2} \mathrm{Me}$ probably due to the flexible tether chains (entries 4, 11, 12). On the contrary, when 2,2'-bis(diphenylphosphino)-1,1'-binaphthalene (BINAP) was employed, 3-seleno-1-azadiene 10a was obtained in 88% yield (entry 13). Although it is unclear yet why BINAP can promote this reaction efficiently, the formation of by-products was largely suppressed. From the results in entries $9-14$, the yields of azadiene 10a do not seem to have simple correlation with bite angles of bidentate phosphines. ${ }^{6}$

Table 2. Pd-catalyzed rearrangement of $\mathbf{8 a}$ using various ligands.

		$\xrightarrow[5 \mathrm{~h}]{\mathrm{ol} \%}$		 11	
entry	ligand	X	10a (\%) ${ }^{\text {a }}$	11 (\%) ${ }^{\text {a }}$	angle ${ }^{b}$
1	PPh_{3}	10	47	--	145
2	$\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{MeO}\right)_{3}$	10	53	5	145
3	$\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CF}_{3}\right)_{3}$	10	51	--	145
4	$\mathrm{PPh}_{2} \mathrm{Me}$	10	23	12	136
5	PPhMe_{2}	10	<5	30	122
6^{c}	PPhMe_{2}	10	6	36	122
7	PCy_{3}	10	17	15	170
8	$\mathrm{P}(\mathrm{OEt})_{3}$	10	48	--	109
9	dppe	5	26	--	86
10	dppb	5	45	--	94
11	dpppen	5	51	18	
12	dpphex	5	19	12	
13	rac-BINAP	5	88 (79)	--	93
14	DPEphos	5	61	--	104

${ }^{a 1} \mathrm{H}$ NMR yield (Isolated yield). ${ }^{b}$ Cone angles (entry 1~8) and bite angles (entry 9~14). ${ }^{c}$ Reaction was carried out under 20 atm CO .

Plausible reaction pathways for the formation of 1-azadiene $\mathbf{1 0}$ and lactam $\mathbf{1 1}$ are depicted in Scheme 1. In the formation of 1 -azadiene 10a (right-hand side), the first step would be oxidative addition of the carbamoyl carbon-selenium bond of selenocarbamate 8a to palladium to generate a $\mathrm{NC}(\mathrm{O})-\mathrm{Pd}-\mathrm{Se}$ unit affording intermediate \mathbf{A}. Since no methylene chain exists between the nitrogen atom and the allenyl group in \mathbf{A}, coordination of the terminal double bond of the allenyl group to palladium is sterically difficult. Thus decarbonylation may occur to give intermediate B. Azadiene 10a may be obtained by reductive elimination of \mathbf{D}, generated from \mathbf{B} via aza- π-allylpalladium intermediate \mathbf{C}. The formation of aza- π-allylpalladium is suggested in the literatures. ${ }^{7}$

Scheme 1. A Plausible Reaction Pathway.

As for the formation of the lactam $\mathbf{1 1}$ (left-hand side), the SePh group of oxidative adduct \mathbf{A} would be replaced with the hydrogen atom leading to \mathbf{E}. The allene part of \mathbf{E} then undergoes carbo- or hydropalladation giving \mathbf{F} or \mathbf{G}, and the following reductive elimination would afford lactam 11. Although the formation of diphenyl diselenide was confirmed, all attempts to identify the hydrogen source failed unfortunately. Another possible pathway via intermediate $\mathbf{9}$ formed by intramolecular cyclization of A may not likely because deselenation did not proceed when the similar α, β-unsaturated lactams 7 bearing an allylselenide moiety were treated with $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} .{ }^{5 a}$ The formation of π-allylpalladium intermediate \mathbf{F}, from \mathbf{A} leading to \mathbf{F} via reductive deselenation cannot be ruled out. DFT calculations ${ }^{8}$ were performed to get information on the rearrangement pathways. These calculations were carried out using the Gaussian 09W set of programs with the B3LYP functional, the $6-31+\mathrm{G}(\mathrm{d})$ basis set for all nonmetallic atoms (H, C, O, N, P), and the LANL2DZ basis set for Pd and Se . In Fig. 1, $\mathbf{B}^{\prime}, \mathbf{C}^{\prime}$, and \mathbf{D}^{\prime} are the model compounds for possible intermediates \mathbf{B}, \mathbf{C}, and \mathbf{D} in Scheme 1. Although aza- π-allylpalladium complex \mathbf{C}^{\prime} was not optimized as a stable structure, complex D' was found to be $19.2 \mathrm{kcal} / \mathrm{mol}$ more stable than complex \mathbf{B} '. This result may reflect the difference of bond dissociation energies between $\mathrm{C}-\mathrm{Pd}$ and $\mathrm{N}-\mathrm{Pd}$ bonds. ${ }^{9}$ Although the bond dissociation energy of the $\mathrm{N}-\mathrm{Pd}$ bond is unknown, the $\mathrm{C}-\mathrm{Pt}$ bond is about $49 \mathrm{kcal} / \mathrm{mol}$ more stable than the N-Pt bond. From these results, it is proposed that the relative stability of \mathbf{D}^{\prime} over \mathbf{B} ' would be the driving force of decarbonylation and rearrangement, and the rearrangement from \mathbf{B} ' to \mathbf{D} ' may proceed through an aza- π-allylpalladium complex \mathbf{C} '.

Figure 1. DFT calculations of the model compounds.

Next, carbamoselenoate 8b bearing a benzyl group on the nitrogen was employed as a substrate. When $\mathbf{8 b}$ was treated under similar reaction conditions, a decarbonylative rearrangement also proceeded giving rise to 3 -seleno-1-azadiene 10b in 47% yield (Eq. (5)). ${ }^{1} \mathrm{H}$ NMR of the crude mixture of the reaction using a selenocarbamate having a phenyl group on the nitrogen suggested that the corresponding 1 -azadiene was formed in 37%; however, isolation of this product was not successful because it was hydrolyzed during purification.

In addition, this transformation also proceeded when a tellurium analogue was used (Eq. (6)). The corresponding 1-azadiene 10c was obtained in 49% yield from tellurocarbamate $\mathbf{8 c}$.

When 1-azadiene 10a was allowed to react with $\mathrm{CO}(20 \mathrm{~atm})$ in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, 10a was remained unchanged (Eq. (7)). This result indicates that the reverse process does not exist in this transformation.

Decarbonylation is frequently encountered in transition metal mediated reactions of carbonyl compounds. This decarbonylation usually occurs from intermediates having a structure of $\mathrm{R}-\mathrm{C}(\mathrm{O})-\mathrm{M}$, generated by oxidative addition of acid halides, aldehydes, etc. ${ }^{10}$ Transition metal catalyzed decarbonylation of esters, thioesters, acylstannanes, and phthalimides has also reported been and is considered to proceed through oxidative adducts having the $\mathrm{R}-\mathrm{C}(\mathrm{O})-\mathrm{M}$ structure. ${ }^{11}$ To the best of my knowledge, decarbonylation from the carbamoyl-metal unit $\left(\mathrm{R}_{2} \mathrm{~N}-\mathrm{C}(\mathrm{O})-\mathrm{M}\right)$ has never been reported.

1-3 Conclusions

In summary, the decarbonylative rearrangement proceeded by the treatment of an N-allenyl seleno- and tellurocarbamates $\mathbf{8}$ with the palladium catalyst to give a 3-seleno or 3-telluro-1-azadiene 10, in which the use of rac-BINAP as a ligand afforded the highest yield. This transformation involves unusual decarbonylation from carbamoyl-Pd units. In addition, a four-membered lactam 11 incorporating no chalcogen atom was obtained as a major product in moderate yields by using PPhMe_{2} as the ligand.

1-4 Experimental Section

General Comments

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a JEOL JNM-Alice 400 (400 and 100 MHz , respectively) spectrometer using CDCl_{3} as solvents and using $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Chemical shifts were reported in parts per million (δ) downfield from internal tetramethylsilane. Data are reported as follows: chemical shift in ppm (δ), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, brs = broad singlet, $\mathrm{m}=$ multiplet, $\mathrm{c}=$ complex $)$, coupling constant (Hz), integration. Infrared spectra (IR) were obtained on a JASCO Corporation FT/IR-4200 instrument equipped with ATR PRO450-S. Infrared spectra were recorded with a JASCO Corporation FT/IR-4200 instrument. Both conventional and high-resolution mass spectra were recorded with a JEOL JMS-DX303HF spectrometer (EI) or JEOL JMS-T100TD (DART). HPLC separations were performed on a recycling preparative HPLC (Japan Analytical; Model LC-908) equipped with JAIGEL-1H and -2H columns (GPC) using CHCl_{3} as an eluent. 1-Phenethylamine, diphenyl diselenide (Sigma-Aldrich, Tokyo, Japan), diphenyl ditelluride, propargyl bromide, triphosgen (Tokyo Chemical, Tokyo, Japan), pyridine, sodium
borohydride (Kishida Chemical, Osaka, Japan), potassium tert-butoxide (Nacalai Tesque, Kyoto, Japan), and dehydrated solvents (Wako Pure Chemical, Osaka, Japan) were purchased and used as received.

Synthesis of Selenocarbamate 8a

1) A-30 mL three-necked flask with a magnetic stirrer and a $100-\mathrm{mL}$ dropping funnel were dried with a heat gun at $120^{\circ} \mathrm{C}$ and then purged with N_{2}. After cooling to room temperature, 1-phenethylamine (120 mmol) was placed in the flask, 1-propargyl bromide (30 mmol) was added in the dropping funnel, and the flask was cooled in an ice bath. The solution in the funnel was added into the flask dropwise, and the reaction mixture was stirred overnight at room temperature. After the mixture was poured into $\mathrm{NaOH}(1 \mathrm{M})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 2)$, the combined organic phase was dried with MgSO_{4}. The solvents were removed in vacuo, and the residue was purified by silica gel column chromatography (n-hexane / EtOAc $=4: 3, \quad \mathrm{Rf}=0.3$) to afford N-phenethyl- N-propa-2-ynylamine (82%).
2) A-200 mL three-necked flask with a magnetic stirrer and a $100-\mathrm{mL}$ dropping funnel were dried with the heat gun at $120^{\circ} \mathrm{C}$ and then purged with N_{2}. Into a flask, triphosgen $(12.3 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were placed under N_{2}. After cooling in an ice bath, pyridine (24.6 mmol) was added carefully. To the solution, N-phenethyl- N-prop-2-ynylamine (24.6 mmol) was then added dropwise in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (60 mL) from the funnel. After the mixture was warmed up to room temperature, the stirring was continued overnight. After the mixture was poured into $\mathrm{HCl}(1 \mathrm{M})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 2)$, the combined organic phase was dried with MgSO_{4}. The solvents were removed in vacuo, and the black product was used in the next process without purification.
Caution: Triphosgen decomposes slightly to generate highly poisonous phosgene in air. All operation should be carried out in a well-ventilated hood.
3) A-300 mL three-necked flask with a magnetic stirrer and a $50-\mathrm{mL}$ dropping funnel were dried with the heat gun at $120^{\circ} \mathrm{C}$ and then purged with N_{2}. Into a $300-\mathrm{mL}$ flask, diphenyl diselenide (5.5 mmol), sodium borohydride (30 mmol), and THF (50 mL) were placed under N_{2} and the suspension was cooled to $0^{\circ} \mathrm{C}$. After methanol (4 mL) was added slowly, vigorous bubbling was occurred. After the color changed from pale yellow to white (about 30 min), N-phenethyl- N-prop-2-ynylcarbamoyl chloride (10 mmol) in THF (60 mL) was added at the room temperature, and the mixture was stirred for 3 h . After the mixture was poured into brine (50 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 2)$, the combined organic phase was dried with MgSO_{4}. The solvents were removed in vacuo, and the residue was purified by silica gel column chromatography (n-hexane $/ \mathrm{Et}_{2} \mathrm{O}=2: 1$, $\mathrm{Rf}=0.5$) to afford Se -phenyl N -phenethyl- N-propa-2-ynylcarbamoselenoate (83%).
4) A-50 mL two-necked flask with a magnetic stirrer was dried with the heat gun at $120^{\circ} \mathrm{C}$ and then purged with N_{2}. Into a $50-\mathrm{mL}$ flask, $S e$-phenyl N-phenethyl- N-propa-2-ynyl carbamoselenoate (8.29 mmol) and THF (50 mL) were placed and the suspension was cooled to $-42^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CN} /\right.$ dry ice bath). Into the flask, potassium tert-butoxide (1.66 mmol) was added at the same temperature and the mixture was stirred for 3 h . After the potassium tert-butoxide was filtered with celite and $\mathrm{Et}_{2} \mathrm{O}$, the mixture was poured into brine (30 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 2)$, the combined organic phase was dried with MgSO_{4}. The solvents were removed in vacuo, and the residue was purified by GPC to afford $S e$-phenyl N-phenethyl- N-propa-1,2-dien-1-yl carbamoselenoate 8a (60\%).

Pd(dba)2/rac-BINAP-Catalyzed Decarbonylative Isomerization of 8a:

A $5-\mathrm{mL}$ reaction flask equipped with a reflux condenser was dried with the heat gun at $120^{\circ} \mathrm{C}$ and then purged with N_{2}. After cooling to room temperature, $\mathrm{Pd}(\mathrm{dba})_{2}(0.02 \mathrm{mmol})$, rac-BINAP (0.02 mmol), DMF (1.0 mL), and $\mathbf{8 a}(0.4 \mathrm{mmol})$ were placed in the flask and added to the resulting black solution. The reaction mixture was heated in an oil bath at $80^{\circ} \mathrm{C}$ for 5 h . After cooling to room temperature, the volatiles were removed in vacuo. After the yield of 1-azadiene 10a was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy with 3-pentanone as an internal standard, 10a was purified with GPC (79\%).

Se-phenyl N-phenethyl- N-propa-1,2-dien-1-yl carbamoselenoate 8a:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.94(\mathrm{td}, J=7.5 \mathrm{~Hz}, 26.8 \mathrm{~Hz}, 2$
H), $3.68(\mathrm{td}, J=7.8 \mathrm{~Hz}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{dd}, J=6.0 \mathrm{~Hz}$,
$12.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.65,(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.59(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 33.7,34.5,48.8,87.0,87.9,98.9,99.7$, $125.9,128.4,128.6,128.8,129.1,136.6\left(J_{\mathrm{Se}-\mathrm{C}}=5.8 \mathrm{~Hz}\right), 137.9$, 138.4, 163.1, 202.0 ppm . IR (NaCl) 3037, 2968, 2939, 2359, 1955, 1713, 1670 (C=O), 1441, 1382, 1257, 1245, 1139, 1001, 874, 732, 694, 687, 672, 607,
$561 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 343 (M+, 5), 315 (8), 234 (34), 224 (9), 186 (6), 157 (14), 130 (7), 105 (100); Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NOSe}$ C, 63.16 ; H, 5.01; N, 4.09, Found C, 62.98; H, 4.83; N, 4.15.

(E)- N-Phenetyhyl-2-(phenylselanyl) prop-2-en-1-imine (10a):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.69(\mathrm{~m}, 10 \mathrm{H}), 7.85(\mathrm{~s}$, $1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 37.3,62.2,121.8,128.3$, $128.4,128.8,129.0,129.0,129.5,130.5,137.2\left(J_{\text {Se-C }}=5.3 \mathrm{~Hz}\right), 139.7$, $143.3,161.1 \mathrm{ppm}$. IR (NaCl) 3055, 3027, 2921, 1649, 1624 (C N), 1592, 1574, 1495, 1448, 1338, 1189, 1092, 981, 885, 757, 694, 629, 556 $\mathrm{cm}-1$; MS (EI) m/z (relative intensity, \%) 315 (M^{+}, 15), 234 (100), 224 (22), 210 (11), 195 (14), 157 (33); Anal. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NSe}$: 315.0526, Found 315.0528.

3-Methyl-1-phenethylazet-2(1H)-one (11):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.06(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.68 (dd, $J=2.7 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.06(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.65(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.2,34.1,51.0,126.1,126.4,126.5$, 127.1, 127.6, 128.6, 128.6, 128.7, 128.7, 128.7, 128.8, 128.9, 128.9, 129.0, $129.1,129.2,129.5,135.2,136.3,136.3,136.7,138.3,139.7,165.0 \mathrm{ppm}$.

Se-Phenyl N-benzyl- N-propa-1,2-dien-1-yl carbamoselenoate (8b):

The corresponding analogue $\mathbf{8 b}$ was prepared in a similar procedure as described for $\mathbf{8 a} \cdot{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 4.73 (s, 2 H), 5.33 (d, $J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.64$ ($\mathrm{s}, 1 \mathrm{H}$), 7.25-7.45 (m, 8 H), 7.57-7.65 (m, 2 H), ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 50.2,50.4,87.2,88.3,99.5,99.7,126.7,127.5,128.1$, $128.4,128.6,128.8,129.2,129.5,129.9,135.6,136.0,136.7\left(J_{\mathrm{Se}-\mathrm{C}}=5.3 \mathrm{~Hz}\right), 136.7,163.9$, 164.2, 202.3, 202.9 ppm . IR (NaCl) 3059, 2373, 2323, 1955, 1667 (C=O), 1578, 1496, 1475, 1439, 1378, 1295, 1251, 1173, 1098, 1073, 1022, 960, 878, 737, $688 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) $329\left(\mathrm{M}^{+}, 2\right), 301$ (5), 238 (2), 220 (14), 172 (4), 157 (5), 91 (100). Anal. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NOSe}$: 329.0319, Found. 329.0320.

(E)- N -benzyl-2-(phenylselanyl) prop-2-en-1-imine (10b):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.80(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~s}$, 1 H), 7.24-7.44 (m, 8 H), 7.60-7.69 (m, 2 H), 8.05 (s, 1 H$) ~ p p m . ~{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 63.6,122.2,126.7,127.0,127.9,128.5$, $128.6,128.8,129.5,137.2\left(J_{\mathrm{Se}-\mathrm{C}}=5.3 \mathrm{~Hz}\right), 138.7,143.8,161.5 \mathrm{ppm}$.
IR (NaCl) 3059, 3028, 2848, 1953, 1632 (C=N), 1584, 1494, 1475, 1452, 1437, 1346, 1301,

1230, 1156, 1065, 1022, 999, 960, 889, 845, 819, 736, $692 \mathrm{~cm}^{-1}$; MS (EI) m / z (relative intensity, \%) $301\left(\mathrm{M}^{+}, 21\right), 220$ (92), 183 (4), 157 (6), 144 (14), 130 (23), 104 (18), 91 (100); Anal. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NSe}$: 301.0370, Found. 301.0371.

$T e$-Phenyl N-phenethyl- N-propa-1,2-dien-1-yl carbamotelluroate (8c):

The corresponding tellurium analogue 8c was prepared in a similar procedure as described for $\mathbf{8 a} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=2.87(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.38-5.40(\mathrm{~m}$, $2 \mathrm{H}), 5.51-5.53$ (m, 2 H), 6.24-6.27 (m, 2 H), 7.17-7.41 (m, 16 H), 7.72-7.90 (m, 4 H$) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $34.1,35.0,48.9,50.4,86.5,87.6,98.0,100.2,114.2,114.9,126.4,126.9,128.5,128.8,128.9$, 129.0, 129.1, 129.4, 137.8, 138.4, 140.4, 140.5, 155.6, 156.3, 202.2, $203.4 \mathrm{ppm} . \operatorname{IR}(\mathrm{NaCl})$ 3055, 3026, 2938, 1656 (C=O), 1435, 1376, 1246, 1141, 999, 733, $699 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 393 ($\mathrm{M}^{+}, 4$), 365 (13), 234 (14), 207 (15), 186 (22), 144 (27), 105 (100); Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NOTe}$ C, 55.30 ; H, 4.38; N, 3.58, Found C, 55.02; H, 4.16; N, 3.54 .
(E)- N -phenethyl-2-(phenyltellanyl) prop-2-en-1-imine (10c):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.46 (s, 1 H), 6.38 (s, 1 H), 7.18-7.41 (m, 8 H), 7.73 (s, 1 H), 7.88-7.90 (m, 2 H) ppm. Nuclear Overhauser effect experiment; irradiation at $\delta 7.73\left(\mathrm{H}_{\mathrm{a}}\right)$ resulted in 7.6% enhancement of signal at $\delta 3.78\left(\mathrm{H}_{\mathrm{b}}\right)$ and 6.2% enhancement of signal at $\delta 6.38\left(\mathrm{H}_{\mathrm{c}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 37.2,61.4$, $112.9,126.1,127.9,128.3,128.6,129.1,129.5,133.4,139.8,141.7,162.9 \mathrm{ppm} . \operatorname{IR}(\mathrm{NaCl})$ 3026, 2925, 2840, 1629 (C=N), 1585, 1433, 901, 735, $696 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 365 (M^{+}, 31), 274 (15), 234 (44), 207 (44), 144 (100); Anal. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NTe}$: 365.0423, Found 365.0419.

1-5 References and Notes

(1) For recent reviews, see (a) Suginome, M.; Ito, Y. Chem. Rev. 2000, 100, 3221; (b) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205; (c) Ogawa, A. J. Organomet. Chem. 2000, 611, 463; (d) Kuniyasu, H.; Kurosawa, H. Chem. Eur. J. 2002, 8, 2660; (e) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079; (f) Beletskaya, I. P.; Moberg, C. Chem. Rev. 2006, 106, 2320.
(2) (a) Choi, N.; Kabe, Y.; Ando, W. Tetrahedron Lett. 1991, 32, 4573; (b) Hua, R.; Takeda, H.; Onozawa, S.; Abe, Y.; Tanaka, M. J. Am. Chem. Soc. 2001, 123, 2899; (c) Sugoh, K.; Kuniyasu, H.; Sugae, T.; Ohtaka, A.; Takai, Y.; Tanaka, A.; Machino, C.; Kambe, N.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 5108; (d) Hirai, T.; Kuniyasu, H.; Kato, T.; Kurata, Y.; Kambe, N. Org. Lett. 2003, 5, 3871; (e) Yamashita, F.; Kuniyasu, H.; Terao, J.; Kambe, N. Org. Lett. 2008, 10, 101.
(3) (a) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2005, 127, 9706; (b) for a review, see Fujiwara, S.; Toyofuku, M.; Kuniyasu, H.; Kambe, N. Pure Appl. Chem. 2010, 82, 565.
(4) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2008, 130, 10504.
(5) (a) Toyofuku, M.; Murase, E.; Nagai, H.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. Eur. J. Org. Chem. 2009, 3141; (b) for intermolecular version, see Toyofuku, M.; Murase, E.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. Org. Lett. 2008, 10, 3957.
(6) Birkholz (nee Gensow), M.-N.; Freixa, Z.; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2009, 38, 1099.
(7) (a) O’Donnell, M. J.; Yang, X.; Li, M. Tetrahedron Lett. 1990, 31, 36, 5135; (b) Murai, M.; Miki, K.; Ohe, K. Chem. Commun. 2009, 3466; (c) Pattison, G.; Piraux, G.; Lam, H. W. J. Am. Chem. Soc. 2010, 132, 14373.
(8) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09 Revision A.02; Gaussian: Wallingford, CT, 2009.
(9) Haynes, W. M. (Ed.); CRC Handbook of Chemistry and Physics, 93rd Edition: A Ready-Reference Book of Chemical and Physical Data; CRC Press; Boca Raton, FL, 2012; pp. 9-65.
(10) For reviews, see (a) Dermenci, A.; Dong, G. B. Sci. China Chem. 2013, 56, 685; (b) Colquhoun, H. M.; Thompson, D. J.; Twigg, M. V. (Eds.); Carbonylation: Direct Synthesis of Carbonyl Compounds; Plenum Press: New York, 1991; Ch. 11.
(11) For esters, see (a) Kajita, Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2008, 130, 17226; (b) Fujiwara, K.; Kurahashi, T.; Matsubara, S. Chem. Lett. 2011, 40, 322; (c) Maizuru, N.; Inami, T.; Kurahashi, T.; Matsubara, S. Org. Lett. 2011, 13, 1206; (d) Ochi, Y.; Kurahashi, T.; Matsubara, S. Org. Lett. 2011, 13, 1374. For thioesters, see (e) Sugoh, K.; Kuniyasu, H.; Sugae, T.; Ohtaka, A.; Takai, Y.; Tanaka, A.; Machino, C.; Kambe, N.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 5108; (f) Hirai, T.; Kuniyasu, H.; Kambe, N. Chem. Lett. 2004, 33, 1148; (g) Hirai, T.; Kuniyasu, H.; Asano, S.; Terao, J.; Kambe, N. Synlett 2005, 7, 1161; (h) Yamashita, F.; Kuniyasu, H.; Terao, J.; Kambe, N. Org. Lett. 2008, 10, 101; (i) Inami, T.; Baba, Y.; Kurahashi, T.; Matsubara, S. Org. Lett. 2011, 13, 1912; (j) Inami, T.; Kurahashi, T.; Matsubara, S. Chem. Commun. 2011, 47, 9711. For acylstannanes, see (k) Nakao, Y.; Satoh, J.; Shirakawa, E.; Hiyama, T. Angew. Chem., Int. Ed. 2006, 45, 2271. For phthalimides, see (1) Kajita, Y.; Matsubara, S.; Kurahashi, T. J. Am. Chem. Soc. 2008, 130, 6058; (m) Fujiwara, K.; Kurahashi, T.; Matsubara, S. Org. Lett. 2010, 12, 4548; (n) Havlik, S. E.; Simmons, J. M.; Winton, V. J.; Johnson, J. B. J. Org. Chem. 2011, 76, 3588.

Chapter 2

Palladium-Catalyzed Insertion Reactions of Isocyanides into Thiocarbamates and Selenocarbamates

2-1 Introduction

The transition-metal-catalyzed insertion of an unsaturated organic molecule into a carbon-heteroatom bond is one of the most straightforward and atom-economical methods for the synthesis of heteroatom compounds with the concomitant extension of the carbon skeleton. However this transformation is difficult to achieve efficiently in comparison to similar insertion reactions involving heteroatom-heteroatom bonds ${ }^{1}$ or heteroatom-hydrogen bonds. ${ }^{2}$ This is due, in part, to fact that the cleavage of carbon-heteroatom bonds by the oxidative addition to transition metals is not as efficient as the reaction of heteroatom-heteroatom and heteroatom-hydrogen bonds. Unsaturated compounds that have been employed in such transformations include alkynes, allenes, carbon monoxide, isocyanides, etc. Among them, the insertion of alkynes into carbon-heteroatom bonds (C-Z, Z $=\mathrm{Si}, \mathrm{Sn}, \mathrm{P}, \mathrm{S}, \mathrm{Se}$, etc. $)^{3}$ has been exploited extensively as a two carbon homologation reaction during the past two decades. Recently, several examples of the insertion of allenes into carbon-heteroatom bonds have been reported. ${ }^{4}$
Carbon monoxide has been utilized as a one-carbon homologating agent for introduction into C-O, C-N and C-S bonds giving rise to lactones, lactams, thioesters, thiolactones, etc. ${ }^{5}$ Similarly several examples of the insertion of an isocyanide into heteroatom compounds are available, ${ }^{6-9}$ whereas transition-metal-catalyzed reactions have been limited to the following two examples. Ito and co-workers reported on the Pd-catalyzed disilylation of isocyanides with $\mathrm{Me}_{3} \mathrm{SiSiMe}_{3} .{ }^{10}$ Kurosawa and co-workers revealed the reaction of a disulfide with an isocyanide in the presence of a Pd catalyst to give 1:1, 1:2, and 1:3 addition products ($m=$ 1-3) (eq 1). ${ }^{11}$

$$
\begin{equation*}
(\mathrm{PhS})_{2}+\underset{\mathrm{Ar}=\text { 4-Methylphenyl }}{\text { ArNC }} \xrightarrow{\text { cat. } \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}} \mathrm{PhS}_{\substack{\text { NAr }}}^{\mathrm{J}_{m} \mathrm{SPh}} \tag{1}
\end{equation*}
$$

In addition, the analogous insertion of isocyanides into carbon-heteroatom bonds has never been attained. Herein, the first example of the palladium-catalyzed insertion of isocyanides 2 into carbon-sulfur and carbon-selenium bonds of thio- or selenocarbamates $\mathbf{1}$ or $\mathbf{5}$ giving rise to the 1,1-insertion products $\mathbf{3}$ or $\mathbf{6}$, respectively, with high selectivities is described.

2-2 Results and Discussion

The reaction of a thiocarbamate ($\left.\mathbf{1 a}, \mathrm{Me}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{SPh}\right)$ with an isocyanide $\mathbf{2 a}$ was initially
examied. When a toluene solution (0.8 mL) containing 2,6-xylyl isocyanide (2a) (0.4 mmol), 1a $(0.4 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$ was heated at reflux for 5 h , the insertion product, amino 2-oxoethanimidothioate 3a, was obtained in 32% yield (Table 1, entry 1). Unlike the reaction with a disulfide shown in eq 1 , this reaction is selective and the possible 1:2 addition product $\mathbf{4 a}$ was formed in only 1% yield and other multiple insertion products such as $1: 3$ addition products were not detected. The reaction using other monodentate and bidentate phosphine ligands was examined and the results are summarized in Table 1. The use of a triarylphosphine bearing an electron donating group, trialkylphosphine, and phosphite afforded similar results as PPh_{3} (entries 1, 2, 4 and 5), however, a triarylphosphine derivative containing an electron-withdrawing CF_{3} group was not a suitable ligand (entry 3). Bidentate tetraphenylbisphosphine ligands with a different tether unit afforded 3a in similar yields (entries 7-10), but the use of an analogous tetracyclohexylbisphosphine resulted in a decreased product yield (entry 11).

Table 1. Pd-catalysed insertion of an isocyanide to $\mathbf{1 a}$ using various ligands.

	h^{+} 2a	$\xrightarrow[\begin{array}{c} \text { toluene }(0.5 \mathrm{M}) \\ 110^{\circ} \mathrm{C}, 5 \mathrm{~h} \end{array}]{\begin{array}{l} \mathrm{Pd}(\mathrm{dba})_{2} \\ \text { ligand }(\mathrm{Y} \mathrm{~mol} \%) \end{array}}$				
				32		4a
		Y	conv. of 1a (\%) ${ }^{a}$	conv. of $\mathbf{2 a}$ (\%	yield 3a (\%	yield $\text { f } 4 \mathrm{a}(\%)^{a}$
1	PPh_{3}	10	42	57	32	1
2	$\mathrm{P}\left(p\right.$-tolyl) ${ }_{3}$	10	39	51	35	n.d.
3	$\mathrm{P}\left(p-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}$	10	20	60	18	2
4	PCy_{3}	10	53	57	32	5
5	$\mathrm{P}(\mathrm{OEt})_{3}$	10	51	70	45	n.d.
6	dppe	5	17	40	6	n.d.
7	dppp	5	66	75	60	n.d.
8	dppb	5	54	87	54	1
9	dpppen	5	63	84	55	5
10	dpphex	5	44	53	40	6
11	dcypp ${ }^{\text {b }}$	5	38	58	27	n.d.
12^{c}	dppp	5	74	100	61	n.d.

$\overline{{ }^{a}}$ Determined by GC, and the yields are based on 2a. ${ }^{b}$ dppe: 1,2-
bis(diphenylphosphino)ethane; dppp: 1,3-bis(diphenylphosphino)-propane; dppb: 1,4-
bis(diphenylphosphino)butane; dpppen: 1,5-bis(diphenylphosphino)pentane; dpphex: 1,6-
bis(diphenylphosphino)hexane; dcypp: 1,3-bis(dicyclohexylphosphino)propane.
${ }^{c}$ DMF was employed as a solvent.

When DMF was employed as a solvent, the isocyanide 2 was completely consumed, but the yield of $\mathbf{3 a}$ was not improved (entries 7 and 12). It can be postulated that the oxidative addition of the carbon-sulfur bond of the desired product 3a towards Pd might proceed in DMF and this further reaction resulted in the loss of the product $\mathbf{3 a}$. Thus, the reaction using excess amounts of the thiocarbamate $\mathbf{1 a}$ was conducted to suppress the further reaction of $\mathbf{3 a}$
and the results are shown in Table 2. As expected, the use of an excess of 1a improved the yields, and $\mathbf{3 a}$ was obtained in 87% yield when 2.5 equiv of $\mathbf{1 a}$ was employed in the reaction (entry 3). The product 3a was isolated as a single stereoisomer by column chromatography and the Z-configuration with respect to $\mathrm{C}=\mathrm{N}$ double bond was confirmed by X-ray analysis.

Table 2. Screening of the amount of thiocarbamate 1a.

${ }^{a}$ Determined by GC based on 2a. ${ }^{b}$ Isolated yield.

This insertion reaction was carried out using several different thio- and selenocarbamates under the same conditions and the results are given in Table 3. The N, N-diethylthiocarbamate $\mathbf{1 b}$ and morpholinocarbothioate $\mathbf{1 c}$ also afforded the corresponding amino 2-oxoethanimidothioates $\mathbf{3 b}$ and $\mathbf{3 c}$ in high yields (entries 1 and 2). The thiocarbamate 1d containing a bulkier diisopropyl amino group yielded the product in good yield (entry 3). However, the presence of a phenyl group(s) on the nitrogen led to lower yields (entries 4 and 5).

Then the influence of aryl groups on the sulfur of thiocarbamates and on the nitrogen of isocyanides was examined. The reaction of $\mathbf{1 h}$ having a p-trifluoromethyl group on the aromatic ring afforded the expected adduct $\mathbf{3 h}$ in high yield (94%), however, the presence of a p-methoxy group resulted in a lower yield of 60% (entries 8 and 9). Although the reaction of the 2,6-diisopropylphenyl isocyanide (2b) with the thiocarbamate $\mathbf{1 a}$ afforded the corresponding product $3 \mathbf{i}$ in 62% yield (entry 10), the desired products were not obtained from cyclohexyl, adamantyl, p-methoxyphenyl, o-tolyl, and 3,5-xylyl isocyanides. These results suggest that this reaction proceeds only with aryl isocyanides that contain substituents at both ortho positions.
When the selenocarbamates $\mathbf{5 a}$ and $\mathbf{5 b}$ were employed as substrates, the corresponding products $\mathbf{6 a}$ and $\mathbf{6 b}$ were obtained in moderate yields (entries 6 and 7), probably due to the partial decomposition of the products during their isolation by column chromatography.

Table 3. Syntheses of several kinds of amino 2-oxoethanimidothiotae 3.

entry

7

24 h

6b, $64 \%\left(71 \%{ }^{\text {b }}\right.$)

8

4 h

3g, 60%

7 h

3h, 94%

3i, 62%
${ }^{a}$ Isolated yield. ${ }^{b 1} \mathrm{H}$ NMR yield.
${ }^{c}$ 2,6-Diisopropylphenyl isocyanide (2b) was used instead of 2,6-xylyl isocyanide.
Plausible reaction pathways of thiocarbamates $\mathbf{1}$ are shown in Scheme 1. The catalytic cycle is initiated by the oxidative addition of the carbamoyl-S bond of $\mathbf{1}$ to $\operatorname{Pd}(0)$, affording the carbamoyl-Pd-S complex A. The coordination of an isocyanide to the palladium gives
complex B. Insertion of the coordinated isocyanide into the $P d-S$ bond generates a thiopalladation intermediate $\mathbf{C 1}$, or the insertion into the carbamoyl-Pd bond affords a carbopalladation intermediate C2. Finally, reductive elimination from $\mathbf{C 1}$ or $\mathbf{C 2}$ produces the addition product 3 .

Scheme 1. Plausible reaction pathway for the formation of 3.

To shed light on the mechanism of the insertion process from intermediate \mathbf{B}, DFT calculations were performed with methyl isocyanide and $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{SMe}$ as substrates and PH_{3} as the ligand for the palladium. Complex \mathbf{B} ' shown in Scheme 2 is an optimized model for the isocyanide coordinated intermediate. The intermediate \mathbf{B} ' undergoes thiopalladation or carbopalladation to give $\mathbf{C 1}{ }^{\prime}$ or $\mathbf{C 2}{ }^{\prime}$, respectively. The relative energies of $\mathbf{C 1}$ ', $\mathbf{C} 2$ ' and the transition states TS1-TS4 shown in Scheme 2 suggest that C-S bond forming steps are more facile than C-C bond forming steps in either pathways and overall the thiopalladation pathway would be more likely. ${ }^{12}$

Scheme 2. Computational calculations for isocyanide insertion and reductive elimination.

B3LYP/LANL2DZ for Pd, 6-31G(d,p) for the rest

2-3 Conclusions

In summary, the first example of the transition metal catalyzed insertion of isocyanides into carbon-sulfur bonds is revealed. This protocol could also be applied to the insertion of isocyanides into carbon-selenium bonds. DFT calculations indicate that the reaction proceeds via a thiopalladation pathway and not a carbopalladation pathway.

2-4 Experimental Section

General Comments

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with JEOL JNM-Alice 400 (400, 100 and 376 MHz , respectively) spectrometers using CDCl_{3} as the solvent and $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard in 5 mm NMR tubes. Chemical shifts are reported in parts per million (d) downfield from internal tetramethylsilane. Data are reported as follows: chemical shift in ppm (δ), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, brs = broad singlet, $\mathrm{m}=$ multiplet), coupling constant (Hz), integration. Infrared spectra (IR) were obtained on a JASCO Corporation FT/IR-4200 instrument equipped with ATR PRO450-S. Both conventional and high-resolution mass spectra were recorded using a JEOL JMS-DX303HF spectrometer (EI) or a JEOL JMS-T100TD (DART). Elemental analyses were performed at Instrumental Analysis Center, Faculty of Engineering, Osaka University. HPLC separations were performed on a recycling preparative HPLC (Japan Analytical; Model LC-908) equipped with JAIGEL-1H and -2H columns or Shodex K2001 and 2002 columns (GPC) using CHCl_{3} as
the eluent. GC analyses were performed on a Shimadzu GC-2014 instrument equipped with a GL Sciences InertCap 5 capillary column (I.D. 0.25 mm , Length 30 m , df $0.25 \mu \mathrm{~m}$). GC yields were determined using a hydrocarbon as an internal standard. GC Mass analyses (EI) were recorded with a JEOL JMS-mate operating in the electron impact mode (70 eV) equipped with InertCap 5MS/NP column (I.D. 0.25 mm , Length 30 m , df $0.25 \mu \mathrm{~m}$). X-ray crystallographic analyses were carried out using a Rigaku R-AXIS RAPID diffractometer $(\mathrm{Cu}-\mathrm{K} \alpha)$ (compound 3a). The structures of $\mathbf{3 a}$ was solved by direct methods (SHELX-97 ${ }^{13}$). The structure was refined on F^{2} by full-matrix least-squares method using SHELXL-97. ${ }^{14}$ The crystal was mounted on the CryoLoop (Hampton Research Corp.) with a layer of light mineral oil and placed in a nitrogen stream at 123(2) K. Non-hydrogen atoms were anisotropically refined. Hydrogen atoms were included in the refinement on calculated positions riding on their carrier atoms. DFT calculations were executed using Gaussian 09. ${ }^{15}$ 2,6-Xylyl isocyanide $\mathbf{2 a}{ }^{8 b}$ and 2,6-diisopropylphenyl isocyanide $\mathbf{2 b}^{16}$ were synthesized according to the literature procedure. $\operatorname{Pd}(\mathrm{dba})_{2}$ (Tokyo Chemical Industry, Tokyo, Japan), 1,3-diphenylphosphinopropane (Sigma-Aldrich, Tokyo, Japan) and dehydrated solvents (Wako Pure chemical, Osaka, Japan) were purchased and used as received.

Syntheses of Thio- and Selenocarbamates

Thiocarbamates 1a-g were obtained by the reaction of benzenethiol with the corresponding carbamoyl chlorides in THF in the presence of 5 equiv of pyridine. Thiocarbamates $\mathbf{1 h}$ and $\mathbf{1 i}$ were also produced by the reaction of the corresponding thiols with dimethylcarbamoyl chloride. Selenocarbamates 5a and 5b were prepared according to previously reported procedures. ${ }^{17}$

S-Phenyl N, N-dimethylcarbamothioate (1a): ${ }^{18}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.02$ (brs, 3 H), 3.08 (brs, 3 H), 7.35-7.39 (m, 3 H), 7.48-7.51 (m, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 36.8,128.7,128.8,129.1,135.6,166.8 \mathrm{ppm}$. IR (neat) 2924, 1663, 1474, 1436, 1401, 1360, 1254, 1084, 1020, $906,755,681 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 181 ($\mathrm{M}^{+}, 13$), 109 (7), 72 (100), 65 (4); Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11}$ NOS: C, 59.64; H, 6.12; N, 7.73; S, 17.69. Found C, 59.52; H, 6.04; N, 7.70; S, 17.49. Anal. HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NOS}: 181.0561$, Found 181.0560.
\boldsymbol{S}-Phenyl $\boldsymbol{N}, \boldsymbol{N}$-diethylcarbamothioate (1b): ${ }^{19}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.16$ (brs, 3 H),
 1.27 (brs, 3 H), 3.43 (q, $J=6.8 \mathrm{~Hz}, 20.4 \mathrm{~Hz}, 4 \mathrm{H}$), $7.37-7.38$ (m, 3 H), 7.49-7.52 (m, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.1$, 13.7, 42.3, 77.2, 128.7, 128.8, 128.9, 135.7, 165.6 ppm. IR (neat) 2976, 1658, 1440, 1402, 1307, 1246, 1217, 1114, 1090, 1024, 941,

851, 746, 688, $660 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) $209\left(\mathrm{M}^{+}, 6\right), 149$ (3), 109 (11), 100 (100), 72 (39), 44 (8); Anal. HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NOS}$: 209.0874, Found. 209.0874.

S-Phenyl morpholine-4-carbothioate (1c): ${ }^{18}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.60(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.72(\mathrm{t}, J=$ $4.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.38-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.51(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 45.3,66.5,127.9,129.0,129.3,135.8,166.3$ ppm. IR (neat) 2975, 2908, 2857, 1651, 1440, 1401, 1269, 1208, 1108, 1066, 1013, 936, 878, 836, 756, 689, $682 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 223 $\left(\mathrm{M}^{+}, 21\right), 114$ (100), 109 (13), 70 (43); Anal. HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}: 223.0667$, Found 223.0668.

S-Phenyl N, N-diisopropylcarbamothioate (1d): ${ }^{20}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.33$ (brs, 12 H), 3.50 (brs, 1 H), 4.20
(brs, 1 H), 7.37-7.39 (m, 3 H), 7.49-7.51 (m, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.6,47.5,49.6,128.8,128.9,129.2,135.9$, 163.8 ppm . IR (neat) 2973, 1658, 1418, 1371, 1278, 1205, 1150, 1036, 813, 748, 688, $663 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) $237\left(\mathrm{M}^{+}, 1\right), 194$ (1), 152 (1), 128 (100), 110 (41), 86 (77), 43 (48); Anal. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{19}$ NOS: 237.1187, Found. 237.1186.
S-Phenyl N-methyl- N-phenylcarbamothioate (1e): ${ }^{21}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.35(\mathrm{~s}, 3 \mathrm{H}), 7.34-7.49(\mathrm{~m}, 10 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 38.5,128.4,128.6,128.8$, 129.0, 129.4, 129.6, 135.4, 141.8, 167.4 ppm . IR (neat) 2926, 1665, 1593, 1340, 1170, 1108, 1022, 996, 917, 859, 749, $692 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 243 ($\mathrm{M}^{+}, 14$), 134 (100), 106 (21), 77 (18), 51 (4); Anal. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NOS}: 243.0718$, Found. 243.0720.

S-Phenyl N, N-diphenylcarbamothioate (1f):

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 11$ $\mathrm{H}), 7.47-7.50(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 127.5$, 128.9, 129.1, 129.2, 129.4, 135.4, 141.3, 141.4, $167.8 \mathrm{ppm} . \mathrm{IR}$ (neat) $3061,1677,1590,1489,1441,1259,1142,1068,1023,1001$, 955, 924, 903, 826, 765, 755, 746, $690 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 305 (M^{+}, 14), 196 (100), 168 (32), 109 (4), 77 (10); Anal. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NOS}: 305.0874$, Found. 305.0875.

\boldsymbol{S}-(4-Methoxyphenyl) N, N-dimethylcarbamothioate (1g): ${ }^{18}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.02$ (brs, 3 H), 3.08 (brs, 3
 H), 3.82 (s, 3 H), 6.90-6.93 (m, 2 H), 7.38-7.42 (m, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.9,55.3,114.6,119.4$, $137.3,160.5,167.7 \mathrm{ppm}$. IR (neat) 2926, 1666, 1650, 1592, 1496, 1442, 1363, 1289, 1246, 1175, 1106, 1092, 1022, 908, 819, 686, $658 \mathrm{~cm}^{-1} ;$ MS (EI) m/z (relative intensity, \%) $211\left(\mathrm{M}^{+}, 35\right), 139$ (11), 124 (2), 96 (3), 72 (100); Anal. HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}: 211.0667$, Found. 211.0668.

\boldsymbol{S}-(4-(Trifluoromethyl)phenyl) \mathbf{N}, N-dimethylcarbamothioate (1h): ${ }^{22}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.04$ (brs, 3 H), 3.10 (brs, 3 H), 7.62 (s, 5 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.9,122.5$, $125.2,125.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}{ }^{1}=2.9 \mathrm{~Hz}, 10.6 \mathrm{~Hz}\right), 130.8,131.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}{ }^{2}\right.$ $=32.5 \mathrm{~Hz}, 97.3 \mathrm{~Hz}$), 133.6, 135.6, $165.6 \mathrm{ppm} .{ }^{19}$ F NMR (376
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.7 \mathrm{ppm}$. IR (neat) 2930, 1657, 1607, 1480, 1401, 1634, 1322, 1258, 1158, 1120, 1105, 1088, 1059, 1015, 906, 838, 735, 686, $656 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 249 ($\mathrm{M}^{+}, 4$), 177 (7), 157 (3), 108 (3), 72 (100); Anal. HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NOS}: 249.0435$, Found. 249.0434.
$S e$-Phenyl N, N-dimethylcarbamoselenoate (5a): $:^{17}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.02$ (brs, 6 H), 7.32-7.40 (m, 3 H), 7.58-7.61 (m, 2 H$)$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.8,37.3$, 126.7, $128.8,129.0,136.6\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{Se}}=4.8 \mathrm{~Hz}\right.$), 164.5 ppm . IR (neat) 2878, 1668, 1476, 1438, 1356, 1253, 1205, 1070, 1021, 889, 738, 688, $669 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 229 ($\mathrm{M}^{+}, 8$), 157 (8), 77 (5), 72 (100); Anal. HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{11}$ NOSe: 229.0006, Found 229.0007.

Se-Phenyl morpholine-4-carboselenoate (5b): $:^{23}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.48$ (brs, 2 H), 3.62 (brs, 2 H), 3.72 (s, $4 \mathrm{H}), 7.34-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.61(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 44.8,46.8,66.5,126.0,129.0,129.1,136.7$ (q, $\mathrm{J}_{\mathrm{C}-\mathrm{se}}{ }^{1}$ $=4.7 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{Se}^{2}}=28.6 \mathrm{~Hz}$), 163.8 ppm . IR (neat) 2971, 2908, 2858, 1658, 1439, 1391, 1269, 1204, 1108, 1011, 936, 869, 830, 749, 691, $670 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 271 (${ }^{+}$, 5), 157 (6), 114 (100), 77 (4), 70 (40), 42 (6); Anal. HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Se}$: 271.0112, Found. 271.0108.

Typical Procedure for Palladium-Catalyzed Insertion of Isocyanides into Thio- and Selenocarabamates:
A $5-\mathrm{mL}$ reaction flask equipped with a reflux condenser was dried with the heat gun at
$120^{\circ} \mathrm{C}$ and then purged with N_{2}. After cooling to room temperature, thiocarbamate 1a (1.0 $\mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(0.02 \mathrm{mmol}), \mathrm{dppp}(0.02 \mathrm{mmol})$ and DMF $(0.8 \mathrm{~mL})$ were placed in the flask. After the reaction mixture was heated in an oil bath at $110^{\circ} \mathrm{C}$ for 5 minutes, isocyanide $2(0.4$ mmol) was added to the mixture, and the heating was continued until 2 was completely consumed (monitored by TLC). After cooling to room temperature, the residue was removed by Celite filtration with chloroform, and the volatiles were removed in vacuo. The crude compound was purified with flash column chromatography (silica gel, n-hexane / EtOAc $=$ 2:1) to obtain 3a in 83\% yield as a faint yellow solid.

$\mathbf{N , N}$-Dimethyl-2-(2,6-dimethylphenyl)imino-2-(phenylthio) acetamide (3a):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.27$ ($\mathrm{s}, 6 \mathrm{H}$), $2.56(\mathrm{~s}, 3 \mathrm{H}), 3.03$ ($\mathrm{s}, 3$ H), 6.99-7.03 (m, 1 H$), 7.08-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.41(\mathrm{~m}, 3 \mathrm{H})$, 7.54-7.57 (m, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 18.0, 33.7, $37.5,124.5,126.6,127.6,128.2,128.9,129.9,135.7,146.2,162.1$, 163.1 ppm . IR (neat) 2919, 1652, 1631, 1591, 1470, 1439, 1411, 1399, 1267, 1201, 1170, 1087, 1015, 924, 887, 822, 767, 751, 690, $674 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 312 (M+, 3), 240 (3), 203 (40), 130 (4), 109 (3), 72 (100); m.p.: 384 K . Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 69.20$; H, 6.45; N, 8.97; S, 10.26. Found C, 69.25; H, 6.48; N, 8.92; S, 10.31. Anal. HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}: 312.1296$, Found 312.1295.

\mathbf{N}, N-Diethyl-2-(2,6-dimethylphenyl)imino-2-(phenylthio) acetamide (3b):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 3.09(\mathrm{q}, J=7.2 \mathrm{~Hz}, 21.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{q}$, $J=6.8 \mathrm{~Hz}, 20.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.09(\mathrm{~m}, 2 \mathrm{H})$, 7.29-7.38 (m, 3 H), 7.55-7.57 (m, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.5,13.9,17.7,38.0,42.2,124.5,126.6,127.5,128.3$, $129.0,129.9,136.3,146.4,161.7,162.9 \mathrm{ppm}$. IR (neat) 2961, 2926, 1677, 1636, 1596, 1482, 1446, 1401, 1357, 1305, 1254, 1179, 1092, 1022, 891, 840, 789, 782, 741, $687 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) $340\left(\mathrm{M}^{+}, 3\right), 240$ (6), 231 (39), 130 (4), 100 (100), 72 (17); Anal. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OS}: 340.1609$, Found. 340.1611.

Morpholino-2-(2,6-dimethylphenyl)imino-2-(phenylthio) acetamide (3c):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.24(\mathrm{~s}, 6 \mathrm{H}), 3.33(\mathrm{dt}, J=4.8 \mathrm{~Hz}$, $36.8 \mathrm{~Hz}, 4 \mathrm{H}$), 3.48-3.54 (m, 4 H), 7.02 (dd, $J=6.4 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.09 (m, 2 H), 7.35-7.44 (m, 3 H), 7.57 (dt, $1.6 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.0,41.2,46.3,66.1,66.2,124.7$,
126.4, 127.5, 128.3, 129.2, 130.1, 135.9, 146.0, 161.0, 162.4 ppm . IR (neat) 2975, 2964, 1643, 1625, 1590, 1469, 1439, 1275, 1257, 1192, 1115, 1071, 1017, 995, 936, 875, 852, 808, 765, $748,690 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 354 (M+, 3), 245 (42), 240 (4), 130 (5), 114 (100), 70 (30), 42 (6); Anal. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: 354.1402$, Found 354.1399.

N, N-Diisopropyl-2-(2,6-dimethylphenyl)imino-2-(phenylthio) acetamide (3d):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 2.25(\mathrm{~s}, 6$
H), 3.19 (sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.22 (sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $\quad 6.97-$ 7.08 (m, 3 H), 7.29-7.38 (m, 3 H), 7.59-7.62 (m, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.7,19.8,20.6,30.9,45.5,50.4,124.4,126.7$, 127.6, 128.3, 128.9, 129.8, 136.6, 146.3, 161.6, 162.9 ppm . IR (neat) 2974, 2922, 1643, 1626, 1466, 1441, 1367, 1334, 1211, 1163, 1144, 1050, 1011, 899, 843, 793, 765, 756, 692, $678 \mathrm{~cm}^{-1}$; MS (CI) m/z (relative intensity, \%) 369 (M^{+}, 100), 293 (9), 259 (18), 128 (32); Anal. HRMS (CI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OS}: 368.1922$, Found. 368.1918.
N-Methyl- N-phenyl-2-(2,6-dimethylphenyl)imino-2-(phenylthio) acetamide (3e)

(s-cis/trans mixture): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.83$ (s, 6 H , major), 2.31 ($\mathrm{s}, 6 \mathrm{H}$, minor), $3.02(\mathrm{~s}, 3 \mathrm{H}$, major), $3.45(\mathrm{~s}, 3 \mathrm{H}$, minor), 6.65-7.68 (m, 18 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.5$ (major), 18.0 (minor), 37.1 (major), 38.9 (minor), 124.3, 124.6, 125.4, 126.4, 126.6, 127.0, 127.6, 127.7, 127.9, 128.0, 128.2, 128.3, $128.8,128.9,129.3,129.4,129.7,130.2,135.7$ (major), 136.3 (minor), 141.1 (minor), 141.7 (major), 146.1 (minor), 146.3 (major), 161.7, 161.7, 161.9, 162.9. IR (neat) 2922, 1651, 1608, 1590, 1496, 1464, 1386, 1299, 1281, 1189, 1077, 1023, 969, 858, 808, 771, 753, $690 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 374 ($\mathrm{M}^{+}, 1$), 265 (49), 240 (3), 134 (100), 106 (12), 77 (11); Anal. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}: 374.1453$, Found. 374.1452.
N, N-Dimethyl-2-(2,6-dimethylphenyl)imino-2-(4-methoxyphenylthio) acetamide (3g): ${ }^{1} \mathrm{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 6.84-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.09(\mathrm{~m}, 2 \mathrm{H})$, 7.43-7.47 (s, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.0,33.8,37.5$, $55.3,114.4,117.9,124.4,126.5,128.2,137.2,146.2,161.0,162.4$, 164.0 ppm . IR (neat) 2925, 1640, 1625, 1588, 1492, 1455, 1400, 1290, 1248, 1195, 1173, 1104, 1091, 1030, 1017, 885, 827, 819, 778, 678 cm^{-1}; MS (CI) m/z (relative intensity, \%) $343\left(\mathrm{M}^{+}, 100\right), 203(42), 72$ (6); Anal. HRMS (CI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: 342.1402$, Found. 342.1402.
\mathbf{N}, N-Dimethyl-2-(2,6-dimethylphenyl)imino-2-((4-trifluoromethyl)phenylthio) acetamide

(3h): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.26$ ($\mathrm{s}, 6 \mathrm{H}$), $2.60(\mathrm{~s}, 3 \mathrm{H}), 3.07$ (s, $3 \mathrm{H}), 7.00-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.68(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.9,33.8,37.5,122.2,124.8,124.9,125.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}{ }^{1}=3.8 \mathrm{~Hz}\right.$, $11.5 \mathrm{~Hz}), 126.4,128.3,131.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}{ }^{2}=32.4 \mathrm{~Hz}, 98.2 \mathrm{~Hz}\right), 132.6,132.6$, $145.9,161.2,161.7 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.9 \mathrm{ppm}$. IR (neat) $2925,1650,1604,1469,1398,1325,1266,1161,1123,1102$, 1063, 1008, 879, 837, 770, 706, $685 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 381 ($\mathrm{M}^{+}, 100$), 245 (4), 221 (5), 205 (58), 188 (7), 178 (7), 132 (36), 74 (10); Anal. HRMS (CI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OS}: 380.1170$, Found. 380.1165.
N, N-Dimethyl-2-(2,6-diisopropylphenyl)imino-2-(phenylthio) acetamide (3i):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.39(\mathrm{~d}, J=$
 $6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 3.08$ (sept, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16-7.22 (m, 3 H), 7.31-7.39 (m, 3 H), 7.52-7.55 (m, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.4,23.6,28.1,33.7,37.0,123.4,125.2$, $127.9,128.9,129.9,135.6,137.2,143.7,162.1,163.2 \mathrm{ppm}$. IR (neat) $2965,1658,1650,1621,1581,1500,1440,1402,1324,1263,1185$, 1058, 1015, 939, 916, 884, 798, 765, 752, 706, $689 \mathrm{~cm}^{-1}$; MS (EI) m / z (relative intensity, \%) $368\left(\mathrm{M}^{+}, 4\right), 259$ (36), 186 (93), 72 (100); Anal. HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OS}$: 368.1922, Found 368.1923.
$\mathbf{N , N}$-Dimethyl-2-(2,6-dimethylphenyl)imino-2-(phenylseleno) acetamide (6a):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.27$ (s, 6 H), 2.49 (s, 3 H), 2.98 ($\mathrm{s}, 3 \mathrm{H}$), 7.00-7.09 (m, 3 H), 7.30-7.40 (m, 3 H), 7.64-7.66 (m, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.0,33.7,37.4,124.8,124.9,126.5,128.4$, $128.9,129.5,137.1\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{Se}}=4.8 \mathrm{~Hz}\right), 147.2,162.4,163.1 \mathrm{ppm} . \mathrm{IR}$ (neat) 2920, 1650, 1590, 1473, 1438, 1398, 1267, 1201, 1164, 1088, 1007, 997, 922, 877, 818, 767, 743, 690, 664, $656 \mathrm{~cm}^{-1} ;$ MS (CI) m/z (relative intensity, \%) $361\left(\mathrm{M}^{+}, 80\right), 245$ (4), 221 (6), 203 (100), 132 (25), 72 (9); Anal. HRMS (CI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OSe}$: 360.0741 , Found 360.0740.

Morpholino-2-(2,6-dimethylphenyl)imino-2-(phenylseleno) acetamide (6b):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.24(\mathrm{~s}, 6 \mathrm{H}), 3.22(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.34(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~m}, 4 \mathrm{H}), 7.01-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.43$ (m, 3 H), 7.65-7.68 (m, 2 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 18.0, 41.1, 46.2, 66.1, 66.2, 124.7, 125.0, 126.3, 128.5, 129.2, 129.7,
137.2 (t, $J_{\mathrm{C}-\mathrm{Se}}=4.8 \mathrm{~Hz}$), 147.0, 161.2, 162.3 ppm . IR (neat) 2964, 2923, 2855, 1642, 1590, 1439, 1276, 1250, 1195, 1113, 1064, 1019, 986, 930, 871, 846, 804, 768, 741, $688 \mathrm{~cm}^{-1} ;$ MS (EI) m/z (relative intensity, \%) 403 (${ }^{+}, 83$), 327 (16), 287 (7), 245 (100), 132 (14), 114 (15); Anal. HRMS (CI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}$: 402.0846, Found. 402.0848.

X-ray Crystallographic Analysis

Single crystals of 3a suitable for X-ray crystallography were obtained by recrystallization from $\mathrm{CHCl}_{3} /$ hexane. $\mathrm{M}=312.43$, colorless, triclinic, $P-1$ (\#2), $a=11.2690(2) \AA, b=$ $12.2582(3) \AA, c=12.6321(3) \AA, \mathrm{V}=1667.52(6) \AA^{3}, Z=4, D_{\text {calcd }}=1.244 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{~T}=123(2)$ $\mathrm{K}, R 1(w R 2)=0.0430(0.1161)$.

Figure S1. ORTEP drawing of both asymmetric units of 3a with thermal ellipsoids at the 50% probability level. H atoms are omitted for clarity.

Computational Details: Energies, Cartesian Coordinates and Ball-Stick Models of Stationary Points

Table S2. Summarized energetic values of each structures.

structure	energy (HF; a.u.)
$\mathbf{B '}^{\prime}$	-1288.701869
$\mathbf{P H} 3$	-343.1450673
TS1	-1288.689351
C1'	-1631.843134
$\mathbf{T S 2}$	-1631.821766
$\mathbf{T S 3}$	-1288.669165
$\mathbf{C 2}$	-1631.870753

TS4	-1631.848545
$\mathbf{3}^{\prime}$	-818.7847194
$\mathbf{P d}\left(\mathbf{P H} \mathbf{3}_{\mathbf{2}}\right.$	-813.0900993

Figure S2. Optimized structure of B'

16	1	0	-0.496451	4.786267	-0.368089
17	1	0	-2.162291	4.256942	-0.725691
18	1	0	-1.627146	4.443451	0.964824
19	15	0	0.051982	-2.612491	-0.096467
20	1	0	-0.576868	-3.290630	0.964909
21	1	0	-0.522497	-3.292727	-1.187098
22	1	0	1.310630	-3.264160	-0.050345
23	16	0	-2.583082	-0.842786	-0.604487
24	6	0	-3.514380	-0.219285	0.856740
25	1	0	-4.573560	-0.442299	0.699241
26	1	0	-3.192188	-0.707194	1.780177
27	1	0	-3.404311	0.862742	0.975003

```
HF=-1288.7018689
```

Figure S3. Optimized structure of $\mathbf{P H}_{3}$

$H F=-343.1450673$

Figure S4. Optimized structure of TS1

20	1	0	0.696862	-3.500182	0.680702
21	1	0	0.259497	-3.491706	-1.411913
22	1	0	2.183224	-2.865299	-0.708901
23	16	0	-2.547681	-0.537798	-0.495417
24	6	0	-3.153026	-0.928446	1.201154
25	1	0	-4.217439	-0.687356	1.258189
26	1	0	-3.015156	-1.989437	1.418650
27	1	0	-2.614939	-0.342475	1.950082

```
HF =-1288.6893512
```

Figure S5. Optimized structure of C1'

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	7	0	1.855107	-1.768124	-0.398256
2	6	0	1.352570	-0.890589	0.521161
3	8	0	1.622266	-0.966743	1.719594

4	6	0	2.723470	-2.855683	0.037748
5	1	0	2.291993	-3.825251	-0.240985
6	1	0	3.713967	-2.774628	-0.429571
7	1	0	2.825754	-2.799516	1.120808
8	6	0	1.593015	-1.683868	-1.822461
9	1	0	1.200746	-2.638228	-2.194488
10	1	0	0.843249	-0.916689	-2.015838
11	1	0	2.514257	-1.453880	-2.377401
12	46	0	0.199272	0.725565	-0.096241
13	6	0	-1.351320	-0.659018	-0.234149
14	16	0	-2.322160	-1.086119	1.246713
15	7	0	-1.663512	-1.109464	-1.379600
16	6	0	-2.793943	-2.017289	-1.554919
17	1	0	-2.663058	-2.939497	-0.970923
18	1	0	-3.739679	-1.557692	-1.232150
19	1	0	-2.886400	-2.288277	-2.610153
20	6	0	-1.479327	-0.176756	2.589754
21	1	0	-1.952332	-0.512518	3.516180
22	1	0	-0.415482	-0.416737	2.608315
23	1	0	-1.626824	0.901155	2.489683
24	15	0	2.187208	2.076714	0.131385
25	1	0	3.452059	1.485604	-0.086228
26	1	0	2.443421	2.584984	1.425723
27	15	0	-1.458690	2.394208	-0.762066
28	1	0	-1.840899	2.302738	-2.118993
29	1	0	-2.748483	2.275220	-0.197269
30	1	0	2.428031	3.277759	-0.583064
31	1	0	-1.366128	3.809806	-0.698344

Figure S6. Optimized structure of TS2

19	1	0	3.223241	0.438022	-2.895572
20	6	0	1.495285	-1.140900	2.400342
21	1	0	2.051385	-1.926560	2.918032
22	1	0	1.358337	-0.269673	3.036298
23	1	0	0.520484	-1.528734	2.096634
24	15	0	-3.023998	-0.030386	0.321320
25	1	0	-3.513697	1.300799	0.292679
26	1	0	-3.552707	-0.350617	1.597298
27	15	0	-0.552747	-2.821208	-0.796749
28	1	0	0.445587	-3.165291	-1.741751
29	1	0	-0.241694	-3.853198	0.125785
30	1	0	-4.095889	-0.589894	-0.422897
31	1	0	-1.606224	-3.525140	-1.437541

$H F=-1631.8217655$

Figure S7. Optimized structure of TS3

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	7	0	-2.420253	-0.690053	0.583881
2	6	0	-1.699411	-0.261020	-0.493331

3	8	0	-2.065325	-0.351288	-1.653335
4	6	0	-3.712275	-1.334464	0.362030
5	1	0	-3.676852	-2.385687	0.673922
6	1	0	-4.492446	-0.828867	0.943344
7	1	0	-3.948485	-1.279763	-0.699866
8	6	0	-1.963375	-0.617216	1.962493
9	1	0	-1.875037	-1.623143	2.391450
10	1	0	-0.984851	-0.137623	2.009611
11	1	0	-2.676536	-0.046921	2.570805
12	46	0	0.653874	-0.250957	-0.104616
13	6	0	-0.578935	1.213093	-0.147616
14	7	0	-1.012679	2.338638	-0.228953
15	6	0	-2.275764	2.951600	-0.558820
16	1	0	-3.004163	2.205194	-0.898433
17	1	0	-2.663576	3.481416	0.316203
18	1	0	-2.119006	3.685962	-1.353221
19	15	0	1.597954	-2.455508	-0.360417
20	1	0	1.529602	-3.075409	-1.629657
21	1	0	2.984870	-2.602731	-0.141637
22	1	0	1.163653	-3.568062	0.400831
23	16	0	2.788627	0.667669	0.304262
24	6	0	2.566765	2.479513	0.514570
25	1	0	3.565906	2.922898	0.560182
26	1	0	2.026318	2.915881	-0.327541
27	1	0	2.036139	2.711957	1.440622

$$
\mathrm{HF}=-1288.6691647
$$

Figure S8. Optimized structure of C2'

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z

1	7	0	2.976881	0.198418	-0.545032
2	6	0	3.971277	-0.102280	-1.567061
3	1	0	3.631171	-0.962676	-2.140868
4	1	0	4.102002	0.758890	-2.232567
5	1	0	4.940484	-0.333079	-1.106498
6	6	0	3.252820	1.349095	0.309287
7	1	0	3.611036	2.172274	-0.318259
8	1	0	2.348973	1.671361	0.823669
9	1	0	4.025185	1.117769	1.053358
10	6	0	1.939573	-0.662370	-0.362034
11	8	0	1.739138	-1.645226	-1.089497
12	6	0	0.969336	-0.403273	0.774503
13	7	0	1.380322	-0.474955	1.963609
14	46	0	-0.942451	-0.196470	0.056714
15	15	0	-3.200429	0.444826	-0.705880
16	1	0	-4.003195	0.960042	0.334015
17	1	0	-3.260193	1.560451	-1.568417
18	15	0	-0.920078	-2.525250	-0.364642
19	1	0	-0.694802	-2.939094	-1.691327
20	1	0	-0.029148	-3.383907	0.304327

21	16	0	-0.695775	2.172896	0.495515
22	6	0	0.484799	-0.334453	3.097811
23	1	0	0.561737	-1.226500	3.729899
24	1	0	0.809794	0.519420	3.702389
25	1	0	-0.564286	-0.185111	2.804737
26	6	0	-0.147098	2.768439	-1.158901
27	1	0	-0.002273	3.850188	-1.085424
28	1	0	0.799283	2.309619	-1.455945
29	1	0	-0.891004	2.573279	-1.937331
30	1	0	-2.117369	-3.250539	-0.125958
31	1	0	-4.212425	-0.328151	-1.344769

```
HF=-1631.8707529
```

Figure S9. Optimized structure of TS4

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z

1	7	0	-3.158151	0.218985	-0.383411
2	6	0	-4.061181	0.919583	-1.288649
3	1	0	-3.473289	1.561341	-1.941950
4	1	0	-4.628470	0.199174	-1.889986
5	1	0	-4.774171	1.531800	-0.721611
6	6	0	-3.796358	-0.693317	0.557854
7	1	0	-4.537497	-1.292346	0.016283
8	1	0	-3.065954	-1.359459	1.009256
9	1	0	-4.308801	-0.145375	1.357946
10	6	0	-1.832962	0.546731	-0.394806
11	8	0	-1.355724	1.336020	-1.215326
12	6	0	-0.945842	-0.112442	0.661873
13	7	0	-1.225310	0.112373	1.889664
14	46	0	1.236732	0.075442	0.011703
15	15	0	3.491809	-0.677750	-0.552873
16	1	0	4.336700	-1.005686	0.540161
17	1	0	3.749619	-1.874244	-1.276325
18	15	0	1.217959	2.428314	0.127464
19	1	0	1.166744	3.122918	-1.103161
20	1	0	0.157036	3.114408	0.762760
21	16	0	-0.228936	-1.910722	0.051105
22	6	0	-0.484842	-0.525042	2.955380
23	1	0	0.594490	-0.318013	2.886838
24	1	0	-0.843124	-0.162982	3.923143
25	1	0	-0.612171	-1.619950	2.933416
26	6	0	-0.653820	-1.994978	-1.737613
27	1	0	-1.537850	-2.623378	-1.865872
28	1	0	-0.844171	-0.997350	-2.135659
29	1	0	0.190559	-2.432790	-2.272979
30	1	0	2.268421	3.199843	0.696599
31	1	0	4.468765	0.093966	-1.239123

[^1]Figure S10. Optimized structure of 3'

| | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | |

19	1	0	2.739927	1.797056	-1.062617
20	1	0	0.444928	-2.290997	1.361791
21	1	0	0.769106	-2.706956	-0.347028
22	1	0	2.022004	-2.974781	0.908815

$\mathrm{HF}=-818.7847194$

Figure S11. Optimized structure of $\mathbf{P d}\left(\mathbf{P P h} \mathbf{3}_{2}\right.$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	46	0	-0.000002	-0.000493	0.000042
2	15	0	-2.303702	0.000691	-0.000136
3	1	0	-3.033601	1.117295	-0.482135
4	1	0	-3.032967	-0.975972	-0.725516
5	1	0	-3.032058	-0.140194	1.208704
6	15	0	2.303704	0.000752	-0.000145

7	1	0	3.034480	1.126883	-0.458039
8	1	0	3.031802	-0.166391	1.205487
9	1	0	3.032406	-0.960588	-0.746208

$H F=-813.0900993$

2-5 References and Notes

(1) For reviews, see: (a) Han, L.-B.; Tanaka, M. Chem. Commun. 1999, 395. (b) Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 3435. (c) Ogawa, A. J. Organomet. Chem. 2000, 611, 463. (d) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205. (e) Suginome, M.; Ito, Y. Chem. Rev. 2000, 100, 3221. (f) Modern Allene Chemistry; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, 2004. doi:10.1002/9783527619573. (g) Ma, S. Chem. Rev. 2005, 105, 2829. (h) Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320. (i) Comprehensive Organometallic Chemistry III, Mingos, D. M. P., Crabtree, R. H., Ojima, I., Eds.; Elsevier: Oxford, 2007; Vol. 10, pp 725-787. doi:10.1016/B0-08-045047-4/00138-2. (j) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
(2) For reviews, see: (a) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675. (b) Smith, N. D.; Mancuso, J.; Lautens, M. Chem. Rev. 2000, 100, 3257. (c) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
(3) For recent reviews, see: (a) Seyferth, D.; Shannon, M. L.; Vick, S. C.; Lim, T. F. O. Organometallics 1985, 4, 57. (b) Tanaka, M.; Hua, R. Pure Appl. Chem. 2002, 74, 181. (c) Kuniyasu, H.; Kambe, N. Chem. Lett. 2006, 35, 1320. (d) Fujiwara, S.; Toyofuku, M.; Kuniyasu, H.; Kambe, N. Pure Appl. Chem. 2010, 82, 565.
(4) (a) Chatani, N.; Takeyasu, T.; Hanafusa, T. Tetrahedron Lett. 1986, 27, 1841. (b) Saso, H.; Ando, W. Chem. Lett. 1988, 1567. (c) Takeyama, Y.; Nozaki, K.; Matsumoto, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 1461. (d) Shirakawa, E.; Nakao, Y.; Hiyama, T. Chem. Commun. 2001, 263. (e) Shirakawa, E.; Nakao, Y.; Tsuchimoto, T.; Hiyama, T. Chem. Commun. 2002, 1962. (f) Hua, R.; Tanaka, M. Tetrahedron Lett. 2004, 45, 2367. (g) Nakao, Y.; Shirakawa, E.; Tsuchimoto, T.; Hiyama, T. J. Organomet. Chem. 2004, 689, 3701. (h) Toyofuku, M.; Murase, E.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. Org. Lett. 2008, 10, 3957. (i) Toyofuku, M.; Murase, E.; Nagai, H.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. Eur. J. Org. Chem. 2009, 3141. (j) Fujiwara, S.; Okuyama, M.; Tsuda, S.; Iwasaki, T.; Kuniyasu, H.; Kambe, N. Tetrahedron 2012, 68, 10523.
(5) C-O; (a) Wang, M. D.; Calet, S.; Alper, H. J. Org. Chem. 1989, 54, 20. C-N; (b) Alper, H.; Perera, C. P. J. Am. Chem. Soc. 1981, 103, 1289. (c) Alper, H.; Mahatantila, C. P. Organometallics 1982, 1, 70. (d) Alper, H.; Urso, F. J. Am. Chem. Soc. 1983, 105, 6737. (e) Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc. 1989, 111, 931. (f) Roberto, D.; Alper, H. J. Am. Chem. Soc. 1989, 111, 7539. (g) Wang, M. D.; Alper, H. J. Am. Chem. Soc. 1992, 114, 7018. C-S; (h) Holmquist, H. E.; Carnahan, J. E. J. Org. Chem. 1960, 25, 2240. (i) Khumtaveeporn, K.; Alper, H. J. Org. Chem. 1994, 59, 1414. (j) Crudden, C. M.; Alper, H. J. Org. Chem. 1995, 60, 5579. (k) Furuya, M.; Tsutsuminai, S.; Nagasawa, H.; Komine, N.; Hirano M.; Komiya, S. Chem. Commun. 2003, 2046. C-Br; (l) Ohno, K.; Tsuji, J. J. Am. Chem. Soc. 1968, 90, 99.
(6) Cationic, ${ }^{7}$ anionic ${ }^{8}$ and radical ${ }^{9}$ insertion reactions of isocyanides into carbon-heteroatom bonds have already been reported.
(7) (a) Yoshioka, S.; Oshita, M.; Tobisu, M.; Chatani, N. Org. Lett. 2005, 7, 3697. (b) Tobisu, M.; Oshita, M.; Yoshioka, S.; Kitajima, A.; Chatani, N. Pure Appl. Chem. 2006, 78, 275. (c) Tobisu, M.; Kitajima, A.; Yoshioka, S.; Hyodo, I.; Oshita, M.; Chatani, N. J. Am. Chem. Soc. 2007, 129, 11431. (d) Tobisu, M.; Ito, S.; Kitajima, A.; Chatani, N. Org. Lett. 2008, 10, 5223.
(8) (a) Maeda, H.; Kambe, N.; Sonoda, N.; Fujiwara, S.; Shin-ike, T. Tetrahedron 1997, 53, 13667. (b) Fujiwara, S.; Maeda, H.; Matsuya, T.; Shin-ike, T.; Kambe, N.; Sonoda, N. J. Org. Chem. 2000, 65, 5022.
(9) (a) Yamago, S.; Miyazoe, H.; Goto, R.; Yoshida, J. Tetrahedron Lett. 1999, 40, 2347. (b) Yamago, S.; Miyazoe, H.; Sawazaki, T.; Goto, R.; Yoshida, J. Tetrahedron Lett. 2000, 41, 7517. (c) Miyazoe, H.; Yamago, S.; Yoshida, J. Angew. Chem., Int. Ed. 2000, 39, 3669. (d) Yamago, S.; Miyazoe, H.; Hashidume, M.; Goto, R.; Sawazaki, T.; Yoshida, J. J. Am. Chem. Soc. 2001, 123, 3697. (e) Yamago, S.; Miyazoe, H.; Nakayama, T.; Miyoshi, M.; Yoshida, J. Angew. Chem., Int. Ed. 2003, 42, 117. (f) Yamago, S. Synlett 2004, 11, 1875. (g) Kotani, M.; Yamago, S.; Satoh, A.; Tokuyama, H.; Fukuyama, T. Synlett 2005, 12, 1893.
(10) (a) Ito, Y.; Bando, T.; Matsuura, T.; Ishikawa, M. J. Chem. Soc., Chem. Commun. 1986, 980. (b) Ito, Y.; Matsuura, T.; Murakami, M. J. Am. Chem. Soc. 1988, 110, 3692. (c) Ito, Y.; Suginome, M.; Matsuura, T.; Murakami, M. J. Am. Chem. Soc. 1991, 113, 8899.
(a) Kuniyasu, H.; Sugoh, K.; Su, M. S.; Kurosawa, H. J. Am. Chem. Soc. 1997, 119, 4669. (b) Kuniyasu, H.; Maruyama, A.; Kurosawa, H. Organometallics 1998, 17, 908.
(12) In previous works, the energies between selenometalation intermediates and carbometalation intermediates were compared; Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2008, 130, 10504 and ref 4h.
(14) Sheldrick, G. M.; Program for the Refinement of Crystal Structures; University of Göttingen: Germany, 1997.
(15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;

Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09 Revision A.02; Gaussian: Wallingford, CT, 2009.
(16) Wicker, B. F.; Scott, J. L.; Fout, A. R.; Pink, M.; Mindiola, D. J. Organometallics 2011, 30, 2453.
(17) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2005, 127, 3141.
(18) Yuan, Y.-q.; Guo, S.-r.; Xiang, J.-n. Synlett 2013, 24, 443.
(19) Wynne, J. H.; Jensen, S. D.; Snow, A. W. J. Org. Chem. 2003, 68, 3733.
(20) Mizuno, T.; Nishiguchi, I.; Hirashima, T. Tetrahedron 1993, 49, 2403.
(21) Gryzb, J. A.; Shen, M.; Yoshina-Ishii, C.; Chi, W.; Brown, R. S.; Batey, R. A.; Tetrahedron 2005, 61, 7153.
(22) Harvey, J. N.; Jover, J.; Lloyd-Jones, G. C.; Moseley, J. D.; Murray, P.; Renny, J. S. Angew. Chem., Int. Ed. 2009, 48, 7612.
(23) Singh, P.; Batra, A.; Singh, P.; Kaur, A.; Singh, K. N. Eur. J. Org. Chem. 2013, 7688.

Chapter 3

AlCl_{3}-Catalyzed Insertion of Isocyanides into Nitrogen-Sulfur Bonds of Sulfenamides

3-1 Introduction

Sulfenamides, R_{2} NSR', are synthetically interesting and important compounds due to their wide availability ${ }^{1,2}$ and the unique reactivity of the N-S bond. ${ }^{1}$ Sulfenamides have been utilized as aminating reagents ${ }^{3}$ and sulfenylating reagents ${ }^{4}$ in addition to as aminyl radical precursors ${ }^{5}$ and catalyst for oxidation of alcohols. ${ }^{6}$ Furthermore, unsaturated molecules such as carbon monoxide and alkynes can be inserted into the N-S bond of sulfenamides. For example, Kurosawa and co-workers revealed for the first time in 1999 that the reaction of sulfenamides with carbon monoxide was catalyzed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in pyridine to provide thiocarbamates in high yields (Scheme 1, eq 1). ${ }^{7,8}$ Mitsudo and co-workers disclosed that the reaction of sulfenamides with alkynes was catalyzed by $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\right]_{2}$ in DMF to provide the corresponding adducts with high regio- and stereoselectivity (Scheme 1, eq 2). ${ }^{9-13}$

Scheme 1. Insertion of CO and alkynes into sulfenamides.

Here it is disclosed that AlCl_{3} catalyzes insertion of isocyanides 2 into $\mathrm{N}-\mathrm{S}$ bonds of sulfenamides $\mathbf{1}$ giving rise to the formation of isothioureas $\mathbf{3}$ (Scheme 2).

Scheme 2. AlCl_{3}-catalyzed syntheses of isothioureas from isocyanides and sulfenamides.

3-2 Results and Discussions

It was reported that thiophthalimides reacted with isocyanides without a catalyst in refluxing acetonitrile to give insertion products. ${ }^{14}$ However, when a mixture of S-phenyl- N, N-diethylsulfenamide 1a and 2,6-xylyl isocyanide 2a in acetonitrile was heated under similar conditions, insertion reaction did not proceed at all. Then the palladium catalyzed system developed for azathiolation of carbon monoxide shown in Scheme 1 was examined. When a pyridine $(0.4 \mathrm{~mL})$ solution of sulfenamide $\mathbf{1 a}(0.4 \mathrm{mmol})$, isocyanide 2a (0.4 mmol), and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ was heated at $80^{\circ} \mathrm{C}$ for 14 h , desired isothiourea 3a was not formed and the corresponding urea 4a, a hydrolyzed product of 3a, was obtained in 3\% yield (Scheme 3). Even after several trials by the use of other metal catalysts such as $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ the yields of $\mathbf{3 a}$ and $\mathbf{4 a}$ were not improved so much.

Scheme 3. Reaction of a sulfenamide with an isocyanide in the presence of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$.

Recently, Chatani and co-workers disclosed that isocyanides reacted with dithioacetals to give insertion products in the presence of Lewis acids such as GaCl_{3} and TiCl_{4} (Scheme 4). ${ }^{15}$

Scheme 4. Lewis acid-catalyzed insertion of isocyanides into a C-S bond of dithioacetals.

Then the reaction of sulfenamide 1a with isocyanide $\mathbf{2 a}$ was conducted in the presence of Lewis acids and the results are given in Table 1. When 2,6-xylyl isocyanide 2a (0.4 mmol) was allowed to react with sulfenamide $\mathbf{1 a}$ (2 equiv) in the presence of $\mathrm{GaCl}_{3}(10 \mathrm{~mol} \%)$ in DMF at $80{ }^{\circ} \mathrm{C}$ for 24 h , isothiourea 3a was formed in 72% yield (entry 1). In this reaction, 8% of urea 4a was also obtained; however, multiple insertion products incorporating more than one isocyanide molecules were not detected. In the case of TiCl_{4}, urea $\mathbf{4 a}$ became the major product (entry 2). $\mathrm{InCl}_{3}, \mathrm{ZrCl}_{4}$ and BPh_{3} exhibited similar activities as GaCl_{3}, and use of AlCl_{3} gave the best selectivity (entries 3-9). Interestingly, when 1 equiv of acetic acid was employed as an additive, urea $4 \mathbf{4}$ was formed in 79% yield (entry 10). Since 13% of isocyanide 2a remained unreacted in run 4, we used $30 \mathrm{~mol} \%$ of AlCl_{3} but the yield of $\mathbf{3 a}$ was improved only slightly (entries 4 and 11). Use of toluene as the solvent retarded the formation
of urea 4a (entry 12). Isothiourea 3a was obtained in good yield when the amount of sulfenamide 1a was reduced to 1 equiv and the reaction time was shortened to 2 h (entry 13). ${ }^{16}$

Table 1. Screening of Lewis acids.

$\mathrm{Et}_{2} \mathrm{~N}-\mathrm{SPh}$ 0.8 mmol 1a, 2 equiv	$\begin{gathered} +\quad \mathrm{XyNC} \\ 0.4 \mathrm{mmol} \\ \mathbf{2 a} \end{gathered}$	$\xrightarrow[\substack{\text { solvent }(1.0 \mathrm{M}) \\ 80^{\circ} \mathrm{C}, \text { time }}]{\text { Lewis acid }(10 \mathrm{~mol} \%)}$		 $3 a$	 4a
entry	Lewis acid	solvent	time (h)	$\mathbf{3 a}(\%)^{a, b}$	$\mathbf{4 a}(\%)^{a, b}$
1	GaCl_{3}	DMF	24	72	8
2	TiCl_{4}	DMF	24	32	50
3	InCl_{4}	DMF	24	72	9
4	AlCl_{3}	DMF	24	72	2
5	ZrCl_{4}	DMF	24	70	14
6	BBu_{3}	DMF	24	58	9
7	BPh_{3}	DMF	24	72	4
8	$\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$	DMF	24	66	14
9	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	DMF	24	72	10
10^{c}	$\mathrm{CH}_{3} \mathrm{COOH}$	DMF	24	6	79(78)
11^{d}	AlCl_{3}	DMF	24	75	3
12^{d}	AlCl_{3}	toulene	24	81	n.d.
$13^{d, e}$	AlCl_{3}	toluene	2	80(77)	n.d.

[^2]Table 2 summarizes the results obtained using several sulfenamides $\mathbf{1}$ and isocyanides $\mathbf{2}$ under the optimized reaction conditions (entry 13 in Table 1). 2,6-Xylyl isocyanide 2a was also inserted into sulfenamides $\mathbf{1 b}, \mathbf{1 c}$ and $\mathbf{1 d}$ affording the corresponding isothioureas $\mathbf{3 b}, \mathbf{3 c}$ and 3d in 79%, 69% and 70% yields, respectively (entries 1-3). The reaction of sterically hindered 2,6-diisopropylphenyl isocyanide 2b gave isothiourea $\mathbf{3 e}$ in 78% yield (entry4). Insertion of p-methoxyphenyl isocyanide $\mathbf{2 c}$ was inefficient and $\mathbf{3 f}$ was formed in 47% yield even when the reaction was run using 2 equiv of $\mathbf{2 c}$ for prolonged reaction time (5 h) (entry 5). Aliphatic isocyanides could also be employed as suitable reagents. For example, the reaction of benzyl isocyanide $\mathbf{2 d}$ with sulfenamide $\mathbf{1 a}$ afforded the corresponding product $\mathbf{3 g}$ in 93% yield (entry 6). However, the desired product $\mathbf{3 h}$ was obtained in a low yield (35%) when cyclohexyl isocyanide $\mathbf{2 e}$ was employed (entry 7). These isothioureas $\mathbf{3 g}$ and $\mathbf{3 h}$, obtained from aliphatic isocyanides, were labile and easily hydrolyzed to ureas during purification by preparative TLC. So the isolation was performed by recycling preparative HPLC.

Table 2. AlCl_{3}-catalyzed reaction of isocyanides with sulfenamides leading to isothioureas.

Conditions: sulfenamide $1(0.4 \mathrm{mmol})$, isocyanide $2(0.4 \mathrm{mmol}), \mathrm{AlCl}_{3}(30 \mathrm{~mol} \%)$, toluene (0.4 $\mathrm{mL}), 80^{\circ} \mathrm{C}, 2 \mathrm{~h} .{ }^{a}$ Isolated yield. ${ }^{b}$ DippNC $=2,6$-Diisopropylphenyl isocyanide. ${ }^{c} p$ - $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NC}$ (2 equiv), 5 h .

The reaction pathway for the present AlCl_{3}-catalyzed insertion of isocyanides into sulfenamides is not clear yet but a possible pathway was depicted in Scheme 5. The N-S bond in sulfenamide $\mathbf{1}$ is activated by the coordination of AlCl_{3} to the nitrogen atom generating \mathbf{A}. Then isocyanide $\mathbf{2}$ attacks the sulfur atom of the intermediate \mathbf{A} to generate an ion pair \mathbf{B} and \mathbf{C} which then react with each other to afford an isothiourea 3.

Scheme 5. A possible reaction pathway.

Isothioureas are useful and interesting compounds as inhibitors of nitric oxide synthases (NOS) $)^{17}$ and Lewis base organocatalysts. ${ }^{18}$ As for the synthesis of isothioureas, they have been usually prepared by the alkylation of isolated or in situ generated thioureas. ${ }^{19}$ The present method described here is synthetically useful since various isothioureas are obtained by a convenient one-pot procedure from easily available substrates.
Finally, a one-pot synthesis of unsymmetrical ureas 4 was undertaken under the reaction conditions employed in run 10 in Table 2, and the results are summarized in Table 3. In all entries unsymmetrical ureas $\mathbf{4}$ were obtained in moderate to high yields. ${ }^{20}$

Table 3. Acetic acid-assisted preparation of unsymmetrical ureas from isocyanides and sulfenamides.

	$\begin{aligned} & \mathrm{R}_{2} \mathrm{NSPh}+ \\ & \mathbf{1 , 2} \text { equiv } \end{aligned}$			 4	
entry	sulfenamide	isocyanide		urea	yield ${ }^{a}$
1		XyNC			77\%
	1b	2 a		4b	
2	 1c	2a	4c		81\%
3	$\mathrm{Et}_{2} \mathrm{NSPh}$	DippNC			72\%
	1a	2b		4d	
4	1a	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NC}$	$\mathrm{Et}_{2} \mathrm{~N}$	$\begin{gathered} \mathrm{NHC}_{6} \mathrm{I} \\ \mathbf{4 e} \end{gathered}$	50\%

Conditions: sulfenamide $\mathbf{1}(0.8 \mathrm{mmol})$, isocyanide $2(0.4 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{COOH}(0.4 \mathrm{mmol})$, DMF $(0.4 \mathrm{~mL}), 80^{\circ} \mathrm{C}, 30 \mathrm{~h} .{ }^{a}$ Isolated yield. ${ }^{b}$ DippNC $=2,6$-Diisopropylphenyl isocyanide.

3-3 Conclusions

A simple and convenient reaction for the synthesis of isothioureas by Lewis acid-catalyzed insertion of isocyanides into the N-S bond of sulfenamides has been developed. Since only a few classical preparative methods of isothioureas are available, the present new approach would attract considerable attention as a practical supplemental method for isothiourea synthesis.

3-4 Experimental Section

General

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with JEOL JNM-Alice 400 (400 and 100 MHz , respectively) spectrometers using CDCl_{3} as the solvent and $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard in 5 mm NMR tubes. Chemical shifts are reported in parts per million (d) downfield from internal tetramethylsilane. Data are reported as follows: chemical shift in ppm (δ), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, sept $=$ septet, $\mathrm{m}=$ multiplet), coupling constant (Hz), integration. Infrared spectra (IR) were obtained on a JASCO Corporation FT/IR-4200 instrument equipped with ATR PRO450-S. Both conventional and high-resolution mass spectra were recorded using a JEOL JMS-DX303HF spectrometer (EI) or a JEOL JMS-T100TD (DART). Elemental analyses were performed at Instrumental Analysis Center, Faculty of Engineering, Osaka University. HPLC separations were performed on a recycling preparative HPLC (Japan Analytical; Model LC-908) equipped with JAIGEL-1H and -2 H columns or Shodex K2001 and 2002 columns (GPC) using CHCl_{3} as the eluent.
2,6-Xylyl isocyanide $\mathbf{2 a}{ }^{21}$ and 2,6-diisopropylphenyl isocyanide $\mathbf{2 b}{ }^{22}$ were synthesized according to the literature procedure. AlCl_{3}, p-methoxyphenyl isocyanide (Sigma-Aldrich, Tokyo, Japan), benzyl isocyanide, cyclohexyl isocyanide (Tokyo Chemical Industry, Tokyo, Japan), and dehydrated solvents (Wako Pure chemical, Osaka, Japan) were purchased and used as received.

Syntheses of sulfenamides 1a-d

Sulfenamides 1a-d were obtained by the reaction of diaryl disulfides with the corresponding amines in methanol in the presence of 1 equiv of $\mathrm{AgNO}_{3} .{ }^{23}$

S-Phenyl- N, N-diethylsulfenamide (1a):

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.99(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 21.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 4 \mathrm{H})$
ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.7,52.1,125.0,125.4$, 128.5, 141.1 ppm . IR (neat) 2973, 2921, 1582, 1475, 1439, 1380, 1290, 1236, 1177, 1090, 1023, 892, 737, $691 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 181 (M+, 100), 166 (90), 123 (3), 109 (20), 56 (7); Anal. HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{15}$ NS: 181.0925, Found 181.0924.

N-(Phenylthio)piperidine (1b):

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 23.1,27.3,57.6,127.1,127.2,127.4,128.5,129.1,129.6$, 136.1, 137.0 ppm . IR (neat) 2934, 2817, 1739, 1582, 1474, 1439, 1367, 1217, 1149, 1101, 1024, 917, 857, 735, $689 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) $193\left(\mathrm{M}^{+}, 100\right), 110(6), 84$ (30); Anal. HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NS}: 193.0925$, Found 193.0924.

N -(Cyclopropylmethyl)- S -phenyl- N -propylsulfenamide (1c):

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.17(\mathrm{q}, J=6.0 \mathrm{~Hz}, 15.2 \mathrm{~Hz}, 2$
H), $0.47-0.51(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-1.08(\mathrm{~m}, 1$
H), 1.60-1.69 (m, 2 H), 2.89 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.98-3.01 (m, 2
H), 7.09-7.13 (m, 1 H), 7.26-7.33 (m, 4 H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.8,10.5,11.5,21.7,59.7,63.9,124.3,125.1,128.5,142.0 \mathrm{ppm}$. IR (neat) 3074, 3003, 2959, 2931, 2872, 2837, 1582, 1475, 1439, 1381, 1329, 1167, 1081, 1044, 1019, 828, 736, $689 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) $221\left(\mathrm{M}^{+}, 91\right.$), 192 (100), 180 (8), 164 (13), 150 (5), 138 (7), 123 (6), 109 (7), 72 (4), 55 (18); Anal. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NS}$: 221.1238, Found 221.1239.

N, N-Diethyl-S-(4-methylphenyl)sulfenamide (1d):

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}), 2.90(\mathrm{q}, J=6.8 \mathrm{~Hz}, 21.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.07-7.09(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.25 (m, 2 H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.6$, 20.9, 51.8, 127.2, 129.2, 135.6, 135.6, 135.8 ppm . IR (neat) 2971, 2930, 2846, 1597, 1490, 1445, 1375, 1177, 1135, 1112, 1080, 1058, 1032, 1015, 965, 803, $678 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 195 ($\mathrm{M}^{+}, 81$), 180 (73), 165 (4), 139 (4), 123 (100), 91 (7), 79 (7), 56 (7); Anal. HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NS}: 195.1082$, Found 195.1081.

Typical procedure of AlCl_{3}-catalyzed insertion of isocyanides into nitrogen-sulfur bonds of sulfenamides:

Into a 5-mL flask equipped with a reflux condenser were placed 2,6-xylyl isocyanide 2a (0.4 $\mathrm{mmol})$, sulfenamide 1a $(0.4 \mathrm{mmol})$, toluene $(0.4 \mathrm{~mL})$, and $\mathrm{AlCl}_{3}(0.12 \mathrm{mmol})$ at room temperature under N_{2}. The mixture was heated at $80^{\circ} \mathrm{C}$ for 2 h , then filtered through the celite pad with EtOAc, and volatiles were removed in vacuo. After the yield was determined by ${ }^{1} \mathrm{H}$ NMR (80%), the crude product was purified by preparative TLC (silica gel, n-hexane / $\mathrm{Et}_{2} \mathrm{O}=10: 1, \quad \mathrm{Rf}=0.60$) to obtain phenyl N^{\prime}-(2,6-dimethylphenyl)- N, N-diethylcarbamimidothioate $\mathbf{3 a}$ in 77% yield as a colorless oil.

Phenyl- N^{\prime}-(2,6-dimethylphenyl)- N, N-diethylcarbamimidothioate (3a)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.15(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H})$,
$3.53(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 21.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.77-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.20(\mathrm{~m}, 5 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.3,18.6,44.1,122.1,127.0,127.4,128.7,128.8$, 131.1, 133.1, 147.8, 150.8 ppm . IR (neat) 2970, 2930, 2866, 1604, 1580, 1471, 1440, 1375, 1359, 1246, 1222, 1181, 1110, 1081, 871, 761, 743, 702, $687 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 312 (${ }^{+}$, 6), 203 (100), 159 (3), 145 (6), 132 (7), 105 (4), 72 (22); Anal. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}: 312.1660$, Found 312.1662.

Phenyl- N-(2,6-dimethylphenyl)piperidine-1-carbimidothioate (3b)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.37-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.58(\mathrm{~m}, 2$ $\mathrm{H}), 2.11(\mathrm{~s}, 6 \mathrm{H}), 3.47(\mathrm{t}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H})$, $6.83-6.87(\mathrm{~m}, 1 \mathrm{H})$, 6.96-6.98 (m, 2 H), 7.16-7.28 (m, 5 H$) ~ p p m . ~{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 18.5,24.9,25.4,49.5,122.5,127.1,127.5,128.5,128.8$, 131.5, 133.4, 147.7, 154.2 ppm . IR (neat) 2934, 2852, 1605, 1581, $1472,1440,1371,1224,1173,1120,1087,1023,1008,882,849,761$, $741,702,687 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) $324\left(\mathrm{M}^{+}, 7\right)$, 215 (100), 130 (10), 105 (6), 84 (65), 41 (6); Anal. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}: 324.1660$, Found 324.1658.

Phenyl- N-(cyclopropylmethyl)- N^{\prime}-(2,6-dimethylphenyl)- N-propylcarbamimidothioate
 (3c)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.24(\mathrm{q}, J=5.2 \mathrm{~Hz}, 15.2 \mathrm{~Hz}, 2$ H), $0.50-0.55(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-1.10(\mathrm{~m}, 1$ H), $1.60-1.69(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H}), 3.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.78-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.91(\mathrm{~m}, 2 \mathrm{H})$, 7.15-7.19 (m, 5 H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.7,9.8$, 11.5, 18.6, 21.2, 51.3, 54.1, 122.1, 126.9, 127.4, 128.7, 128.8, 131.0, 133.3, 147.9, 151.7 ppm . IR (neat) 2964, 2873, 1595, 1459, 1353, 1307, 1207, 1136, 1101, 1048, 932, 864, 826, 795, 722, $657 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 352 (M^{+}, 6), 243 (100), 201 (18), 189 (7), 159 (7), 130 (7), 55 (26); Anal. HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{~S}: 352.1973$, Found 352.1976.
\boldsymbol{p}-Tolyl- N^{\prime}-(2,6-dimethylphenyl)- N, N-diethylcarbamimidothioate (3d):

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.13(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H})$, $2.27(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{q}, J=6.8 \mathrm{~Hz}, 21.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.77-6.81(\mathrm{~m}, 1 \mathrm{H})$, 6.88-6.90 (m, 2 H), 6.95-6.97 (m, 2 H), 7.04-7.06 (m, 2 H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.3,18.6,21.1,44.0,122.0,127.4$, 128.8, 129.4, 129.4, 131.3, 137.1, 147.9, 151.4 ppm. IR (neat) 2988, 2939, 1739, 1605, 1582, 1464, 1435, 1369, 1219, 1113, 1086, 1017,

872, 805, 759, $704 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) $326\left(\mathrm{M}^{+}, 4\right), 203$ (100), 145 (5), 132 (5), 105 (3), 72 (13); Anal. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~S}: 326.1817$, Found 326.1814.

Phenyl- N^{\prime}-(2,6-diisopropylphenyl)- N, N-diethylcarbamimidothioate (3e):
| ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.16(\mathrm{q}, J=$
 $4.0 \mathrm{~Hz}, 18.0 \mathrm{~Hz}, 12 \mathrm{H}$), 2.97 (sept, $J=6.8 \mathrm{~Hz}, 13.6 \mathrm{~Hz}, 20.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.44(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 20.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.98-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.25(\mathrm{~m}$, $5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.0,22.9,23.7,28.2$, $43.8,122.5,122.7,126.7,128.8,130.4,134.1,138.6,145.4,150.8$ ppm. IR (neat) 2959, 2866, 1599, 1359, 1324, 1256, 1231, 1173, 1095, 1065, 1041, 1003, 936, 872, 798, 780, 755, $692 \mathrm{~cm}^{-1}$; MS (EI) m / z (relative intensity, \%) $368\left(\mathrm{M}^{+}, 7\right.$), 259 (100), 186 (81), 171 (8), 144 (7), 109 (4), 72 (4); Anal. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{~S}$: 368.2286, Found 368.2288.

Phenyl- N, N-diethyl- N^{\prime}-(4-methoxyphenyl)carbamimidothioate (3f):

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.14(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.55$ (q, $J=6.8 \mathrm{~Hz}, 20.8 \mathrm{~Hz}, 4 \mathrm{H}$), $3.73(\mathrm{~s}, 3 \mathrm{H}), 6.58-6.68(\mathrm{~m}, 4 \mathrm{H})$, 7.09-7.18 (m, 5 H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.4$, 44.1, 55.4, 113.6, 122.8, 126.4, 128.7, 130.2, 133.8, 144.3, $151.0,154.9 \mathrm{ppm}$. IR (neat) 2992, 2931, 2905, 2831, 1590, 1571, 1503, 1400, 1283, 1237, 1225, 1185, 1111, 1037, 877 , 827, $741,687 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 314 ($\mathrm{M}^{+}, 8$), 205 (100), 176 (17), 161 (4), 133 (10), 100 (4); Anal. HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}: 314.1453$, Found 314.1454.

Phenyl- N^{\prime}-benzyl- N, N-diethylcarbamimidothioate ($\mathbf{3 g}$):

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.09(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.51(\mathrm{q}$, $J=6.8,21.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 7.13-7.19(\mathrm{~m}, 2 \mathrm{H})$, 7.22-7.28 (m, 8 H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.6$, $43.8,56.3,125.9,126.0,127.2,128.0,128.3,129.1,134.5,142.1$, 149.8 ppm . IR (neat) 2973, 2875, 2820, 1579, 1494, 1424, 1396, 1342, 1296, 1252, 1214, 1120, 1022, 846, 819, 730, $696 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) $299\left(\mathrm{M}^{+}, 100\right), 226$ (7), 207 (5), 189 (57), 111 (6), 91 (5); Anal. HRMS (CI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}: 298.1504$, Found 298.1506.

Phenyl- N^{\prime}-cyclohexyl- N, N-diethylcarbamimidothioate (3h):

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 0.98$ (t, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$), 1.10-1.42 $(\mathrm{m}, 5 \mathrm{H}), 1.55-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.73(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $21.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.57-3.64(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.26(\mathrm{~m}$, $4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.1,24.9,25.9,35.1,43.5$, $61.0,125.8,128.9,128.9,135.5,146.8 \mathrm{ppm}$. IR (neat) 2925, 2851, $1739,1599,1478,1446,1375,1357,1345,1305,1248,1213,1147$, 1065, 1024, 970, 894, 852, 737, $687 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 291 ($\mathrm{M}^{+}, 63$), 218 (19), 199 (6), 181 (100), 111 (7), 99 (8); Anal. HRMS (CI) calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~S}: ~ 290.1817$, Found 290.1819.

Typical procedure of acetic acid- assisted preparation of unsymmetrical ureas from isocyanides and sulfenamides:
Into a 5-mL flask equipped with a reflux condenser were placed 2,6-xylyl isocyanide 2a (0.4 $\mathrm{mmol})$, sulfenamide 1a (0.8 mmol), DMF $(0.4 \mathrm{~mL})$, and acetic acid $(0.4 \mathrm{mmol})$ at room temperature under N_{2}. The mixture was heated at $80^{\circ} \mathrm{C}$ for 30 h , then filtered through the celite pad with AcOEt , and volatiles were removed in vacuo. After the yield was determined by ${ }^{1} \mathrm{H}$ NMR (79%), the crude product was purified by preparative TLC (silica gel, n-hexane / $\mathrm{Et}_{2} \mathrm{O}=10: 1, \mathrm{Rf}=0.10$) to obtain 3-(2,6-dimethylphenyl)-1,1-diethylurea $\mathbf{4 a}$ in 78% yield as a white needle.

3-(2,6-Dimethylphenyl)-1,1-diethylurea (4a):

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H})$, $3.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 21.6 \mathrm{~Hz}, 4 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 7.01-7.07(\mathrm{~m}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1,18.5,41.6,126.2,128.0$, 135.6, 155.1 ppm . IR (neat) 3266, 2970, 2926, 1626, 1590, 1511, $1449,1396,1377,1279,1224,1172,1094,1077,1048,972,826,788$, $727,700 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) $220\left(\mathrm{M}^{+}, 46\right), 205$ (4), 147 (7), 120 (5), 100 (100), 72 (41), 58 (7), 44 (6); Anal. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: 220.1576$, Found 220.1575. mp; 178-179 ${ }^{\circ} \mathrm{C}$
\boldsymbol{N}-(2,6-Dimethylphenyl)piperidine-1-carboxamide (4b):

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.56-1.68(\mathrm{~m}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H})$, $3.42(\mathrm{t}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 7.00-7.08(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 18.4,24.5,25.8,45.5,126.2,128.0$, $135.3,135.5,155.7 \mathrm{ppm}$. IR (neat) 3311, 3037, 2938, 2850, 1632, 1522, 1505, 1467, 1441, 1387, 1356,1267, 1253, 1235, 1129, 1086, 1023, 981, 898, 851, 766, 730, $701 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) $232\left(\mathrm{M}^{+}, 54\right), 217(15), 147(51), 132(15), 119(20), 112$ (100), 84 (30), 69 (50),

1-(Cyclopropylmethyl)-3-(2,6-dimethylphenyl)-1-propylurea (4c):

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.27(\mathrm{q}, J=6.0 \mathrm{~Hz}, 15.2 \mathrm{~Hz}, 2$ $\mathrm{H}), 0.55-0.60(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-1.08(\mathrm{~m}, 1$ H), 1.19-1.23 (m, 2 H), 1.66-1.73 (m, 2 H), 2.23 (s, 6 H), 3.25 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H})$, 7.01-7.07 (m, 3 H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 3.8,3.9$, $10.6,11.4,14.1,14.1,18.5,21.9,28.7,41.5,41.7,49.5,51.6$, $123.2,123.2,126.2,127.4,128.1,132.8,135.5,135.6,146.5$, 155.7 ppm . IR (neat) $3270,2965,2872,1743,1618,1588,1518,1490,1378,1333,1306$, $1260,1244,1213,1171,1117,1060,1015,935,827,780,742 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 260 ($\mathrm{M}^{+}, 40$), 231 (5), 203 (8), 176 (5), 147 (11), 140 (25), 134 (18), 121 (12), 100 (14), 84 (19), 72 (10), 55 (100); Anal. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: 260.1889$, Found 260.1887.

3-(2,6-Diisopropylphenyl)-1,1-diethylurea (4d):

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.20-1.25(\mathrm{~m}, 18 \mathrm{H}), 3.12$ (quint, $J=$ $6.8 \mathrm{~Hz}, 13.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.39(\mathrm{q}, J=7.6 \mathrm{~Hz}, 21.2 \mathrm{~Hz}, 4 \mathrm{H}$), 5.65 ($\mathrm{s}, 1$ H), 7.14-7.26 (m, 3 H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1$, 23.6, 28.7, 41.7, 123.2, 127.4, 132.8, 146.5, 155.9 ppm . IR (neat) 3301, 2860, 2868, 1739, 1628, 1599, 1559, 1504, 1450, 1400, 1361, 1275, 1208, 1077, 972, 863, 807, 792, $741 \mathrm{~cm}^{-1}$; MS (EI) m/z (relative intensity, \%) 276 (${ }^{+}, 17$), 233 (26), 203 (96), 188 (100), 176 (28), 160 (21), 146 (34), 100 (75), 72 (35), 58 (22); Anal. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}: 276.2202$, Found 276.2203.

1,1-Diethyl-3-(4-methoxyphenyl)urea (4e):

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$,
 3.37 (q, $J=7.6 \mathrm{~Hz}, 21.6 \mathrm{~Hz}, 4 \mathrm{H}$), 3.78 (s, 3 H), 6.12 ($\mathrm{s}, 1$ H), 6.82-6.86 (m, 2 H), 7.26-7.30 (m, 2 H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.9,41.6,55.5,114.1,122.1,132.3$, $155.0,155.7 \mathrm{ppm}$. IR (neat) $3330,2975,2930,1639,1513$, 1420, 1297, 1266, 1243, 1165, 1037, 826, $756 \mathrm{~cm}^{-1}$; MS (EI) m / z (relative intensity, \%) $222\left(\mathrm{M}^{+}, 49\right), 149$ (100), 134 (49),

106 (22), 100 (65), 72 (38), 58 (24); Anal. HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: 222.1368, Found 222.1367.

3-5 References and notes

(1) For reviews, see: (a) Craine, L.; Raban, M. Chem. Rev. 1989, 89, 689. (b) Koval', I. V. Russ. Chem. Rev. 1996, 65, 421.
(2) For other example of synthesis of sulfenamides: (a) Barton, D. H. R.; Hesse, R. H.; O'Sullivan, A. C.; Pechet, M. M. J. Org. Chem. 1991, 56, 6702. (b) Taniguchi, N. Synlett 2007, 1917. (c) Taniguchi, N. Eur. J. Org. Chem. 2010, 2670.
(3) (a) Torii, S.; Sayo, N.; Tanaka, H. Chem. Lett. 1980, 695. (b) Makosza, M.; Bialecki, M. J. Org. Chem. 1992, 57, 4784. (c) Makosza, M.; Bialecki, M. J. Org. Chem. 1998, 63, 4878.
(4) (a) See ref. 3a. (b) Foray, G.; Peñéñory, A. B.; Rossi, R. A. Tetrahedron Lett. 1997, 38, 2035. (c) Zyk, N. V.; Beloglazkina, E. K.; Belova, M. A. Russ. Chem. Bull. Int. Ed. 2000, 49, 180. (d) Sobhani, S.; Fielenbach, D.; Marigo, M.; Wabnitz, T. C.; Jørgensen, K. A. Chem. Eur. J. 2005, 11, 5689.
(5) (a) Bowman, W. R.; Clark, D. N.; Marmon, R. J. Tetrahedron Lett. 1991, 32, 6441. (b) Bowman, W. R.; Clark, D. N.; Marmon, R. J. Tetrahedron Lett. 1992, 33, 4993 (c) Esker, J. L.; Newcomb. M. Tetrahedron Lett. 1993, 34, 6877 (d) Bowman, W. R.; Clark, D. N.; Marmon, R. J. Tetrahedron 1994, 50, 1275. (e) Barbieri, A.; Montevecchi, P. C.; Nanni, D.; Navacchia, M. L. Tetrahedron 1996, 52, 13255. (f) Maxwell, B. J.; Tsanaktsidis, J. J. Am. Chem. Soc. 1996, 118, 4276.
(6) Matsuo, J.; Iida, D.; Yamanaka, H.; Mukaiyama, T. Tetrahedron 2003, 59, 6739.
(7) Kuniyasu, H.; Hiraike, H.; Morita, M.; Tanaka, A.; Sugoh, K.; Kurosawa, H. J. Org. Chem. 1999, 64, 7305.
(8) For Pd-catalyzed insertion of carbon monoxide into cyclic sulfenamides: Rescourio, G.; Alper, H. J. Org. Chem. 2008, 73, 1612.
(9) Kondo, T.; Baba, A.; Nishi, Y.; Mitsudo, T. Tetrahedron Lett. 2004, 45, 1469.
(10) Phoshorous (V) oxohalide assisted insertion of sulfenamides into alkynes: Zyk, N. V.; Beloglazkina, E. K.; Belova, M. A.; Zefirov, N. S. Russ. Chem. Bull. Int. Ed. 2000, 49, 1846.
(11) For the related insertion of alkynes into cyclic sulfenamides: (a) Spitz, C.; Lohier, J.-F.; Santos, J. S.-d. O.; Reboul, V.; Metzner, P. J. Org. Chem. 2009, 74, 3936. (b) Spitz, C.; Lohier, J.-F.; Reboul, V.; Metzner, P. Org. Lett. 2009, 11, 2776. (c) Spitz, C.; Reboul, V.; Metzner, P. Tetrahedron Lett. 2011, 52, 6321.
(12) For the reaction of sulfenamides with α-diazocarbonyl compounds: Li, Y.; Shi, Y.; Huang, Z.; Wu, X.; Xu, P.; Wang, J.; Zhang Y. Org. Lett. 2011, 13, 1210.
(13) For Pd-catalyzed four component coupling of sulfenamides, carbon monoxide, alkynes, and diselenides: (a) Knapton, D. J.; Meyer, T. Y. Org. Lett. 2004, 6, 687. (b) Knapton, D. J.; Meyer, T. Y. J. Org. Chem. 2005, 70, 785.
(14) Chupp, J. P.; D'Amico, J. J.; Leschinsky, K. L. J. Org. Chem. 1978, 43, 3553.
(15) Tobisu, M.; Ito, S.; Kitajima, A.; Chatani, N. Org. Lett. 2008, 10, 5223.
(16) The reaction of 2 equiv of sulfenamide $\mathbf{1 a}$ with isocyanide $\mathbf{2 a}$ was carried out in
toluene in the presence of $10 \mathrm{~mol} \%$ of AlCl_{3} at $80^{\circ} \mathrm{C}$ for 24 h , similar results as in entry 13 were also obtained.
(17)
(a) Garvey, E. P.; Oplinger, J. A.; Tanoury, G. J.; Sherman, P. A.; Fowler, M.; Marshall, S.; Harmon, M. F.; Paith, J. E.; Furfine, E. S. J. Biol. Chem. 1994, 269, 26669. (b) Southan, G. J.; Szabó, C.; Thiemermann, C. Br. J. Pharmacol. 1995, 114, 510.
(18) For recent reviews, see: (a) Taylor, J. E.; Bull, S. D.; Williams, J. M. J. Chem. Soc. Rev. 2012, 41, 2109. (b) Candish, L.; Nakano, Y.; Lupton, D. W. Synthesis 2014, 1823.
(a) Sprague, J. M.; Johnson, T. B. J. Am. Chem. Soc. 1937, 59, 1837. (b) Sandin, H.; Swanstein, M.-L.; Wellner, E. J. Org. Chem. 2004, 69, 1571. (c) Lange, J. H. M.; Verhoog, S.; Sanders, H. J.; van Loevezijn, A.; Kruse, C. G. Tetrahedron Lett. 2011, 52, 3198.
(20) Since the formation of unsymmetrical ureas was confirmed in the reaction mixture before purification, the oxygen source would be water contaminated in DMF.
(21) Fujiwara, S.; Maeda, H.; Matsuya, T.; Shin-ike, T.; Kambe, N.; Sonoda, N. J. Org. Chem. 2000, 65, 5022.
(22) Wicker, B. F.; Scott, J. L.; Fout, A. R.; Pink, M.; Mindiola, D. J. Organometallics 2011, 30, 2453.
(23) Davis, F. A.; Friedman, A. J.; Kluger, E. W.; Skibo, E. B.; Fretz, E. R.; Milicia, A. P.; LeMasters, W. C. J. Org. Chem. 1977, 42, 967.

Summary

In this thesis, the studies on palladium or Lewis acid catalyzed cleavage of carbon-chalcogen bonds or nitrogen-sulfur bond and the subsequent decarbonylative rearrangement reaction of allenes or insertion of isocyanides were described. These aspects would be good representations showing great potential of organochalcogen compounds for various catalytic transformations in organic chemistry.

In chapter 1, palladium-catalyzed decarbonylative rearrangement of N-allenyl seleno- and tellurocarbamates was described. In this system, decarbonylative rearrangement proceeded by the treatment of N-allenyl seleno- and tellurocarbamates with the palladium catalyst to give 3-seleno or 3-telluro-1-azadienes with the use of rac-BINAP as a ligand. This transformation involves unusual decarbonylation from carbamoyl-Pd units. In addition, a four-membered lactam incorporating no chalcogen atom was obtained as a major product in moderate yields by using PPhMe_{2} as the ligand.

In chapter 2, the first example of the transition metal catalyzed insertion reactions of isocyanides into thiocarbamates and selenocarbamates were described. This protocol could also be applied to the insertion of isocyanides into carbon-selenium bonds. DFT calculations indicate that the reaction proceeds via a thiopalladation pathway and not a carbopalladation pathway.

In chapter 3, a simple and convenient reaction for the synthesis of isothioureas by AlCl_{3}-catalyzed insertion of isocyanides into the N - S bond of sulfonamides was disclosed. Since only a few classical preparative methods of isothioureas are available, the present new approach would attract considerable attention as a practical supplemental method for isothiourea synthesis. Acetic acid-assisted, one-pot preparation of unsymmetrical ureas from isocyanides and sulfenamides was also described.

These new aspects revealed through this study show a great benefit in transition metal- and Lewis acid-catalyzed unique transformation using organochalcogen compounds with allenes and isocyanides. Any further developments of these reactions are expected to be based on the works in this thesis.

List of Publications

(1) "Palladium-Catalyzed Decarbonylative Rearrangement of N-Allenyl Seleno- and Tellurocarbamates"
Shiro, D.; Nagai, H.; Fujiwara, S.; Tsuda, S.; Iwasaki, T.; Kuniyasu, H.; Kambe, N. Heteroatom Chem. 2014, 25, 518.
(2) "Palladium-Catalyzed Insertion Reactions of Isocyanides into Thiocarbamates and Selenocarbamates"

Shiro, D.; Fujiwara, S.; Tsuda, S.; Iwasaki, T.; Kuniyasu, H.; Kambe, N. Chem. Lett. 2015, accepted (doi: 10.1246/cl.141141).
(3) " AlCl_{3}-Catalyzed Insertion of Isocyanides into Nitrogen-Sulfur Bonds of Sulfenamides" Shiro, D.; Fujiwara, S.; Tsuda, S.; Iwasaki, T.; Kuniyasu, H.; Kambe, N. Tetrahedron Lett. 2015, accepted (doi:10.1016/j.tetlet.2015.01.096).

Acknowledgement

The author would like to express his appreciation and gratitude to Professor Nobuaki Kambe at Department of Applied Chemistry, Graduate School of Engineering, Osaka University, for a great number of suggestions, discussions and guidance. The author wishes to express his sincere thanks to Professor Yoshio Aso and Professor Ikuya Shibata for kind discussions and close attention to detail with respect to this thesis. The author would like to express his marvelous gratitude to Professor Shin-ichi Fujiwara at Department of Chemistry, Osaka Dental University for valuable suggestions, hearty encouragement and fruitful discussions. The author also would like to thank to Professor Carsten Bolm at RWTH Aachen University for supporting my living in Germany and giving valuable advices. The author would like to acknowledge Professor Hitoshi Kuniyasu for helpful advice and suggestions. The author would like to express his special thanks to Professor Susumu Tsuda at Osaka Dental University and Professor Takanori Iwasaki for passionate discussions and everlasting encouragement. Thanks are due to the Instrumental Analysis Center, Graduate School of Engineering, Osaka University, for measurement of spectral and analytical data. Furthermore the author expresses his special thanks to the JSPS Japanese-German Graduate Externship Program on "Environmentally Benign Bio- and Chemical Processes" for financial support for the stay in RWTH Aachen.
The author would like to express his appreciation to Mr. Hiroyuki Nagai for hearty support and kind encouragement for initial stage of his career. Special thanks are given to Ms. Maiko Okuyama, Mr. Toru Higashida, Ms. Asumi Kamiyama and Dr. Masashi Toyofuku for their active collaborations and stimulating discussions in this work. He also wishes to express his thanks to the following young chemists, Ms. Kaoru Asahi, Mr. Ryota Takahashi, Mr. Hiroki Yamauchi and Mr. Yohei Minami for their continuing efforts.
The author is deeply indebted to Mr. Takehiro Omori, Mr. Ryohei Shimizu and Mr. Junjie Li as colleagues for the master's course. The author is also grateful to Dr. Surya Prakash Singh, Dr. Prakash Reddy Vutukuri, Dr. Ruwei Shen, Dr. Shameem Ara Begum, Dr. Renhua Qiu, Dr. Arash Ghaderi, Dr. Yasunori Minami, Dr. Ayaka Ishikawa, Mr. Kazuhiro Ikai, Mr. Kazunobu Takekawa, Ms. Tomoka Maekawa, Mr. Yusuke Moriwaki, Ms. Asako Tsumura, Mr. Daisuke Nakane, Mr. Yoshinori Miyata, Ms. Yuuko Fujiie and all other members of the laboratory of Professor Kambe for their comfortable assistance and enjoyable days to him.
The author wishes to express the greatest thanks to Dr. Atsushi Sanagawa for developing through friendly competition with him.
Finally, the author would like to express thanks to his father, mother and sister for their understanding and perpetual support.

January, 2015
Daisuke Shiro

[^0]: ${ }^{a}{ }^{1} \mathrm{H}$ NMR yield.

[^1]: $H F=-1631.8485447$

[^2]: Conditions: 15a (0.4 mmol), 14a (2 equiv), Lewis acid ($10 \mathrm{~mol} \%$), solvent (0.4 mL).
 ${ }^{a}$ NMR yields. ${ }^{b}$ Isolated yield are in parentehses. ${ }^{c} \mathrm{CH}_{3} \mathrm{COOH}$ (1 equiv).
 ${ }^{d} \mathrm{AlCl}_{3}(30 \mathrm{~mol} \%) .{ }^{e} \mathbf{1 5 a}$ (1 equiv).

