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Fig. 1.1 Collision of water jet to the wall
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Fig. 1.2 The water jet utilized in the construction field
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Fig. 1.3 The flow pattern of the high-speed water jet. It becomes the droplet flow.
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Fig. 1.4 The water jet utilized in the surface treatment or surfacing

Table 1.1 The table of the construction industry using a water jet
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Fig. 1.5 The soil improvement columns developed by the super jet method
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Fig. 1.7 A motion of the nozzle of the Flow Co.,LTD.
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Fig. 1.8 The general domain of Hydriomilling and Hydrodemolition
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Fig. 1.10 Concrete cut by hydromilling method
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Fig. 2.1 The measurement example of the luminance distribution of laser visualization
of a water jet
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Fig. 2.2 Schematic photo of experimental apparatus
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Fig. 2.3 The system configuration of the water injection equipment of a water jet

B OHARITLL T O@Y) TH 5.
(i) = CCD 7 A7, Image Intensifier

EHE CCD 1 A 7 & Image Intensifier O 5. E. % Fig. 2.4 12779, Z O &3 CCD
B A ZIE(R) ke R b =27 Ao C7972-11 & F 7o, A %04y fif e 2
1024x1024 pixel TH v, FEICHEMIT 10psec~1sec, HIMRMEEENS 12bit, 2Z2fHIfiE
BEEE, ARAFZECIE, 73.2 umm/pixel & 195.3 pmm/pixel ([ZF%E L7=. Image
Intensifier (1.1.) 1%, ¥ v & —AE— Rl Insec~Th v, 4 EIOEHKAE
DY = N OGO 2 ATHEIC LTS, E7=WNHEET LA 1% 80nsec
BRELTEBY, BBOX TN VAL —F—DRIELEFRMEZ L VREEZ{ToT
W5,
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Fig. 2.4 High-speed CCD camera and Image Intensifier

(i) Z7NVVANAYAG L—H—, nalrvoor

2T 30 A Nd:YAG L —H—(3 Fig. 2.5 (2757 New Wave Research £ Solo
PIV Nd:YAG Laser iV /2. 2o L—F =3I L7z Z>D L —HF—%
BHLTEBY, ZOZ50L—F—ORIRMMBEERICRET DI LN TED
ZEDRRETH S, L— DM RIX532nm TH Y, /L AR 6 nsec DX T
NNV ALERIRSEDLZENTE L. L—F—HNE, 1 RIRHZY ik 120m]
Thbd. 72, 2OV —W—|IFirelamp IZfF 52 %5 Z & T, HOERIZAL,
Q-switch I Z WAL LT %, ZHuZk, Fire lamp 725 Q-switch (2 A % KFfH]
DEIICE > THANENT D, ABIFETIE, ZOF TN/ VAL —HF—%
WTC, U—F—Vxy MY — RESN@thiF a2 U, #tiRe 217
5 ZETPTIVHRE (LIF-PTVIE) Z{795. ZhIZLY, Y=y FREOHEY

MREZITS. 138, 2HBO L —F—JMELZ[F—I2T 572HIZ, Fire lamp
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26 Q-switch ICADBFEIEZFHE L TWA. £, Ur—F—T = v Ul
WAWHENOFEESAAFHIZIT 5 72012, YU KU B L XEHNTL

—PF—NE— MK (BEX01mm) 1KY, Y= MIREH L.

NNOT T TNTONTE, K LOKW O b D& L7z,

Fig. 2.5 Double pulse Nd:YAG laser

KRERO—HOFAUOWTHIT 5. UK Z & 7 ICEERIE TH D KA 0T
HTWD., BFKZ I InDR T K> TRERHZED, 770V y—Ro T
CRVIESND. NESNIAKITRER & EAFIEBY, / AV X 0KFESH
FICHER SN 5. KEBRTHWEZT T Yy —KR 2 713k K 40MPa £ THET
XHHLDOTHD. S AMIT— =D ) ANERN. 7 AVOMKKK LS
HZ& Fig. 2.6 IO d. J AADBAKEHANCY +—F =V =y FEWEFT 5. ¥
v MIF U 7IZEREL, fEBR L, BERTKY 712 BHi5. Image Intensifier
ZHTTENCATE Lo m® B CCD 7 A 7 (JEfass =2 %, C7972-11) (IFEE L
FEcHEBE L, UL SEET S, L—F 3K E NS v — NIRRT Y
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= v MIART 5. PIVIEGNZ PTV 24T 9 72 DI 13M D TRV IR H] Tilifse L7z
BEEZw Lt eblewn. LarL, vr—F—Yxy MNIEEETHD
7o ORER R ENE - fie 3 5 e OIITFTOLR R 2 TE 272008 < L, #hPick
BEONXBMETHDHDT, B A7, Image Intensifier, L —3— % [FIRFIZ A <&
RFIIEZR B, REBROIEDFPHCTIEY = > b O I3 K 300m/sec T2/
EHEEINDDT, KEBRTHW-D AT OliFEE (1024x1024pixel) TV = v
N EREICERIR T 27Dz, T/ RAE— S —THENTIHLERD D.
Z T, TUHNVEBIE OV AFEALR 2 5 (Stanford Research Systems, DG-535 &
AT )~ > 7 A, 187T-YAG) Lo TInbxFmWLE. b olarD ¥
AIVTF¥Y— e Fig2712537. A3 7F v —FFOPDIEPIV R7A
N=DH % L1, L2ZICEAL T L ——D AN %, DG 25\ Tk DG535 D
J1%, CCD, LLIZOWTIEA A & Image Intensifier (IZOWTERDT. F2, &
P e DX A Fig. 2.8 1R

ZDAA IV TTF X — MIOWTHRT 5. 1877-YAG 7 ¥ H JVIRIE S )L A 5§
Ads (MR PIV RT A=) v AF—dzb L, DG53b Z AL —T & d 5.
PIV F T A N—=3 R L=V =Dl 21T 5 . IOARIUL L —F — DIz R~
PIV R IANR—DH 1L 2TLHEE DL —%—(LLFELL) @ Fire lump & Q-switch
O AT 5. ) 3 & 41Xk 2 5B (BIRE L2) 217 9. L — ¥ —|% Fire lump
M5 Q-switch delay THI IR E S DT, 2D L —HF—DH T %2 1FIZIF CEIC
T 572, L—H—H 152 FVv T Q-switch delay (2 & 5 1 D2 b & R~ 7=
X #iljiZ Q-switch delay %, fefililcH ) Z~$ 27T 7 % Fig. 29 |\Z/R 7. 2LV,
L1 @ Q-switch delay % 194psec, L2 ¢ Q-switch delay % 180usec (Z{E L7=. L2
O Fire lump O H A AT IZAT1=AT+194-183 T £ 5. 7272 LAT I~ H®D

Wi & kB OEG ORI =49, PIV R 4 /3—(% 0.5Hz T L1 ® Fire lump
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W& 525, Z0 194psec %12 L1 @ Q-switch (ZH /1% 52 % . Q-switch {Z
ANT % EWNET 4 LA (%) 300nsec) Z#% T L1 233N+ 2. L2 1T TL&RICH
BRO—#HOEEZITH. F7z, PIV KT A4 /3=25 L1 @ Fire lump I 1% 5 2
% & [FIFEIC DG535 I b H 1% %. DG535IC A% &, DG535 O C&D 75
191psec #1Z CCD 4 A Z1Z%f L TR & 2.26usec DAGRB{E 52150, A&B IZ%f
LT 194psec t2IZIEGmEME 52155, CCD I A T1% 4.5usec OMTENT 5. K
40nsec DIFMZEZ B W THER LT 5. A&B IFAT ORI O EimBEF % 5 2,
Image Intensifier 4 — k23 A 7F77C 10nsec B fiZ L, AT # (2 10nsec B3 5.
Z DFEBRIC K AR RO 6% Fig. 2.10 (287
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Fig. 2.6 The schematic view of a water jet nozzle
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Fig. 2.7 The timing chart of measurement synchronization
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I.1. controller DG535

? Ve © External Trigger
? DIC Input 6 chA&BHD chcab-
PIV Driver
©o o ? © ouT1 —@ OuT2
v v o oUT3 _o oUT
PC I.1.
Laser
© FIRE © FIRE
LAMP LAMP
7o < o JeR
SWICTH SWICTH
Laserl Laser2

Fig. 2.8 The connection diagram of each apparatus

(PIV driver, DG535, double pulse laser and 1.1. controller)

6 used for Laser-2 used for Laser-1

AR

Output power mJ/pulse

Q-switch delay psec.

Fig. 2.9 Change of the Laser power by Q-switch delay using a laser output meter
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(a) this nozzle exit pressure is bMPa, the distance from nozzleexitis
4600mm

(b) this nozzle exit pressure is 30MPa, the distance from nozzle exit is
4600mm

Fig. 2.10 The example of a photographing result
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Fig. 2.11 The photograph of experimental apparatus for back light imaging
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FHSE 2.1 1181 & RO AT L TWD. 24 I 7 F v — MIEL
T, PIVRIAR—DLTHEL, ~aFr T FALEEETHD 2 Enb L
— =D X HICFEBT 2 0EN <, DGEIBIFHEH L TV, ~a b
TV rzy M LTEETAENOROTIEICL 2TV 2y FORBEA T

LT 22 LRnTE S, V= v FPORERZ R L72Bl%Fig. 21212777,

Fig. 2.12 The example of the picture of the shape of surface type of a jet

(The nozzle diameter d = 2.3 mm)
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2.1.2  PIVIEIZ X D3RR
2121 FERILE

PIVIE D FERAEE 1 XRTHT O I RAL O BRIZ W 2 Fig. 2.210 9 RZEBREEE & [FIER
DHLDEMH L.
2122 PIVOJFHE

PIV (Particle Image Velocimetry) (Xt DI ®RA 1G5 EE L TASFIHE
NTWDLFETHD. MESGTICRTFEZIRAL, £ORFRNRIEISERT 559
Z AR, BT OBEN OIRNORE M2 E'F T2 TIETH L. 127121
{8l % DRI DR Z K> 5 D TIE72 < . Fig. 2.13 (THRBITRT X 5 72 HEM t
AT HREE L 72 RIS OB R 70~ D i A S O FH BB & sk oo, £ o +HEA B
BOOLHESRY MVERNT 550 THS.

t# t+ ]t #
Fig. 2.13 The continuation picture of the same place of the time t and t + At
ZOLEPIVICKVEEGSIRE T Y 7 hy =T IXZNETOZHEBIR I L
TBY., AFETIEZ ) LEPIVIEO Y 7 h o =7 L LTEBOSH D (BF) 7—
277 7 aY—tMZVECTORA AV T, #EZIHIE A HPIVEHHI T 2 51l L
7.
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213 PTV-LIFEC L D@ Y +—Z—V = v FOREFH
2.1.3.1 FEERIEE

PTV-LIFE D EBR IS OIS X & Fig. 2.1412779". PTV-LIFED FEERAEE T
2. 1L1AH IO EBREEE S FIEFRETH 5. mKEECCDY A T ORITEICIES: T 4 v
X —h @ Lz, £, BERIETH HKIZE K7 (Rhodamine B) iR A L
7.

CCD|camera
withiLLl.

nozzle

Digital Delay Digital Delay
Circuit 1 Circuit 2

I

PC

Fig. 2.14 The equipment outline of the PTV-LIF method

2.1.3.2 LIFIEOHIEF L

LIF7% (Laser Induced Fluorescence: L ——#h il %) ORIEFRE A Fig. 2.15
(ORT. LIFER V=Y =2 G CE SR L, 2 Ko Tbilt S nuiziicfk
T ORFE DR > BN DIE #2152 T1ETH 5. AWFFE TILHE K 23532nm D
Nd:YAG L —H—ZFH L T\ 5. dthi & L CPMMAIZRhodamine BZ & 47

L7ebOZEMM LI, MAETICRALZEER 1T, L—— 25152
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CANZ Ko TN B EALERLIZHIEE 2. 2 DR, AL O TR
LalZlX, B SRR 8L, TS EMNO TALENRIT D T HERL A~
T 5. 2O, ZDOMEMNAEITH YT 5= XX —2FF O i S 5 (Fig.
2162) . ThatT 22 LIl THNGOERE/L LN TES. K
FERTIL, EMERIADI/KIZRhodamine B% & A L72PMMADHERL -2 1R A L,
J ANDBEST5H. NAYAGL —H—TV =y MIXLTHRFET S, Y= b
1 OHIERL 1IN YAG L —H— (A = 532 nm) O FIZ L > Thbke L, 625nm
EHLETDWREORNEBHTD. DAT VU XDRNIHTF T 4 VF — %
BT D, ZONFT 40 Z —1E565nmEL T DEIXI%LL T LA LgWh o T,
KFLSD Y =y hONEIFZENEED. Lo TRTFDRERETED. Zh
Zdifee L CHREE L, PTV(Particle Tracking Velocimetry)d~ 5 Z & 12 & - Tl E %5

HTE5.
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fluorescent particle

Image Intensifier

Fig. 2.15 The measurement principle of the LIF method

N3

Induced

Laser beam ﬂu@’ﬂggc;rﬁ‘cg/
NI\

NI

NE

Fig. 2.16 The mechanism of LIF
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(i) ORI~
Lavision #:#40>1002192% H\ 7=, H A X1320-50umDEKFE LKL TH Y,

PMMA®DERIE 71 7 & L INIZ 8t 58 T & % Rhodamine B23Ef A & 7= A i O hE
+T&®%. Rhodamine BE PMMADEMMEIEIZIRD K 91272 %, £1-HFE%Fig.
2172”7,
PMMA Density 1.19g/ccm

Refractive index 1.48

Soluble in organic solvents

Good mechanical stability

Hydrophilic anionic surface

Rhodamine B 2-[6-(Diethylamino)-3-(diethylimino)-3H-(xanthen)-yl] benzolic acied
Absorption max 540nm
Fluorescence max 625nm

Efficiency 29%
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Fig. 2.17 The fluorescence particles used for the experiment

(i) 7 4V H—

v = YRR D ODIF-50S-RED % N =, & DY 7 ¢ V& —X565nmEL T
DWFZET Y L, TRLLYVBEREEZEBRT D, ZREET, ERELLT DL
RDOIL TS,

2=400~565nm T<1%
A=610+£10nm T=50%
2=640~700nm T>85%
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214  L—HF—CTIEIZ X DHE
2141 L —H%—CT L@

L—HF—=bET T 7 4 —IEEAWEERCHER LIEEREBICON TR S,
ARFEERCEEA L7 AL E 0 T 5 LIS X 2 2 1L U Fig. 2.18, Fig. 2.19 12777

Fig. 2.18 Photograph of experimental setup

AD
Converter

Detector

Nozzle

Hydraulic Jack
Water Pump

+
O Tank Flow High Pressure Pressure |
Comtrol Pump Gauge

Fig. 2.19 Schematic drawing of experimental setup
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KERCIEIEEY 4+ — 2 —Vx v FOBBESHOMOTD, SRS v v F
ihb L L b —— i e H L= R ORH2ITo7-. 2 TH
FDEEA Fig. 2.20 12, HFHR MM % Fig. 2.21 I 2 EART.

e

Fig. 2.20 Schematic photograph of experimental setup for optical system

Laser beam
Photodetector Nd:YAG Laser

Base Plates

Low-profile X axis Steel Stage

Carriers for Medium Optical Rails

Low-profile X axis Steel Stage

L Angle Brackets

X axis Rack and Pinion Dovetail Stages

Medium Low-profile Optical Rails

Carriers for Medium Optical Rails

Carriers for Medium Optical Rails

L. Angle Brackets

Precision Labjacks

£ Angle Brackets
Base Plates

Platform for Labjacks Labjack Adjustments

Fig. 2.21 Schematic drawing of experimental setup for optical system
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Fro, EFBRICERALEZL—Y—, 747274, AD 3=, %R, J AL
DHEEC SOV TIEENZ (1 )~(v )ITRT.
(1) FELRhE L —P —

L—H—%, CrystaLaser fEOHHEFIED P EKFIE Nd:YAG L —+ —(Diode
Pumped Green CrystaLasen)Z{#fH L7=. L —%—oKEiX 532nm, b — AT
0.2mm, L —H—DH L 30mW, B —ADJAMR Y MAiX 2mrad TH 5.

HERT, V=P —AREOFEIZRY =F LRI K - THiKRZH LEEH L
7=, WEF DL —F—DR+% Fig. 2.22 |2/~ 7.

Fig. 2.22 Photograph of CW Laser

(i) 7+ T a7 %
7 4 N7 4 7 2 XX Electro-Optics Technology £1:¢> Biased Silicon Photodetector
7 ET-2030TTL Zff f] L 72. SR IRISE A WEIE 1.2GHz, B ER O ELAEIE 0.4mm,

B BBV FREEIL 300ps THDH. AEBRTT7 4 v T 4 T 7 XL D L—F—HD
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BAET S s fEE L LTHRINSRS.
L L RS, BUE TR 2R Y = F LS o TRk LR L7,

WEF DT+ NT 47 7 X OFT% Fig. 2.23 1217

Fig. 2.23 Photograph of photo detector

(iii) AD =2 /R—%

AD = > /3—# X NATIONAL INSTRUMENT #L:? PCI-6251 i L7=. 77
07 A7) 7 L— RiE 1.25MS/sec, SfERE16 B FTHD. T+ bT
4T 7 & EOEERIZIE, AT < NATIONAL INSTRUMENT #OdriEH > —/v K
/r—7 )L SHC68-68-EPM, < —/L Niiif-5 BNC-2110 & Tyco Electronics £ =

7 ARl — 7 T ' 7Y 1337773-4 2 fEH L7-.
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(v) JFR
SR DOIERUZ AW T2 o 7 < ekt L — 5 — F e A SR O 4 R 2 7R T
&P 27T b
X HEN 7 v 7 = AT —
R X R F— L AT
LB Z v b
IR 7 L R R T
HF_TFHE Y VT
NR—Z 7 L— |
BEIRy XMy 77—k
BEIRY Y v%
BEIRYYy yXFHey R
AEFIEIRV e =1y — Mo ko TEMICH K Z L7z £ T, L—%—L&
FAT U BEEE LI NERE L— VISl MEY ¥ v I LER LT,

(v) /A

L—H—CTIEIC L D ERTIXEER ) V2 L. HAZoEI VS
N5y hEEET S AL, BICEER ) XL =2R ) X255 HE
EN, TNENT A —F—V >y NORENRRRD. BHERN ) AVLTEYxy
N OARDIEVLFPIRIZZ2 D Z &b TE Y, SENXERI 2 XV Z2fiH L.
WEF D ZDFGEE ) VMR ZFig. 224 (2737 . /7 Z)VERET

D1=2.5mmT&dH 5.
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Flow direction

Convergent angle

L=3 ~ 4D Straight section length

Fig. 2.24 Schematic drawing and photograph of Straight type nozzle

2142 L —W—CT LI X 25 E

L—F—CT iE&E AW EBROFNZ R~ 5. BIERETH D KIS v 7
MHR T EMEREGFHEZR T T 70V — AR I LY EESIULEEDET)
ICFRE SN, KEICRB SN AL LEN SN +—F— -y M
T 5. Y=y MIvzy NAZ U Z 2T CTEHS, 740 0¥—I2E-
TR Z I BRN T ETlKSY V7 IR S.

AREBRIZEB T DV =y bOFERENE LT, / XV D EZIKEMETE T
BDHN, AR D HREIL D IO TR JE P D 24253 % & A B 5K 4
e d., Y=y PNEORA FEROMAUEIIZL—YF— NET T 7 0 —lE%

e, e33R, EHE IR O -8Rk Nd:YAG L —#— (Crystalaser ft,
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W 532nm, 17 30mW) & 7 ~ 7 ¢ 77 # (EOT #f, e KIS &M ¥ 1.2GHz)
EHALEZ. Vb=V —L T3 b T 4T XV 2y bEFRATY = v NEITH
) & MEZIER L CRLE L, L— Y —dAKRICRIREN, 74+ T4 T2 H
D HFICEE AR T 5 (Fig. 2.25). L—W—RIEO L7+ b7 47 7 XML
500mm D PFEEEDEEN TV D . EBRBAGATNCIZ L —Y— &7 4 7 7 X ORHES D
FEATV, WONFIZE L TIHERGBR IIIEEZTh v, T HEAICX
STU—=F—=HRT 477 Z ORI PSR T 5 &0 a7 - 7214,
NATIONAL INSTRUMENT #:® PC F17 7"V &r—< 3 >V 7 |k LabVIWE % [
LZEDOMEEBAID. 22007 477 ZUORAT — U TE S F~BE) S+
BHBREE DN I K & 72 DALBICHHIES 5. FEOBIETL =Y — O AT =T
BT MR ZIT, BESDEEET T 5.

Fhr, K EICY sy FOEREABETUEL—F—RITEOEEFHZEL 7
F N T 4TI ZITRHENDD, K EICEES HIUE, IS X 2EfkD D
VIR R E T ORI LY L—F — KT LT« 7 7 X RIS A
TSN, T4 77 Z2BRHEEICARN L= —HE 7+ T4 T 7 X
IZBWT, 7FIrJEFE LTRSS, £ 2 CL—F =Rt ORRIIT
— X %AD AL NR—=FENLTT VX EFICER L, PC ICHUE, 7 — & WL

LY L= EZEORMEG (ZEE) 2RDLH. KEBRTITHES 7
/L% 1,000,000 [El/sec , L—H—JeoMHBIEZ 25VE L TRIEZITV, #i v
TNEORTHBBHIN TV LIEERGIC LI b0EBZBBRELT L. £,
1 EORERIE 1seck L, HEZRFMFEZEFETICIEMEL, £ OFEHE
EZDBFTICEIT 2 FERE LT 5. PCICBITL2BEGT — X OMBICHEH LT
TV r— 3 ik, 51&#HiEXNATIONAL INSTRUMENT#ED LabVIWE % FV 7=,

Lok Tk b F AT 7 SR L BICE & FINOBEA D TREARZ 2T —
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v (FEhEEPH 140mm) ICERXEINTEY, Y=y MHLMALESE Imm L0
BRI a7, REBRTIIE S & 0~32MPadD#iH T, / ANVEHNE Y =
v N O IT A ~O % 0~500D, DR TIEEIZED, HEZIT-T-.
"BonFBRESMELY, MNETTT7 4 —EEFERALTY vy FREOFER
RO D FEER AT o 72, B ERERIZIE ML-EM 1% GRbHEE IR Kb
) &, Yy MEENHEEHTHHZ EEEMA LMAICKE LTHWE. ¥
=y MTERFTOZBRIZFFARA FREAEIH L Z 1D, Y=y MNafr
DIRA RESHFZRODHZENTED, EBRTHE LLFZBREND DRA RFE
OFHIE, FORTRAN [ZX > TER L2707 T L& L TiT->7=. ML-EM

MEZ & D B AR O FEIZ DWW TIRIR T 5.

z

Cross section of el/

Nd:YAG Laser

Measuring

point

Photodetector

Laser beam

Fig. 2.25 Cross section of the jet
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Fig. 2.26 Photograph of measurement

2143 JRpT&EROHE M

L—H—CT IEIZ Lo TRl SN BmBEEICOWT, BGABEZFRIA L TR
FTRY72 S 31T DR (RFTEER) 2 BT 2. GRS ML-EM
W (e EMf R k) 2, Y=y MESESEMBTH L Z L EWA L
MBEIICHE L THWS. EBRCHIE L@ b o J& g i = o H i
FORTRAN [Z ko TR E N7 m 7T AR L TIT .

R FEERRIE LT, & 2WE OB D TRONIHER T RbbERET — 2 h
5, FIRTH 5 MmO i 28 < fRiEE2fE TR XBCTICRE SN 5 EBAICT
1%, BRSO DU 2 A L, £ OE8 DRk Z g CHIET 5.
Z L TREXN RO Z B HTrT — % ZIET 5 2 & T, XL —F—kickt
T HRABERNROWIHLOSMEEB L LTRT. 2O LD ICHBMCTIIMAXS
S OFRIIIRE A0 2 B LG AL 217 5 2 & THEMOWE % 72
ZENTED. AERTIE, BERdREzEE Y+ —F—Y =y L, BT
DIMEL—F =T DT, BEOHBEZARIZLTWS. Sbig, &
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0 B B O g 238 AT RV A AT O BN B D DX E OFRIZANIFE T
TG RIE R L, SEHIC#iEZ RO 5.

ZITEIBRIEBIE L X, EEMICHES Z LR TE RVWaE R fif <
I, FICh DM (WEEER) ZE LEOWmEig ST 52 & TR
1, EEREOBE OB TR L, TOMEZVERE LIRE L-MEEEL,
ZOEBEABYIRT Z & THRIGESIT TV FIETH L. FHRIZIE, FHAIT—
BN ) A REORFEAENGEN TV THAEEZETTE AL EEL, Filg
DIFHEZ RO DEER G EN TS, U EOFTEICLY, HETFT—Z05 5T
O Wi O B & 15 5 B FAE LA T AL D . ARFERR TITFFIZ ML-EM £ & FEITH
LDHEEMER LTV =y NORFTERESMOR N ZITo 7.

F7o, XRCT 24 &3 2FBWFHINCIE AP FEL, ZhiddEEEtflic
BWTIHEFICHMNREBZHFTHLD, FRFICRKEREETHLH LD TUFIZ—
fixlE £ DE A RT.

L—HF =KL ZDRIHNCHONWTEZD. L—PF =IO 255 S 5 Bk
DD EREL, Fig 227 1T LI ICRETS.

Intensity
A

) -Al

R

Ax

Fig. 2.27 Laser intensity attenuation
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SREE | O L— W — s AR IR ] O AU NERRE Ax 720 A G 2 sl 3 2 55
&, Al &R ol —Al OFIG %, BRERE n ERT. TIUX, wWAX D3RGS
LicE Al EFELIRD I EEZEKRL,

— Al = ulAX (2.1.1)

LD Thae L——hOHET E Al EMUNEREAX TRT LU TOAL D,

Al

— =yl 2.1.2

x 7 ( )
INEBUNXE A & dl ZHAWTEXETERRKOL YIRS,

dl

— = 2.1.

- A (2.1.3)

IS R THLDOT, 1ITHOWTHHELS &

=1, (2.1.4)
ED. RSxoxmiFi L= Es =l I Tuxo & 7257052 &I O ICET &
| = 1,-exp[- jo“ udx] (2.1.5)

EMT D, S LITHREBIREN R —TiXy) E WO DM EfE>ET5 &, (EE
DERE LI > T2 L —F—JOREHIRE T O T &
| = Io'exp[—f; f(x, y)l] (2.1.6)

L% INNEHRHO—HEATH 5.

2114 ML-EM {EE2E & B ADE A
e L HEE — WA B K {bi% (Maximum Likelihood - Expectation Maximization 72,
LU ML-EM #£) 1T X 2 R 5540 OB H O & 2 OEHIZ OV TR~ 5.
AR THE X T DGR OMED B RFTEER %2R0 D/ b AN FEE
BHaR OEE & F CRIBE OB SRR E S 2L ThD. EZANZOFIET
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%, HE SNTCEBRICREN T EN D L@ HTRADN L FF 22 < 72 57 HE
PERDH DT, FZBWEND Y =y ORFTEEEOE T 2 EITIZIT 5 2 &1
LV, 22 TRALHEE (ML) ik EHIHER AL (EM) £ 0D “HoDE X
D& AEDE T, ML-EM 15 & FEEN 2 B EIEZ T 5. 2tk - T,
BRERMNGTHD Y =y @Bl LI OBRENS Y = v FNERO /T O %R
oA %, TS RRMEOEWGAED—2E LTHIET S, ZOHET
%, ETHEEOHEICH 2 RFnEEREFUET 5. O RFTEIEE BRI
Ko THRE LT RFTERBELSANORO Y = v hOFBWFEN, FEERITHIE L
7T =220V Eb b LWEZ E D K91, #RE7 1 — KXy 7 Lgn
SE LIz RpnEmRomaEE L TS, ZOFEELBVIELCHE LR
ANBIBENAIC L D RETHEONEY 2y hOBBF L, EEICHIE L&

BT —2OENo/NEL holzh, TOEENET —Z M oRD 1Rk
WHEERETSH. LLEOEEN ML-EM LI L 2 RFNEBESAORHTH 5.

—EICML-EMIEIC X B8 siTkic L - TR Sh a0

Ak ¥iCi

/1jk'+1 ZJC,] Z ZC.mﬂ (2.1.7)

mel;

KD DALY = > FOFFTEEE, EEIZ L > TEHIIS D 7 — 2 13K Ay,
CijlE A v ¥ aj LRI FBAS T DR (REHER) ThD. 7272 LAl
H T AT O — i RUTH ST D720, 4, yiZENENRFTZIER & &
EOBEREEE L -72bDTHD. ML-EMIEO#ERIEIX, (21.7) XOFHHEZID
ERNRT HETHERYIELITS.

BV TML-EMIEDOBEGRZC (2.1.7) OEFEHIZOW TR S, FREREBRE A v
VAl EIURICE S 2T jE L, mEICBE L CHRBRICE 52 TicoRd
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(Fig. 2.28). KIEFHEOMY I LERZ RS, £/, FERICITEIITE 2207,
Ry ajin BRI AT 2R 2 EAT D, A v o ajh b BRI
NS 2 6 F-Hox B E BB C X B8 ITR A HE D B A v o = Oy 75K
HEND. & ANEICHX &S AT RET — 2y Ol T LOVBIRIT 5 2 L

TERV.

Detector

Fig. 2.28 Assigned mesh
ZITE xDERRED L, yiDELROOLNDTZW, Xl OV TE LT
< BAY T anbBESNDFENRT Y VMW 2 b, Ay
FLWIRZFFOREMR, LOHDHH5A v v 2 OfELAG, BRI [E O
TRAFT HfERIT (21.8) NTERIND. 72720, AyldxOIFHMELE L, 4 /2
Ci VTR T E4=Cihj & 72 5.

N ~ 21.)%
P(x;)=e 1 T —e o Cot)™ (2.1.8)
X;;! X;;!

ZNENDJOEBEDX; TH DBBRITH WML TH L0006, T XTOHRFIIT
DWTEE L7 [FRF R

P(x;) = FHTHM)IIPIQA(”JU (219

i jel; i jel;

Thod. ZORBHERNA v ¥ 2 DTN ENOHFHELIC L > TIRED L LTH
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21L&, JEEEL () 1
L(A) = In{P(x)}

ChiE

i jel

=SS+ (|ncij +InA; )-Inx; !}

i jel

:ZZ{ Cij4j + X In4; }+const

i jel

(2.1.10)

TREIND UKW S R WIHITERE L L. kL EZ2EEAC O ThHT

COWTHRB D 2 L VBKIEZ RO D Z & TA Y T aDERHFLND D, Xij
BB TE RO ZOFEETIIRD LI ENTE RV, £2 T, ML-EM

EOBIEZKER Y IR LT & & OHEEMELS L By 2 5 2 72 & & O

PR D S0 E IR ZAD RIS L 272 L, ATRD 2.
Qa1 2¥)=ElInP(x)] y, 2|
=ZZ{ CijAj +E[x; |y, A ]Inl }+const (2.1.11)
i jel;

N DAy, Y15 2 BAVTCRE DX O AT & WIFHEEXj |y e 12RO 5. &
ViZ G272 & & OxyOFRERP (xjlyi) 1FRATEREINS.

P(Xij |Y; ): P(Xij ILFEEZ/I)' Xij)

(2.1.12)

WYiNE LI DHEEP (yi) 1%, BEBRLEDORX Y a2 bRHZFIC AR T 58
FE OB ORTIZBIHE L LT2ART Y U ARICHED Z &b (2.1.8) &
[AIREIZ LT

Yi
—ZC,mJ,m [ zclmﬂ’ ]

P(y;)=e ™" i (2.1.13)
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CEEND. SHIT, P (i) 15 DR L X Oy OREE T 5
NG,
P (yilxij) =P (yi-xj) 2KV LH

Yi—Xjj
- (Cinsin- c,aj){mz (C A Cuﬂj)}
P(Yi |Xij): P(yi —xij):e " ( ) (21.14)
Yi I]

TEINSD. LLEICED

Yi—Xjj
o (C”l ) —Zc I ca){z (Clm/lm C.J/lj)}
e
Px, 1y,)= il }M_“) (2.1.15)
=2 Cinhn ( ZClmﬂ'mJ

e melj
y;!

Eh. ZoOXNEEHES S L

"y (C A, -Cia )"
Pl )= — 2| 2 GGt (2.1.16)
ERR AT (VA zcia zc‘a

im” m m” m

L0, THEMNERD ZERNND. P (Xgly) B TIESARICHE D D Th=ley
& G212 & & DR E BIFHEEX v A 113, #A Ty D "T85 AR O HFHE TH
IN5.

C'Jﬂ“l

chmﬂm (2.1.17)

mel;

FIERICETDA Y 2 lZOWNWTEZXD E, Ay vajhbHSRICART 51

E|xij | y,ﬂkl]z Yibij =Yi——

DOFHECA %, B OMWFHEZCimin THI - 7o MEHEP; 2 R & LRITRIE 2y,
ELTEBESICLTEN)I EEX, ZOLEDRA YT 2jlT OV TOMHEI
ATRINS.

WIZ, MBOLEOMKIEZ KD 2DV IT (21.11) K TERI N DL EH
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B DM S HIFFEOMKRIEZ R D 5.

_Q( ) — [ZZ( CiiAj + E|x; |y,/1k']ln/1j)+const]

i jel

g
ZEMny]

:_Zi:Cij +T—O

-Z{

(2.1.18)
ZORTIE, EHBIIT S 2 L OTEARVKGE, 51200 T ORI & BT T
BEEWZ, SOICRMYEZID 2 L TR RERDRMA E R ENHER TS
Ay ajAOEEETO L, HEALTWA A vy a—20FEOERIZL
TW5. Zok, (21.18) XEMZI4OMERDLOTH DN, ZiUIHEEM
AIMBRODTVWHEDOT, HLLELNLEKHFIEEOHEBTHY, Zhz
e ELZEITT S,

LT N

> E[Xij Y, ik']

At (2.1.19)

j ) Zcii

TREIND., ZOXEFEHTEIETLRAUAR .

A C,
ﬂ, k'+l Z yl ij (2120)

j ZCIJ i chm m

mel;

L EIZ X > TML-EM EOB G OEHZ/R LT,
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2.1.45 ML-EM IEIZ X 2 JRATE i s o & i

ML-EM {EDAFEERA~ O e 27~ ARiZEEA CT OB T
RERIEICEESWERIE 21T 9 56, B TE2MREHBL72011E 2 Fml b
MOBEZRAT I MERH D, L ZANKERTITIREN R TH LY = FAH
OMRD FETEE RS Mo L IRET D Z LT, MEMNREZHEHRE T 52
EMTED. Lo THOLA I DRICET AR ZIUZ 2RO FFTEERE
BT 252 ERATREIC 2D, £, ML-EM EETIREE T — 2 Oz, StoFkis
S TH DBHERDED IR LERICHWON D20, EOMRY FHWAEEIC
7%, AT, BIINHEEOR N LE R ERIT Imm gD A v > = & T

XoTEREND LD LTS (Fig 2.29).

Fig. 2.29 Calculating of Cj;

BHHfERIE ML-EM IR K DB 24T S e T D IR LEMR S D72, 1T
AT EAR IO IEMICEH SO MER D D, HPNTA v 2 2 pET
2 FNC BRI Z VTR R 2 SR D 7z
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AEBRTIIL—V—HORRGEF G EZMEL TWDR, MmEY+—F—
=y FDOVxy NOMNABEFLZEIRETHZ LT, =)bad— NEERICHEDE,
IRFfH B & A A ZRE S L EMMTh o LT 5.

PIZBARR 72 ML-EM IEIZ KX D /PTG MR OB O T VT Y XL %R
HE Lz syl L7 — & ZNEIC ATV ICHAAT. RO D RS ald
Z 2 CIREEFH o (2.1.3) 1ITBWT, e MY T 5.

| =1, e (2.1.21)

Zha (21.20) (SHHSSHEFHRZIT I, LiddH D A v ¥ =2 ORIEEIFREI
LBl d 28 THLNENRD S.

(2.1.22)

d ZCUZZ

mel;

Z 2 CHRAIBEIRE 1 & JRPTE IR R a RS SE D T DI BB ATV,
A=—Ina (2.1.23)

ET D THE AL pTHBIBRICARY, X (21.22) ZEHATED.
HEZ L > THLNCEZEE y TIRKET —F THDH), LROEHBIIKHIES
DI=OIZTH O G EREM TV,

y,==Iny (2.1.24)

ET D, FOBFHBRROMMN 0 OSITHAAETT—F RN 200 L LTEEA
i ARy
BEWTCCyDREZITH . MHMERECIE RICHBR7ZEY, —i Immd A v &
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2V ey FOEIEZTLE LIZHIMC L > TEREIND., T2 TAYy T a2D4
OOTERPIAIMIEISNARNZ— %EZ2 58, LFO5@Y &b,

Mp PP
\ \
_x

MM PM
(@) (b) (c)

N

(d) (e)

Fig. 2.30 Pattern of Cj;

AT a®4ODIEREZIER, Fig. 2.30 (a) (233 & 912 PP, PM, MP,
MM LEDD. Y=y FBRROHTHRETHL 2B x 0L, Avialk
MOBRIZFOLEED 42°OEACK LT TH D DT, 45°ORGHI 720
L CHMDOAZE UL L (Fig. 2.31).

Height from cental axis axis of symmetry

axis of symmetry

axisof A+
symmp{ryl

Fig. 2.31 Symmetry of jet
ZDleHRE—r (¢) & (o) FFAETH L Z LNnngd. 22T, ZIZTHEA
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YV aDERTHD 4 ROBREAZTGL, Y=y OO D OO IR
DIEEEROMEIZ L S T T D 4 ODNRE— NI TH LN TE 5.

(@) PP DA & Birp BB A £

(b) PP L PM, MPZLTMM & 3 OMHERDHEEEIEFFO

(c) MP, PPD®2-2% PM, MM D 2 D757 2 K & R o

(d) MM DZHML & Fa 70 2 B 2 5o

INEVCiEk LD/ Z =0 (@) ~ (d) oML ET, ARANCL D
BRI LVCi =R ET 5. Fig. 232 1R T X921, Ay va bAIlc L -
THEN DA BN X > TEET 5. BRI T 2% 2 iE4hi 36
A2 2O A M OR S 2 100 pF LIzb D & 5.

Ah
- - Trapezoidal
N _,___————-"‘"'f,- approximation
+111Th N

Fig. 2.32 Trapezoidal approximation

bk (1) (i) OFFRICE > TCBRETIUIML-EMIEDORX (2.1.22) 1285
MR LR ZIT S . PO ORANEREIOMIZ 05 LIEL, HViKLFHEE
179, ATEDFENR 10 D-10 Fe LV b/ S ARAUTAPIA L7z L Hllr L, Ft
FOMOIRLZKE T 5. YIDIZRnEEFaz BBl oORITHIG S 5720
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(BB AT T2DT, WEBRZITWEE SN EZ TG ERICET. &
®IC, WESNEHZBRIZEHGTL2HFERTHLOT, /SN TWVDZ
EEBREL, VHRkz LS. ULOBEICL > THEERN S RPTE@ERLZH
T5.
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215 L—HF—va U —L R X DHE
2151 L—H— a2l — L dEEgE

L= =2 ) =L B L U r—4—Y v hOBREOREIHEA L
Te EBEEEIZOW TR R D, RERTHA L7z EFEE 0T H L KK 2 2 h
ZHUFig. 2.33, Fig. 2.34 (R d. FEBRIEEIL, MR ENFRIIRNESNS. £
FTL—P =22 =L EORFERIZONTIE, YAG L — W — A4k E
(Fig.2.33 0@, U FOTHENT-FEZILFig. 233 OF ) NORIEIN-L—
P—J (R 532nm) FxtL L AQIZ Lo THELSIN%, ErF—10%
HIE LML XDIZE > TR E 2D, BEERICRI SN D, HlE sk %
BRETHFOML L A@ L A—LO@F@BEL, 510NV RICE > TR
FrEEe BT, AT A TZEICHEG S ERE T 5. 2 O TllEfEk
IZBWTHBEL SN L —F LIRS D DT, I A T2 I E rE ik
THEEL, WX ST EATICER Lz L— =D A DEZE LiERT 5.
HEBESIC Y 4 — 2=V =y NBET D L TR L —F—hid v+ —F —
=y MZEoTRING A2 WITHEL S ND. [t TV A —F—Txy hOaTH
Gy DWHFREFRLE O K E WY 2 E T 2 AT L — Y — oI/ hs <720,
FLERM N A T T LB COREEES/NE <20, EHR TR LE S
L. —H, Uk —F =Ty AR LR WEREZ @R T 5T L — i
T LA CHEL, WIS, IR Lo TOMEIIRE< 2D, g TiEa
<HEUH SN . B i o 13 3 BT 256 R 0T ¥ # UE CRidk S 5.
HRNBRD BN T +—F—V =y FBFE LRV A @ET 5 L ——
HOBRE &Ny, VA —F—V =y NBHET D EZ@EET 5T 5 L ——o
BEREZIE L (M) 55 =R(Transmissibility) 2 R & 72
—J7, MAERICOVTIE, (EBRIETHDKELZ V728D, /7 XL (EE
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D=1.7mm) 76V = v FE L THEEESES. BHINZY = v MIHIEER %
i, 2K (Frv v Fvy—) TWEIND. 2BV =y POMHEP X 0.1,

2, 5, 10, 20MPa O 5 fifHCH 5.

Fig. 2.33 Photograph of experimental setup

Pressure
Gauge
Nozzle
High Pressure|
Pum . )
P Field Lens Pinhole Lens Lens Pinhole Lens NT Filter
\ \ \ / Camera
YAG Laser | /A N
~ -
- L
v Y
Water Pump
Flow o
Controller Tank Catcher

Fig. 2.34 Schematic drawing of experimental setup
AEBEIZELY, FT=4BO T r—F—T vy MEENPOEHINS Y= v MC
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MLTL—=Y—tzMla L, L—F—JeoMlHeR, SWIIEERLET 5.

Fig. 23512V = v M BTt P REBEDTELRT .

Fig. 2.35 Schematic photograph of experimental setup for schlieren optical system

FBRALE L, AR EAFRICKIIEND. ETHFRICONVTIE, YAGL
—H— (K 532nm) OREEINTZL—F—HiFxm L v XL - TEES
Nz, Erh—amm LML X2k o> TIEREh, HIEGRICBESh
L. WENGEBBBRIZFOM L Ry A—LamaL, 5Ly R
IZE o TR EE72 BT, G A 7 IR SEREELITO . — HIRERIC
OWTIE, FENRIR CTh oKkE Z 71D, /2 A (EED=1.7mm) 726
=y PELTHFY v Fr—IZMIEHT 5. 2BV =y FOIHEPIE 0, 2,
5, 10, 20MPa® 5 ¥ TH 5.
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(1) EEphE L —Y—

L—H—|%, CrystaLaser DRI D F-E(Kph#E Nd:YAG L — ' —(Diode
Pumped CW Green Lasen)Zffifi L7-. L —H#—DikEIx 532nm, bt — i8I
0.2mm, L —H—DH X 30mW, E—LADIEN Y AL 2mrad TH 5. HH LT
L —#—% Fig. 2.36 |Z/~7".

@C rystaLaser

Fig. 2.36  Photograph of CW Laser

(M) #AZ

71 A 1% Nikon #:8d D300 ZfEH LT\ 5. vy v ¥ —AE— Rk T
8000 73D 1 Fb, HREE GV A X3 K T 2848x4288pixel (18.99x28.59mm) TH
L. RMFEAIEITIFF 25 L, BT —2I13E/ 7 ua THST 5. A 7 #dfE
IR TH AT LRS- PC _ETYfTV, BH Y 7 k Camera Control Pro 2 T
EZ&1T 5.

(I SR
Vo U — L URFROERIC W > 7~ ekt o L — 3 — AR AR
DL Z R T
(LT B rh—ILhLa—
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3L XA —

NCFHEY VT

H A TR —

K7 7 u~7 47 LA (950mm, A EHHE f=150.7mm)
T A4 IVH =RV H—

AW S

BT R v v %
TRy yFH YT 7T L—Fh

TRV ¥ vy FPAR—=H—F v I

ND 7 ¢ /b2 — (RItHiEI#E 50%, 10%)
AL XV T VR — TRV —
XL R (5540, FEAREE f=4.5mm)
BB R — (925+3um)

AN

"y RAZ R

7Ty NTIAVIAT—

(v) /A

Ta =L IRIC KD FERTITE=2M ) XVEEH L. HgEOEIHNICH
WHNLY =y NEEHT S ) AE, FICEFR ) XAVEE=F8 ) X
DEIN, TNENT A —F—T v NOFEDR RS, AElTE=4T ) X

NEFEH L. BEFTD ) AVDBELE ) XV K % Fig. 2.37 (IZ/RT.
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Flow direction

Convergent angle

L=3 ~ 4D

Straight section length

Fig. 2.37 Schematic drawing and photograph of Monitor type nozzle
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2152 L—H— 2V —L o yEE
AWGECHWEZL—P—2 2 U — L U EOEIC S W IR S . HlE T f

L7cy 2 ) — L B O A I RT (Fig. 2.38).

B1ELYZ @R T B2ELVX 21—

AAZL VR

HIRS

Fig. 2.38 Component of schlieren optical system

YAGL —H— LW EIE LI EML o R L > TELLE VR —L 2@l S
HTARELR TR EZIY FRWIREBA RS 5. KIESITFE—F L v AL,
DEMICREL, F LU AL EE L XL,OMIZH 2 BUET CIEEAT
SRR BT D, 2 B AL, OB AKIZHEFESOB A FE TN D, S HITh A
7 L RGBT TOHRIZH 2 HQE A7 U —r EORPICHES. b LBLARRIC
BWTEE (FI3EIT=E) 2eEhicxr L C®ERFMICE(L Ligidhix, 5
MTHDD L IIZQEBD M BQ Z WD M ERK ETHERI—HLT, &
RORHERBZHRS. & ZA0, BIEROTR TQOEIZT N LD RRE LEE
BELRAZ LD &, QEMIBT I AR X 9 ITEIT L, Q% %15 YR
TSR EANTERE-SZ LIRS, ZTOTHIEILE 2 £ RO SR,
& Q%@ L A BLIE Cy HF I BT D A0, & FI VTR0, & KT Z &N T
ELH.H2EVUREADAT VU ADRIZITTA 7y Ve DB R— V&K
ICRRET D, L—P—iFdab—1L U bR THY, RELTEHRENIRET LS
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BNBODHTD, BFMNO Yy NATTEHE U R—AZ2MEH L. B
HEER B UM R B EAR) BN E 20— EHED & 5 IO
BOFRICE R — N ERET L 27 ) — 2 EORD SITEmE D —HRICRE<
%, ZZTH LQICHRHMELNAA L, T2 @D EMBEMTHD D L ) I
BT DL A7V —v EOQDBPOM % &1L, B rh— X oTlifisnb
DTHENED LMMORE VL 2D, Ry FR— L TERIFA T
Tholch, TA7x=y o Bz miE L T 20EPETHIETHL 72
D, ZONENOELREIINIEOBOE SaE AN TRAD X 5 IZH#HT 5.

%=%§ (2.1.25)
INEV a2 )=V AEOREELY FIF 5123V o Ao EAERREREL,
HIROBZ /NS L, JEFTAEZREL T 2DICBHFOMEdZ K& < TR
WZ ERDND. ErR— L EBEORREZ R LKD) 5 X 51t
HEE 2R PRIV KT L TEE R — WSS T 22 5 R O SCIR DG OB & 1306 EE I 5%
W BARSGROBE OHZN ERTRIREOEIE 52 5. 728, EEOD
BIETIE, E#EL—F— K2 DA T THETDITLENRETED72D, T A
T LA BMBIIND 7 4 W Z—IZ Ko ThREHEI T ETH AT DN

ST S, B SNBSS — 2 BRSO AN L, HBimRe T

2153 L—H—va ) —L R X2 0E

FTL—HY =22 —LUEEZAWEEDRNZER S, BERATH D
KIFRTAKRZ 7 v AR 7 LB 2R T 7 Py —R ALY EE
SVEBDEDNZHEBE S NI, KECRESNT /) AVNEEE ST +—
A=y FEBKTSD. Py MIYzy FHZ L Z AT TOERE S, 7

2-49



A NVE =L TR Z D Bz E TR Z 7 1CR S, V= v MitElE
R T O Ko THRE S, HHEPG=0, 2, 5, 10, 20MPalZxt L%
ZAUEIZ 3, 10, 15, 20, 27¢/minToH 5. / A/VEED D ORIE R4 E O
FERIERE T ) XSG fE CTdh % 67Tmm7 S, 150, 300, 450, 600, 750, 1000mm
D7 HPETITD. SHICZ ZTIIERSB LA Lo epa s, @EEAL
TWAEFSAANWZBED @0 O ) AVEEE V5.

WIC BRI R BEFIRIC OV TR D . I AN - FFmthicEn - v
— =R E LTHEA L, & OMARITEG IR O 8 ARE Nd:YAG L —
— (Crystalaser #t, #¥& 532nm, H7 30mW) &9°25. A7 U —ZixTo¥
N—R# AZ (Nikon f) ZHEHALCWE. L—HF—t B ATEGLv 2 —L
VI REBITCME B S5 FHE LR T DD, =D RICREL
b TY=y METH M EBEICARE S L. KECERI U L—F =3t
ML o XTI, Lo XOEREBEICRE SN AR — L A @i
2 BRI TR I & » TERAIZEE L2Vt 2l 5. ek lliE DR,
L L EE T R EEIL H o BICRRE, BEEL, WESIIEY = v MEH
WEAZMEY Y v XL CTES FAICBEI S5 Z & ClREIT 5. A#f%ET
T v v X —AE— K% 8000 0D 18, —&MFDOT THifgs 100 K4 %
W ER Y A XX 2848x4288pixel (18.99x28.59mm), fR1FEX %A TIFF & LT\
L. ZNODOREIZBIT DN ATERIEIIETH AT LS LI PC ETITW,
B ] 7 I Camera Control Pro 2 24 %. F-HESRMFZEE T HH0EE, A
ERNZY = v FEMEH LRVRETEROAZRE L, HREgZ e LT
5., IBIVxy MERETHZ L THONCREBER L RER THRT L Z
ETV=y MR V=Y =N~ BLH N LGB EGA255. mgOAs

DO—fFlE LT, Eiids Rz 72 Wl o ) AT, EHE 5MPa, / XV H A )
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& DO FERED 150mm O S THEAG L7z B Bifg I >\ (@) 14, (b) 100 KK
#, (¢) HmEgod, (d) FiERmEgzr4 (Fig. 2.39). #REEGOLIRIC
VXEGAENT >V 7 - Image J 2 L7=.

Fig. 2.39 [ZBWTHEHBEHF RO BNFROMB N YV +—F—V =y hOaT
HEBRLEL—VV—HOmBTHL. L= KTy r—FVxy MTLo
TR ENMIEEEL S D 7o OBREE D/ NS < 722 1) | B TIERE IR U TR D
DEAZETHEOIICRD. ZOHBOE RO+ —F—T =y NONFIEL
RONEHWE S OBEE L U — 2 —T v NO AT EOBEEOBEE DS L —
P—HOFEEE (o) ZROHLFENTED. 25 L TROLBEBFIL—V—
HDOKBELEDT +—F =T =y FORIEDEFRICHFT L EELLND.
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(a)
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(c)

(d)

Fig. 2.39 Measured data (5MPa, 150mm)
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22 7 ANVINEOHIERA

Z ZTIZANSYSFLUENT IC L » T, @l U+ —F# —T = v MEHEETH D
= HH ) ZVNEOBAEFH R 21T 5. FHEIZEE L T Realizable k-e£7 /L& ff
AL, WMEOALEHATIEEWEE TIRE2EOE &AM Y 2o T
5. Fle, 7 ANVHEICEIREGDA D56 LIRWGE DO @ OXFEEZEE L,

Thic k2 7 ZVH O TORIEEIEDENE R S.

221 ALORIR
AWFFECEAEFHEIZ AWz 2 VoI 2 #E T, £ JET-A, JET-B
ET 5. JET-A 3BT AZ 2720, Wb i@EotT=4%8 ) AL ThHb.
MRS OB NS, KL AN 3 2 FF o ME D ) Xv (7 —/3—
) ) BNEH LTS, —J70 JET-B I JET-A L IRIZREEOIRTH 5 23,
J RVNERIZEE g 2 A LT\ 5. JET-A, JET-B O OIR L ~HEZZ N
ZAUFig. 240, Fig. 2.41, Table 2.1 (27”773, 7272 L JET-A & JET-B DR IZIK D
EVIINE D S ITMERR T2 Z LN TE 2. £ 2T JET-B oW T, MBI

JET-A LR TH D DT ANVHNE DOE e DTRIZ OV TR LTV A,
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2 -
Q DV
L4 L3

Fig. 2.41 Measurements of nozzle
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Table 2.1 Measurements of JET

Al 13°
D1 8mm
D2 1.7mm
D5 16mm
L1 4mm
L2 33.33mm
L3 28.78mm
L4 4.55mm

222  ELIRET IV

ANSYS FLUENT (213 < DD ELFEE T A BEH STV 583, ABFZE Tt
2 TOHBIEFFIZI\ T Realizable k-eE7 /L&A LTV %. Realizable k-
T L FERE e DIEWVE, ELTRKSERREIC T 2 LV ARG EN WD E, F
7o, BORFlTHRT Dk HRRADY, WELEE) O ZFPIIT6T D RE 2R
BANLEDPNLTNDLENS L ZATHD. EoHEHFERIRADERICE S
nos.

(pk}+—{'_pku)—a( +f""f)a ]+Gk+Gh — V45,

-
&

g d a .u.r) E
2 (pe) +— (pew) = — |(u+ +pCiS, —pCr—=t C £ CaGr+5
at (PE} ax}_ {PE“M_;} ﬂx}- |:(.H' o, ax}:| Plide— P Kk +ve 1E 3eYh £

(2.2.1)
ZIZT

K o
n=S8=, S= [25.5.,

i
Cl_max[ﬂ43n+5] . J2udu

(2.2.2)
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ERAUTBWT, G XY EE AR L 5 ELES = 2 L X — DRk, G137
INZ K DELIRIEB = R V¥ — DA%, VI EMEMEELIRIZ 31T 2 IR A B OH
MBE~DEFEHZ, CLCATTETNVER, o.bold, TNEIkE ek 5 ELT
TITUMETHD. S L5l —F—ELRDO Y — AT, KHFREIZIBNTIZO
Thbd., FLEENCEEAREZZEL LT, METHLIKIFFEEMHTH D
EBEZTNDHDT, 6,dh 0 THD. GlIEHE 2 k Ok XL VLT

KOEEENS.

Gy = —pu'-u'-%
k i }axt-

(2.2.3)
INET VXA DIGRIZ I D EEHZ 5 ELLTORRICRS.
Gie = peS° (2.2.4)

L Dk-eE 7 /b LA, IRMAREIIRANDEE SN D.

-
.

pe = pCy—
e (2.25)

Realizable k-e& 7 /WZEB W TEITHMARECIZLL T O L S IcR ENS.

=0, ~ € (2.2.6)
0, V3 A wy, TR 2 B R 2 & 7SR E T o Y LV Th 5. F
72, FEE LZRWER Y FLUENT TlE—2¢ & VY O BHRA, OFHRICA 2 HT .

T IVEBIILL FTOREICE 2 b 5.
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Ap = 4.04,A; = V6cosg

(2.2.7)
I T,

1 — 5.5 5,
b= 3 cas‘l{w“ﬁl-l-’}, W= LK

& 1 du;  du;
1 5= ISE'SE"_. SE:—(—}+—E}
53 N TU2%0x 0x7 (554
THD.

223  EREM

- NP SRS
AAOTIHERERELZ 52, HAOTOEERENE L 25 L9 ICERGH%
Bz 7. ke® T MCEIT DA TOEPMBEIXRAA HWTElE L2 DfEx#
HLTND.
u' 1
1= — = 0.16(Rep, ) &

(2.2.9)
Fluent TIX 1 OfE L, KOELE (ZZ2TiX/ AVED) 2H\WT, L= ®/L¥

— EWIRBNPLUTOLITKROEND.

3 2
k= E [urzzr,gf]

paf L

k
[

£

C

t.,p.'m

(2.2.10)
ZZT, €,=009, 1=007DTH 5.

- B RSRA

H OB S DUV T outflow BERSAT: 2 V=, IS SR OB B AFANEE W
KE TS TnWs.
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2.2.4  BEMEMEERSAME & BETFFO R

ANSYS FLUENT (213 < D DBEHE TS OB Y N TFERERH STV D
P, AL TIZZ DR NG, EEAERERE & S R AIBELER 28R L TR L T
5. BERMBEMER L XKL A SV AET VOO Z L THY, 2@y —FT
nl, Wb LB E AR LD TH D, 2 Y —ET LTI,
RATERSINDELI LA NV AEORE ST L > THRADHEE A KE < 2D
2T 5.

_pwk
Iz (2.2.11)

Re,
ZZTOYIEAOFLTHE SNBSS OMRE R CH 5. ANSYS FLUENT
TIIyITiE bV EEE TOMREE IR SN D, eI ELiLEa 7 oM
i (Rey>200) TiXRealizable k—eEF AN ETOEEFAENS. £ L THMED
SCEEDIAGME D FE B R T & AR WBETEE  (Rey<200) TIE, Wolfsteindd 1 72
ETNERWD. 201 FRAETACTE, EH R KGR RD L0
EEDLTHNDLD, ELRAPEREIIRA TR R LS.

Helayer = pc{.ls,'.lw’i (2212)

FERICHENAIEES A — i, U LEEAEINS.
_Rey
1, =}-‘C‘f‘(1—e Au )

ZDOELFL A T O EKEO RN EE TS RVEELE L VD 2 SDfEE, L

(2.2.13)

T ORRIZHE B2/ <.
Heenh = Aty + (1 - *lE}.Iu't,E!E}'sr

1 Re,. — Re:
Ae = 3 [1 + tanh(———)]

4 (2.2.14)
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A IZNFREEOEZIETHH DT, WATHEIND.

|ARe,,

artanh(0.98) (2.2.15)

elZ DV TITREME D FEE DN T & R WEIRIC B W TR TERE SN 5.

Ealoa

i
E=—
l. (2.2.16)
FXFOE X2/ —)L%, Chen & Patel ICft> TUTDO LB IR INS.
Ra

1_cﬂfe*
yei( ) (2.2.17)

ebp & RIEEDFINAT, SLita 7 Ok s OANFEIND. £ OMEEIT R
Dy .

_3
C; =xC, %A, =70,A, = 2C;

ZIT, wd v~ ek AEERI SR OBEEIE, KPR, @R, ALt
SRR A T D AT SE AT RE R LB O BRI A ES S L VD b D TH 5.

ANSYS FLUENT Tl Kader 2328 U 7= %A W C, J@ ik & LRtk o

e
&

HELTOLIICHNFETHHFICL > TEILTWD.

1
t=eTul
ur =e +erum,b

a(yt)
1+ byt

(2.2.19)
a=001BLb=5Thsd. BEMDICELTLUTOLIICEREINS.

dut du;, 1dul
T — E]" Lﬂm+ eT
d}: 7

(2.2.20)
T R X — DR EE RS Tk —eTT VT LS AV TWA LS LT
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DEENREHEN TN,

dn (2.2.21)

PEUERERR£IE Launder & Spalding OHFFEIZ X 2 6 O T, PEEMTRALIZHKT L TIA<
RSN TS, 2T &V EEEEEE OME ITRARORICEIRE SN D.

1
U* ==In(Evy*)
K

(2.2.22)
I T,
11
U= Upcfscg
Towr
P (2.2.23)
TR THETH Y,
11
. _ PClkgyp
¥y = r
(2.2.24)

TIEEN S DR SCHRECH 5. EITRREBRANC KD EE T, E=9.793 ThHDH. Kz
TOPIXEERN L H THDHZ L EFKT. ANSYSFLUENT Ti, y>11.225
DA Z OB A £ 5. y'<11.225 O34, ANSYS FLUENTI L) i Lokt

FT2IEHN—O0FTHEARKNERMT 528, AT TORKICEKSND.

ur=y* (2.2.25)
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225  FOMOFHESM

LLFIZJET-A, JET-B ZNENOFEFMEZFL LIzE£Z T (Table 2.2).

Table 2.2
) RV OFEEE JET-A JET-B
L 181804 845950
5o/ LR (m3) 1.231 x 10722 | 1.071 x 10713
Bk B LR (mB) 1.957 x107% | 1.785 x 1077
/N7 = —R[EfEmM?) | 2184 x107% | 2.086 x 1077
K7 = —AHEm?) | 3158 x107% | 3.096 x10~°
RRENVAF Y v a 9.501 x 1071 | 9.138 x 1071
BB NEE 8.988 x 1071 | 8933 x 1071
RRT AT R 1.111 x 102 7.379 x 10
FLIRTREE (%) 4.38
AKIER (mm) 16
R I 05 S FEERE RS
H A BE S SR outflow
HETALITY XL SIMPLEC
OT AT K Dl ERR 0
Cie 1.44
C, 1.9
Oy 1
O 1.2
BB DFAT 7 /N TR R — Rk
e L FE (E) PRESTO!
ZEHIBERU L FiE (£ fh) SRS EE MUSCL A % — A
RREMRE (£77) 0.3
NS (B ) 1
NRARFREC (RFE ) 1
RRAEMRE GHEE) ) 0.7
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BET, ADZPECHE A L R R A ST (Table23). ZhiL—F—v

2=V UERTHER LT 7 0Py — R T OEGF L RER OEIZFE L.

Table 2.3
iian)E
0 2.0 5.0 10.0 20.0
[MPa]
HEitE
4991 x 1072 | 1.664 x 1071 | 2496 x 1071 | 3.327 x 1071 | 4492 x 1072
[kg/sec]

226 T — XN ITIE

Fig. 2.42 Schematic of positions where velocity averaged
Realizable k — &7 /W K 25 ERZIE, AT IR - TR S Fu 7z i sk E,
L= ¥ —, HuELrzhEhr LT my FL7.
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23 V=xv FOEEFE

ZTCIEHERET AV EZHNT, TE=FM ) AVNbEEY+—F—T
RS HEEE X4, Yy RAMEE L TO S EBIOBIEFE 21T 5. 7 AL
O COMEN, SN ME 52T, MEOHBHIR TS Y = v N OEEN
OB, Yy MEEOTARRE AT 5. £, miffi & Rk AL
NEICHIRB N A D HE L RWEED @Y o255 E L, Thicks /X
WA T OREREDENZ RS .

231 Y=x=v FOETFNL

AR THEL TWDIES, MEBSEOLRETTCIX, @+ —4—Y = v b
O EERRIL 7 ZVH B Tk Th 223, BEIERRKE <2512
NREERAAZ b L, WERE 22 ERMONTWD. TOFEMIL, Wi DAL
BICE > TV =y MEEZILR LA BB O IEZER Z Y = v FHIZEY A,
TREIET D Vol MR OZEE 2R3 (Fig. 243). ZOKIIRT LD
CE=FROEEY +—F — T = v MNEIZOFARTFOVRED S BT, bk
SOKIR MG (WG & AT T EBRHRD.

Nozzle

Droplet B

Fig. 2.43 Concept of water jet droplet flow
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“HMROET Y ZIERELS ST T, A —ODIREWE L TR K

IREMET N EXBEIICIO TS MK ETARNDD. 22 TEV oy
kO & ZELAN BRI > TWAH LD EREL, —fHiiiae —oDREYw L
B L TREMETNVEMERT S, SHICVy FREEIZR > TWVWALEAIZ

VXA & SAR DR ENFE LW E AL, WEIRETLVERH WD, 20T

WZEASW 3RV = v FORBEHERAIRAD L IZEZABN5.

(B E&RGFDOH)

a a a8
o (Pmu) + - (Pmud) + a—y{pmuy} =0 (2.3.1)

TN ST DFERE, x &y XM EEA T MOEETHD. p iy =y hOI

WEETHY, uldv=zy FOHETH VIR T 2 1T FROKRD %, 2T

X &yl & EAGT RO 2T TNET.

GEB) &R A7 20)

8%ug 8%ug
Pmlz (u}+pm Uy o (u}+pmuy8 (U}_Emaz_'_Ema_yz (2.3.2)

T T el RELMEB RAL IR T8 5.
(LT L% — D RAFH)
7%k

d
pmuza‘:k} * P Uy (k} + pmuya (k) = Dkﬁ"‘ D"‘a -

+Bey B—uz) + Bem a_L:)”_ka:z (2.3.3)

kK iXELGEES =L ¥ —Th v, kA THExX OIS,

k=2 (02 + uy'? +u,"2) (2.3.4)
220w w'th wUHITEHEDX, y, ZHMOREL ERS THDH. F7DdEEL
T FNX —OIHIETH D, FAIUE LA OAERRE, 05 XA
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DWHBETH Y, IgTELTOEEICEDO AR IDARAr— L ThY, Y v MRk
WITERRRICH Y T 2R S TH D, [T, [TIRETHS.

(23.1) KXs (233) K& RVH O OBE A, B %5 R R0 &
LTHATMS ZEIZE o TU+—F—T =y NORENFESCEERI LI KIET,
J RV O OIREBN R OB EZ ML, MENIZT +—% —Y = v OB
M, GIHIRHE 2T 5 Z &3 ARE L 0D, IO EMIZHT>TiE, Y=
v NOYERET NV ERWSD., Yoy MIFEBROBISEHERLO H 00D LI
NHFANZERICONTEDREZIRL TN, Thbb, Yy MHHOWKRIL
BT & A TR L TS o EIE (2.3.1) RoLinE 2 H

Dpmti Pty DAY T 5. SEEOPEHE T L% AT 2 OWES, Fih & Ef

T3 18 DR D P FE AR LB 5 &35,

Pmlx = _Dp?_: (2.3.5)
Pently = —Dp 22 (2.3.6)

ZITDpiEY =y FOIEBBEETHY, mEY+—F—V =y MIBWTX
HLRIC K DIEBEPETHLETDERDEIITET /MESND.

=1,v' (2.3.7)

DF‘ p

Tl OB B R & 02— (RAHHD, vIZEEHEET
b5, SBISHAKERET S L ARTIALF KRR THOST NS,
vi= [ (2.38)

: 1 (232) ROLAEDIHAR e, bILAEE 2O TRRTEZHNS.
€ = Ipv' (2.3.9)

TR ER R T 2 RSO AL — L RAIE THY, b

o NS R L S BIVG .
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bEoeT a5 E, GLEENY = v FOJLE, EEERSIZKE <
WS HZ L L, P AVHAOTOERDAMAIZL > TV =y b OEIEESS

FrtE i R4 2 s i T 5.

232 EHRESME
YEIRET M LD HAEHE OISR, 231 Hi TR LT, AVNERODE
HTHEONEHEREEZAWD. i+ 257 —%1%, /7 AV A TOEESAN, L

LT X =040, BESAMTH D,
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FIWE EEUA—F—T v NOJEIEE O]

3.1 BT +—F—T =y NOFREIEE
AREBRTELNIREE G OB L, HEE0OMHEIT->72. Fig. 3.1
J AVEE D=2.85mm @D/ XA)vD ) AV A DB 0D~300D O BR#E, 1% 1, 5,
30MPa D& RF. JHIFIE Nd:YAG L —F—Z 7. M Gmixd<CTF
& T, fHEEEIT 39um/pixel TH D, MK BHADO T 3 —4 —V = v MIFHE
PREL, ERIEVFEHEOUIEIZIT S . ZOWHIMRRIL 7 XL OECERIC
Ko TREREELZT L. o THBEBEBMOY +—%—Y = v FOEMHEEE
b2 D7D, Vr—F—T =y bOZFEEEZ I mWERRARGE TR L,
J ZVIHANL OFAETORE, Vxy MEFEIZOWTEMRICHET S Z &
MELL IR D

A2 bR ARRT=TEEZRNNC@ET +—F =V =y FOBEGREIZES R
R B OMENT-CERAENT IC X 2 HEOREILZNE THE L OFERTTHIT
ETEBY, ZLOFRARMARE LTS, AR TIE, HBEEHADOY +
— 4 —Vxy hOEMERILER D BHOTD, 16RO FEE KR L TXE Y REH
A B D i WIS A ik A, T AUCHE S W CEEE D IIE O m ks B 2 X - 7.
EIED 4 —H =Yy MIPEROMIEL Y, FEERA R BRI 72 > T
WD ZEIFR SN T\, ZoOmB LY, 2 AV HER TIRERHT TH 5
23, 100D DARE CIIZEICIKMTTIC /e > T A 2 Edbnnd. £, JEJ10EN
IZ & o TiiEhEE b B2 5. IMPa CIIHHRIIR & W23 20372 0 B L T\ 5
23, BMPa I A/NE <720, 30MPa TIL S BT/ S 2o TV, X

JENIDR ERDIEE, WEOEAM N EA L, EN/ NS EABENS006
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Ths. ¥£7z, IMPa & 5MPa DB LV ¥ x> MIREEE RN LIEATND
ZENRDLNDS.

0D~100D o> [H] THAENEA B IEIERS LT\ D Z ERNb0d 2, B O
T EERT 55T, Fig. 3.1 KWK KL Tz L, 0D 225 100D % T 20D %A T
i L7l % Fig. 3.1~Fig. 3.4 |Z/R9. /7 A/V4R D=4.6mm, ZERIfEGEIX
30.2um/pixel, E /71T ZH IMPa, 5MPa, 30MPa T 5. Fig.3.1 LY 1MPa
TIE 20D I BARZ Y = v b OREDELINLGRD, 40D TIERIEDB )72V HA
NTW%. 60D, 80D TiE¥ = v FAEEHHIICR Y 458 5. 5MPa TldfR % ICF
E2AEN TS, 60D FJE E TIEREPEOTIRIFIRIZNTWD . 80D TIHIFE
AL T & REE AR~ L EB T 5. 30MPa CIIIRHAMA THHDTY =
v N ORMEFITT ITHMAREICEBDNS. eIV =y NOPLOBED
<Y, Yoy hOFLBIHRRICEERE L T ZERnbnd. ZhbiD,
Vv MIEEIZRAVUIR D IZEREITNS 720, REEIHMIEICRD1FE
TSI TV Z &b 5. Fig. 351 2112 HillciR 7=y 7 T4 MZ
STIRE LIZEGRO—2>ThH 5. / AP D=4.6mm, 25 AEE T 10.7um/pixel,
JEDIMERT R 7O8 ) Tz y hEEFIEL., ZOEBLIY, Yov
FOREITMAZHTE, PR TEOMWMBFEL, WHPHER T 5. ZORD
REFIZLVRAIZY 2y FRARATOHE, EIHRICEBE L TV EEZALND.
RIZ /) R)VIERS DREE DI 2 RN g+ %, Fig. 3.6 (% OMPa & 1MPa
D AL D=2.5mm, LT 7.81um/pixel TH 5. Fig. 3.7 1L 5MPa, 20MPa
D Fig. 3.6 L[RFFETHSD. T_XTOENTBWT, / AVHOER TIEEEIS
REFIT2 <, W@hewv. BEICRDIFEE, REEPHEAET D E TORMENE
<ENBHREV. IMPa TIXERITIKTEDBEN L TW AR TE S, 2
ST/ AVHABERICZESTICEE SNV =y RBJE Y 0K E B XA
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ZEREMESE TV =y NORBIHEAM D D@ 0D EEZXBND. HIEI
ROIFEEFBIZRLDOT, Yy hOREICENNECLHHEGE 2D, KR
2, FTEWEOREICONTEIZET 5.

Fig. 3.8~Fig. 3.15 XN T4, Y= v FOMHHEN%E %0, 1, 5 20MPa D

7~16mm, 14~23mm, 21~30mm, 28~37mm, 35~44mm, 42~51mm, OiEf

r]

L7 E COm# L, 75mm, 150mm, 300mm, 400mm, 450mm, 550mm {3t
DONETOEBR THD. FBEEITT T, 8.789um/pixel, / A/L£E D=2.5mm T
&»%. Fig. 3.8, Fig. 3.9 ® OMPa, BIH AR 7 O#E ) DHDEGEIZIX ) AViEEE
TN ST IZZEIRDHERE TE 5. 2T 21~30mm U2 h S 213 9 )
ERY ey FOLHEEL TS, £y =y FORBE LICHEHENPHER TE 5.
L LZEDE, Yoy FORMITZEEN L R REWITMZAE Tl D.

75mm TIIE & A ERmPIER L, NS RIEEN Y = v FORMICHER TE 51
EThHDH. 300mm TiEY =y FORBHDOWHHBHKIL TNE, Y=y FOERN
ET LTV L R &2 EFGETT 2 DR TS EE L TWLSERTF 2312 & 0 L fERd
T& 5. 400mm TV DI D720 ELAL, 450mm Ty = v A EEL T
VW&, 550mm TlEsE iz 72 5. Fig. 3.10, Fig. 3.11 @ 1MPa ClIijiiiL D1
1A OMPa DFE & 13722 > T 5. OMPa ClEiiRsZ &l CliE & A Eii 13 TRk
LTW2RW3, IMPa Tlid/ AV HEED B A2 2 D REBL T\ D, 7~
16mm TIEMN72 0 DI ABTREL L TV D28, 14mm DL CIRIRTHE O TRECE AN 0>
D> TW\5. OMPa TIZZOFMTILIY = v hOREMR 172D ELIL TV DN,
1MPa Ti& OMPa & i3 5 L LD zeuy. LasL, 28mm &7V 72 HiR %12
Yy hOREIIRPHANTHL . Y=y MDD D &R LT
WDHH, FRICK LT =y FORED DITHEEOFEEN D L TVD.

300mm H7=0D BT =y FOFIINR Y i, RTEFISER LT < . 400mm
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BHI ) TIITWIRITIC /2 5. OMPa & [FER, / AV HEZ TIEY = v FOXKE
I7e v E, Yy POEREIZ 9 EEROKHNELEAFEL TVDDR, fhx
I\ DRI < 72 0 RIETEIROENN DR RV EHMNITRD. S HITEN
B ENRD &, RIS o TnL,

Fig. 3.12, Fig. 3.13 /L 5MPa OGEDHER TH 5. e cFIT EiL L RETH
5. IMPa & [FERIZT <IZY = v FORED B BFEAE L TND0, £ OHRIE
IR VI TdH 5. IMPa D36 L [RERIC / AV AE#ZNBIRAIZY = > b
DD D OWTHRBEITID LT <. 35mm H720 6 2= FOFRMBE
fEL TV ERAICHN TV, 400mm H720 7262 = > R AR IZERS LT
. 2OV =y hOHEEIXIZEAE IMPaDRFEEWIRWVWES 2 5. KRIZ, &
SIZEEDRCHOWTEIZT 5.

Fig. 3.14, Fig.3.15 (XY = v h DL 20MPa DA OREEAER TH DH. o
ST LR EIFIERBETH H. 20MPa TS DICHEIEENZL L T D
ZEMRTEND., J AVHAEZNOY =y NORED LIETHD KEFHAEL
TW5. L, BEFTIEZ ZbIKEMAED L Tho7ehy, S BT
MEEZ T, Vv MEHLREL STV D., Yoy hOFLESORE D IZIZK
BEOB/IOEFHE CEbND. Yoy hOREOFIROELN BT L 0 < L
H. 300mm LN LR Yy FOTRIZE{L L TV &, 400mm, 450mm
POIRZITETFTRICER L TS, ZALDRRED, Y=y hoEEOE(k
IZOWTE LD E, JENPAR SN TWARVIRETIX, / AV D&
BONT, FICREDPELHIRTENIEAT H. 20k, Kifl LICEZBEORE
BENAEL, EFEEKLILALTHS., L, REEIEREICED L, 50708
RIENZRD. ZTO%, Y=y FBISBEL, WKHIRISERET S, IMPa LL EoE
TTIE AVHAERZRITEO R EZ L TWDN, REIZTEELIAEL, &
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7> DIETEPHER L TV < 2 0%, S b O ORBIT V<0, ¥
v FORBEN TN, 400mm FREND Y = v NOSEERIEE YD, KT
IZBET S, ZOFRTEEGRIIOR LIEEBREEREO Y 4y —F—Txy FOE
H % Fig. 3.16 /R

WIZ, BETTOUA—X—Y v hOWBEDOELIZONWTELETDH., VU
v NOEERETIE, AVHAOBERNS YV MIEA Y, S 2Bk
PIREET 5. TR IR ORAERENEZ, Yoy hOFLEE. S5
IZ¥ =y MEIFIER L TWE, 300mm JEUNHY =y NORIRNEIL L, Wi
FIZEBE LT, 600mm TIHIEIEY = v bR LTS, Z O %2

AIZ s L7 g & Fig. 3.17 127”7
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0D(0mm)

100D
(285mm)

200D
(570mm)

300D
(855mm)

1MPa SMPa 30MPa
(Water pressure is 1, 5 and 30MPa; Distance from nozzle exit is
0, 100, 200 and 300D)
Fig. 3.1 The picture by laser light photography of a water jet
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(Water pressure is 1MPa; Distance from nozzle exit is
from OD to 100D)

Fig. 3.2 The picture by laser light photography of a water jet
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(Water pressure is 5MPa; Distance from nozzle exit is
from OD to 100D)

Fig. 3.3 The picture by laser light photography of a water jet
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(Water pressure is 30MPa; Distance from nozzle exit is
from OD to 100D)

Fig. 3.4 The picture by laser light photography of a water jet
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Separating droplet

\\

Fig. 3.5 The water jet surface structural wave measured by halogen lamp back light
photography

3-10



s

(Water pressure is 0 and 1MPa)
Fig. 3.6 The picture near the nozzle exit of the water jet surface wave by halogen lamp
back light photography
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(Water pressure is 5 and 20MPa)
Fig. 3.7 The picture near the nozzle exit of the water jet surface wave by halogen lamp
back light photography
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(Water pressure is OMPa; Distance from nozzle exit is 7~51mm)
Fig. 3.8 The picture of the water jet surface wave by halogen lamp back light
photography
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400mm

(Water pressure is OMPa; Distance from nozzle exit is 75~550mm)

Fig. 3.9 The picture of the water jet surface wave by halogen lamp back light
photography
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(Water pressure is 1MPa; Distance from nozzle exit is 7~51mm)

Fig. 3.10 The picture of the water jet surface wave by halogen lamp back light
photography
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(Water pressure is 1MPa; Distance from nozzle exit is 75~550mm)

Fig. 3.11 The picture of the water jet surface wave by halogen lamp back light
photography
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(Water pressure is 5MPa; Distance from nozzle exit is 7~51mm)

Fig. 3.12 The picture of the water jet surface wave by halogen lamp back light
photography
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(Water pressure is 5MPa; Distance from nozzle exit is 75~550mm)

Fig. 3.13 The picture of the water jet surface wave by halogen lamp back light
photography
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(Water pressure is 20MPa; Distance from nozzle exit is 7~51mm)

Fig. 3.14 The picture of the water jet surface wave by halogen lamp back light
photography
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(Water pressure is 20MPa; Distance from nozzle exit is 75~550mm)

Fig. 3.15 The picture of the water jet surface wave by halogen lamp back light
photography
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Omm-23mm

400mm-~600mm

Fig. 3.16 The continuous picture of the water jet surface wave in the transition region
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to a droplet flow and an actual water jet picture

T F

Oman-~

23min

2 lmm~44mm

75mm~300mm

400mm~600mm

(Water pressure is 20MPa)

Fig. 3.17 The continuous picture of the water jet surface wave in the transition region to
a droplet flow
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3.2 PIV ¥EIZ X 5 FHEBRfE F

BIEiCR LY =y FOEGIE, EOEFHERET 2 AiRE4 5 2 LR T
2. ZH L CHERRY L 2 OEBRZHANT, Y=y FOEEZ PIVIEIC
Ko TR, PIVIE, BB FOERE L & BRIV IR O3 4 FHI3 2 B
WIEKHAWSLNTWLFIETH D, FFEZERE Sz 2 OB 6 FHELE %
Ll & T ABBEN(Z Z T 1.3mm X 1.3mm) 290 H L, O o %
BB RIS D K ) 2@ RfR 2 R Z DAL E TOERBER, AlbiihoE
LT OHEFTFETHD. ZOHFETEZEOWIRRLT 35 Y 8% OFRiR
KA DOBEZ TN TRODL ZENPRETH LG, FRORKRD /T — )
Ot A KD HHENAEETH 5.

AT F1T D PIV IEIC X 2 EEHIE Clddke 35 2 O mig O iR HIE %
Aus & L7=. 2o “HOBEBIZPIVEZEHTLIZEICEV DY 2y NOFAL
ECTORENRD LD,

AEITIEZ OTRAZ PIV B Lo THERY M Z2BEH LB RIC OV T
WD, LUFIC 2 A8 D=2.85mm, ZE R4 39um/pixel, @ dusec O
AT LICERIC BT 2R 2 "7, Fig.3.18 12/ A/LHI A5 100D DAL
ECTOHENCBITHHEENY MOKZ Y =y MER & TR Uz, #HER
AT RO NEE AV ETH Y, HESAMTHBA—HETH o T
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Fig. 3.18 The analysis result by the typical PIV method

ZOX L THELNE —\BETOEESRY MLETCEBR L. JES
X1, 5, 10, 20, 30MPa, HIE&iPHIZ 0D, 100D, 200D, 300D. F7-, ~L X

— A OEH(N (3.21)) TRDOIFRE, HIERRZ K LT,

V = /M (3.2.1)
0

WEEIXVImIs], Pix RV OES[MPa), K&JEZPo[MPa], & 1Zp [kg/m®] &

T5. ZNHORERED YT 7 %Fig. 3.19 (TR T
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S T T T T PIV
. e 1Mpa
200, 1 v 5Mpa
@ —————=— & _ | * 10Mpa
E | ] = 20Mpa
> | A ¢ 30Mpa
S 0 A A 4—— Bernoulli
= 00 e e - ° 1Mpa
> v 5Mpa
i 4 10Mpa
S - o *~ o 20Mpa
N | | | | | ¢ 30Mpa

0 200 400 600 800 1000
Distance from Nozzle Exit(mm)

Fig. 3.19 The measurement result of the speed of the water jet of a flow direction

PIV (XIREOMBEEZ L VHESRY MV EZEHTHHOTHY, 20MPa UL LD
mIETICRD L, 2 ANVIEETIIHEEICEHEDO Y r—F— v FBEH L,
ZHOWRRIEIZ B DN T\ DT, 2T = v FOEBRITHRE TX 220,
ZD, BEOTIETITHENH L /2> TWW5b. Fig. 3.19 XV PIV OHE
FEFRII DRIV X — A OBEGRR L VIR le o T D, F7z, ARIOHEH
&> % 300D (855mm) Tld, 1F& A LHENMET LAV Z ENbMs. kD
HERTIE, EROBEZIAHLLESIAOLET, L & HITREHET D
ERDONTWED, ZO/REKEIY Y=y FOREITDR L, BTN O
BEE CIRTENAZ DD, Fey =y FOJREGEIR, HEMETEICZRDI1EE
REWEFE 2D, ThHOfERES5EZTPTV-LIF OFFRICOWTHET 5.

33 PTV-LIF (2 X 2 il 20 A5 0 E D # B

AEITIL 213 HiiR 72 PTV-LIF iEIC X D EOFE IOV TR RS, R
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o
@]
z
&
[0}
o
=
S

First photograph Second photograph
Fig. 3.20 The example of a picture of the fluorescence particles by the PTV-LIF method
FRROEGDOF O TEONIZE S PR THD. iU 1 HOmKE 2
e H OB TIID L2 FREIC#A TS, 2tk PTV I L o TRl LTl
FEZFHAI L7z, FEBRSIFIZE /1A% 1, 5, 10, 20MPa, #HAIFEPAIL 100D~1000D,
J ANV D=2.5mm Th 5.

QOB Z IR T DT, 7 VX VIEIEREE & LT Stanford Research System
#1854 DG535 # 7o, B OBRIERFRT L d4us TH Y, TOREEIX 1.5ns ThH 5.
Fig. 3.20 IO IZAAMOBEEOMREH dus RICIHRE LoD TH LS. MT
MAGTEITRMETHD, T D —F I R0, FTRSICBEHLTWD
FRDOND, TNDDOK T OBEIERENOREZ RO D Z LRAlEEL 2D, =
DHEZE S > TEDORFDOMNETORKOY =y MHEELTSH (m—4 I

EH0/ S KTAUTIBIEL TW D LIRET D).

EE O A XL 17.5mm X 17.5mm TH VY, v 7 v/L#i% 1024 v©°7 &L
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X 1024 ©° 7 BT 0 22 fEREIT 17.10um/E 7 BV Th 5. Z O D22 4y
R HE & i DBILHEFRE D, Z 2 TO LIF-PTV B2 X 23 E O ERKE 1T
3.89m/s L AMEL b D, ZDX DR LcEGAKES, S AVHANLD
FALEIZDOVNT 200 FHRD Z L2 L2 TV = v NOERFROBNEIZEBIT 5
W IRE D D 4347 e SR & 72
BRBEBNOHEZ RO DICHTE>TUET — b7 7/ v o —{&tho PTV
Y7 v =7 ZVECTOR Z MW=, ZZTO LIF-PTV IEIC L DHENFRETH
BT, KRR RN ET 2 2 E R ETH 5. Fig. 3.20 ITRT
X O L2 dps BIE L2 HRIZ W T, RLF-23872 8- v, M
20T HHOIRTEA BRI N o7, 722 2 TOEGRE ICEIER;
X dps <, L= == DOEEIN0Imm THHZ aEZH L, ot
BN L—W—— R Z@IET HI2IE 25m/s T2 DK X 7o 2807 W O % FF
OMENRDD. LLRRL, JIESHIZEEITRNA T MO 8EE A ET
BV, EREFMOEERRTITMO T/NEroloZ &, 78 b TNI Fig.3.16 IZH. 54
HERIEY = ROIRD YD 2B TF M E T 25m/s K0 +Ho/hsneEzx b
52 L0, RFABEHIIFE—FENICFEL TVWD LDREITHLEREDTHD
EEZLND.
Fig. 3.21 (2, tHAME /2% 1IMPa, 100D, 200D, 300D, 400D, 600D, 800D ?
B OB MEOME N A RS . [FEKIZ, 5MPa, 10MPa, 20MPa D534 &
Fig. 3.22, Fig.3.23, Fig.3.24 (Z;"%. 7272L, 10MPa /% 800D 73, 20MPa Tl
200D, 300D, 600D, 800D M7 —HRN{E{EL7RVN. T = v FOHLN GRS
W OEBEZ rmm], Y= v bO 2 AR EZ RImm & 5. Bl =25 mo
BRfE r &2 ) LR R CTHEID MROTE LT b O %, e 13 [mis] &2 R T

Fig. 3.25~Fig. 3.30 I Fig. 3.21~Fig. 3.24 C/RL7I=SNEDOHE T 07 7 A V%
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BT O HEEEZ 0.5mm 3O XY, 0.5mm DO OEE &2 F¥M L= D &R
L7e7 77 Thn. BMIEEGmOERE r 2 7 2V R THERUkLE D
D%, HEdh xR [m/s] A7k LT\ 5. 4 100D, 200D, 300D, 400D, 600D, 800D
%79, Fig. 3.31, Fig.3.32, Fig.3.33 /% 1MPa, 5MPa & 10MPa M4 2B D Wrif
F ORI E DA% LIcb O TH S, G 0.5mm T 21X E0, %
DN & DR DRI 6T 2 FIG Z fiEhhl, 08071 O IR r ioxF LT/ AL
EAE D THEXRIUE LT b DERT.
INLDHNLDLND LD, FRAMODEMEBEBTOY =y NOREEITIE
oAl (321) ICKHHEITIHVMESL 2> T D, FHEEITIRESELBH LT
WD ZENDND, TOREOEEL, FElTiR~7o LIF-PTV &I X 2 EOH|
7= (3.89mfs) v = v MZ XD L —W—— FORLT-0 5 DD JE T4
DEBNEGEENTND LEEZLNN, TOLEHOMEITRE < (10m/s F2EE), Fig.5
R LT LIy =y POREMAKRE S IERIPRICES, AT LHLH A
THZ LD bDEEZLND, ZOEET, SLKEDOY = v ORKSF
PREICHRCER LTS EEZXOND. L LR LARERIZEBNTIIZED
EEOSE « @b XEORMEIEEZRD DT 00T — 280k, o @
O E LIEHE Dr & OFMR A EEMICE R T DITIEEL R o7, HEOEEIL,
JENDBRELSBRDIZHE, FT2/ AL OHEENKRE L DIV RE L7

S TW5DH,
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Fig. 3.21 The measurement result of the velocity distribution in the radial direction of a
water jet
(water pressure is 1IMPa)
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Fig. 3.22 The measurement result of the velocity distribution in the radial direction of
a water jet
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Fig. 3.23 The measurement result of the velocity distribution in the radial direction of

a water jet
(water pressure is 10MPa)

3-31



T T I T T T T T T T T T LRI LA BN R | T
L . ... L] ]
2001 Camtat 1 200p T X
r LR T 4 C -{‘.. e “;
L . L . * e * ..'
=150f . . 1 =150 . . .
B I B I .
2 [ 2 [ .
2100+ 4 8100+ * -
(=] 3 o L
50 - 50:— -
4 e S s W S W S S W S e e e S W S W S R R
/R /R
(a)100D (b)4a00D

Fig. 3.24 The measurement result of the velocity distribution in the radial direction of
a water jet
(water pressure is 20MPa)
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Fig. 3.25 The measurement result of the velocity distribution in the radial direction of
a water jet
(Influence of pressures of nozzle exit)
(Pressure is 1, 5 and 10MPa; nozzle distance is 100D (250mm))
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Fig. 3.26  The measurement result of the velocity distribution in the radial direction of
a water jet
(Influence of pressures of nozzle exit)
(Pressure is 1, 5 and 10MPa; nozzle distance is 200D (500mm))
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Fig. 3.27 The measurement result of the velocity distribution in the radial direction of
a water jet
(Influence of pressures of nozzle exit)
(Pressure is 1, 5 and 10MPa; nozzle distance is 300D (750mm))
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Fig. 3.28 The measurement result of the velocity distribution in the radial direction of
a water jet
(Influence of pressures of nozzle exit)
(Pressure is 1, 5 and 10MPa; nozzle distance is 400D (1000mm))
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Fig. 3.29 The measurement result of the velocity distribution in the radial direction of
a water jet
(Influence of pressures of nozzle exit)
(Pressure is 1, 5 and 10MPa; nozzle distance is 600D (1500mm))
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Fig.
3.30 The measurement result of the velocity distribution in the radial direction of a
water jet

(Influence of pressures of nozzle exit)
(Pressure is 1 and 5MPa; nozzle distance is 800D (2000mm))
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Fig. 3.31 Distribution of the measured particles numbers in the radial direction of a
water jet (Pressure is 1IMPa)
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Fig. 3.32

The percent of the number of particles[%]

Fig. 3.33
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Distribution of the measured particles numbers in the radial direction of a
water jet (Pressure is 5SMPa)
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Distribution of the measured particles numbers in the radial direction of a
water jet (Pressure is 10MPa)
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Fig. 3.34 The picture of a flow of the water jet in the experiment
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Fig. 3.35 The velocity change of the water jet in a flow direction
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Fig. 3.36  Change of the interfacial velocity of a water jet
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(Water pressure is 1MPa)
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Fig. 3.37  Change of the interfacial velocity of a water jet
(Water pressure is 5MPa)
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Fig. 3.38  Change of the interfacial velocity of a water jet
(Water pressure is 10MPa)
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Fig. 3.39 Measured transmissivity of water jet (Pinj= 2MPa)
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Fig. 3.40 Measured transmissivity of water jet (Pinj= 5SMPa)
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Fig. 3.41 Measured transmissivity of water jet (Pi,j= 10MPa)
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Fig. 3.42 Measured transmissivity of water jet (Pi,j= 15MPa)
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Fig. 3.43 Measured transmissivity of water jet (Pi,j= 25MPa)
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Fig. 3.44 Measured transmissivity of water jet (Pi,j= 32MPa)
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Fig. 3.45 Local transmissivity distribution of water jet calculated by CT method
(Pinj: 2MPa)
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Fig. 3.46 Local transmissivity distribution of water jet calculated by CT method
(Pinj: 5MPa)
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Fig. 3.47 Local transmissivity distribution of water jet calculated by CT method
(Pinj: 10MP8.)
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Fig. 3.48 Local transmissivity distribution of water jet calculated by CT method
(Pinj: 15MP8.)
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Fig. 3.49 Local transmissivity distribution of water jet calculated by CT method
(Pinj= 25MPa)
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Fig. 3.50 Local transmissivity distribution of water jet calculated by CT method
(Pinj: 32MP8.)
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(a) 67mm (b) 150mm
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S —

(c) 300mm (d) 450mm

(e) 600mm (f) 750mm

(g) 1,000mm

Fig. 3.51 Transmissivity by schlieren method (normal nozzle, OMPa)
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(a) 67mm (b) 150mm

(c) 300mm (d) 450mm

(e) 600mm (f) 750mm

(g) 1,000mm

Fig. 3.52 Transmissivity by schlieren method (normal nozzle, 2MPa)
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(a) 67mm (b) 150mm

(c) 300mm (d) 450mm

(e) 600mm (f) 750mm

(g) 1,000mm

Fig. 3.53 Transmissivity by schlieren method (normal nozzle, 5MPa)
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(a) 67mm (b) 150mm

(c) 300mm (d) 450mm

(e) 600mm (f) 750mm

(g) 1,000mm

Fig. 3.54 Transmissivity by schlieren method (normal nozzle, 10MPa)
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(a) 67mm (b) 150mm

(c) 300mm (d) 450mm

Fig. 3.55 Transmissivity by schlieren method (normal nozzle, 20MPa)
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(a) 67mm (b) 150mm

—— e —

(c) 300mm (d) 450mm

(e) 600mm (f) 750mm

(g) 1,000mm

Fig. 3.56 Transmissivity by schlieren method
(nozzle with flow conditioner, OMPa)
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(a) 67mm (b) 150mm

(c) 300mm (d) 450mm

(e) 600mm (f) 750mm

(g) 1000mm

Fig. 3.57 Transmissivity by schlieren method
(nozzle with flow conditioner, 2MPa)
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(a) 67mm (b) 150mm

(c) 300mm (d) 450mm

. T

(e) 600mm (f) 750mm

(g) 1000mm

Fig. 3.58 Transmissivity by schlieren method
(nozzle with flow conditioner, 5MPa)
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(a) 67mm (b) 150mm

(c) 300mm (d) 450mm

(e) 600mm (f) 750mm

(g) 1000mm

Fig. 3.59 Transmissivity by schlieren method
(nozzle with flow conditioner, 10MPa)
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(a) 67mm (b) 150mm

(c) 300mm (d) 450mm

Fig. 3.60 Transmissivity by schlieren method
(nozzle with flow conditioner, 20MPa)
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Fig. 3.61 Transmissivity distribution measured by schlieren method
(normal nozzle, OMPa)

7 6 5 -4 -3 -2 -10 1 2 3 4 5 6
r'R,

Fig. 3.62 Transmissivity distribution measured by schlieren method
(normal nozzle, 2MPa)
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Transmissivity o

109-8-7-6-5-4-3-2-10123456789 10
r/'R,
Fig. 3.63 Transmissivity distribution measured by schlieren method
(normal nozzle, 5MPa)

3
>
>
2
e
S 67mm

SU0mMm

=450mm

600mm

——750mm

o ——1000mmy

711109 -8-7-6-5-4-3-2-10 12 3456789 1011

r'R,

Fig. 3.64 Transmissivity distribution measured by schlieren method
(normal nozzle, 10MPa)
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Transmissivity o
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Fig. 3.65 Transmissivity distribution measured by schlieren method
(normal nozzle, 20MPa)
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Fig. 3.66 Transmissivity distribution measured by schlieren method
(nozzle with flow conditioner, OMPa)

7 6 5 4 3 2 -1 0 1 2 3 4 5 6 7
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Fig. 3.67 Transmissivity distribution measured by schlieren method
(nozzle with flow conditioner, 2MPa)
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Fig. 3.68 Transmissivity distribution measured by schlieren method
(nozzle with flow conditioner, 5MPa)
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Fig. 3.69 Transmissivity distribution measured by schlieren method
(nozzle with flow conditioner, 5MPa)
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Fig. 3.70 Transmissivity distribution measured by schlieren method
(nozzle with flow conditioner, 20MPa)

3-69



PLEDOFER X0 BRSOV TIRO L H 722 Enbnsd. 7 AVE
HOFREEN KE K 72 BI225N T, HRBRIIHRAIEBLEn D, HERKE <

RAHEE/MEEE DY = hOFILMET WRN EFRA 7205 THRL, b
DI DOFTERITED L TWD Z e LEENE—RIBHERIZR>TNDH EE X

HiLd. FFIT 2MPa S Tik 600mm LR T2 = v F2MIIE R b S, iR
DADEAD/NI . S HIZHHENKE LS RDIFEFBENT = v hOE
TNt U CRFIPHIC D7z > THofid 2 2 Enbnsd. T oML/, XA
O DFERER REWEFTIZT TR <,/ ZMTHD0 67mm A0 B BAZE I
LB, EETHIUL ZUTEWGFTIThoTh V= v NOHMERE Sh
TWbEEZLND. —FHIRESFHEOEE, RIESMGEERL T, ZEFEOS
MPRBETHDLZ LD ND. FEmETHLIIEZMIRIELNRLD LR
HZEDD, JENOEMIE>TY xy MROILRBHEIN TS Z &0
Mo, ST ANV AL OBEEEDOENNAE S FiEROFEIL, JESD S

NERE AT IR LTV T EDMERTE 5. #Eiias DR IEIZ L A%
WX, BRSO H DTN IT & AR TEICHMHE THEBRENED LD =
M D.

3-70



3.7 J RIVINE O BB LA R

Realizable k—¢ €T /WIZ L 5 E =4 ) ZVNEEF RO R Z2 /RS, &R
FROFEIZ LD XV OICE T 2 ESM &SRRV ¥ —54 % Fig. 3.71
~Fig. 3.74 \ZENEIRT. 7T 7 OfELZ 2 Fuiih 7 ranE B & LT EE) = )
X —THY, BT R BEERELY 2 AR R2 THELIZHOTH
L. WM OMEEX ) AVHEO%z=0& 1L, Y= v NOEKFMEZEIZE > T

WD,

Axial velocity [m/s]

Fig. 3.71 Axial velocity distribution at the nozzle exit (normal nozzle)
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Fig. 3.72 Turbulence kinetic energy distribution at nozzle exit
(normal nozzle)

Axial velocity [m/s]

Fig. 3.73 Axial velocity distribution at the nozzle exit
(nozzle with flow conditioner)
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Fig. 3.74 Turbulence kinetic energy distribution at nozzle exit
(nozzle with flow conditioner)
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(c) Time averaged velocity

Fig. 3.75 Contour plot for the case of OMPa
(Right: normal nozzle, Left: nozzle with flow conditioner)
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(c) Time averaged velocity

Fig. 3.76 Contour plot for the case of 2MPa
(Right: normal nozzle, Left: nozzle with flow conditioner)
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(c) Time averaged velocity

Fig. 3.77 Contour plot for the case of 5SMPa
(Right: normal nozzle, Left: nozzle with flow conditioner)
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(c) Time averaged velocity

Fig. 3.78 Contour plot for the case of 10MPa
(Right: normal nozzle, Left: nozzle with flow conditioner)
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(c) Time averaged velocity

Fig. 3.79 Contour plot for the case of 20MPa
(Right: normal nozzle, Left: nozzle with flow conditioner)
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Fig. 3.80 Density distribution  (normal nozzle, 0MPa)
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Fig. 3.81 Density distribution  (normal nozzle, 2MPa)
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Fig. 3.82 Density distribution  (normal nozzle, 5MPa)
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Fig. 3.83 Density distribution

(normal nozzle, 10MPa)
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Fig. 3.84 Density distribution
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Fig. 3.85 Density distribution  (nozzle with flow conditioner, 0MPa)
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Fig. 3.86 Density distribution  (nozzle with flow conditioner, 2MPa)
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Fig. 3.87 Density distribution

(nozzle with flow conditioner, 5MPa)
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Fig. 3.88 Density distribution

(nozzle with flow conditioner, 10MPa)
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Fig. 3.89 Density distribution  (nozzle with flow conditioner, 20MPa)

100

1—— O0MPa normal nozzle
{—— 2MPa normal nozzle
5MPa normal nozzle
10MPa normal nozzle
1—— 20MPa normal nozzle

1 O0MPa commutator nozzle
------ 2MPa commutator nozzle
5MPa commutator nozzle

10MPa commutator nozzle
! . | . | 1------ 20MPa commutator nozzle

e (=L

200 400 600 800 1000
Distance from nozzle[mm]

Fig. 3.90 Average of axial velocity
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Fig. 3.91 Total amount of water calculated from the results by Laser CT method
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p() = (pw —PA)I(N) +p4 (3.10.1)

Z 2 TpwlE, KOEEE, palTZBROEE, fNIXY =y NOKDOEHERTH Y
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YRGB IS B ENMILERS MR OB E L 50T, Z 2 THEH 1Tle
LT f(nN%, DA#EERE C % W TIRORZIER SRR O MM TH 5 LK
ET 5.

f()=Cexp(-r*/a®)  o<cCx<1 (3.10.2)

ZZTald, Y=y FDOENYERT/INT A=K TV xy FOEMEE
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Iowexp(—rzlaz)drzaﬁIZ

(3.10.3)
f(N% xy BAECHRT L
f(x,y) = Cexp(—(x* +y?)/a?) (3.10.4)

Vry MLV —VP—OEERREE A, L—V—% y HFAIZEFA L&D
PR dy TR EZ dl & 975 &

dl = -Af(x,y)ldy (3.10.5)
-y g

= Ioexp(—A_Ezo f(x, y)dy)

= Loexp(-AC[” exp(~(x* +y?)/a)dy)

- 3.10.6
= I ,exp(—ACexp(-x?/a?) Lo exp(=y?/a?)dy) ( )

= 1 yexp(~ACay/mexp(-x?/a?))
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In(1/1,) = —ACay/mexp(—x2/a?)) (3.10.7)
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f(r) = 4leeXlO(—rz/aZ) (3.10.10)
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Fig. 3.93 Density distribution (normal nozzle, 2MPa)
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Fig. 3.94 Density distribution (normal nozzle, 5MPa)

;'Er_' """" prorrrrrTT prorrrrrTT [rrrrrroTT prorrrrrTT [rorrrroTT prorrrrrTT [rorrrrTT =
.9 E
.8 E
D.7 3
.6 E
.5 E
94 —67/mm
5.3 —150mmj3
300mm

0.2 450mm;
3 1 —600mm;
Z/ \\ ——750mm
T e e Y T e e e vt
-4 -3 -2 -1 0 1 2 3 4

r/'R,
Fig. 3.95 Density distribution (normal nozzle, 10MPa)
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Fig. 3.96 Density distribution (normal nozzle, 20MPa)

—67/mm 3
—150mm 3
300mm 3
450mm 3
——600mm 4
—-—750mm 3
»~—==1000mneE

o e ]

r/'R,
Fig. 3.97 Density distribution (nozzle with flow conditioner, 0MPa)
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Fig. 3.98 Density distribution (nozzle with flow conditioner, 2MPa)
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Fig. 3.99 Density distribution (nozzle with flow conditioner, 5MPa)
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Fig. 3.100 Density distribution (nozzle with flow conditioner, 10MPa)
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Fig. 3.101 Density distribution (nozzle with flow conditioner, 20MPa)
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Fig. 3.102 Effective radius of water jet (normal nozzle)
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Fig. 3.103 Effective radius of water jet (nozzle with flow conditioner)
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Fig. 3.104 Total flow rate of liquid phase (normal nozzle, OMPa)
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Fig. 3.105 Total flow rate of liquid phase (normal nozzle, 2MPa)
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Fig. 3.106 Total flow rate of liquid phase  (normal nozzle, 5MPa)
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Fig. 3.107 Total flow rate of liquid phase  (normal nozzle, 10MPa)
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Fig. 3.108 Total flow rate of liquid phase  (normal nozzle, 20MPa)
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Fig. 3.109 Total flow rate of liquid phase  (nozzle with flow conditioner, OMPa)
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Fig. 3.110 Total flow rate of liquid phase  (nozzle with flow conditioner, 2MPa)
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Fig. 3.111 Total flow rate of liquid phase  (nozzle with flow conditioner, 5MPa)
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Fig. 3.112 Total flow rate of liquid phase  (nozzle with flow conditioner, 10MPa)
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Fig. 3.113 Total flow rate of liquid phase  (nozzle with flow conditioner, 20MPa)
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Fig. 3.114 Dynamic pressure (normal nozzle, OMPa)
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Fig. 3.115 Dynamic pressure (normal nozzle, 2MPa)
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Fig. 3.116 Dynamic pressure (normal nozzle, 5MPa)
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Fig. 3.117 Dynamic pressure (normal nozzle, 10MPa)
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Fig. 3.118 Dynamic pressure (normal nozzle, 20MPa)
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Fig. 3.119 Dynamic pressure (nozzle with flow conditioner, 0MPa)
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Fig. 3.120 Dynamic pressure (nozzle with flow conditioner, 2MPa)
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Fig. 3.121 Dynamic pressure (nozzle with flow conditioner, 5MPa)
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Fig. 3.122 Dynamic pressure nozzle with flow conditioner, 10MPa)
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Fig. 3.123 Dynamic pressure (nozzle with flow conditioner, 20MPa)
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Fig. 3.124 Density distribution of experimental result and numerical analysis
(normal nozzle, OMPa)
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Fig. 3.126 Density distribution of experimental result and numerical analysis
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Fig. 3.127 Density distribution of experimental result and numerical analysis

(normal nozzle, 10MPa)
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Fig. 3.130 Density distribution of experimental result and numerical analysis
(nozzle with flow conditioner, 2MPa)
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Fig. 3.131 Density distribution of experimental result and numerical analysis

(nozzle with flow conditioner, 5MPa)
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Fig. 3.133 Density distribution of experimental result and numerical analysis
(nozzle with flow conditioner, 20MPa)
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1%, REROMEHEE CIINEE -7 2 AV AN S OEROENE, AV
HETOET) - MEICHELZLEX D ZER<BINIZMA DL Z LRl L ol
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ZEThS.

F ZCARFEBRTIE, FEHUMRIZ I T AL R NE S (8 )3 D R TN S 2 18 12 L
L CENTZTREBRLBREEERT D Z LB DN, ik ERsTSER
KIZED L 5 B EFFS L DR DD HONTHEMREET 5 H 89 CHEBREIT -
7-.

ZORER, DT IR ¢45mm O HE 1y REH L TRERBIC R LT
1.3 5Ll O R BARERS ATBE72 2 & 2R LTz, 2 O BIROREEIT
$53m L7V, ZOREELDHDLETIE, FME ¢ 140mm O “HEE 25
% Superjet [IZVEET 2L DO TH S, /S AN O5| EIF R\ T, 27 v 7 (B,
BES] F1F) « 208 TV (IEEERES| ) & o 7BV K B IERER O Z iT e <,
AT TR R IR DL~ OISR b T E b s, Zhil
LV HIF KDALY — )L R U DILHIN S DI HE L W o T2, FREE 2
L LW T CTohiviL Superjet & i L TRIEZ: = A2 b Thie T rlE & bt
5. Fiz, WIRAERR & L THEkD GEOPASTA TiE L i LT 3HIFRE D 2
2 MERFIRE & b S,

I BARD SVEICHOWTIE, RO SIS, SRR O BB & RS R
PERAEZR L THRY, WREBA IR E L CiEBiiR b o A rRe & b
B, TOFMGEESEIREIC L TS BERDH L. E70Ek L Rk —ii
JEARIREE &2 T 72 DITiE, MHEE ORI ik, 5l BT Yy Fo ik s %
THZETHIGEL TS ZENA[RBEEZEZIOBNS.

Fio, FERREGEEIC L 22T R LEREE, =7 H ) hBIAROREER
BD %L EE o7z, LaL, TERMEHHESEIC Lo BIAOERE S, AE
BT ORNER L FIBROMEA KO B, — ISRl LTobhd =27 H 0 0
6FI ICHUTITED. ZOMEND, =T 2 LOLAITHERM L OREHZENT L
A EFEL T WAREMEDRN S 5. Z OHK & L Tl Superjet, Superjet-Midi %
G LT A, M ESEERNCD RN ETREN RS Z 5 Z L RHEE
END. HRERERIEE, BEOY =y MNEFROME, #HEE RE<E
LS EDLAHEEZFF > TS, 30, ERBUIH > TR S TiEE LTS
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Fig. 4.1 Water jet from normal nozzle

Fig. 4.2 Water jet from the nozzle with flow conditioner

LTWS ZEZHENMOBRE TS, L LARKIE, FilRERESEED A Y ¥
M 2 RIRICAENE DR IEZ OV TE S TS 2L T, B<HLVn Y =y
NI UPTIEEMET DL LNEETHS.

W, AREERTIIMEE b, B2 Wb O 2R RS I E, B 2
N2 S O Z PERTUME S ALE & PR L TV 5.
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Fig. 4.3 JETCRETE column by
normal nozzle (¢ 4.0m)

Fig. 4.4 JETCRETE column by the
nozzle with flow conditioner with
stenped liftina (®5.3m)

Fig. 45 JETCRETE column by the
nozzle with flow conditioner with spiral

lifting (¢5.3m )
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I e JETCRETE X —2 & LT\ 5.
g N ZoRR N 20 Rl OBEICE
WT, BEERII=T H O%A,
PE SRR g S AL 8 i B AR ¢ 4.0m (Fig.
A.3) T xE U BT R e ke S AE 18 e RAK
L ¢ 5.3m (Fig. 4.4) &, 1.325 % &L 72 -

Fig. 4.6 Cross section of the JETCRETE 5l EIFGiL, A7 v 7« 254 F
column by normal nozzle L (Fig. 45) & bICIHERETH - 7=
T AT &0 TR R RN G 1 )5 A
AP ES ETHAIL TS &)

ZEBFRD.

L7 LfiEWriE C 756, TR
SHESHE TIE RO MESBRAE L A7
5, PR L KEZ Rz 6D
Wi (Fig. 4.6)ZFf> TWDH DXL,
BT RN ST G T, SRS &
&ﬁ%%ﬁbfﬁ@(%yﬂ)%%
O — il A FBRC — 1 D = 7 3 |
TERWew, AERRELITE AR

V. ZHURMERR S E S 720, 6]k
Ty For O U) Y BTV
WZ LIk D LEbng. ko s
ZRLTWDHRELT, vy FoExR
Ze — RIS 1 S W7 (& P Cld B
73 5.5m ICEEL TRV, 23D 1 KDk
Fig. 4.8 The distance of the water jet #e LT LTV o (Fig. 48). Zi
reaches 5.5m at maximum C LT 0 45mm vy R CEA ¢ 11m

Fig. 4.7 Cross section of JETCRETE by
the nozzle with flow conditioner




DOIER S BIRITIEFREL WO Z ENE X D.

a2 H LWVEEOSBAR L 2, RimPEaH7Z &8 UWEEM 71525 e
MTEIUL, WRAERR D X 5 @R A LB TIEIZH > TR 2 DI +507]
BTHDLEBEZXD. EROFNGIETHEHFTRRZREBEOEREB X D00,
5l LF Yy F &2 FfET 5, EHEERM T AEEZET TS, FBHAA - T
B RIS EE O G T T LT 5, EW\WolcZ & THIRAREE B R 5.
TTHY LT R LTONEIL, Wk, =T R UIRRE=THY D 6 Hlo
WAL WD TEZ S OITK U TH AR ZRESEE COMRAETH H. £ O
B, =7H LR TEREIL ¢ 1.8m (Fig. 4.9t 72-o7=. ZHUIZTHY ¢
53m D 34% & 720, HERTHREETH 7. ZHUIMEROHGRICITEE L7
V. RS WEOFERICHE L CIREN DR, ERAID WD, S%EIC
RAEL CTWS RERH D EBbis. L LI LT, FiilsrsrEsdsE
F=T7HYOGE, MO TEWERNEZRET LD THLLEXDLIL, =T R
LIZDOWTH ¢ 1.8m D BRNLE LB BREEMELFOZ EITARTHY,
BERRAEIEY) T COERFE~OEML G TE 5.

Fig. 4.9 Exposed JETCRETE column
without air ()1.8m)
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@ CPT(Corn Penetration Test: = — > B AGRER)

ERR A HEE T D b D & LT, CPT(Corn Penetration Test: == — > B A#XER) (Fig.
410)HbE D ATz, THUIM TERIZ, BRE LR ORLZEEARTER O EFTIZ
BAT2ZLI2L- T, EOBERHE), REECREKRE)Z, a3 —r 0k
SAHT - AR - BBRKEOZILENSHET LI LD THD.

ARG R, MR OBZEERNRIZIWREERIY - TRnEEbH Y, CPT
T = 2 IIHIRRICE ORMA BN N2 L 3% <, SEIORBRO - THETT 5
DIFEE L. ZOTDERELBELZEEZ L CoORR KT 2 &, —#icix
EARON, FEELVREDOEENTEND ZENEL AL, CPT AT
DEIRMEMTRINDBDOE L TEZ LGS, BONTCEKBEOREERT
—Z OMBBHHREETH D &V I HEBHRDBERH D . ZHUTDON T
SHOBIGHRAT LR L CRENLE L Bbhs.

Fig. 4.10 Calibration of CPT
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414 E%

FBRORER, BB ELE CIE, TRO N<20 OREIZH VT ¢ 5.3m D
BERERD N ghotc. aAMNREOREYD, ZNERFHEOKE T/ N2 —
> & ABE L7 Superjet & RIFZRD ¢ 5.0m EF%E L, HICKBESER EOT-D5]
ki 25em vy F, Bl B 16 73 & LT AT o 72 & 2 A, HERRE S
HEIE 2 L7234, Superjet @ 0.346~0.527 {5 &, #Pn 1/3 FEE T
K2 EHEESND. FRRRAEBL IOV T, Ktk GEOPASTA |2 b
LC3FURBAATEE & A DD,

FLUREONEL, 5l BTy FE2550 5, MAEERMITAEZ DT 5,
IR - PERAE R IEE 2T D LW oo FIETH BT A REEENRH B &
BEZTEY, S%BHICE W TR T TR L T BER™H S.
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42 FEhEr
4.2.1 FEEGET - ERI

S - TRERT R\ 1730 1. BIG(LEX % Fig. 4.11 IZ/RT.
FERETOBOEMEL LT, UTOLRERH -1,

cHLL TWARWEMBETH L Z &

cWETHLZ &

cHTARMLLTTHDH Z &

- KBRGRIE 3720, BVWHETHLZ L

- Pl O BLIRE LS B AA A 28 P R

V) R B BE UABUISITIRE L.

I . SR 2149 A ~FRk 22 422 A

Fig. 4.11 The site location
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Fig. 4.12 CPT results
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4.2.2 HTRURRRE « DEINE A B L RE bl FER

SRR
O -1 FEBRHAW

JETCRETE LiEOWHEBM RN AR > TEfFmi v, E=%—NEix
Ry MNEBEZVTFy o N—EFHRE L, SHICT v o N—EFENRHLE T
FNEBEAOZERSYE, BEMFEELRLDZLETHRES D Z LM HERIN
Thnb, TOWIEZEARE L TRRA 2ETBIRD 7 A4 7V 2 BHRTE 2,
i T2 EDIEEOR EEZSEHITIEELRPoT-. Tk, &
F M HIEE B T ESC G A 2 b ST h, EHR A e AR E
HNCEMAITHTIED > 725 DNIFAET D720, ZOESIT L A Tl s
ZOEFEERE R D720, RN A TOMBMENEND D THD.
ZDED, EAERY O A R 7200 TR %2 H U 7= Bl R kg 525 & %
BAFE L7z, ZOBFIC X VBN RBERSIRNH L5 2 LRI .

Z OBAFEEN D, JETCRETE TIEOWEMAEROILKREXK D Z L1k, Tik
DARARNTT L EZXNDHDEHEZ, EOMER LR F %2 MRE U7 Bl a5
Bairo L& LT
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O -3

GL-4.00m~-2.00m

L=2.00m
4 A

WHE 1+

GL-2.00m~-4.00m : 10<N<20

i T FL%
FREEBRIZEB T DL 13,LL T Table 4.1 i@ v L L7-.
W, LT & Type DiEWE, AL L BINAE O R % FIFFIZIT > T\ ielz), &£

BRSO TNEFF & BZg > T2 Z iz k5.

Table 4.1 Specification of the water jet equipment

Type

1

4

2

w

i

AR Ik

i !

TRk

TRk

MET LS [
Gl BT AT Z 4 T )L 2T
=7 »Y oQ)) 7L
G H= K6
o =3
A A=Y e I B S
Al
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O-4 ERREEOHEE

TR DOHEERUT, ERITH T TEBICE T L2 THNCEMNT256DTH-
T, EBRHDWVIIHM THHCRBIT 5 —2 04 2RI 7ET0 L0 L Sh T,
L2 L, JETCRETE TiABAROBRZ, ZAUTHP RS 5\ ks %o N fil
Z BRAE L 7 #PHICE U 721G R0HEE Vm (£ OMEFR2S 1 RPN R T 5 FREE) 4
MSRET D2 LT, BUETIIMED R VIERBOHEENFREL > TEL D
EMBINEN—RE LTEROEMRELHEE L.

T=K-P*-Q°-N"-Vvn'-LX (4-1)
Vv=K?!.p?.QP . N". LY (4-2)
Lm=(Vm + K + P*+ Q"+ N" - vn")/ (4-3)
Z 2T T BlERE (sec) Dm : & =% —4}ME(m) K=4.9490
P:MESHES (tfim?)  Rs : [B#EEE(rpm) a=—1.3882
Q : "EHEE (m¥sec) V : MEHEHE (m/sec) b=—1.6423
L : MEEEE O OREE (m)  Lm @ @&RCERE(m) x=2.38466
N @ ok Ulal% Vm : JERGHE EE(m/sec) n=—0.1869
Vn ;M B R R Y (mi/sec) r=0.2743
Vn=Dm-z-Rs/60 (4-4)

97, HERAIME R T O REIE, JETCRETE T.iET %1072 ¢ 2.5m & /¢
HIeHODREE Lz, RBEMEEL, EREHEEICO W TIIINETO
BT N<20 g CHEA LTV 5 Vm fE 0.91 28 L7z, B R ikne it
B DWTIE, Bk o & —TIT o 7o M it PR RE b SEBR T OO AR ke S 4
PIEE L4 5 OBIEHREZ R L QW2 Z &G, (ERBIMEFEEE  BrRlRe ke 5
HiE=1:075 & L. ZhUE 133 f5ICHhb. T LB 4POREEET
Table 4.2 IZR LTV 5.

Table 4.2 (2 X 2 PisBROMFE R, ORI L TE 72 Vm EIZ X 5EpfRIC
L CERBOHRBMNRE S MR L2 E X, RERTIIAIEERRD KX
R BAREERT S EEBEL, REDRELEIT 72, ZIUI OV T Table
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439 W, OIS EFXLAMNREARR, ALFEQH =T 72 L Th D LA
AR TEREITo 72, T2 T2 LEBERIZOWTIL, N6 T27H Y
D6E WV ORRERAINS ¢2.4m LAETE LT,

Table 4.2 Original design criteria

fikk B | R
W B I ) MPa 35
MES S5 it 27 /min 170(85x%2)
SRRy 1
[EI T rpm 2.5
gl Et yF cm 5
5| FRER min/m 8
VR NS mm 70
MES St 5 1] 1
M NER mm 3.0
MEG I L 1.60
TTES] MPa 1
T m>/min 6
Ay & | kgfim® 130 186
SR E m/sec 0.6825 0.91
HEEBIRE B L m 3.2 2.5
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Table 4.3 Design criteria of the actual experiment

L& o | © | © @
RS FE[RALE RS =it
WEL S 1= MPa 40
WS ST ?%/min 174(87x2)
R [R5 1
[ #i5 #% rpm 2. 5
5l EHF A7y7" N AT 2797 2797
gl bty cm 5 — 5 5
CIRSET! min/m 8
FoA-ARNEE mm 70
MEL St 5 1] 1
H-H PN mm 3.0
ML E 1.60
TTFES MPa 1
T m>/min 6 6 — 6
AL & | kgfim? 130 130 208 86
&Rk m/sec 0.6 0.6 - 0.75
HEE B EEE m 4.0 4.0 2.4 34
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O-5 i THE

ERUTR S =20m & L, HIGICMEFEZID T, S XA o714 ax s
A T4 MT—ERMDZT, ZAT7A4 LOYHBEROEZFHITL 2 & & L.
2T T 7 LR (FLEQ@) ERRIFIIRIE R D o 123, ALFRQO-O L ED 5
BT, PAZBIC K > TAT A ADLZE L THH SN ARVIRIAS B AE L2720,
RBAHIERLD, By MUFESTEATA LEZWON LT XA T4 MTERATDH
EV IR = Syl

@ -6 SEERBE A
EERITAE R U 72 =A% Table 4.4 127~

Table 4.4 Main equipment of the JETCRETE

B FESE B AL PR A=) — FEMERE, A%
RV Tv D2-JS | HUAHL T TR @45mmJETCRET {14k
AEER T SG200 YBM MAX44.1MPa  227L/min
g NV AN EREiE BEX A 7 1MPa
TAVIAT) =1 V7 TM-200 | Hépfto & — P A a2 P —— K
WS S 21 T )T ¢ 45mmJETCRETE
Ty v ) ¢ 15mm
T H— I ¢ 45SmmJETCRETE H
7y R AL b 45mm NEFE ¢ 16mm

FBRRAR X, 1% O JETCRETE T ETHMAT 260220 E EFML TITH.

FTAHUYETS 2 OIIMEFEEE O B CTdh 5 (B & OBERBNIR U 2 AV
& ¢ 3.0mm).

5l ¥y FI1E 50mm TIT 5 728, D2 @ 25mm g T v 7 #Rid 1 DB & 1Tkt
ZEnO TEH L7z,

ANNA Z G EFIC D2 0 BEG| ETEEEISSHE L T iniz), Ty v 7 )
DA%, Bl IR 8 43/m 12 % 24 #b/5cm A b 70 4+ » FTEHAILD
O, WECHIHEZITY, ZHIZA I KOICREZ Lan bl L. £k

4-17




W, Bl FIFHZ 8 23/m TREIZILTWADR, Fx¥ v 70z %04 A4 L0
AWEENDLDT, h—F/LOERFFRIXZE DM Type IR L TR 2o T
W5,

@© -7 ERRFE
SEREFBRII RN LT, @Rkl & HRRHERR R IC i D . T ORHIT
DB FHIZ DN TUE, BIGRUN DU TICHERORRFHTHDL EERXD.

1) 3&EpE

IERRF O ERF L, ERCRILE 2T A AR OBE TH D, ERCR DU E
BRALARIC X W BRE LTI - ISk Ui T OMESR &N —E & 725 X 9 i
Bt CHERB LR bEELERN 7 THET S, £RERANCFOR— 7~
v D2 OREEEZE, Ay T UxyFTHEIL, 51 ETFE Yy FIZHONTH
TR LR & By FHEZFHIIL, EBRMAARICE S K ORI 5.

Fo, AT7ALOMHRIZONWTIE, BANOHHENTZAT A LD&E - HH
DWEIZ L > TITH . ERHPOMFHREOLE), AR, »—Z LRI
DWTILIREFTF v — MIbREET 2.

i) HoRB AR RE

R ORI, WBREOERB XOZORKROEH, BLXOHR—Y 7=
TEEBUC L D —il R e £ & LT BIROYEEER 21T 9 .

70X, SRR XD EEGEIZ 0.75m, 1.00m, 1.25m THET 5L 0%
BEARL L, WREOEIZS CTHRICHENTAE THERIL, WA 5.

4-18



@ -1 HRKRLE

W BRARELEIZLL T O Fig. 413127376380 ThdH. =7 H Y OLRIKIT DN
THR R RS ST AE B TIIHEEMRE D 1.325 5 C, Sl LT AN AT v 7 234 5
DTG A OGREE, TEORMIMGHEE T3 118 fE & oz, =72 LICD
WTHERPOEDEZFT, ZT7HVD6HNT LN Z &0 D, ¢40m D6 HT
b24m BREZHEEL W, LrL, =7 H0IIAEM FickE, =772 L
ITAREU B/ ESNWE W FER L7 o7, WRTHDEZTHY . =T L=
1:0.34(34%) & 72> 7=

SN TS O % T & Table 45~4.8 (2, JRIMEHE % Fig. 4.13~22 (TR~
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type QTR F K/ N
I7iEL

BHEXRRLTE
BY—hEE

BY-MEY
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Fig. 4.13 JETCRETE column layout
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®-2 FHHRBRKEANEESEHERET YA 2 ILEURR

Table 4.5 Type 1 :

Nozzle with flow conditioner with air flow

- & 1740, %y
51 ERE 843,/ m
5] 5 5cm A7
IRFA WERBAEN S | R R
(97) (m)
10:35 HIFLBA A
10:40 HIFLIE T
10:49 0 0 TERBAbE
10:52 3 03 [FyyBlvEx 1EH
10:54 5 0.5 FAZE  799v/)
10:59 10 A
10:59 10 06 [Fry/BlviEx 2MEH
11:02 13 09 [Fry/8Iv &z 3 M H
11:05 16 12 Fyy)blv &z 4[01H
11:08 19 15 [Fy89lvEz 5EH
11:11 22 18 [Fyy9lv iz 6EH
11:11 22 2 YERRIE T
ZERF I
41/} No. S -
TR 1ERE ZEIR | IERKET | &R | AR
1 921 920 imm| 3,380 3,364 | -16mm
2 1,025 1,025 0omm
2N F 11
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Table 4.6 Type2 : Nozzle with flow conditioner with spiral lifting

- & 1740, %y
51 R 8 4./ m¥ ST & B CIT 5 7200 EIHEE & 78 5 F O r s
IS =" ANA T V(BT ThoTleZ L LERBMAMER IV R R>T5
IRFA ERPEED | ERR R PRI
(57) (m)
10:25 HIFLBA A
10:32 HIFLIE T
10:48 0 0 Y5 Rk B AG
10:52 4 0.2 FHIE 799w
10:54 6 03 | Fy/El0 % 1[FIH
10:59 11 06 | FyywHlV Rz 21EH
11:04 18 09 | Fywulv i Z 31EH
11:09 23 12 | Fy)10 &z 4H
11:14 28 15 | fyy)8lv x5 H
11:15 29 1.6 FAZE  779wv)°
11:20 34 5
11:21 35 18 | Fry/8l0 &2 6FIH
11:23 37 2 TERGRE T
ZEARF I
41/} No. S O-O Ml
TERCHT | SRR 2R | dERGET | &R AN
1 972 901 71mm 3,210 | 3,240 30mm
2 875 Frk i -
3 934 912 22mm
2N F 13
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Table 4.7

Type 3 : Nozzle with flow conditioner without air flow

- & 1740, %y
51 ERE 843,/ m
5] 5 5cm AT
IRFA ERBRLED B ER R AR
(97) (m)
13:24 HIIfLBA 1A
13:33 HIFLET
13:41 0 0 18 A% BH i
13:44 3 0.3 Fry8 0 % 1A H
13:47 6 0.6 Fry) B0 2 % 2 [\l H
13:50 10 0.9 Fry/ 00 2 % 3 EH
13:54 14 1.2 Fro) B0 % 4 81 H
13:57 17 1.5 Fry/ 810 R % 5 [\ H
14:01 20 1.8 Fry)8) 0 & % 6 A1 H
14:02 21 2 YERET
ZEARF
4/} No. S O-QFfERR
TR TR 2R | IERET | ERE 2R
1 LD 1m 970 967 3mm | 1,435 1,438 3mm
2 HLG)N 5 1.6m 985 983 2mm
Ny FH 9 1Ny FoRER 0 $5 T
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Table 4.8

Type 4 : Normal nozzle with air flow

M- & 1740, %y
51 - IREfE 877/ m
5l F5 5cm AT v
1537 ERBHEE S | ERE AR
(57) (m)
9:30 HIIFLBA A
9:36 HIFLI& T
9:39 0 0 R BA AA
9:42 3 03 Fr/ilv &z 1EH
9:45 6 06 [FrpolvFx 2EH PAETLINEOE Ehi L
9:48 9 09 [yl &2 3[EIH
9:51 12 12 FyyrivEx 4181H
9:53 14 15 |[fyy/8iv & Z2 5EH
9:56 17 18 |[fyy/8iv &z 60H
9:57 18 2 ERHE T
ZIRFHH
+ 4/} No. S O-QmfERR
ERCRT | &R ZER | IERKET | IERE 2R
1 852 849 3mm 1,662 1,661 -Imm
2 974 970 4mm
Ny FH 8
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S AODHA T4 MIENER 30 B

PEH SN D AT A A EHE

ZTh L% 300kg B FFIZHE EH &R

EHEH T D e 2 FL

Fig. 4.15 and 4.16 Measurement of specific gravity of the spoil
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Fig. 4.17 Type 1 : JETCRETE column by the nozzle with flow conditioner with
stepped rifting

Fig.
4.18 Type 2 : JETCRETE column by the nozzle with flow conditioner with spiral rifting
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Fig.
4.19 Type 1 : JETCRETE column by the nozzle with flow conditioner with stepped
rifting

Fig. 4.20 Type 3 : JETCRETE column by normal nozzle with stepped rifting

4-27



TT ORI KB

i

)
a
[

":‘-r_l.
-y

- -

Fig. 4.21 Type 1: JETCRETE column by the nozzle with flow conditioner with
stepped rifting

Fig.
4.22 Type 3 : JETCRETE column by the nozzle with flow conditioner without air
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arEmE 75% 79% 85% 3%

Fig. 4.23 Typel : Borehole cores
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Fig. 4.24 Type2 : Borehole cores
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Fig. 4.25 Type3 : Borehole cores
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Fig. 4.26 Type4 : Borehole cores
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Table 4.9 Type 1 : Configuration of the column sector

EE S
GL—(m) ® Eiy
-2.200 2450 2220 2230 2430 2490]  2363.3
-2.225 2440 2130 2240 2360 2450 2323.3
—2.300 2280 2340 2170 2440 2570] 2363.3
—2.325 2240 2290 2270 2500 2630 2375.0
—2.400 2230 2250 2250 2680 2540  2385.0
—2.425 2220 2140 2260 2680 2470 2360.0
—2.500 2520 2310 2430 2730 2600] 2505.0
—2.525 2420 2380 2350 2540 2580] 2451.7
—2.600 2510 2330 2330 2550 2530 24383
-2.625 2360 2330 2340 2450 2450]  2375.0
-2.700 2310 2130 2230 2370 2370]  2263.3
—2.725 2190 2050 2160 2370 2320 2178.3
—2.800 2010 2040 2040 2350 2310] 2176.7
-2.825 2040 2070 2070 2240 2300  2180.0
-2.900 2180 2030 2030 2280 2290 2141.7
-2.925 2180 1930 2000 2190 2210]  2098.3
—3.000 2060 2040 2100 2190 2010] 2218.3
-3.025 2110 1930 2060 2170 1980] 20417
-3.100 1860 2000 2000 2180 2070]  2021.7
-3.125 2050 1890 1900 2160 2080]  1995.0
—3.200 1890 1850 1880 1990 2060] 19483
~3.225 1910 1860 1890 1860 1930]  1891.7
-3.300 1900 2090 2300 2050 2130]  2115.0
-3.325 2080 2110 2300 2010 2140 2138.3
-3.400 2240 2210 2140 2460 2300 2271.7
—3.425 2270 2290 2330 2350 2290] 2285.0
~3.500 2200 2250 2240 2200 2420]  2283.3
-3.525 2220 2230 2320 2290 2350  2285.0

GL(mm)

FLEFEDOtypel FRBVGHFFTR/IRAIN RTy7'5I_EIF I7dHY

=4

L]
P
L4

"o 1

. -

500

1000

1500
FEZEHF1FE(mm)

2500

3000

Fig. 4.27 Type 1 : Configuration of the column sector
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Table 4.10 Type 2 : Configuration of the column sector

EE FIZEEZE(mm)

GLm) @D @A) ® @ ® ® Ty
—-2.200 2380 2510 2440 2430 2660 2570] 2498.3
-2.225 2420 2400 2450 2330 2500 2390 2415.0
-2.300 2420 2540 2380 2390 2690 2470 2481.7
-2.325 2360 2450 2560 2260 2230 2300] 2360.0
-2.400 2380 2390 2360 2280 2410 2320] 2356.7
-2.425 2340 2420 2250 2220 2110 2360 2283.3
-2.500 2350 2380 2230 2270 2260 2300 2298.3
-2.525 2260 2370 2250 2290 2250 2220] 2273.3
—-2.600 2250 2430 2330 2270 2200 2180] 2276.7
-2.625 2240 2520 2300 2330 2270 2130] 2298.3
-2.700 2240 2260 2280 2290 2240 2230 2256.7
-2.725 2250 2250 2220 2360 2180 2260 2253.3
-2.800 2200 2200 2300 2280 2310 2220] 2251.7
-2.825 2200 2320 2150 2310 2240 2140] 2226.7
—-2.900 2220 2050 2160 2210 2110 2020] 2128.3
-2.925 2220 1980 2110 2220 1980 1910 2070.0
-3.000 2170 2190 2180 2260 2220 2010 2171.7
-3.025 2150 2180 2240 2100 2250 1970] 2148.3
-3.100 2000 2180 2080 2080 2040 1990 2061.7
-3.125 2150 2020 2120 2120 2100 2080 2098.3
-3.200 2240 2140 2170 2040 1970 1900 2076.7
-3.225 2080 1980 2090 2080 1920 1870] 2003.3
-3.300 2010 2070 2060 2010 1950 1990 2015.0
-3.325 1940 2110 2020 1960 2000 1930 1993.3
-3.400 1880 2060 2030 1980 2090 2130 2028.3
-3.425 1970 2920 2220 2300 2020 2130 2260.0
-3.500 2070 2160 2320 2240 2270 2080] 2190.0
-3.525 2050 2140 2280 2290 2200 2190] 2191.7

GL{mm)

—2
—2

—2
—2
—2
—2

—2
—2

—2.
—2.
800
-850
900
950
.000
050

—2
—2
—2
—3

—3.
—3.
200
250
.300
.350
400
450
500

—3
—3

—3
—3

—3

FLBEStype2 FRBUYSEFTER/RAIL RANAFLS|I_E(F T7dHU

200
250
.300
.350
400
450
500
550
600
650

700
750

100
150

w

LR

-
Ed
-
=
-
>

[ i

500

1000

1500

2000

FEl=ZE HFFE(mmD

2500

3000

—-

Fig. 4.28 Type 2 : Configuration of the column sector
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Table 4.11 Type 4 : Configuration of the column sector

EE ) EFEEMm)

GL(m) |® @ ©) @ ® 1y
-2.200 1850 1820 1850 1720 1660 1720 1770.0
-2.225 1870 1840 1860 1740 1720 1890 1820.0
—-2.300 1970 1960 1880 1830 1900 1980 1920.0
-2.325 1980 1890 1860 1870 1900 1950 1908.3
-2.400 1980 1820 1880 1950 1950 2020 1933.3
-2.425 1860 1790 1900 1910 1950 1970 1896.7
—-2.500 1870 1870 1870 1950 1980 1930 1911.7
-2.525 1810 1880 1850 1890 1940 1870 1873.3
-2.600 1860 1850 1860 1830 1960 1890 1875.0
-2.625 1900 1880 1840 1830 1860 2000 1885.0
—-2.700 1890 1800 1760 1900 1870 1940 1860.0
-2.725 1930 1850 2250 1990 1760 1800 1930.0
-2.800 1920 1850 1840 1870 1820 1790 1848.3
-2.825 2020 1920 1900 1760 1800 1770 1861.7
-2.900 1810 1840 1840 1790 1910 1900 1848.3
-2.925 1790 1700 1680 1810 1860 1770 1768.3
-3.000 1580 1590 1740 1610 1720 1650 1648.3
-3.025 1560 1550 1650 1550 1690 1700 1616.7
-3.100 1690 1670 1810 1680 1790 1780 1736.7
-3.125 2050 1660 1700 1800 1760 1720 1781.7
-3.200 1720 1780 1780 1700 1690 1770 1740.0
-3.225 1590 1730 1660 1750 1860 1780 1728.3
-3.300 1570 1610 1650 1710 1790 1870 1700.0
-3.325 1810 1600 1640 1710 1780 1890 1738.3
-3.400 1770 1730 1880 1880 1850 1940 1841.7
-3.425 2100 1860 1870 1790 1980 1840 1906.7
-3.500 1950 1990 1880 1860 2170 2060 1985.0
-3.525 1860 1920 1890 1820 2190 1970 1941.7

FLEFE@typed FEFRBII/RJ AT B|I_EIF I7dHU

—2.300 i

—2.350 C g

—2.400 -

—2.450 —

—2.500

—2.550 i

—2.600 =

—2.650

—2.700 -
= 22430 -
£ —2.850 - ~— -t
& —2.900 - —=—

—2.950 -

—3.000

—3.050 -

—3.100

—$188 :

—3.250 e

—3.300 -

—3.350 =

—3.400 -

—3.450

—3.500

o 500 1000 1500 2000 2500 3000
)52, = 1 (mm)

Fig. 4.29 Type 4 : Configuration of the column sector
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I NI T T MER)FTA CPT ZfEH L T AW (Vs)FHl 21T > 72, &£
fo, 2ta=y 7T —REHBEH LA N T v 7 CPT b HEL, FHETO
FHHINCEBRAICEE L7z, CPT Dfffk% Table 4.12 (2, FHHIKIZ Fig. 4.30, 31

(2, BRI % Fig. 4.32 72 5 TNC Fig. 4.33 I2R T

Table 4.12 Specification of CPT

& T SR A Wik E# EE Vs(mi/sec)
JE 1 150

T HY AT 7 383

AT H Y A T v 369

PR T HY AT v 508
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Fig. 4.30 Measurement of

the shear wave velocity

Fig. 4.31 Equipment of the CPT

TAMKRBIERR FAMRBIERSR
RIEER: HRERE R ‘ BIEFE:CPT RIEER: TRERS B2 RIEHE:CPT
BIE B FR224E3848 1341 | BIEHE A BIE BB ERK224E3848 1341 | BIEE:FA
RE SHRARE (X 10's) +% RS SRS (X 1075) +%
m 10 20 30 40 m 10 20 30 40
1 Vs=164m/s Ht 1 Vs=246m/ls i
(#61L) (#51)
2 s=23Bm/s| 2 Vs5136m|/s
3 Vs=140m/ 3 Vs=150m/
4 =145m/s| R 4 s=158m/s| Ty
5 5 s=160m/s
6 6

Fig. 4.32 Test results of shear wave velocity
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Fig. 4.33 Uniaxial compressive strength and Shear wave velocity
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Fig. 4.34 Turbulence kinetic energy of the nozzle exit
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Fig. 4.35 Time averaged velocity of the water jet at the nozzle exit
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Fig. 4.36 Density distribution of nozzle 1
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Fig. 4.37 Density distribution of nozzle 2
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Fig. 4.38 Density distribution of nozzle 3
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Fig. 4.39 Density distribution of nozzle 4
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Fig. 4.40 Transition of the jetting width of the nozzle outlet

WIZ, /AN 106 ) A4 LE—OREIEFRE Y AW, AvT, /X
LD FRICETRED H HEHEITONT DY I 2 b— g V& {Tol=. ) AV
O OFELE= RV F—0A1F Fig. 441 1IR30 ThH 0, Bian 23 72056 O Fig.
434 IZHARTEFRIT/NE L oo TV D, AV I B bELRIREN /NS 7 X
VAN REW. F£72, Fig. 4.22 12 7 XVHE OFEERE SR 2Rk T 08, &
TR NVGEA LIZIERETH - T, /AL BENBIZEA LR,

Z DOFEGL T AT — oAl LR E A 2 B RS L LT, H 2 BTN
UA—H =Ty hOYIalb—aE{Tole. J ANHAOMND 2m OALET
DYz hDBENA %, Fig. 443 >5 Fig. 446 (2R3 . ZOHAEDY = bD
BN,  AVHATOELRT RV X —DR /NI AL 1OV =y K

D HIPOR LD TOBENRE <, / AVHA TOERT R F =051 b

4-46



REWZNVADY =y MIPEEE L TN 5D.

BiZ, Y=y MEDIENY &/ ZVHEANS DOERiZ /ST A—2 & LTRL
72 % Fig. 447 \Z-7 . BiiandH 55810/ AVHAOTOELORE S
E0Txy FOIRRY NHREIZEZRD, ERAREIWVIEE Y =y FBIEEL T
WDLHEPRINTND.

IR H DAY, Z20WGEE L0 BELRIREN/ NS 2o TV DT,
L DOFEL ) AV 1L OGEITHOWTHE L7 % Fig. 4.28 (7. BN H
LA DHNEIRREN/ NS LS RoTWHDT, Yy NOIENYB/MEL,
Ty MIDRLEbDE > TN D,

FRROVIa2b—ya URERND, BRAEZID T2 2 X L0 EkRe
DyF—F ==y b LTENIND.

U EORIZY R 2 b—3 3 NSO TlRGEMERED 7 XV DRI E(TH 2 &
MABETH DN, ZHEHSEFTYIalb—Ta rOFRICES< LD TH-
T, Blahi ) AN ERZHERRICE > THRTAZEDPMLETH L. Ll
BIRG, FEEICEZED 7 AVOHnG, fai b Bbh 262 #3527
STHEHII Ly Ialb—ya il HEFmO TEHTH Y £z, HHIC
ITATEREAOHPEARE . o T, ZTIHLvIal—rarilldr®
Bl & FEHHBRAZMAGDODELZ LICXY, GHMR ) AVO@EZB I 2
EINTED.

4-47



160
! 140
— 120
~
: )
o~
< 106
E
| —_—_ 21
Q0
i\' -2
TS-' 60 e 3
fs — A4
w 40
L SN s
pv- Y A
_.2n
I T T G T T 1
-1.5 -1 -0.5 0 0.5 1 1.5
B O FHEREEE (mm)

Fig. 4.41 Turbulence kinetic energy of nozzle outlet (nozzle with flow conditioner)
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Fig. 4.42 Averaged velocity of the water jet of nozzle outlet
(nozzle with flow conditioner)
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Fig. 4.43 Density distribution of nozzle 1 (nozzle with flow conditioner)
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Fig. 4.44 Density distribution of nozzle 2 (nozzle with flow conditiner)
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Fig. 4.45 Density distribution of nozzle 3 (nozzle with flow conditioner)
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Fig. 4.46 Density distribution of nozzle 4 (nozzle with flow conditioner)
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Fig. 4.47 Transition of the jetting width of the nozzle outlet
(nozzle with flow conditioner)
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Fig. 4.48 Transition of the jetting width
(comparison of the nozzle with and without flow conditioner )

4-51



Tk (B as1AK)

(1) b—¥—FReL

[

R

Diode Pumped Green CrystalLaser

iz

GCL-300-M

i

el

JC

CrystaLaser FE=U& 4k

(AR S

Wave length  532[nm]

Output Power 330[mW]

Output power Stability 1%over 8 hours

Beam Diameter 0.22[mm]

Beam Divergence 3.2[mrad]

Noise(rms, 100Hz to 10MHz) 0.5[%)]

(2) 74 bT 470X

2R

Biased Silicon Detectors

ET-2030

Electro-Optics Technology k&2t

(AR5

Risetime 300[ps]

Falltime 300[ps]

Responsivity 0.4[A/W]

Active Area  0.4[mm dia]

Reverse Breakdown Voltage 20[V]

Acceptance Angle  30[°]

Maximum Linear Ratings 10[mA]
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NATIONAL INSTRUMENTS ¥R 4t
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D300

Nikon ¥ 1t
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HEFEE 142 AT 7 &L
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Ty v A —AE— R 1/8000~30 B (13 2T v )
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BEIZHOWNWTER LT Tz,

5-1



ARWFIE TR BT ifiam 2 LA R ISR T

1)

@)

3)

(4)

()

(6)

(7)

(8)

BT 4 —4 =Yy ML, J AVHAEZ CRERRTHY, T IR
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