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Fig.1.1 Solution process of general large scale problem.

NETORLL AT LDV AT AT A b, EFEO KB EMSEIDO FIED K

BB EZ KRG AT AZEEIRZ L FEALERETH D, Bk

MY AT LDV AT AT WA U OFIA%L Fig. 1.2 12737, ZOFIAIE, LLTICR

D Th o,

O FTH W - BREQ - WENBERNS, ABORFEN AT O/ & KRR E2IE
ML, W 2T AOMHBHEREZHEE L, (LEREZRET D,

@ WICHESINTZBH AT LAOHBRER L, FFFELEL AT ALK
DODHEMHER OET Y v 7 %479,

@ ZDH%, WHI AT LA ELEOKRNN—RFRUv 2T Y7 by =27 THEBETS
M, EWVWIRERFMSITEITH>, WL T —F 7T 7 F v @itz i\, 2
DT —=FT 7 FxICESNT, BRMICERH ST LI~V =27 - YT b=

3



TOET VU T EITWV BEBEHOZRGF RAAL (B RLERR.E)ZKE L,
A R AL VI OKGFREABREZEZEBELZNL, KRG NAAL LV TET IV VT
ZIT9, 2T TOREFTFAAL T A—FU =T V7 0=7 X0 B/
XVWEHFFHAM O Z L ThH D,
DZDEIITERENTEBEBRFRAALS L OET LV E L L. TVAAT A
FIEZBE L, e R AL T & ITHNT - i b FUE L2 BV ol g 0 B H E
THEAT 9,
®F LT, HREMIZ, AHORFFENBORRAZIEN L, HXFF R AL DK
GFREABREEZE LN O REMIELT VALY, " AT A0 Efif %8

System requirement

———> Feed Forward - -
( Estimate the ideal system structure )

FT T

-
|
|
|

> Feed Back Ideal system structure 1

-l

|

= ( Modeling the whole system ) I

- e — = - - - - -

®

Q .

L ( Modeling the hardware ) ( Modeling the software )

e} T
£

2

2
2

Modeling Modeling g Modeling =

NG

Construct

Construct Construct Construct

solution : solution 0 solution

|
|
el . .
2 - evaluation evaluation evaluation I evaluation
g S method method method | method
c 3 . |
2 Z Optimi |
£ ptimize
28 |
T © e -
a Optimal I Optimal | Optimal
|
J

( Optimize whole system )

Optimization

Optimal system solution

|
|
|
|
|
|
|
|
|
|
|
I |
g Optimize E :
|
|
|
|
1
|
|
|
|
|

Fig.1.2 Conventional system design flow.
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Table 1.1 Examples of design method classified with target dependency subject.

Target of dependency subject Example of method
IDEF
System modeling SysML
Modelica
M-CAD Mecanical modelling
Visualization E-CAD Electrical modelling
) ) UML Software modelling
Domain modeling Control modeling &
LabVIEW ontrol modelling
evaluation
SystemC Electrical modelling &

Software modelling

Principal component analysis

Analysis Multivariate statistics Factor analysis
Clustering
Graph theory
Arrangement DSM
ISM

Simplex method

Solution Optimization method Hill climbing method

Genetic algorithm

FFRA AL e LCiL, 4 CAD(Computer Aided Design)<°, ¥ 7 b7 = 7
TET VT DRDICHEINTZSFETH D UML(Unified Modelling Language)®
BRENDHDL, B, BEEHRAL LN HEVIEMEA OB LRV TRS L
ZRBRET VT FENFELTVDIN VAT ALV TOET V7 FiEE
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T HIEOHBENRETH S,

RGO G 2T OO FEE LTI, ZEEMST DR EXTF o5,
VG AT ACEENDDERAEIBRITI L AT ACIEENDW R RREIEA &
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KIFBEfR o B P IC B L Tk, DSM(Design Structure Matrix)'®, ISM(Interpretive
Structural Mode)iE e C O FENFTF OND, TNHITEFREERZOMOKT
Bfe A RBL, BT L2 ERAERFETHY  KEBEROEAITZ O FEE
WAL, BURIZATEECTH B, H L, 2o E LT, EHEMOKTRERN AL
SNTWOLRLELRD D,

RBIIRAFBEMROMRITIEL L TR, REAFEIZT LN L, Kl FiEIx

Classification Solving method

= Simplex method

Linear » Dual simplex method

programming

etc.
- . - Convex * Cutoff method
Static | oqrammin *Hill climbing method
optimization prog 91 Trial searching method

- Beal method
-Wolfe method

Quadratic

Non-linear 4 programming
programming

Optimization .
programming

—

Etc.

Variation
method
Dynamic | Dynamic
L optimization | programming

*Numerical solution

Maximal
L principle

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
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1
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1
1
1
1
1
1
1
1
1
1
1

Fig.1.3 Classified optimization methods.
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Fig.1.4 Flowchart of this research work.
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Fig. 2.1 Proposal system design flow.
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Fig. 2.2 The image of restructured design system with 2-axis and 4-faces.
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FRICEoThENDE, WNTA NI ITET NI THRELHAIL, KX L, BENIE
WIED T 5, b2 2B L 1d, SRR, filRISM. BB CTH 5, Table2.1
CEE(LRIEO S V2R T, 202 &b, AL TR MEDOET /(LA T Tl
LET NV ERES)E LT, REHEE, #ilfISM:. AREED 3 S22 5T VEERT LD
LET 5,

BUR, LR Tl 2T AR REEHCR. BRGR. 77U F—va R, liER)
HEFRARERET Y 7 FiEL LT3 2% T 6415, —2ld IDEF(Integration DEFinition) &
MEEN DT A Y AZEETHEEINTET Y 7 FiE. O HIE Modelica & FHEN 5 4~
Vxl MERITYNLVTF RAAL VEETT V7T 500 FE,. £ LT =2 H I3MERELHIE
T % OMG(Object Management Group)DBR¥E L7 A7 LAET U V558 SysML Th 5,

IDEF>-91%7 # U 71 22 % 7 ICAM(Integrated Computer-Aided Manufacturing) & FEIZIL D 7' 1
Tl FOHPTHREINILEDOT, TOHMIE, MZEHOTHEDERIZSZID A — I L
TENANZEI L CHRET 272018, RIROHFTEDRFED A — B ~DFREG )N EATRAL
BESTICHY |, it ORERENE S TH I ERIPFLT 272D Tholz L b T\\5,
Table 2.2 |Z IDEF OX & % D HBY %7~ IDEF 13 % &7 /Wb T %02 K - T Table 2.2 12
R9 L HIZ IDEFO 2»5 IDEF14 £ TFEfEL T\ 5, BIfEIXEIZ BPA(Business Process
Analysis) CE VR A7 0¥ R &AL T 7200, VAT LOEE « BEEOERICHW D
TR Z ORI —#&HIZIX IDEFO, IDEF1X, IDEF3 % W\ CET /UL THOIL T 5,

Table. 2. 1 Classification of an optimization problems.

Classification conditions Classification Optimization problem
Linear Linear programming problem
Design space ) Convex  convex quadratic program problem, etc.
Non-linear
Non-convex Non-convex quadratic program problem, etc.
) _ Continuous value Continuous optimization problem
Design variable - - —
Discrete value Discrete optimization problem
o _ Single single objective optimization problem
Objective function - — —
Multi Multi objective optimization problem
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Table 2.2 List of IDEF diagrams.
Outline
IDEFO Function Modeling

IDEF1 Infromation Modeling
IDEF2 Simulation Modeling
IDEF1X Data Modeling

IDEF3 Process Description Capture
IDEF4 Object-oriented Design

IDEF5 Ontology Description Capture

IDEF6 Design Rationale Capture
IDEF7 Information System Audit Method
IDEF8 User Interface Modeling

IDEF9 Scenario-driven Info Sys Design Spec

IDEF10 Inplementation Architecture Modeling
IDEF11 Information Artifact Modeling
IDEF12 Organization Modeling

IDEF13 Three Schema Mapping Design
IDEF14 Network Design

HARBYIZ X, IDEF I3k ORI O 2T T b L, R AR L TR HiE
T, IDEFO |33 AT AMMZBIT HRE, 8fFE, HWEIOTm kv X% by 740 o TREICEE
b L CET BT 2 FiE, IDEFIX 13V L—y 3 F T — 2 R— ZADiHEHREF O -0 0
7 —2E7 )VtFE, IDEF3 (4 IDEF (I281F 5 7 nt 2B 7 AGEMELR DO DFETH
5o EEOETMMEIZINO O EZHEIECRBT DI EICIVET VOB EIT- T
W%, Fig. 2.4 2 IDEF1 THEEA EFR LTl 2=,

Modelica’?l%, Modelica Design Group {2 LV B SN A4 7 V=7 MEMEIY X T AFE
TV SETH D, Modelica DET U > 71E, #8573k - BT Eo¥E e
RER—RZV AT LDOBEFET T 7 4 HWVIZRBATH O TH D, Fig.25 8TV 7
O—Bil%&/~5F, Modelica DL, MOL AT LAET U UV SiEE IR £EsK
X DDA TRIEN D720, FHERKRFTIEZEHEGT I MNEN R 2, ET L0
HAOLREBFBROLTH LD, BHICY I a2l —ra V7 b7 LHEETED
RINZETOND, 2L, RN ZOEREROALORB THL2DIZ, Y7 =T 7E
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Fig. 2.4 Example of entity structure defined by IDEF19).
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Fig. 2.5 Example of Modelica elements”
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21



(C BB R b 2 O AFRBL 2R L TV D, SysMLIZY 7 hU =T OET Y 7
DIz DIZHHFRE S 7= 558 TdH 5 UML(Unified Modeling Language)' > V& JoRK & L7a3 5,
7 Ny 2 TRKLICFHE LT, VAT AERKFLT HTDICHED WK ZHIY | Eloflc
7 N = T REBIZIFIMED /2, VAT A ERKEZBINL, S, B, ERk, )
TANY w7 D A4AFEDE 9 DO T AT LOKFLA FIHEIZ LT 5, Fig. 2.6 I SysML
D4R % | Fig. 2.7 |2 SysML TD ¥ AT LD EFEHI %R T,

ZORRIZ, 3 OONRENR VAT LAET VT RFEER L, INLEILIZ, VAT
LTHPA U %ITH) ETHALEB X, BEET LV, NT AN v I7ET N, ROEEEE
TR L TERED AR TH LN ERANT, TO/RRE —ERITR LTS D) Table2.3 T
Hb, RIKFT LT, IDEF 1F3F7 A Y v 7 ET )V, RELETVRERTET,
Modelica [ZZ DMEE E. /T A U v 72T VPN OREEET V., EKE(LET VDR ERR
A, SysML I b ET VN ERARABETH D Z ERbroTc, LrL, ZTOH T SysML
X, BEET L, RXTA N I ETLVOERNPARKRTH S L L HIZ, MBOIETES
NELTEY AR LTWAEEIEET VA JEEFEZHNCTERTE D RIERSH Y |
b EBATRBIERE N E B Z BILD 7o, A TIX SysML 3 AT A7 07 7 A )ViE
BCHVWDLIFELE L TBIRTS2ZEE Lz, SDIC, RE{bET /MWL T, AREFED
HEDO—2>TH Y, FEMRBET 2 T o 7o R, AT Z LN TE 7, TOFMITRETIE
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Fig. 2.6 The structure of SysML™.
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1. Structure 2. Behavior

ibd[block] satisfies act PreventLockup [Swimlane Diagram] J
Anti-Lock {requirement)
Controller Anti-Lock Performance {allocate) {allocate}
| L. dl1:TractionDetector | d2:BrakeModulator
[ d1/TractionDetector ~
requirement) &
nti-Lock Performance | allocate @~ _ -~ "= |
i Yy
Cl: !ml:Brake Modulator
AllocatedFrom k/ par[block] Straight Line Vehicle Dynamics
<action>a2 4
values — | v.b.abs.m1.duty.cycle:% v.mass:Kg
. Duty Cycle:Percentage —~—
Satis
fy \ E)/.alg? v.c.t.frictiom v.b.r.braking force:N
{?ggﬁ:?ggggei}\(:ations J e thN t%]  [bEN m:Kg
(L L LY L )
el:Braking Force £N e2:Acceleration
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VerifiedBy N SatisfiedBy Eq_‘fjat;gt“ Equation
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MinimumStopping Q/nti-_LockControll [x:m t:secL J tisec
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3. Requirements 4. Parametrics

Fig. 2.7 The model example defined by SysML®).
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it QERF LR T A72D D2 — 27— RAK(AT — 7 RIK T B INS DS 2T I~
DERZFLR), BRKGEEEERZ GOV AT A~DERETELR), OREVNEE
BIDLLODT VT4 T 4T — 2 Dfinve 7 v —BTitid), =7 AR AT
LNOEFZMOMEAER Z7E), 27— b~V VHCRIE L £ OER 2 flid), O %5
I D7Dy = PH(ERAE TS 0OK), Ty 7 EEX(AT LD
G 2 FLaR) . N 7 1w 7 [X( AT AR T U AT A OWEELE ZFLiR), @/ XF A R v
JETNEFLBRT HTOD/NT AN v 7T AT 2O ZTR)ThH D, Fio, Th
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Table. 2. 3 Comparison among SysML and IDEF, Modelica.

Structure  Parametric Optimization

model model model
SysML @) O X
IDEF @) X X
Modelica X @) X

SORERNTY AT ADEREITI OO T o AFLIBRINTND, ZORED
72 % @ & L T INCOSE(International Council on Systems Engineering) ® OOSEM(Object-
Oriented Systems Engineering Method) T2 S 41TV 5 7' B A % Fig. 2.8@)l, 2D 7 mk&
AN T O - i@ by DR 7 10 A % Fig. 2.8(b)IZ~d, Z D7 1 A THERN
DHEET NV, NI A M) v 7 ETIVOER, S bIZITRELEREROFE 21T > T
. LML, 207 AT, fifb & ROBRREOFMITAFEAN - AT EHAL T O R
BITHRE LTWDHR, VAT AR TOREITIHNSRE LTELT ., VAT ARKDK
FE{EREZ T 7 T 2EHI T TRy, 207, BRET L, MIEET L, /N
FAN) w7 ETMIELTUIZOT B AE W TERLZITV, HE(LET ML T
I%. SysML OHER 7 1 7 7 A V& AW T, FiicilhEbEZ R T 2R 2 M A, s
THA L HAT O FIEORBDLETH D, RELET VEZD, AR TORL T 2T A
BROET Y I L CIIRE CTHEMZ L~ 5,

WIT, 2T, A A OB BITOVNER DS, 77005, SysML CEFRLIZB LT AT
LDET DD 3 MH, F 4 HICEESE L2010, BT AT LN OEKRAGRFHE B K AE
BIERG | WUNCEREI A A7 DT EITO LB N H D,

AT A7 HIHIE, AR OFRETIE, BREHE Y B H OB RGN LAT > Tz, ZOBRIZ
BRINLHIELELTT, ST DMBREE OFIFI N ZET HONDH | ENBRVHT R T 2T
LTHLG AL, AR A EORFRAR A B E L, WTREZRBROINSL L7225 IOITREH A A7 134k
HEn Tzt E 255, L, JEES AT 2O KRB, 2O FEDY AT MM -5
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Fig. 2.8 Typical system modeling process!?.

DEIALIAET 2> TN D,

AT R A H O FEBIR A Z L TREZR IRV LR D IR G F A7 Zfli § 57201
(3. NTA= L DA BR 2 i O R H - 4R U AR ALK A7 B GR & AT REZRBRV AR T2 A7 TS
FREIRNIDNTRKFTF AT Z R TE T DMBED DD, I TAMIETIL, NIA=Z Ry NI —I D
BRLZL DN ZATITO DY T I =27 ThD, HELMERL TWLI7U v aF v AT N 9%
WTRREIZ A AT L& LT,
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Bri, 29 AZV o 7 ZATHITE T, BEBDRBREMT 2% — DIZE LD TR A7 it 52L&
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Fig. 2.9 Flow of design task extraction method.
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Fig. 2.10 Process flow of design task extraction method.
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Fig. 2.12 A diagram structure of execution sample for DSM.
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Fig. 2.13 DSM examples.
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TW5,

INH0ary7Tx A M, 22— — AR OF#REZ S & 1T, Fig. 3.4 DERK A ERKT D,
FURKIIR R E T H VAT LMIRTHE2TOBEREERT HOOKTHY | FEREEERTE
FTARL, B ERGERT LI LN TE D, EERORRITIT, ERIFFEEIIIER L,
FUROEHBRZ AMEICRBLT 2, 61T, BERIIHEET NV, NTA M) v TET L,
RIEEET ARER, AEEZRTZ L CWONERGET 2720 OEEAZ A LTk Y, ZRIZ
KT DT AN —ZADEFRR, Isatisfy] &9 B Z T H 725, KH Tid TRequirementl
75 [Requirements] NERIEH TH Y, [Testcasel] 237 A 4 — A [Hardwarel] 73
EETNDON—Ry =7 O—HE2R LTS, £72, KFD [deriveReqt] &R S 7z KF
MELROREEREEZRBL L, Tverify] &R ST REINERICKT D7 X M%& | Tsatisfy)
RS IVTCREIN, EREZMEDNMIZ L TN 2 AR LTS, ko Xk iz, FR7E
FTR< BRA RER, BE(XP ORI ZHWD Z LT, MDOET IV E DREEZITV,
AMEEDZENTEDLLIITRSTND,

ZDEIT 30D EM, LROFIRTERT LI L THERETNVIERTE D,

(2) #WEET NVOERFIE

FHEET VL, SysML D7 1 v 7 ERMZHWCEREZIT S, Fig. 3.5 12—z T,
BEETNLVTIE, "—RUxT - V7 N2 TOMEFEERT HUENRHDH, SysML D
Ty 7 ERKTIE, Fig.35 DX 512, 7ry 7 L) ERZ W TRERICRBLS
HIETUVAT LEYT VAT AORBRERIT D, TOBRCT Ry 7 3N—FU =7 D
—ODOEE, F2E, YT NV 2T O—-00T T T ARE T Vs NERBTE, Zh
2k, ®WEAT LEN—RD 2T « VT b =T Ol ZF O TERTED L
272> T 5, MH Tl MHardwarel] 7% [Hardware4] 73~— Ko =7 [Softwarel],
[Software2] 73 7 b v =7, [Objectl), Object2)] B"A T =7 FEEXLTWD, i
509 B, THardwarel), Harwared ], [Softwarel]. [Software2) (% [Targetsystem] & [E.$%
KEITHIZNTER Y, 2T [Targetsystem| OV TV AT A THLHZ EE2R LTS, F
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bdd [Packagel sample [Block] 7

<<block>>
Target system

<<block>> ’ ’ <<block>>
Objectl
Hardware2
| T <plocks>> <<block>> |
Hardwarel Softwarel
g Q\ <<block>>
<<block>> N
Hardware3 Objegts
<<block>> <<block>>
Hardware4 Software2

Fig. 3.5 Block definition diagram example.

7=. THardwarel] & THardware2]. Hardware3] D B4R [RIEECTH 5, [Objectl). [Object2]
1% Softwarel] &JE1E & LITRRDLREITHRITN TR, ZauE, ISoftwarel] Z3EH 45
7eoDA 7Y =7 i3 [Objectl), TObject2) THDHZ LEZRL TS, ZDXHIT, —&
THMMBER D0, BRI AN— Ry =T Y7 My =737 my 7 &K A RO THRERIC
EREITO LN TE D,

(B) /XT A RNU v I ETINDERFTIE

WIZNT AN w7 ETVOERITECEHA L TRRS, NTFA M) vy I7ETVETT R Y
7 ERK, NE7 ey 7K, NFZA RN v 7O 3 SO EHNTRILZND, Fig.3.6 2
5 Fig. 3.9 [l & 7~9,

WNIARNYTETME, NTARNI T « JUNRT AR I7DELLOBRLEE
THDIT, RTA—=F LRFRA(T —FZ _X—A5|HEE)ER A IZERT ODLEND D,
SysML TlE, "7 A—% LERREZERT LRI 2 DOFIRZEELZ LIV ET LV E
ERRT %, BAOFIAL, 7 a v 7 ERMERWCEZERT 5 FIH, KOFIEZ, AIH
IEOFIETH D, BKHOTFIETEFRT LR LT, (T A—2CHEBRKONE 2 EHRT D7
HOLDOTH D, BOEFRGE, L, EOL D MHE % EFRT DT SysML Tixko &
NTELT, 7R KFET D, TOH, SysML EHESE 2 V7 by o 70
B Lo TERFTIEEZRDDULERD D,

AT, OB bORGEHZ A7 - RETR Y 7 ho =T LT EABRE L,
INT A= OMWE E LT, BIEDOR (type). HAL(unit), #IHE (currentValue)® 3 >DIHH %
ERTDHIELE L, ONITEBROERICHEN LZHEA TH D, FEORIL, Pl 4
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bdd [Package] sample [Block(Parameter)] bdd [Package] sample [Block(...

<<;’alueTtypt13>> <<;’alueT$fpg>> <<ValueType>>
arameter arameter. Parameterz
<<;’alueTtyp§>> <<:31“ET3’P5>> type:integer,unit:none.curre
arameter. arameter ntvalue:4
(a)Parameter type definition example. (b)Parameter property definition.

Fig. 3.6 Parameter type definition example.

bdd [Package] sample [Block(Constraint)]

<<constraintBlock>>

N <<constraintBlock>>
Constraintl

Constraint2

x Parameterl
a Parameter3
b :Parameter4

x Parameter2
a Parameter4

_ {x}=INDEX(Database!
ixj=taj*{b} J51:W51,1, MATCH({a} Dat
abase!$J33:3W$3,0))

Fig. 3.7 Constraint type definition example.

ibd [Block] Hardware1 [Hardwarel parameter]

ibd [Block] Hardwarel [Hardwarel parameter]

:Parameterl :Parameter2

Fig. 3.8 Internal block definition diagram example.

ITHOBRCED/RT A =PI 5 ME1ETH 202057280, BAZFER 2 XZ
A—ZDIEHRE LT HIHEIL, EHE L DT A—FEERTDHDTH D, Fig. 3.6(a)
@ Value Type] & ENT-EZZD [Parameterl] 7>5 [Parameterd| F THR/XT A —HF D
HCHY . Fig.3.6(b)> Parameterl] & [Parameter2] (286t SN TWDT A M5 H
ZDIRTA—=HDOMWEEFTH D, Value Type] 1ZXT7 A —XDREZRTEETH D,
BRROME L LT, RIFEY 7 by =7 TRHMliT 62 & 2EEL, NTFA NI v 7
RBfR. ORI B A GEIL, e T HARE, £ TRWESE, ST AN v
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par [Block] Hardwarel [ Hardwarel constraint]

par [Block] Hardwarel [ Hardwarel constraint]/

SEm—

:Parameterl [<=---| :Constraintl [=---| :Parameter3

N ——
=

'S ~

~

:Parameter2 |<=---| :Constrant2 |<=---| :Parameterd

Fig. 3.9 Parametric definition diagram example.

BB OGARINL. T — X RX—=AD5IHEIT O IO DX EEFKT D, Fig. 3.7 1L [ constraintBlock |
EENNT-EFZED [Constraintl] & [Constraint2] NBEURADOTIAZ R LI=HDOTHY . £
TR SN TND T R MR NTOREBRAKOME, b z& L TW\W5, Fig.3.7 T
(X, TConstraintl) 25/37 A NV w7 2R ZERLIZBDOTHY | LT DXNTHNWLH/NT A —
ZIITRIFEER LTI T A =2 ORI AZHH L, [Constraintl] WIZERS LTV D,
x:Parameterl LA 3 DD/ NT A =X N IZH %S, £/, [Constraint2] 28/ /3T A KU v
JRBREERLELOTHY, 7F A MNIZIET —F =G HRO—FIAE T
%o WCHWD/RT A= OEFRICEI L TIE [Constraintl] & [EERTH 5,

RIA=4 BRROMEREITo 7%, AIHEEITH, 22 CoRdikix, HEET
NEV S RIA=ZREREAN EOHEIZRT b DRONEERTHI L&
o WHURIZIE, NI A=ZEFRE T ey 7K BRI T A N v 7 ARV, Fig.
3B MNE 7T r Yy 7K, Fig.3.9 /X7 A MU w7 O—HITHDH, Fig.3.81%L, WEERS
N7 A —% DN, [Parameterl). Parameter2] 73 Fig.3.5 ® [Hardwarel] &9 EiE(C
ERINTWNWDHZ EERLTWD, Fig.3.9 1%, Fig.35 ® [Hardwarel] &9 #§&EICx L
T, MEERINBEHRATH S, IConstraintl |, [Constraint2] O T NERIINTEY
Flo. ENENOXDOAMI)NT A—2 % RETE Fig. 3.8 TERINT/NT A—Z & W
THRBEL TS,

ZOEORFIETIDOMNEMND ZEIZLV AT AN v 7 ET NV EERATREE LT,
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(4) FE bET LV OERITIE

HE (L2 FITT 5720 \_hiT@SwMLTi%ﬁémfwﬁﬁot it
Mz ERTDMEND L, LT T, RE(LRE, BB EEET VO SysML TOEF
FiEE e Lok R a2k~ 5%

ELET LV CERTNEHAIL, B _EOMFRIR LD . BEIEE - fIRSM - B
B ThHsd, ZNHIT, FHmORFREIV ., BURO SysML TIXEFHRT D HiEIZR0,
722U, SMLIZIE, AT LASATEMENDIET e 7 7 A LV VIRHE STV D,

AT VA LA T, BREE RAA T Y 7 U =T 2 ETHW LD R OEEE
FHRTHEDICHESN TS LD TH D, ZHUIRIS, BIRO SysML IZ/2WET VEFHR
EATVAZATZHNTMAL ZEBRHRD ENW) ZETHDH, AT VAZA T ZHN
7Y O—fB1% Fig. 3.10 (2779, Fig. 3.10 iX, SysML & Modelica #H X 57291
OMG(Object Management Group)(Z X VW AUAER ST AT VA Z A THTH 5,

KWFFETIH, ZOAT LA ZA TEZHNT, mE(EOBETH D, =L - BRI -
FRGEZ2RAT HTODORAT VF LA T L Tivd WL T Tl kX & FES)

EFITIEEFT-ITHESE L=, Fig. 3.11 [SH-ICER LI-AT VA2 A4 7D—% % Fig.
3R IZINBEHWTER Lk O —# % ~r7, Fig. 3.11 Xl R T
[Optimization] & WOHER(A ¥ 7 T A& HT2IBML, TN A ERRTH-OOERLE L
C ldesign parameter . [objective function] [constraint condition] ™ 3 DD AT L 4% A 7%
BALEZ & &K LTS, Fig.3.12 1%, lParameterl] (Z lobjective function] &9 27
LAZATHBEMSNTEBY  ZONRNTA=ZRHENERTHLZ 2R LTWD, F2,
[Parameter3). [Parameter4] (2%, [designparameter] LW 9 A7 LA X A 7B T
BO, ZONRNTA=ENRREERTHHZ L 2R TS, [Parameter5) (21, [constraint
condition] &WH AT LAX A TMEBMEINTEY, ZONRTA—ZRHHIFETHD Z
ExERLTND,

Fo. REMEE - BB - HIRNRMEOER OB, RIERTHLNNTA—F
WCBL T, £V 95 EOFHZ, HIEETH 537 A =22 LT, Rk/Mb, BR
b ESL LD AN RS 2008 D i b 7 Z2 . RIS LT, T A =4
e/ ME, IRRIEZ ERT DM ERND D, ZOERITIE, T A R v 7 BTV THOWE,
NG A—=Z DI DERITHTIZREA 2B+ 5 2 & THIST D,
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pkg [Package] Classes [ Modelica Class Stereotypes JJ

ametaclass» «metaclass»
Classifier FunctionBe havior
- isPartial b derived fromBAbstract T
- isFinal is derived fromisLeaf
- «sterectype»
= M odelica ClassDefinition
HisFinal : Boolean [1] =false
+fisPartial : Boolean [1] = false
+isModelicaEncapsulated : Boolean [1] = false
+sReplaceable : Boolean [1] =false
«stereotype» «stereotype» «stereotype» «stereotype» «stereotype»
ModelicaModel ModelicaRecord ModelicaConnector ModelicaType ModelicaFunction
+isExpandable : Boolean [1] =false +scope : ModelicaScopeKind [1] = none
+externallibrary : String [0.."]
+externalinclude : String [0..1]
«stereotype» «stereotype» «stereotype» «stereotype»
ModelicaClass ModelicaBlock ModelicaOperator ModelicaPackage
«stereotype» «metaclas.s» -y «metaclass» — astereotypes»
Block Enumeration DataType ValueType

Fig. 3.10 Stereotype example®.

pkg [Package] sample [Stereotype(Optimization)]

<<metaclass>>
Optimization
<<stereotype>> <<stereotype>> <<stercotype>>
design parameter objective function constraint condition

Fig. 3.11 Stereotype for optimization.

bdd [Package] sample [Optimization]

<<objective function>> <<design parameter>>
Parameterl Parameterd

<<constraint conditi... <<design parameter>>
Parameter5 Parameter4

Fig. 3.12 Optimization diagram example.
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RETAEN TR Ui, e - BEEUI O E FE(discrete) . HGE TH DA IR, H/IME
(min) « e KfE(Max), BEBE CH LA, EO XD Mz & 202 EHRT 5, BB
(2B L Cldfai b oo S (direction) 2 €553 5 Z & &7 5, HiSRMICE L Tid, &/IME
(min). fHx KfE(max)% ©FJ 5, ()Vﬂ&i?%ﬁf%@ﬁ%&i@ﬁﬁ L7-HBEA Th D, Fig 31312
LRONRTFA=FOMWEZEMLT 7 0y 7 ERMIZK /37 A —2 ODRIEROH %R
R

ZDEIT, Bl AT VA ZA T EERE O RELORF AR, BB EZ E&
T 572D Z LR L, &E{bET /L% SysML TEFRAREE L=, ik, B
L EIT ) 2O DKET VDEFREITH Z &N TE 7=, Fig. 3.14 (2 SDSI-Cubic T?D H

bdd [Package] sample [Optimization] /
<<design parameter>> <<design parameter>> <<objective function>> <<constraint condition>>
Parameter3 Parameter4 Parameterl Parameter5
type:float, min;0, type:float, min;0, direction :max min 0, max:5
max:100 max:10

Define context diagram

Requirement

model definition Define use case diagram

Define requirement diagram

Structure model

deflnltlon Define block definition dlagram
D) >>>>>>>>>>\>\\\>>
|n blf)éﬂedgilrr? |rtrl]gne(rj|21/ ream
27277722,
Deflne constraint type

in block definition diagram

Parametric model //// 0 //

definition

V//////////// ;:

SN

§

Define internal block diagram

% YL

Optlmlzz_;\tl_o_n Define optimizatlon dlagram

Fig. 3.14 System model definition flow for SDSI-Cubic with SysML.
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B b 2@ L7z, SysMLIZ KX DT AT LDET NVDOEZRFIRZ T,
Vo BEiE, EROBE S AT ADOETAVON, ULTOFEMBEHIZLTND &)
it T AT o 72,
O EHRINFERRT L AT LHT HDNTEZ AT 1L H 1 THAS,
© RIHEETHLNTA=Z0L BT H LN TA— 228 T 5720 ORERAITE R
STV,
@ NIA—ZOWEZERT L7y ERM T, TXTONRTA=ZITHL ., BEDOH
(type) P EFRSINTUD,
@ FE kT, Db 1 DL EORREHEE. BB ERINL TS,
® FE(ERKT, T_RTORFEEATKL, HEEL T, f/ME(min), K fE(max), EAEO
il (type). A - BERUE O E F(discrete), F)H{E (currentValue) 3 E F I TWD,
©® FE BT, 3 To HBIBUIKIL BB DR (type). 1HE i - BERE O E # (discrete).
WIHE (currentValue)., 51 b7 17 (direction) 23 E IS4 TUD,
@ ‘BT, T~ TORIKISAETH L f/ME(min), FHRfE(max) 23 E RS TND,

3222 VAT AT 7ANEBOBEEFIEOHBE

HIEiC. BERELZZE L7- SysML TORL S 2T ADET LD ER I EDHESE %
1ol AEITIE., ThOOEFE LIZET V& BARICABREICHV S 72D O HE T
EICB L THRET 21T o 72,

SysML THIFL S AT LDET N EHER LT, oY 7 My =7 LHEESE 5720101,
SysML TEFRLTEANEZ, MR 7+ —~ > FTTXA N7 7AW TOMERD S,
"G AT LOETNVE LTUL, BRET L, EET NV, NTA RN v 7 ETIV, &
WLET VD A4ONERSINLTVDIN, ZhHON, ZERET VL T, AT XT
LADOBREZEZRL TVDLETTHY, BRTHEET V., RXT AN v 7 ET N, FEbE
TCKMENTWD =0, BB/, Z07d, 22 TiE, #ETT v, 7
ANV w7 ET N, RELETVOMIIT7 +—~ v NOMRETEIT 72,

T A=~y NERETDHDOIZ, TNENOHN T 7 ANVB, EOFEHNLNL )
ZR NI T HREDR D D,

TP, BEETVICEL TRRS, BEET VX, ROZFHZ A7 HTFEOT LT Y
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ALHD 7 Z ALY o TOBICHNONDL DR TH Y LIRRITERG ¥ 27 il FECTH A
SNDHEFZATICEERZOND,

NT AN w7 ET B L TIE, &2 A7 I REOER 700, % 3 moORHMb T
ERFECTHWON D, 72720, # 3 O FIEMER T, 1) ST il FIE Ktk
FATICHW LD T2, UIBEITMER, B4 HORFY — 7 7 0 —fEHTlX, DSM O

ARG Z A7 M ORI BRZ ERT HDLERH L, TOERITKROB TS, &at
AT FEOH NI TH D, RiHX A7 EOH N7 7 A VOIEHRTIERTE 2729
4 HTIERT AN v 72T VOFERIINER, EREnE, RXT AN v 7 ET VO
N7 7 AL, REFZ A7 FEE . B 3O FIEHEETHWON D,

FbET B L TIE, BICIERD, F4HCORGFY—27 7 —4ELT T Y XA
EETTORRE, FS5mCRELTY —7 7 a—2 AT HBICHN NS,

N7 A NOMEEER L, W77 ANVDT7 5 —~y FELTOX ST
5 kb Uiz, Fig 315 IHEET LVOM )7 7 A L O—fF% | Fig. 3.16-Fig. 3.17 IZ/%7
ANV Z7ETNAVOHIIT7 7 A4 VO—f% | Fig. 3.18-Fig. 3.19 |Z&iE{LET VDO 17 7
AND— =T,

(1) HEET Vv

HEET VT T r y 7 ERMTHEMICER SN TEBY . TOREFREZHE 2 27 4

| BlockTree - XEi& L= Bl eI
J74IUF) BEE) BRO) FR(V) AI(H)
Target System

- Hardware]l

- Hardwared

- Softwarel

- Software?
Hardware]l

- Hardware?

- Hardware3
Solftware]

- bjectl

- bject?

Fig. 3.15 Block definition diagram output example.
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A B C D E F G H I ) K [«
1 attnbute sheet
2 |entity name attibute name  unit  type current value max min isDiscrete discrete valuel  discrete value?  discrete
3 Hardwarel Farameterl W float 1 10 0 FALSE
4 |- Farameter? none  integer 4 32 1 TRUE 2
5
6 Hardware? Farameter3 W float 10 100 0 FALSE
7
8 |Hardware3 Farameterd none float 5 10 0 FALSE
: AttributeSheet @ . »
Fig. 3.16 Internal block diagram output example.
A B C D E F Gla
1 |constraintshest
2 constraint nams
3 Constraint]
4 equation
5 Parameter3#Parameterd]
6 calculation result
7
8
9 input attnbutes
10 entity name attnbute name
11 Hardware? Farameters
12 Hardwars3 Farameterd
13
14
15
16 output attnbutes
17 Hardware Farameter] =
A001 .i.B. 4 »

HFETHND, TDD, VAT L - BT VAT AOEWKESY [-(~1 7)) ZFIH
LEHRTHZEE LT, Fig3151%, W7y A ro—flL LT, Fig.35D07 1 v 7 iER
MOFHREHI LTI 7 7 ANV Z R LTS, BIRT X 912, Fig. 35 THRERMKRE L TE
Fe I Tz [Target System] & [Hardwarel], Hardware4]. [Softwarel]. [Software2] 73

Fig. 3.17 Parametric diagram output example.

(-] Z#ZHWT, HEZETH D [Target System] O FAITIZF+EE TH D [Hardwarel ],

[Hardware4 | . [Softwarel]. [Software2| Ntk SN TWAE, ZDO X IR T +—~ v b TH

G KRB L, MEeT et hTo s E Lk,
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4| objectiveSheet - XEff L=
JPUF) RE(E) BR0) FRV) ALTH)

Hardwarel,Parameter1,float,0,10,FALSE, W, 1,max,obeject ive function

Fig. 3.18 Objective function output example.

] DesigneParameters - XEff ElIEEP
JFIUF) WE(E) BR(0) FR(V) NIF(H)
Hardware?,Parameter3,d, 100, FALSE ~

Hardware3,Parameterd, 0,10, FALSE

Fig. 3.19 Design variable output example.

@) RFA LY v IET N

WRIANY w7 ETMEL, 7Try 7 ERKTNT A= BRXOEEEL, AE7T =y
TR T A= O T 2WEDER L AL, /X7 A MU v 7 N TERADOHTE T %
BEOER L UL EITo T D, ZIHOWN, T A—=2OMEEOIEFEHRIZ, BFRKOK
1FEAMRCRE BT 2 A 7 DARTFEIRICBIMR /2N 20 58 3 RO Rl FIEEE T LAV LT,
Flo. NI A=ZOFTRT DMEDOFHHRIT. BIFRAMOMKAFREMR E L TaEt 2 2 7 i T
Anehsg, #aty 27 fith#%i, #2278 TN EZ DA T RT A —X
L REFZ A7 BT SN ERICSHEEND 72D, &KGHF A 7 LRI 272 0, Fig.
3.16 /X, —fil& LT, Fig. 3.6 & Fig. 3.8 TERINTNTA—XDIFREM NI L7 74
NERLTWD, KT, 00T 0WEIICREATERRLTHDR, 77 A4 BN
TX A MEATHAENTWD, KD Tentityname| 2337 X — X O E T 21 1E(NES
7y 7 XOEFRER) %, (attribute name | 2337 A — X O4 i %, Tunit], ltypel. lcurrent
value]. maxJ. minJ, [lisDiscrete], Discretevalue X| 23ZNZFH, 7 v v 7 EHRXLCHK
WAL T/NT A =2 OMWE & U TER IV HAL, B FIHIE, moRE, SoME, @i -
BERUE DO EFe & F LTV 5, Fig. 3.16 Tl Fig. 3.8 TEFE S 17-Parameterl | & [Parameter2
7S THardwarel| ([ZJE L CWD EWIIE®RN 3 THE 44T7HD 1, 2 FITERLTEY,
[Parameterl] & [Parameter2] OMEEIZBI L CIX31TH & 44THITREN TV D,

7o, BRAoFEIT, &Et2 27 i, % 3 mOFHMEFEME 1T O BRICHW b
%o BB, @&GEHF A7 i FE THRGHZ A 7 I SN BMRAD, &RitZ 27 2L
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FHmFEE LTRSS 2D, BRATERENERICH T 20 ERH D, VAT A
Tu Ty ANVERTERINTWEEERADOFE, &etZ A7 IZ LV | Bk S
%72 Td b, Fig. 3.17 1. Fig. 3.7 & Fig. 3.9 TESR S 7= BR=DEHR D, TConstraintl |
AL THDLEZ 7 A NVERL TS, ZOKIZELTH, 2020070k S IcER R
TERRLTWAEN, 7 7 A NVERITT F A MEXTH I T %, X lconstraint name |
D3RR RX4 . Tequation) NOFEM, Tinput attributes] . Toutput attributes ] 23 ZFiLE LA )
INT A= EMNNRNT A =F 2R L TWD, Fig. 3.17 Tid, Fig. 3.7 | Fig. 3.9 TEFE I
T X912, Constraintl] 73 [Parameter3), [Parameter4] # AJj& L. [Parameterl] %
HAFTHBRATH D Z ERan T, £72, SDSI-Cubic ®Y 7 b =7 OALEE |
i bE X720, RO 7 7 A V4 %2RV (Fig. 3.17 1% TA001] TH Y. A D%IZ 001
MBIRED X OICT 7 ANV ZMTTND), BRAL &7 7 A VA OISR IR, A >
Ty AL LTHHLTWD,
DL TH—~y NTRIA M) I ETAVEMNTHZ L L LT,

(3) miEfkET v

BT T VI ROE L TRRET A, BB, HIRSREDNERINTEY . ZOW,
AT EE L BRIBEEIIZ N ZEVEINCHW OGN T2, EFIERO 7 7 A4 v & BB D
Ty ANERRICH 1T AL L Lz, Fig. 3.18 1%, Fig. 3.12 TEHK SN ximE LXK D1
WON, B Z R L2 b O, Fig.3.19 1%, Fig.3.12 TER S N/ mE L DIFHR DM,
AR ERLIEOOTH D, HIUBEIZEE L Cid, SalfboBRIC, mai by & il s
HEERTLHIVENDH L0, b RZ G 7 A =2 OWE LR OEHR%Z . %5
BB L T, AR TH LT A—Z L ZOFBOEHR, HE & L Th/ME, KX
il B - BEEEOEZR 2T 528 & Lz, 72, REHER. #I0E&tTH 587
A—ZOWEICEALTIZ, T AN w7 EFLOH N THRRZLBY THY . Fig. 3.16
MRS TV D,

ORI T —~y NCRELET VAR T L2 E LT,

323 VARATATuTZrANERLERHFI R HMHOBEHEFEORESE
wIZ, WA SNE/E S 2T LADOETFTLDOTHARNT 7 A )V EEFHZ 2 7 L o
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FIEIZE L Tk 5,

AT A7 I, B2 B TR LI WEET NV, NT AN v 7 ET VTR,
FATT 2007 NI ZLRFEFEATHDL, TDeH, ZZTIEHNT7 7 A NVDT 4 —
¥y ORI OBAT O BERDH D,

AP A7 FIETET T2 2 L1080, MEICHTE L WL BERAN, Hriziliks
A7 ELTHmESIND, ZHUZL, BRXOFTER, #ENDRGIZ A7 AR S
AT, EORFHAATIZEDBERAN G ENTNDD, WO IERAE T )13 DB )N
b5,

Fig. 3.20 ICa%EH & 2 7 O 17 7 A v O—fFlE~d, ZORIZBELTH, 0=
TNEICEREXTERRLTWDED, 77 A NMERITT A MEXTH ST\ b, Fig.
320 IR L DI, iREIZ A7 ITE £ 5 BRI Teonstraints | (2, BIFRND AT /XT A —
Z#EDS TinputAttributes| (1, BIFRADH )3T A —ZFEDS ToutputAttributes] (ZFCiR ST
W5, =770, BBRICEAL T, Y AT AT 77y A VEBOHNITHE 77 A V4%
fEHL TS,

ZOWNT7 7 ANERG, B3 OO TFIEOHE, & 4mORGY —27 7 o — iR
HHEEZIT O

A B C D E -
1 |constraints
2 ADD
3 ADOZ
4
5
6 |inputdttnbutes
7 lentityame attnbuteMame
8 |Hardwars? FParmameterd
9 |Hardware3 FParameterh
10 |Hardware3 FParameter?
11
12 |lentityMame attnbuteMame
13 |Hardwars? FParameter3
14 |Hardwar=3 FParameterd
15 -
designTask @ 4 >

Fig. 3.20 Design task output example.
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324 REHZ R 7 L FMFEOBEOELZFIEOEE

ZITIE, RGP A I CHA SNTERGH A AT BOT FA ST A e VAT A
T 7y ANVERTHNDSNTZANRNT AN 72T AVOMN 7 74 V& HNT, FHliFE
DIEFEET O,

VAT LT BT 7 AIVERTHIRRTZN, 2 BORGHEIR LD . FHITFE S LT

BY 7 U T RRINL, FEEITI, /T AN w7 RGO, NTA MY v T
BfRO—CHEMT 28 ME 2 ER LT — 4 _X—A L TiE, RitFEY 7 o7
EHONTHONPUDER L TELL I & LT3, Fig 321 1222 T—HlL LTI
CoO(Cost Of Ownership) D7 — 4 X—2 7 7 A L D—%ER~T, Z OB TIE WeuLogic & [E E
L. k% 320D/XTFA—=FTIRV, ScL &. Doskectiogic & & EHMDIETIE S - HADT— 4
R—=2%HEL, B0 RWT—XIZEL UM T s & & Lz, LR T, tho v
ThUxT EOEEELEL, TXAMNEROANT A NEERT D0, £, HAS
NERFZ AT DT XA RN T 7 ANDD, fHEFIEEEET 572D DAT7 7 A NV EAERK
THHIEICE L TR D,

ANNT7ANE LTRELERLIOIZ, REEHFZ AT ENXTAN) v 7 BT VOFEREED
B, Rt 2 A7 HDONRT A —2 LERAOFERZFTR LIEHRTHD, Znbr 7
JNZTFARMERICE L OH T LT, HEELZLND L ICTH0ERH D, Fig. 3.22 ITFK
HEY 7 b 2T EOEEHADOAN T 7 A NO—FlErmT, BIRT L OIS, REFF R

B C D E F G H I J K L M N 6] P

53 90nm Die Size (cm2)

54 0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 2.00 3.00 4.00
55 a 0.00 0.000102| 0.001019| 0.002038| 0.003058| 0.004077| 0.005096| 0.006115| 0.007135| 0.008154| 0.009173| 0.010192| 0.020385| 0.030577| 0.040769
56 5 0.01 0.000102] 0.001021| 0.002044| 0.003071|  0.0041| 0.005132| 0.006168| 0.007206| 0.008247| 0.009291| 0.010338| 0.020966| 0.031885| 0.043095
57 ;;; 0.02 0.000102] 0.001022] 0.00205| 0.003084| 0.004123| 0.005169| 0.00622| 0.007277| 0.00834| 0.009409| 0.010483| 0.021548| 0.033194| 0.045422
58 z 0.03 0.000102| 0.001024| 0.002056| 0.003097| 0.004147| 0.005205| 0.006272| 0.007348| 0.008433| 0.009526| 0.010628| 0.022129| 0.034503| 0.047749
59 2 0.04 0.000102| 0.001025| 0.002062| 0.00311| 0.00417| 0.005242| 0.006325| 0.00742| 0.008526) 0.009644| 0.010774| 0.022711| 0.035812| 0.050077
60 E 0.05 0.000102 0.001026| 0.002068| 0.003123| 0.004193| 0.005278| 0.006377| 0.007491| 0.008619| 0.009762| 0.010919| 0.023293| 0.037121| 0.052405
61 o] 0.06 0.000102| 0.001028| 0.002073| 0.003136| 0.004216| 0.005314| 0.006429| 0.007562| 0.008712] 0.00988| 0.011065| 0.023875| 0.038431| 0.054734
62 s 0.07 0.000102| 0.001029| 0.002079| 0.003149| 0.00424| 0.005351| 0.006482| 0.007633| 0.008805| 0.009997| 0.01121| 0.024457| 0.03974| 0.057063
63 0.08 0.000102| 0.001031| 0.002085| 0.003162| 0.004263| 0.005387| 0.006534| 0.007705| 0.008898| 0.010115| 0.011356| 0.025038( 0.04105| 0.059392
64 0.09 0.000102| 0.001032| 0.002091| 0.003175| 0.004286( 0.005423| 0.006586| 0.007776| 0.008991| 0.010233| 0.011501| 0.02562( 0.04236| 0.061722
65 0.10 0.000102| 0.001034| 0.002097| 0.003189| 0.00431| 0.00546| 0.006639| 0.007847| 0.009084| 0.010351| 0.011646| 0.026203| 0.043671| 0.064053
66 0.11 0.000102| 0.001035| 0.002102| 0.003202| 0.004333| 0.005496| 0.006691| 0.007918| 0.009177| 0.010469| 0.011792| 0.026785| 0.044981| 0.066384
67 0.12 0.000102| 0.001037| 0.002108| 0.003215| 0.004356 0.005532| 0.006744| 0.00799| 0.009271| 0.010586| 0.011937| 0.027367| 0.046292| 0.068715
68 0.13 0.000102| 0.001038| 0.002114| 0.003228| 0.004379| 0.005569| 0.006796| 0.008061| 0.009364| 0.010704| 0.012083| 0.027949| 0.047603| 0.071047
69 0.14 0.000102| 0.00104] 0.00212| 0.003241| 0.004403| 0.005605| 0.006848| 0.008132| 0.009457| 0.010822| 0.012228| 0.028531| 0.048914| 0.073379
70 0.15 0.000102| 0.001041] 0.002126| 0.003254| 0.004426 0.005641| 0.006901) 0.008203| 0.00955] 0.01094| 0.012374| 0.029114/ 0.050225| 0.075712
71 0.16 0.000102| 0.001042| 0.002132| 0.003267| 0.004449| 0.005678| 0.006953| 0.008275| 0.009643| 0.011058| 0.012519| 0.029696/ 0.051536| 0.078045
72 0.17 0.000102| 0.001044| 0.002137| 0.00328| 0.004472| 0.005714| 0.007005| 0.008346| 0.009736| 0.011176| 0.012665| 0.030279| 0.052848| 0.080379
73 0.18 0.000102]| 0.001045| 0.002143| 0.003293| 0.004496| 0.00575| 0.007058| 0.008417| 0.009829  0.011294| 0.01281] 0.030861| 0.05416| 0.082713
74 0.19 0.000102| 0.001047| 0.002149| 0.003306| 0.004519| 0.005787| 0.00711| 0.008489| 0.009922| 0.011411| 0.012956| 0.031444| 0.055472| 0.085048
75 0.20 0.000102| 0.001048| 0.002155| 0.003319| 0.004542| 0.005823| 0.007162| 0.00856| 0.010015| 0.011529| 0.013101] 0.032026| 0.056784| 0.087383
76 0.30 0.000102| 0.001063| 0.002213| 0.00345| 0.004775| 0.006187| 0.007686 0.009273| 0.010947| 0.012708| 0.014557| 0.037856| 0.069917| 0.11076

Fig. 3.21 Database example.
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CEENDRRKD TAN)RTG A =2 THIRFGA—=42] O2o0EBEZHEL, [H)
INTA—=Z I LT, BfRAbTERT o2& L, NI A—FZOFEIZEE LTI,
PG OBICIIMLE DR WER TH S0, L L7, Fo, AR T, RIHEY 7 b
VT #HWOHAHETHoTolzd, ZOHBEE L TWDLR, 4%, oYy 7 =T
HET 56, CORRXELEOY 7 by =7 THMET 500 % EFRL, A7 74V
FLR T OMENRHDHEEZEZ LI, SBORETH S,
ZOANNT77ANEL LI, RHEY 7 V=27 ~OEEEITH, Fig. 3.23 12FEESN
EHREY 7 b =T O—BlERT, KITFiQ.3.22 ZRKFHHEY 7 by = TIZFE LT
H Y XA T X 92, Tinput), TOutput| D 2 SOIHEBE MR H Y, ZiZ4L Fig. 3.23 O lnput] .
[Output] &%t L CW\W%, F7=, lOutput] DIEDEFRIN TV D E/VIZIE, Fig. 3.22 O
fOutput] OIEAIZFEIR SN TV BRI KHET 2 AR ERSINTEBY, 207714 L
TR FREL 7o TS, T—F X=X T 7 A JLITE L TiE, EBEOBICTHY ATeZ &

| NewDesignTask - ¥FtE = | @ | £3 |
JP{IWF) WEE) BRO) TRV ALT(H)

[input] ~
Parameterb

Parameterf
Parameter?

=
[am]

[output ]
Parameter3|={Parameterb}*{Parameterfi}
Parameterd |={Parameterf}*{Parameter?}

W
< >

Fig. 3.22 Evaluation method input example.

A B C D E F -
1
2 | lnput D utput
3
4 Farmameters 1 Farmameter3 =C4#C5
5 Farametert 10 Farameterd =ChH#C6
6 Farameter! 100
7 -
4 » ..| Database | calcSheet6t - @ 4 b

Fig. 3.23 Evaluation method output example.
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& LTHY, Toutput] DEEANT —F X—2GI[HOXTH o7& LTHRMEiAREL LT
WD,
ZOE T, EROEFFE Y7 M =T O 7 7 A VARG A7 IR TS,

325 EREFAAIHHLRHY -2 7o —EEOEEFEOBE

ZITE, REHZ A TH A S NG A A O T s AN e VAT LT nT 7
ANERCTHNINTZRT AN I ET IV - FEILETVOE N7 7 AV E S &I
DSM Z MW Tikst Y —7 7 u—#8i 2175, /o, TDODAHN T 7 A ND T 5 —
~ v FOREEAT D

(1) FEfbzEB LR T —7 7 a— L7 L3 Y X AOKE

ZITE, ETRECEEBEB LAY 7 T —BET ALY XAORGEIT D,

ZOETIHE 2 EORFHERLD, ¥ A7 DSM # %, ¥ A7 DSM 1L, i&it¥ A7
NOBMREBE L, TR BN DRWEG Y —7 7 —%28H+5 2 LR TEHRIETHD,
L7>L. SDSI-Cubic Tli., &b a1T 9 7202, &tV —7 7o —xEb 2Nz % V5
Wb, TOBRIEZ NSRRIV FikE LT, BHan&kitv—7 7n—
Kz —o0fw ke L, &EET VORGER., BRBEEAE b OREEE 752 &
THDOM, b REII RV K LHE TH L7720, KEBARRG Y —2 7 —21K
s T 5 2 LITERERHEZES D EBLERTIER, 20720, FIRERIRY | K
{LEATORET A A7 WO T2 T /LI AR RDLND,

FRETH DI, £T. ¥ A2 DSM OBUREHINOFAE, BEHERE R~ 5

H A7 DSM % 7= 8 05 A 1] 490 Table. 3.1 IR X912 4 H 0, ZOHT, %
FEZ 27 ICBMRIEDOH D72 L E WD 2{ETHO X A7 DSM Z #ipt L7223 2 h o fa#h T
HThHd, /2. 2fETDH A7 DSM TOHREBT 2 >D X A FIT531F b, —DIFF A7
DSM % FEREORLELBRRICHE . DT &2t TOREREZ O X IC®-EBEREIZT — K
Ny 7 FHmEND, X A7 DSM ORLTLBITE~OE 7 E0R R OFIRGIEZ et LT
BN b D, b9 —2l%, ¥ A2 DSMIZxt L, # 27 DSM {ERHT, & D\ ixoHric
B ZBINT 52 & TFREREY 2O L, "EREOMFIETR LD TH D, AiEOEK
e dp & LT, Intel ©f P20 EiF 25, Fig. 324 (%, Intel B A7

57



Table 3.1 Task DSM applied examples.

Reference Desi/csrtfrtrl]on Analysis tool ~ Application target Summary
Browning. TR o . It shows DSM as a tool which describes the co.mplicat.ed process of
(2002) Binary Partithioning  Virtual example  product development and the methodology which attains
optimization of a process.
Clark_son and _ DSM The rotor of a It proposed descrip_tion of the dependency of tr_le desigq tasks by
Hamilton Binary Description helicopter DSM for constructing the procedure of the optimal design
(2000) development work in complicated product development.

It shows the methodology for realizing modularity and pays
Virtual example attention to the interdependence of the product model, the process
model, and the resource model.
Analysis of the possibility of feedbacks, and examination of the
feedback method to product development.
The algorithm which aims at shortening of a lead time is developed.
Virtual example It was attained by description of a repetition of successive work,
(Electric vehicle)  reexamination of sequence of operation, etc. in complicated product
development.
It shows the way of reducing the repetition tasks in complicated
Yassine, et al. L Automobile product development. It has succeeded in reducing repetitions more
value Partithioning . e . .
(2000) (Bonnet) sharply than simple partitioning of DSM by inserting an easy
verification task in the task block including a repetition.
It examines the reduction method of the feedbacks by the addition
using optimization of design tasks and dependencies.

Parthithoning/

Kusiak (2002) Binary Clustering

Intel Inside Binary DSM Descriptit System LSI

Smith, R.P. and
S. D. Eppinger value Partithioning
(1997)

Parthithoning/

Seki, et al. Binary Clustering

System LSI

S 6 T B 9 1001 0203 040506 5T 18 1020 21 2220 2429 26 2T TE 22 30 31 X2 33 34 38 36 37 38 30 40 46 A2 40 &4 43 45 4T 4K 9 30 51 52 33 84 85 86 5D R el

4
1 Set customer target =
2 Estimate sales volumes -

3 Establish pricing direction [L—l
4 Schedule project timeline e
5 Development methods L=}

6 Macro targets/constraints =

7 Financial analysis =
8 Develop program map b
x

y ~._/ inside
Concurrent Activity Blocks

u
Generational Learning I n tel

Potential Iterations
e

——

(=200 =) =] o 0 0

9 Create initial QFD matrix
10 Set technical requirements
11 Write custom er specification
12 High-level modeling
13 Write target specification
14 Develop test plan
15 Develop validation plan =
16 Build base prototype
17 Functional modeling 5
18 Develop product modules
19 Lay out integration
20 Integration modeling
21 Random testing X
22 Develop test parameters x % X
23 Finalize schematics % 5 = x
24 Validation simulation -
25 Reliability modeling X %
28 Complete product layout X XX x
27 Continuity verification x
28 Design rule check X x x
29 Design package
30 Generate masks y
31 Verify masks in fab x|+ x (-5
32 Run wafers X e
33 Sort wafers X -
34 Create test programs x x X x x -+ o0 O 000 O
35 Debug preducts x x x -
37 Functionality testing X X -
38 Send samples to customers x x x .
39 Feedback from customers . — —— X .
40 Verify sample functionality Sequential Activities - x|+
41 Approve packaged preducts x x x x
42 Environmental validation X x .
43 Complete product validation x X XN X -
Develop tech. publications
45 Develop service courses
46 Determine marketing name x
47 Licensing strategy x
48 Create demonstratiion x x x X x X
49 Confirm quality goals x x x x x
50 Life testing x .
51 Infant moertality testing XX " LRI § B3
52 Mfg.process stabilization x Xy - o
53 Develop field support plan x X .
54 thermal testing X XX
55 Confirm process standards x ix x
56 Confirm package standards ERnl RN
57 Final certification x XXX XX X32x

x

= X XX XXXZxXX 0 0 0 0 ::0 0000 O
©

-

™ oo o
®
*

* % x %K
*
P

® x

®

w
®

* o ow|x o x

000 O

P M P
*
*

* % e x
=]
=]
L)

-
-

R
*
=

=

o

|+

58 Volume production =
59 Prepare distribution network X X XA KX X ®
60 Deliver preduct to customers x XY XXX % x % -

» nformation Flows []= Planned lterations [@/=Unplanned Iterations |« = Generational Leaming

Fig. 3.24 The example of applying DSM to system LSI development of Intel.
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XA DSM ZHWAHZ ETHLNUDTFRD 24T L., ek R LekE 2179
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11 Materidd selection

= =
- =
3| - = |E g
2 T =
| Z <2 £ g &2 2l |5 5
wlE =& 2= g =gl = HREIEE %
22| =] [g]2 M E) el |5 EE R ER k] #
SEIREREE 52 g |2 g EEE HHEREHEERE gl |
s =| 5 2| |%|8 Zle = i = El 2 TEHEEH 5 o |8
L E sl s HE M & E b E|l3 s|5 |& 8
HEEEEEFIEREE =8 |= ] HEE HE R EEREERERERE
_hﬂlsgoiﬂg HEREEERE 2 EHEH alzl |2|E2] |=|zl2 2l =l 2
k = E|lB|E HEEEREE =1 2 H g ol 8| 2 =2 MEEEHEEE
Hi 15| ElS c H IS il k- ﬂﬁc == el == g
- E|w| | | <] =| 2| 8| 2| 5| 2| =] B8 £ =| 2 &l 2| & HE gl E| 2| 5| 5 g
EAE= el 2z BB <|2| B8] 2| E = HEEIE HEEEERE s|E|Z| 2
EHHEE EEHEHHEE BEHEE g HEEEEEEEHEREHEEREERE
aems§uﬂ=sg‘e‘&“s§§ HE 8|5 2 ‘-‘Dﬁia HEHEBEHEEHEER
HE EEHEHEEEE R HEHEE =g HEHHEEEHERHEHERBEEEEEE
gggggfmggofmﬁomif!mm wla|d8|E H B HEEE L HEHEE HE £|2|2|a
P P ) S R e el i ] e ] B e ] e ] B B B e B e e e e B ] B e el i el I I
[1 Set user target x[x
2 Product Positioning X X
3 Business Moddl / Finadal Andysis X|x X
4 Product Definition | Finadal Andysis X x| x
x il x
x|x 4
x —
e = | = rr—
[ BE X
Hx

-
-
-
EEIEEE

12 St operationel mods (moduls hest sources)

13 Them Desin chciup (57)

14 Desion packeging

Designiterations

et BRI

X|x|x X

W =InfarmationFlows  « =Flanned terations

(a) Before considering ITVs.

8 =Unplanned Tterations

Fig. 3.25 The example of applying DSM to system LSI development of Seki and et al.
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27 Thermal Desgn chedkup (PWE)
33 Send mepleto asomas
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16 Rediabality sstimatan | I=
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18 Finalize S8 design | Fablication x N M N I

20 Functierality testing x N U 1
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(b) After considering ITVs.
Fig. 3.25 Continued.

ZOXIIZH A7 DSM ORI & FREFONFRAICE LU CIXBIEMZE2 T i TV
L. i, EBROREREANCHEH T 27ODOFIETHY, X—=FT 1 a=7
FTBRORGTLZ AT DI TAZ Y 70, FRYOHGFHABEDOT 1 — RNy 7% Kk
27 IERITHY . WY LMAEICR LS TS, BIH, 2 27 DSM OfifR
IXE D2 TREFEDTI DO THY ., £72, # A2 DSM ik DRREHF A 7 DFET
HBELBEA, 3T —ATHEINZITY) LOTH D=0, ¥ A7 DSM S3Hris RO iR

LRREZ A7 T O BEMEDOBRFHIAT DL T2,

DI, AR TIE, E{LEZEE LT-X 227 DSM DR E Z D5 B O fRR
DODHELZITS 2 & T, LA ZBE LCRFY —27 70— A#ERT VT Y XLD
I AT,

Fig. 3.26 I[CHERTFILE & AL TIRET 2 RO 7 r—F ¥ — M &7, AW TIEA
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Conventional Proposing
Method Method

( Start >
{

| Extracted design tasks |

! Create design I

L _ _ variable tasks _ _ !

______ A _ _ _ __ _ NewAlgorithm
Create DSM : Create DSM I
(Task¢DSM) \__ _(TaskDsSmy !

____________ New Algorithm
Output : Output design I
design workflow |, _c)p_timigag%] workflow !
v

- —

Fig. 3.26 Flowchart of proposal algorithm.

b OETH 5, OSysML THLIR L7z, felifb 2 B LIcsit v — 27 7 n — L0 7 v
Y A LOfF L), Ol bMEDOERZMA TG Y — 7 7 v — 248 Ui b2 547
AREICT B 2 EFH T T ) XLOBF 2Tk L, #H LW L= U X A(Fig. 3.26 D KHRE)
BERLT,

LUFCIOSysML CHEE L7z, ffb B LGV —27 7 —fEEH 72 X
LR 1), @FECBEOERE MR &GV — 7 7 v —EEbIATY —7 7 n—)%
R Ui b 2 ZATRRRIC T2 2 L7 /v 3 Y XADKF 2), @ 2 DOF LW LT Y
X LD EAT o TR A R T,
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HINCERT D120 DOFIEICBE LR~ 5%, SDSI-Cubic TiX, VAT A7 07 7 A LER
(SysML)» & HENRYIZERGHZ A7 DNRE S I, £TOREIF A7 &b &£1T DSM Z AR L,
NRe=T 4 a= T o2iTH L TU—I 70 —5BETH L ZHEREL TS, L,
ZOFETIEIVAT LT 0 7 7 A VERTERINEREMMENIZSEINATELT, &
DF F TIIFEEEE LI-RET Y — 7 7o —3E xR, FOMB A, Fig. 3.27 12
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Fig. 3.27 EDkGHZ 2 7 il FIE TIIEGI AR & BB Z T A —Z2 LRtk L A L
At S A7 HPRET DO AERENTZ DSM, U—7 7 o —(Z bEF A L B RIBE S
DT 4 — RNy 7 DEREMTONTELT, Ktz BE LRIV —7 7 e —0iF
HIIITZ T\ eho Tz, L L, BEEHEBIIEBREORGHE LTEHER NI A =X THY
BRx MG EZ A DNRTG A =2 L LTEENTWD RN EV, ZHUC LD | REE
Bsixat & 2 7 ORGSO R E 72D . FROST VD EOEORRK & 72
D ATREMED EV, E DT, ARBFZETIL, &RatZ 2 7 I L 0 RGE S Leikat # 27
2, RRIEREIRET D OO X A7 (LLF TG AR S 27 LIRS E2BNL,
FNEY—7 7 —ORINCFEITTHIEE Lz, o, ERHERZ A7 2B LT=TE
T T, 16k DSM &R &E 2 i<, HREbEBZBE LRV —7 7 —XE
ERLTE 2\, ED72D, AL TILS BICRFEK Y X 712xt LT H B A ST
HHIFIRNE FLEREEZ 27 ORI E ERT D, T OEBEIE, SysML TEE S 7z
AR TRV T A =& L B 2 G, BB OMEIZ L - TEAEE S

Extracted Design Task Extracted Design Task + Design Variable Task
(Conventional method) (Proposal method)

Taskl,/\—>( ) Task3 Taskl Task3
e A—0 % D %
- Y0 ]

b D e e » ° \

%@ J@
Task2 _ ‘ Task4 Task2 Task4

O Parameter O Parameter

A Constraint A Constraint
Not including for constructing .

the design workflow D Design Task
i o ; (D) Design variable
| D Design Task §

| ) ) (O) Objective function
. (D) Design variable

| (©) Objective function
Fig. 3.27 The difference between conventional extracting design task method and proposal

method.
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Extracted Design Task + Design Variable Task
O Parameter

@ Design variable
@ Objective function
A Constraint

I:‘ Design Task

Task DSM After Partitioning
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AEIEIE % % 2
® = = = ® ] = =
D 1 Task2 Coupled
Task2
Taskl 1 Taskl H Task3 H Task4
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Fig. 3.28 Proposal method of generating optimization workflow from system profile
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After Partitioning Optimization Workflow

Parallel
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Task1l p .
aralle
Task2 <«
Task3 | Coupled
' ' Y
Task4 1 1 C_‘"’“pl?d —— | Subsystem —
TaskS 1 | Optimization
Sequential
Task8 1 -
¥ L Task4 HTaska HTaskS
Taské 1 1
Task7 1 1 Sequential
Task? ! 1 e TaskﬁH Task7HTask9]%

Fig. 3.29 Proposal conversion method from partitioned DSM to system design workflow.
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(R BELRIE A ERT D FIEOMELTT O,
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FEABRICBE L T, B A THAEIL T A—2 2B L T\ 5720, Kil{bo
BUICRREHEF AR ET D Z LN LV, ZOOARMIETIL, RFZ A7 TT4—F
Ny 7 LlpoTNWAHNTA—=HIZIEH L, TONT A —F 2t ERICES A b2 L
TZOMBEOfRR A -7z, Fig. 3.29 OB T4 5 &, Taskd X Task8 726 ) &
HIRTA=BEANTIETDH LT WD TEHERREL 7 D7 KL TIL, ZD/RT A—
B a it A e UL ZAT ), OB, BREEHE Lo T A—x b EE
IZ Task8 O] SND/NT A—FZN—E L TWDIDDMEREITHIMEND D, DT
W, —EEHERTH X A2 L LT Fig. 3.30 OAMIRT [F) X A7 &8T5, £
7=, Taskd BERFIEB DO X A7 Th DA, 7 14— K3y 713 SysML CTEF S Lz ix it
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After Partitioning

Optimization Workflow
< < < «< = = < « = o — e 4
==l == = =] = = Feedback = design parameter)
Taskl —— > Subsystem ——
Optimization
Task2
Task3 | Taskd HTaskSHTaskS
Task4 1 1 | Coupled
= Coupled
Task5 1 P
(Feedback # design parameter)
Task8 1 e
—— Subsystem ———
Task6 11 Optimization
Task7 1 1
Tasko 1 1 LTask—l HTaskaHTaskSH F

Fig. 3.30 Proposal method of constructing optimization execution workflow from

partitioned DSM.
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BB L TE, Rt 2 A7 LRFEREZ T 3 2 MEXTEFET S, Fig. 3.31 IR FHA%K ¥
AT DANTT7 7 A4 NVD—Fl% | Fig.3.32 (2 DSM AS) 7 7 A VDO—Hl % ~7, £, LIFED
AN, W7 7 AT, ZHRUFEIOANT), HH7 7 A EFBERD R BIOBITH DD

A B C D =
1
2 |constraints
3
4
5 linputfttributes
6 entityMName attributeMame
.
3
9 |outputhttributes
10 |entityMName attributeMame
11 |Hardware? Parameterd
12 h
designTask00 @ r 3
Fig. 3.31 Design variable task input example.
E 3T T ¥y @ T o en e e 2 o2 FT e
R R A S S T R R B B B B B S B
E R £ B E E 2 E E-EEE2 2 2288 28E
5 5 2 5 5555555555568 5 5
g 8 & 3 & 5 & 3 %I 3 8 8 8 3 8 9
e el el e el e e el e
designTask00 1
designTask01 1
designTaskl
designTask?2 1
designTask3 1 1
designTask4 1 1
designTaskd 1
designTask6 1 1
designTask? 1
designTask8 1 1 1
designTask9 1 1 1
designTask10 1 1 1
designTask11 1 1
designTask12 1 1 1
designTask13 1 1 1 1 1
designTask14 1 1 1 1 1
designTask15 1 1 1
designTask16 1 1 1 1 1 1 1

Fig. 3.32 DSM input example.
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5l % Fig. 3.35 |29,
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1 Workflow - XEE = | [B] | £3
JrIL(F) #WE(E) S(0) F|R(V) AILT(H)
designTask] ~
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designlaskb
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-designlask00

-designTaskO]
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Fig. 3.33 Design workflow output example.
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~| Optimizationl - €tk = | @) | &3
JPAM(F) #E(E) BR(0) FTR(V) ALT(H)
Optimization Task: ~
Optimization]

Optimization Method:

Objective Function:
Parameter]
Parameter?

Design Variable:
Parameter:
Parameter4d

< >

Fig. 3.34 Optimization task output example.

A B C D E
1 |Farmameterfidp Farameter Farameterbdf ':A%(ﬂ
2 |Farameteridp Farameter! Farameteridf EA%(BE—
2 |ParameterBdp Parameterd FarameterEdf ':A%(EB
4
Feedback1 ® P

-D1)/D1
02)/02
D3)/D3

Fig. 3.35 Feedback task output example.
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] Optimization1 - XEE = | @ | 23

| i m = Td= ==y — 1 LY
TrIL(F) |E(E) SH.(0) F| (V) ~LT(H)

Optimization Task: ~
Optimizationl

Optimizat ion Method:
“technique’: TN3GAZ',
“opts: [
("Population Size (even wvalue)', 127,
{( "Mumber of Generations’, 20),

]

Ohjective Function:
Parameter 1,0, 10, max
Parameter?,0,1,min

Oesign Yariable:

Parameter3,d, 100, FALSE
Parameterd, 0, 100,FALSE
Parameterb,d, 100, FALSE

Fig. 3.36 Optimization definition input example.
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Fig. 3.37 Class definition for Isight customize script.
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Fig. 3.38 Optimization result output example.

72



Requirements of the system

———— -

( _____ ) Algorithm ( Estimate the ideal structure of the system )

_ Output data Ideal structure of the system

NS S S ER Modeling of the system "
SS

N ol § ¢ o

§ %%- e : - - Op atio ode

N & S noram ' Diagram. §_Opimizationdiagra

MO\

N
LN NN | np A
" N W
X = RN, Ly 4NN,
= =} .
Dx B Extract design task
gﬁg N )
é M AN
Desig
i i
= § i Construct design "j 5§, 8 Construct
52 = workflow 28 / evaluation method
822 TNET 225 /
g2 : SEEZ
S Design w38 aluatio
. workfl ‘,y ethod
/ 7

AAAAAAAAAAAA

vvvvvvvvvvvvv
s
vvvvvvvvvvvv

vvvvvvvvvvvvvvvv

Optimize

vvvvvvvvvvvvvvvv

TN T TTFTYYrYY
ettt tddd
e sl iS22 22

Optimal solution

Fig. 3.39 SDSI-Cubic system design flow.
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Fig. 3.40 SDSI-Cubic software graphic user interface.
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Fig. 3.41 SDSI-Cubic platform.
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42 WHAREHBEFRA T AT L LSI~OBEAKRLEER
AL TIE, SDSI-Cubic DJis HEBR D4 & U CIRIAREEREFHH T A7 A LSI &2 L
HIF 5, LTFTE, £9, WIREREFEHC AT A LS 2 &0 SITF B ZRX, £0
%, EBICHEAZIT, WIEROE L ZDELEIT,

421 WHAREHEFH AT & LS| OEFR L ARFEOREAES

BEHREAT O AT A LSHIE, #EHr L W O B G . IR, A=A T AERRD 5
T2 Y, BIEL, @EHEME UTE 3 A58 4 R OMEHFRE2HMH L #HE
N N TEY ., KeMOY TIEE 3.9 HTHD LTE(Long Term Evolution)<°
WiIMAX(Worldwide Interoperability for Microwave Access)% =& O3 LAEH TR D |
WEHE D EHREELNEAL TS, ZTDD, Fig 4. 11RT L 912, & 4 LI CIE,
0 mEtERe GBEOEE DM L) ZHREREFEFRPILELINDEEZXOND, $2E
MO L & HIZHGELDOH D0, L ELHERERROBMRF I < . WAROME b
ZHEERICR DIC ok, Eflifg b LT\ D, ZD7cd, FROERERRIZIL, /MY EMERE,
A& > ARVHE B I D3RO B D,

Z DX D CHERERRIT T 105mm3(100cc). 1009 HijEE DAR/NE R T E 2 RE
KHT DHMMOBG T AT L THDLN, ZTORMY AT KAEFERTLF—T N ARV A
TALLSI THD, ZDY AT A LSIHIECPU (Central Processing Unit), & fEifilHI5E 7-, &
AERVREDEZL DEY 2 — VPO INTEBHERORG I AT L THD, VAT A
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Fig. 4.1 Roadmap of mobile phone and processor unit in mobile phone??),

B G

LSHIHERERE & W) LS AT AORN% LSI OFICEMi S E-b D TH 5,
T, VAT A LSHEEERERAEEDaT L LT, BFELWESREZ L&, ZOER
&&é@ﬁb—?@%%Mwm43&@@%6%%&%MK%#6%%%?%@ F-%
IZEE D BREF D T— T L — T D A7 — 1 78| N(Table 4.1)Tdh 5, Lo LITHE,
WAMEIZPE S B - BUEBROEREC, UV — 27 BHIC X 2VHBE ) OB & 3 EE DI,
AR AE R R O BN, ARFEIEAL O EAITHORRRE 7o ik 2 7o R 8102 x T\ 5, Frlc,
RE. FEREDIARIZES T, FREREIEHELC A £ U B R L, T v 7P A XKL,
7 a— N VEER OB SRt E O L— KA 7 WIRRE L e s TV D, 2, Zhb

MEEZ RV BZ 2L LTHHEIRE T O A XH 10 $nm 12725 & B 2R BhfERR S
ZHZ D E0nbihlTns,

AU A, TFED Y ZT 5 LSHI 2 BRI, @M b2 TR <. ek
BRiEE, BEHERE e E O AL VT IIHMEHE B IMERKR = X M e H Y. i
O &G TREHIE T ETHREIC R > TETWD,

ZD XD RIER D, SoC(System on Chip)lo i S5 “IRTEM DA Tl R A
T D7D REE G220 Z L BNEEIZ/ > TETHY ., SiP(System in Package) &
FRIEAIL D RO LSI #6328 LWER T MORRE S ad T b, Ll
3D-SIP IXHTHEAN TH B 7= DR F O F MR RE > TE LT, xRN EE I T
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Fig. 4.2 Physical, system and economic limitation of miniaturization.

Table 4.1 Scaling Factor &7,

MOSFET Device or Scaling Factor

Circuits Parameters (k=1)
Device Size X 1/k
Voltage A% 1/k
Electric Field E~V/x 1
Area S~x? 1/k2
Circuit Density 1/S K2
Current [~Vi4/x 1/k0-4
Capacitance C~eSx 1/k
Circuit Delay d~CV/I 1/k16
Power P~CV?3/d? 1/kL4
Power Density p~P/S K0-8
Wire Resistance | r~L/WT k
Wire Capacitance | c~LW/H 1/k
Wire Delay rc~L*/TH 1
Transistor Delay | rc/d K16
etc. (Miniaturizing technology (ArF, EUV))
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% (Table4.2), Z D X 9 7ok x IRkt L

M 21TV, AR A IRE T D T2 DI, BRx
REL—= R T7PFEL TV D, BIZIE, 3RobIZ X 2R = XA PR, 14720 D
T T A XOHIE, SO O EIZE DT v 7 HE 20 ax NobeTF v FNERRO S
HECAMEIZ X DT 7 RIRIEREFE O & T~ 7 NECHRERBE O X 5 T v T INIERERE
MO, T~ 72 10(Input Output) 5 2B I13 2% Z &2 K D 2 2 N OIS E ) O
W 8 Ths, ZDEITER/TRE L —FE 7032 H 0, BWIERE Y 2T L4
RZRET D 2 EIZEFICREERBURN S 5720, APEEZEHT 2 1C3#@0 7255 TH

DEBERD,
Table 4.2 Comparison specification of various SiP structures !7!®),
— Downsizing
35 Aspect of Structures Advantage Cost | Radiation | Reliability
@ High density
< || High
§ ‘ VoW W
& radiation
% A Al @ ©
gi performance
=] W V'
¢ and reliability
@® Downsizing
o
<] I 1 I 1
; “Sooooooooooooon and increase
5 density m one
£ [
@ : ! package
[ |
Q00 000
Amount of
e ‘ I 1 I 1 ‘
T £ | @@|Eeesasaang oy @ | largememory
=~
pz © and available
2  ooEE=====00
to shrink
Ye) FEasy to
%
Ug % package and VAN © O ©
B low cost
Available to
wn &
gE | K | e embedde
FPE_ = F S
s = various
a
&
modules
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FLODHLEVATALSHE, OF — UKD RIZ K 5 KRBUEME(L. @ZSRDEINIC
K HRGETOREES O, @3D-LSI DFREE/ U AT OREMHIC LY ZERe b L— N4 7FF
OWEES L9 3 DORG EOMERZFF> TW\b, LarL, 2D-LSI OFRICfibn T
To[ElEER R, BN - IS TR, (BN e & Okkx REAR R H Y . b OFREHEEILA
AThdeBEx5,

Fio, VAT A LSl OFHE Fig 4317 T L) 27 —ITREHENLIN, N~ RV =
T V7 N 2T aE it I A 2 E T SRR TH D, DD, ARt
JETIE. BORMAARD DR O AT A DOHERRZ R DR GBI > T AT AT W
A ORI AT o Tc. £ DOBRIZ, HERRGEHBPE TORMAROEEREFH S AT L LSI D
Wi AT AT AL LT, 2D-SoC & 3D-SiP OERNEE/RGRE & 7o > TN D728,
RERERRC Y 7 b = TR L ERE L. ZORBEICK T2 AT AT VA &, ARk

Customer m Planning
Market Specification Strategy

Requirement
Analysis

— System
2 Specificatio
a
=
= Architecture Design
Y (HW/SW Divide, Codesign)
SW IF Combine HW
Speciﬁcastim:l Specification
gr Detailed Logic Synthesis af—
& SW (RTL Description), | =
b [ ——t—r e
ﬁ .
z ekt Layout Design g?
= | .
2 ieation] 1 5
Syst.em Ver!fi.catl.on !
Timing Verification .
‘ @ask Desng

System LSI

Fig. 4.3 System LSI design flow.
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ERWTRAZTZ, LT TEOFIEOFEMZ AT 5,

422 FIEAN)DFEITHRR

AP CTHE LT AT & LSl DRk % Fig. 4.4( SoC THER L 7354 (Fig. 4.4(a)) & 3D-
SiP THERL L7236 (Fig. 44037 AAFFETIL,. A7 L LSI O FEAERREFE & LT,
SoC puavy 7 AL UAEV, FxviaAE, Vol ny 7 2EE L,
FZIT o7, SIP TliE, 2z =Rk T 572012, S HICFEEHRE L TIO 5, 4 Z—
R—PHEBENML, Kokka Yy 7 L AE ) F v TR0 Z IRtk EfHE Lz, £
DOEIC, WIRHEREFH Y AT L LSI 2x0%E L T0572H, = kxfbicBb

Logic Memory

Logic Blodk Cash Memory Cell \jain Memory Cel

Logic Gate

Intemediate Interconnect

Semi-Global
Interconnect

General
Processing ‘ -
Circuit Logic Global Main Memory Circuit Memory Global
Memory  Interconnect Interconnect
SoC
Mold

Internal
Bump

Interposer

Under Fﬂl{"
External Bump

(a) SoC structure.
Fig. 4.4 Image of system model in this study.
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Logic Chip Cash Memory Memory Chip
Logic Block Cell Main Memory Cel

Memory TSV
Logic Gate

Intermediate
Interconmect
Semi-Global
Interconnect { /Memory MPU Gate

Memory I/O
Driver

General
Processing
Circuit

Logic Global Main Memory Memory Global

Memory Interconnect Circuit Interconnect

/—\‘ L/
Mold Memory /- )/f" ' Interp oser
; Chi w
3D-SiP » B
oY [=/
Memor w
B““'P Under Fill
External Bump Logic Loglc
Bump Chip

(b) 3D-SiP structure.
Fig. 4.4 Continued.

L85 (TSV (Through Silicon Via)JE ki dflr, =k > FHaE 72 &) (2B L TIE3EM
fLENTEY ., 2D-SoC &A% L )LORIERE E VRN H D &) FifE, 2o, B LEEXEE
LB ARETH D LWV I AR Z B o, REMERITFEARO~ 7 n R EERGHHE ThH
H, T /mY—)—FR BEEVE ARV Ty I 5EEREANT) L, A LTZEREHE
7 Table4.3 12777, HAUREIZ, ERLE V., HGOERN, a XA MNTxr—v A F
RPLEROEMMZ ZRom LE | BBEEENBIMEa A T2 &b, I
HOMMREZEZE L, (4.1 27”7, SDSI-C LW IHBENHR KIS Z &N L&
210

SDSI-C=Performance(GIPS)/PowerConsumption(W)/Cost($) (4.1)
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423 F2W(TAT LU T 7 ANERFREZ A7 ) OFEITRR

T 2 CIIEE L BAERE R (Fig. 4.4)ICKF L, VAT AT BT s A NVEFEE LT, FIE
Tk 7= SysML(Systems Modeling Language)iZ k5> AT LAET VU o 7 FiEz W TER
ETTFN AEEET L, NT A Y v BT, LT T VD EREEIT o 12, Fig. 4.5-Fig.4.7
2, BERETNVZER LA THA MM, 22— —XX, ZRM% | Fig. 4.8 [ZHEET
TNEERLLT Ry 7 ERENEZRT, ERETVIZ, AJ)Th HHEEBBEHOBRIZE
BLZbDOZLHM L TWD, a7 F A ML, A7 A LSI OANREREE L LT, M
TH—, ER, BRI, ER, £, VAT ALSIHCEEINDY 7 Ny 2T EE
BL, EELl, 2—AF—ZAHL, ar7F A MAITER LIANTERENOOER E L
T, MERE. A b, HEES. KR, WHEZBE L, 8L, ERKIE, 2—RAr—
ADFREHEZEZBE L, VAT L LS| OFEROMIZEAT -T2, WIEET /L(SoC DAEIEE
7 /L Fig. 48(a) & SiP OfEEE T /L Fig. 48(b)IL. ERET AL E I N-HE

Table 4. 3 List of design variables for this study.

Design Variable Name Value
Number of Memory Chips 1,2,4,8,16,32,64
Number of Signal 1/0 Pins 64,128,256,512,1024,2048
Technology Node 45nm,65nm,90nm

ibd [Package] System LSI for mobile phones [System LSI for mobile phones domain]

<<Extemal>>
:Software

<<External>>

:Chassis

\

<<System>>

%
:System LSI

:System LSI
user

/

<<External>>

:Power supply

<<Extemal>>

:Peripheral circuit

<<Extemal>>
:Motherboard

Fig. 4.5 Context diagram.
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Ak, B, Fig. 44 \TRTEAMBROET Y V7 E2ITo TR TH 5,

W, BRET NV, MEET NV E L LT, NTRA N I ETLVOEREITI, TDI-
O, ARBEE UTaE LieA(4.1) 0 BB ST 5 72 08l 27 L 2 W #iny -
RFHLBLEN DI A NT AN v 7 RYBEET N -RIFTT NV ERBETOLLEND D,
LIFTiE, £9°, WELET LVORGHERZ IR, ZO%KRFEET VOBREHERER RS,

FT. WHETAORGE LT, R@D)OBBERICEEND, AT L LSI OMEREIC
B9 D ERE R AR~ D,

AT L LSI ORI, SRICERLOTOICT v T2 nEITH kD, AU v b
E L CHEUREOFEMIC XV | BURBIER I OEHA M cE 5, TO—F T, bz |
fiZeF v 7R OHTIIH L Z ERIC L D MEOM EZHfFFTERnEnos 7T A Y v b
bHd D,

VAT ALLSHER Yy 7 Fy THONHER CTHR L0 L, BERT—FE2uy vy
FovTNIZHLF v v a2 AEFVIZFRH LIZITS, LT, ¥¥yv=aAEVIZby b
L7ginoleT =252 AL AFYDAEY F v 7O LIZITL, 07D, VAT A
LSI D/Ny r—2 L L TOMRIIRATH b I s,

uc [Package] System LSI for mobile phones [System LSI for mobile phones use case]

High

System LSI
performance
e

- Chassis
System LSI\T\
R
Low power Software

cons umption

Q-

0 oE

Power supply

Fig. 4.6 Use case diagram.
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bdd [Package] Physical Model [Physical Model] )
<<block>> <<block>> <<block>>
System LSI Manufacturirge System
T Specification
| 1
<<block>> <<block>>
Jisso < Memory Chip
{ |
<<block>> <<block>> <<block>> <<block>>
Board ©° Internal Bump< Main Memory Memory Global
Ci.?ll.'ﬂ Interconnect
<<block>>
Main Memory
cefl °S
<<block>>
Logic Chip o<
| 1
<<block>> <<block>>
Logic Global Cashe Memory
Interconnect
<<block>> <<block>>
General Processing | |Cashe Memory
Circuit cell S5
| 1
<<block>> <<block>>
Logic Block Semi Global
Interconneft®
<<| >>
=<block Inte:,t':::iate
el Interconnext>

(a) SoC.
Fig. 4.8 Block definition diagram.
P

system
Pa: ¥ A7 I LSIPERE(GIPS), Pa: I ALBR B AL (GIPS), He: v v ¥ = b R
I : ¥ LA 7 %A 7 b (cycle)

Z 2 TR OMBLER 1L, 1 YA 7 L CULER ATRE 72 SR 45 ST THL Noave & IR 51952
B F(GHz)IZ L W kA TRDO BN B,
P, =F, xN

=P, xH_ +P, x1-H_)/I, (4.2)

oave (43)

PV EATEOT U R R ORI K FE L, RATRO BN D,
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bdd [Package] Physical Model [Physical Model] )
<<block>> <<block>> <<block>>
System LSI Manufacturirge System
T Specification
I 1
<<block>> <<block>>
Jisso S5 Memory Chip
| | |
<<block>> <<block>> <<block>> <<block>> <<block>>
Board < Internal Bump>< Main Memory Memory 10 Memory Global
I Circuit I Interconnect
<<block>>
<<block>> <<block>> Main Memory <<block>> <<block>>
Logic Bump Memory Bump Cell =<|Memoryi0 Drivér| | Memory TE\-
<<b.locl:‘>.> bl
Logic Chigog Memory 10 MPU
T Gate °°
I 1
<<block>> <<block>>
Logic Global Cashe Memory
Interconnect
<<block>> <<block>> <<block>>
General Processing | (Cashe Memory Logic 10
Circuit Cell < I
| 1 <<block>> <<block>>
<<block>> <<block>> Logic 10 Driveg Logic Out 10
Logic Blocko Semi Global Driver °°
Interconne&t® r
,_T_\ <<block>> <<block>>
Logic 10 MPU Logic Out 10 MPU
<<block>> : :<b loc:>; = Gate
~ ntermedia
Logic MPUGEE] | interconneas
(b) SiP.

Fig. 4.8 Continued.

Noave = RO&VG X V N g (4'4)

Roave : BV B EATHL. Ny : PLH =¥y 7 |18 57— M (gate)

BREN AU TR 5 ORI D i KOBIEREIZ K > TRD b D, WE | E 513 Fig.
4. 9 IR TEMOFEME L BB L T, Fy7TNTREESND, ZOFT, KbBETOE
P EET HBIEREE K o L BRENE R Rtk L v g T E %,
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Module
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Module
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ol Module
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- Connection,
TSV

[~~—Bus
Wiring

\Memory 1’0

Module

o ]

[~—~Mmeory
Module

Memory Chip

Fig. 4.9 The hierarchic interconnect model*?.

Fo =1ty (4.5)

ty e = MaX(tugiopar» tasemi » atnter ) (4.6)
tamax : B AT FEITIREREI(S). tagiobar : 7 B — 7N JLABIERERE(S), tasemi : & X 7 12— LR IERE
[H(s). taner : A > % —7 4 A NEBIERFH(S)

MHe Yy 7HRRE 2 — Xy v Va AFYEVa— L EE SIS EET D,
ZDEE, Tu—rIUBIERER, X 7 e — VBIERRE], A VX — T ¢ A NIRIERF
fidznth. vy 7 F v 7N TORERH, IUHEEREKE Y 2 — /LN TOERERH,
P w7 N COREREZER L, TRk ENT 5,

Laciobal = Tclonal X v (SGP +S¢ ) X Ts Global (4.7)
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Tolobal : 7 17—/ LELHR AT = BO MR LERERE (S/mm)., Tsclobal : 77 2 — N LECHR [ JE . Sep

WHe Yy 7 EEEY 2 —/ViEfEmm?), Sc: v v o AT U EY 22— /LHEEMmM?)

Lasemi = Tsemi \/g/2 X TS semi (4.8)
Tsemi : & X 7 10— )UELKR BT B BORRERAERE [ (s/mm), Tssemi : & X 7 12— S LECHR R JE
i
taner = Letep X Ng.ave X Loew (4.9
tstep © B D72 V) OSFEIBIHRIEIERFH(S). Nsave : FRIRRPLEBEL, tokew © A F =2 —IRFfHI(S)
toep = Tinter X Pinter X Linter.giock + tgate (4.10)

Tinter : £ 7 — X7 4 TA FEBRHEARAOARELERF ) (S/mm), Pinter : 4 &2 — 37 4 A |
Bt & > T (mm/pitch), Linergiok : 7 2 > 7 NECHR E > T (pitch). tgae : 77— N EEIERFRH(S)
Fyviaby FRIZF Yy v Va2 BEBEEUFET LY 7 MU 2 TIUKAET 528, 22Tl
ET2Y 7 b =27 OHhFE—FEE L, v v aFEIKFETHUTORL Y ET
Do
H, = Re,q, xexp(N. ) (4.11)
Reash : ¥ v = b v MR
Xrviallby hLeholeT =X, AA UV AFY TT—XOBREITH, DO
WCET LA T ey PNTOZ vy JEITHE LIZER LA T oA 7V TH D,
ZDTD, VAT A I NVEAEY Ty TN TORIERH &, F v 7] TOEIERFH]
WLV U TRk Exbhb,
t +t

I __ ~Memory

r Ff

: 2
Jisoo x (412)

tMemory @ A & UF v 7OW£%EH#FEE(S)\ tiisso © T 70%?35%@%3%3(5)

tMemory = tMem,CeII +TGI0bal X \V SM X 2 (413)

tmemcenl : A E U /L TO RW IZEFT HIER(S), Sm: A A U AFEVEY 2 —/LiifE(mm?)
SiP DA & FIE 2 @R 2 DI 5 F » FRBERM AR E L, 2
WRIT LV kDB D,

tye =1tg + Ng xt, (4.14)

Jisso
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ts : A > F —AN—VIMBGEIERFH(S). ty © FELEHT R JERFH]
nY w7 F T AEY Ty TEOEBREOREE L OVER KL, B ToRic L E
92,

W, =P, x(1-H_)xL, (4.15)

Bus
Weus : 7N AME(bps). Lo : 43 & (bit)

TIZT RAOEVHEIIME S BIR+ 7T R=L2 ZBHEL TWHDT, B 5T
EEROEEO =D DT, NAFERIILLTOXTERDINS,

W
FB::(Rﬂjgfi:7§) (4.16)

PLENS VAT A LSl D28y i — D RRTOMBHE 285 5,

RIZARALD) D BBEBICE N5, o AT A LS| OIEEE I DRSS B2k~ %
HEBNNLEFEOEERTHBEE 2o TWD, ZORKIZ, HEEED LR L FHOEE
EHOWKTHD, o, FORMEEENOMRKOTEERFINE /2D ) — 7 EiRiL, 75
A N—IUBHE DERIZHENRE B E > T D, ThEBEL T, MEBEHORH
EATH ZENEETH D, V—27EHIL. Fig. 410 28T K212, BHIZ3FEEOERD
RAUCHE SN D ARIOBH TIEZOFTH ROBPZEORE NI T ALy v a R —
JEMICER L TRAETIT I,

SWTEER D=0, I LOER TIX e Fy T2 0EIT 52 LIk~ T, FHH
BENEAHTED A v vB3BHDH—FT, £F v FHEHEIND 110 Y 2 — VO 8
WCE o THRIBBEENNER T2V T Ay IR ®D DL, VAT ALSIHIAEY F v,
nYy 7 FyTELT, B, BERNOR->TWDS, ZOHR T, HWEENEZEBZXHD1E
ARV F I RRB Yy 7 F T THLHDOT, YAT L LSI OEEENTLLTORTH L
bahvs,

Esystem=ELogic + EmemoryXNchip (4.17)

Erogic : B ¥ v 7 F v TVHEETI(W), Emvemory : AE YU F v 7 VHEEE T1(W)

WE BV YTy TOEBEEINTIAEERKEY 2 —VIC K HHEERE) . Fr vy
AEVIZEDHEESN, 10 TV 2— VL D2HEENT LT, BERICEDHEEEIND

o TWAHDT, WAL VKRE D,

E =Epg + Ecasn T Ei/oL + Ewire (4.18)

Logic
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Gate
11.

Source

—

I. Subthreshold Leakage Current
II. Gate Leakage Current
II1. Junction Leakage Current

Fig. 4.10 The image of leakage current and its category.
Erc : WHBHEMIKE Y 2 — VIHEEI(W), Ecash: F¥ v a2 AEYEY 22— LiHEET)
(W), Ewor : IO E Y = —/LiHEEII(W), Ewie : FCHIHEEE T1(W)

WHERE R E ¥ 2 — L OVHE BT IHEE ) & (BRHEE NI o,
ZIT, BNARHEBEBNEI N T UV AXDRAY 4 v F U AN E T, BRI OFEES Y
BENDLZLIZXoTHAESND, /o, FREEE LY — 7 &, FrICBIEEEL
TOEETHENTHNAT 7T ALy a/)v N —ZERICERT 5 &, WHEERIKE
Va—/VOHBEENTIRATHLDbIND,

1
EPGzszg dedszngfoD+| bngXNg xV g4 (4.19)

leak,su

Co: 7 — MNFAREF). Vod : BIREFE(V). Ro: BEEIFE, heaksw : 7T ALy gL KU —
7 B FE(A/mm), Wg : & — b iiE(mm)

[FERICF v v oo AU bEREEE D L BIREEEIICHEITCE 50T, kA
IZEVkOBND,

Ecasn = Poynamic cash X Neash X Fr X Ry + Poaic casn X Ncasn (4.20)

Poynamic.cash : ¥ v v 2 AE Y 1 BH= 0 OERIIEEE J1(WIHz-Cell), Ra : IEPEILE,
PstaticCash : ¥ ¥ v ¥ =2 AT U 1®VH72 0 OFBIHEE S (WICell)

/0 RZ A NTEHD MPU 77— MZ Lo TSN TWD Z 2 BELTWNDHDT, N
MEFEERRE Y 2 — L ERRICRET 22T, RATHLDbIND,

N N
EioL = %ng ><Vdd2 x( 'éo’L X RDJX Fo + leaun XW, x( 'éO'L X RDJXVdd +E 00 (4.21)
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Eioo : B+~ 110 DI EET1(W)
BHR OV L& L iHiFE & BRENE I L > TR b, kX Thobahb,
Ewie = Ruire X (Spa + Scaen )% F (4.22)
Rwire : BL#R OO {H % FE /1425 (W/mm?-Hz)
AEVF v FTOMEEBINIAA L AEFV TS 2— LI X HBEEENL. 110 £ 2—1
R DHEENT TN, RATHLDIN5,
Eemory = Evt + E1jom (4.23)
M AL AEYEY 22—/ WEEE (W), Eom : 10 EY =2 —/LEEETI(W)
AAAETbF vy v a2 AT EFEBRICEHZRIHEED & BINRHEENIZHEIT
50T, WAUZKVRDBEND,

E = PDyna\mic,Cash X NCash X Ff X Ra + PStatic,Cash X NCash (424)

Cash

Poynamic.cash : A A~ AE U 1 B/VHT= 0 OBIIIEEE J1(WIHz-Cell), Pstaticcash : A A > A
FY 1EBAHTY OFRIHEEET)(WI/Cell)
AEVF 7NV a— Yy 7 F vy LRI, ®RAUTILVEHT S,

N N
Eiom :%XCQ dedz X(%X RDJX Fe + lieak.sun X Wy X(%X RDJXVdd (4.25)

LEIZED, VAT ALSI DRy r—VOIEEE N #EHTE 5,
I, BFETLE LT, RALDOEBBEEKIZEEND, VAT A LSI O3 X NI

DAEFRER IR~ D

“WOEBED 7D, Fig. 4.11 17T X 9 IZHHMbOHER T3 Fv 7207 5
ZEILEoT, TR WL e Ty T RENCL XAV A ANTH &
WL THEAEDVRMETDHENI AV Y ERHDH, WolXd T, KEOIH TR~ X D
T, DEISNTARTF v FITHERENTZ N0 B 2—Mc kb, AL I A ZABEAL, &
ATANPERTHI L L, FEICETLIaXANOHEKRENVITAY v ERH 5,

C =C +C X Negyin +C (4.26)

System Die, Logic Die,Memory Chip Packaging
Chie,Logic: 2 v 7 F v 72 A~ CpieMemory : A E U F 73X N, Cpackaging : 7NV 7 —
=

Yy Fy AR NIFyTOMEIT RN EFRFH A MIRELS ST NS, BEa

A NI, FyTOLEA YA R, KEE EHRICKE <KFET D, LS| 283 58I
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Defective Chip Chip Area

Chip Area Defect
Defective Chip Minitaturizing
el
makes
& shrinking diessiZe
& increase defect!

] Defective Chip
Divindingchip
makes

™. 0 0 A
shrinking die size.

Chip Area

Defect Defect

Fig. 4.11 The effect on cost of miniaturization and dividing chips.

X, 74 b~ A7 #HWTELLEHEEZITV, LS| 28 &E LT 5 (Fig. 4.12), LasL,
TFE, ZOFA7 aX FOWRBRE2MEELE2>TEY(Fig.4.13) , HEHF v 7L LT
ETLGAIZIE, 20X NEBETLINERNH D, £ T, @kila A Me~vR 7 Lo
ANEBELIERY 7 F T DR MIOZ=RAY —T 27T 5D TWO COOL®AE < —
22, WATRO BN D,

Coteogic = COO(KWey Logier S+ Dowteatogie )X Nonato.. + Crtase Verosuer + Consgn Voo (4-27)
k: 727 /ay—7—R0m), Weulogic: R v 7 F 7Y a(mm), ScL: 2yvy 7 F v
7 FE(MM?). DpefectLogic : 2 ¥ v 7 T 7RG FE (falts/em?), NpnooL : 237 > 7 F v 78K
B34, CMask : ¥ A7 T A N, Vproguet : HIEEL. Coesign : axaf 2 A b

Z 2T, CoO & & Cost of Ownership TH VD, ZAULSEMIIZ K> TED LAz, E35 &
WO RIS E BN AN D, SEMI-E3S [3EET A T A IV EEZRAEa A N D%

FLTWD, T, K4.27)F TWO COOL®EMHH Li=T — 4 X—A5|HE & ) v

T AN IR THLT=O, k: 77 /7T — 7 — F0m), Weutlogic : 22 7 F v
7Y a(mm), ScL: v Yy 7 Ty TEEMM?), Doefectlogic : B Y v 7 T T RIMEEEE
(falts’lcm?), & CoO ¢ TWO COOL® T aHHE LR L M mif 2 Hvy, InEdmzH 500
ODHETLZ e LT,
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( Logic circuit design ) ( Cutting Si ingot )
v ¥

(Mask pattern design ) ( Polishing wafer )

( Create photomask ) @xidatioﬂ wafer surfaca

v v
( Photolisography )—( Photo resist coating )
v
@evelopment & Etching)
v
( Ion implanting )
v
( Metalize )
v

) LSI Chip |

( Wafer test

¥
( Dicing )—'

Photomask Cost

90 65 4532 (nm)
Technology Node

Fig. 4.13 Aspect of elevated photo mask cost by miniaturizing technology node?.

ARV Fy FIIPHORBAFE T L L 2E2 5L, TOYAZ aX b Rita A b
FEHRTELLEELL, 2072, AEYFy7Fax MIRATERDEND,

C = CoO(k,W S (4.28)

Die,Memory Cut,Memory ! ¥ C,M ! DDefect,Memory)>< N Photo,M

k: 77 /&1 ‘:/\“_‘/ _ ]\\\(nm)\ WCut‘Memory  AE U %“/7%@] ) t‘/lj(mm)\ SC,M : AE U 3:‘\/70
ﬁ*ﬁ(mmz)\ Dpefect,Memory : AEYF v 707(5@%@(1:3“3/0”12)\ Nphoto. : AE U F v A -5, nEIE
AEUVF 7D CoO IZEHL T Yy 7 F T EREER, VXT AN v 7 RBARTH
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Hiew, ERLEFRBEOFIECINE RimEHE LTz,

Fl Ny =7 aAx MIF Yy TOBBEEIEF T 2 FEM e BE LT a A M Ty
TR L 2SR =T ERBERE L Tca R NNy =D T DT A v
EHELIEZIAIMNLRS>TNDLDT, ROXLVRDBIND,

Coraskage = Cisso X N + Caoara + Cline /Neroguet
Cuisso : FEHEHARE 2 A b, Choard : A ¥ & — R —FIHBHAEE 2 A b, Crine : HIET 1 41
EA R

UEED AT LLSI DRy r—I K0 a X MEEHT 5,

ZDXEIT, VAT ALSIONRT AN vy TETNELT, MEET L - RFET NV E
EE L. itz To 7,

Fig. 4.14-Fig. 417 12, EFLO/NRT AN v VBTNV EER LTI, NTA =X DREFR(T
2y 7 ERK), BRAORER (T w7 EEN), N7y 7K, T2 R v 7RO

(4.29)

bdd [Package] Value Type [Value Type] )

<<valueType>>
Logic Chip Power
Consumption

<<valueType>>
Logic Chip Cost

<<valueType>>
Logic Chip Die Size

<<valueType>>
Logic Chip Mask Cost

<<valueType>>
Logic Chip
Frequency

<<valueType>>

Number of Instructions of

Logic Chip

<<valueType>>
Logic Chip Design
Cost

<<valueType>>
Logic Chip
CoO(45nm)

<<valueType>>
Dummy Logic Chip
CoOL(45nm)

<<valueType>>
Dummy Logic Chip
CoOL(45nm)A

<<valueType>>
Dummy Logic Chip
CoOL(45nm)B

<<valueType>>
Logic Chip
CoO(65nm)

<<valueType>>
Dummy Logic Chip
CoOL(65nm)

<<valueType>>
Dummy Logic Chip
CoOL(65nm)A

<<valueType>>
Dummy Logic Chip
CoOL(65nm)B

<<valueType>>
Logic Chip
CoO(90nm)

<<valueType>>
Dummy Logic Chip
CoOL(90nm)

<<valueType>>
Dummy Logic Chip
CoOL(90nm)A

<<valueType>>
Dummy Logic Chip
CoOL(90nm)B

<<valueType>>
Logic Chip CoO

<<valueType>>
Dummy Logic Chip
CoOS(45nm)

<<valueType>>
Dummy Logic Chip
CoOS(45nm)A

<<valueType>>
Dummy Logic Chip
Co0S5(45nm)B

<<valueType>>

CoOA

Dummy Logic Chip

<<valueType>>
Dummy Logic Chip
CoOS(65nm)

<<valueType>>
Dummy Logic Chip
CoOS(65nm)A

<<valueType>>
Dummy Logic Chip
CoOS(65nm)B

<<valueType>>

CoOB

Dummy Logic Chip

<<valueType>>
Dummy Logic Chip
CoO0S(90nm)

<<valueType>>
Dummy Logic Chip
CoOS(90nm)A

<<valueType>>
Dummy Logic Chip
Co05(90nm)B

Fig. 4.14 Parameter type definition in block definition diagram.




bdd [Package] Constraint [Logic Chip] /

<<constraintBlock>>

Logic Chip Cost <<constraintBlock>> <<constraintBlock>>
= A -Logic Chip Cost Logic Chip Design Cost Logic Chip Mask Cost
- a :Logic Chip CoO - A :logic Chip Design Cost - A Logic Chip Mask Cost
- b :Number of Logic Chip Masks - a :Logic Chip Total Design Cost - a :Logic Chip Total Mask Cost
- ¢ :Logic Chip Mask Cost - b :Production Volume - b :Production Volume
s diilogiciChipBesTepiEass constraints constraints
constraints {{Al={a}l/{b}} {{Al={a}/ b}
{Al={ay*{b+{c}+{d}}
<<constraintBlock>> <<constraintBlock>>
Logic Chip CoO Logic Chip Die Size
a :Technology Node - A :Logic Chip Die Size
A :Logic Chip CoO - a :General Processing Circuit Area
b :Logic Chip CoO(90nm) - b :Cashe Memory Area
¢ :Logic Chip CoO(65nm) - ¢ :Logic IO Area
d :Logic Chip CoO(45nm) - d :Logic Chip Spare Area
constraints constraints
{{A}=IF({a}=90,{b}, IF({a}=65 {c},IF({a}=45,{d},0)))} {{Al=(SQRT({a}+{b}+{c})+{d}*2)"2}

<<constraintBlock>>
<<constraintBlock>> Logic Chip Power Consumption <<constraintBlock>>
Logic Chip Frequency Number of Instructions of Logic Chip

- A :Logic Chip Power Consumption

A :Logic Chip Frequency - a :General Processing Circuit Power Consumtion - A :Number of Instructions of Logic Chip
a :General Processing Circuit Frequency - b :Cashe Memory Power Consumption - a :Number of Instructions of General Processing Circuit
b :Logic Global Interconnect Delay Time - ¢ :Logic IO Power Consumption - b :Instruction Level Parallelism
. - d :Logic Global Interconnect Power Consumption constraints
{{A}=MIN({a},2013/{b})} constraints {Al={a*({bl+(1-{b}))}

{{Al={al+{b}+{c+dl} A

<<constraintBlock>>
Dummy Logic Chip CoOA

a :Logic Chip Defect Density
x :Dummy Logic Chip CoOA

constraints
{{x}=(INDEX(CoO!B3:B51, MATCH(VLOOKUP({a}, CoO!B3:B51,1), CoQ!B3:B51)+1,)-INDEX(CoQ!B3:B51, MATCH(VLOOKUP({a}, CoQ!B3:B51,1), CoO!B3:B51),))}

<<constraintBlock>>
Dummy Logic Chip CoOB

a :Logic Chip Defect Density
x :Dummy Logic Chip CoOB

constraints
{{x}=({a}-INDEX(CoO!B3:B51, MATCH(VLOOKUP({a}, CoO!B3:B51,1), CoO!B3:B51),))}

Fig. 4.15 Constraint type definition in block definition diagram.

—EERY, o, R(41)E Tabled.3 & LITERE LIk bX % Fig. 4.18 1Zrkd, 4lA
OB TITHFIGEIEIT o Tl BRL TR, T2 THETHRWED DT X K
U 7T ML TIE, VAT A5 LSI D SysML (KD VAT LET U v ISR 26k
EZHTWEELS DT, 265Nz,

COXIICER LML AT ADET MK L, KV AT ATV A U FEICL Y HE)
B 1 ENT=T F A M7 7 A L% Fig. 4.19-Fig. 4.23 (Z7x9, Fig. 4.19 2ME&EET LD H
JIAER, Fig. 420 337 A MU w7 BT IVOW, /X7 A—FBEFRENTT 1 v 7 K)OH
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ibd [Block] Logic Chip [Logic Chip] /

ibd [Block] Logic Chip [Logic Chip])
<.<prc')1p.er‘ty>> <<property>> <<PFOD:.TTV>.> <<.pr0p.6r‘tv>> <<PFC.>P9:\./>>
Logic Chip Pf)wer ‘Logic Chip Cost .Loglc(; ip Die :Logic Chip Mask .Log‘lc Chip
Consumption Size Cost Design Cost
<<property>> <<property>>
:Logic Chip Number of Instructionsg
Frequency of Logic Chip
<<property>> <<property>> <<property>> <<property>>
:Logic Chip :Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip
CoO(45nm) CoOL(45nm) CoOL(45nm)A CoOL(45nm)B
<<property>> <<property>> <<property>> <<property>>
:Logic Chip :Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip
CoO(65nm) CoOL(65nm) CoOL(65nm)A CoOL(65nm)B
<<property>> <<property>> <<property>> <<property>>
:Logic Chip :Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip
Co0O(90nm) CoOL(90nm) CoOL(90nm)A CoOL(90nm)B
<<property>> <<property>> <<property>> <<property>>
‘Logic Chip CoO :Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip
Co0S(45nm) Co0S(45nm)A Co0S(45nm)B
<<property>> <<property>> <<property>> <<property>>
:Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip (Dummy Logic Chip
CoOA Co0S(65nm) Co0S(65nm)A Co0S(65nm)B
<<property>> <<property>> <<property>> <<property>>
:Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip
CoOB Co0S(90nm) Co0S(90nm)A Co0S(90nm)B

{EET VDN,

Fig. 4.16 Internal block diagram.

=fEE N 7Y XA
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AT EBOHBNFRTH D, IR T IO, VAT LTaT7ALE L
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ibd [Package] Physical Model [Optimization]

<<design parameter>>
Technology Node

<<design parameter>>
Number of Memory Chip4

<<design parameter>>
Number of Signal 10 Pins

<<objective function>>
System LSI Performance

<<objective function>>
System LS| Cost

<<objective function>>
System LSI Power
Consumption

Fig. 4.18 Optimization diagram.

| BlockTree - »Eik
TPAUF) $RE(E)
System LS]

- Logic Chip
- Jisso

- Memory Chip
Logic Chip

- General Processing Circuit
- Cashe Memory
- Logic [0

- Logic Global
Memory Chip

- Main Memory Circuit

- Memory 10

- Memory Global Interconnect
Jisso

- Board

- Internal Bump
General Processing Circuit

- Logic Block
- Semi Global
Cashe Memory

- Cashe Memory Cel |
Logic 10

- Logic 10 Driver

- Logic Out 10 Driver
Main Memory Circuit

- Main Memory Cell
Memory 10

- Memory 10 Driver

- Memory TSY
Logic Block

- Logic MPU Gate

- Intermediate Interconnect
Logic 10 Driver

- Logic 10 MPU Gate
Logic Out 10 Driver

- Logic Out 10 MPU Gate
Memory [0 Driver

- Memory [0 MPU Gate
Internal Bump

- Logic Bump

- Memory Bump
Manufactur ing
System Specification

=7.(0)

Interconnect

Interconnect

SlEI=]

=Yy ~AJLTIHY
FR(V) ALT(H)

Fig. 4.19 Block definition diagram output .
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]
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A
attribute sheet
antity name

attribute name

System LSI Power Consumption
System L3I Cost

System LSl Performance

Dummy Logic Chip ColSB0nm)E
Dummy Logic Chip ColDA
Logic Chip Freguency
Mumber of Instructions of Logic Chip
Dummy Logic Chip CoOB
Durnmy Logic Chip CoOL{45nm)
Dummy Logic Chip CoD L5 nm)aA
Durnry Logic Chip Col L5 nm)B
Dummy Logic Chip CelLESnm)
Dummy Logic Chip ColLES nm)d
Dummy Logic Chip CeQLESnm)B
Dummy Logic Chip ColLE0Rm)
Durnry Logic Chip CoOLB0Rm A
Cummy Logic Chip ColLE0RmIB
Durmnmy Logic Chip Co0S(45mm)
Dummy Logic Chip CoQS{43nm)A
Dummy Logic Chip ColS45mm)E
Dummy Logic Chip CelS65nm)
Dummy Logic Chip ColSB5nmld
Durnry Logic Chip ColS8Tnm B
M ypmean | amie Chin Can S 0w 1
®

unit
W
none

GIPS

none
nens

GHz
instruction
nons

none

none

none

nens

none

nens

nons

none

none

none

nens

none

nens

nons

none

Aana

type
float
float
float

float
float
float
it

float
float
float
float
float
float
float
float
float
float
float
float
float
float
float

float
flaat

current valus max

0011356709
0064399534

15

13
0032100542
0064399954
0064305324
0064355384
0032199542
00321505542
0032199542
0008735113
0008735113
0008735113
0079139838
0072139838
0079135858
0039562579
0035565579

0039569979
nn11356700

Fig. 4.20 Part of internal block diagram output.

System LSI
Logic Chip
AttributeShest
A B

conztraintShest

constraint name

System LS Performance
aquation

C

min

0
0
0

DODODODDODODO.DDODOCJOD

H

isDiscrete step
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE
Fal 2F

={Logic Chip Frequencyl#{Number of Instructions of Logic Chigl#{Cashe Memory Hit Ratel{{Logic Chip
0 Frequency{Mumber of Instructions of Logic Chiph# 1 —iCashe Memory Hit Ratel)/(IMemory Chip Delay
TimelCircuitiHiMemory Chip Delay Time(Jissa)lHJisso

calculation result

input attributes

entity hame

Logic Chip

attribute name
Logic Chip Frequency

Logic Chip

Wermaory Chip
Wemony Chip

Jisso

System Specification

output attrbutes
System LSI

A00L [ @

Mumber of Instructions of Logic Chip

Merory Ghip Delay Time(Circuit)
Wemory Chip Delay Time(Jisso)

Jisso Delay Time
Cashe Memory Hit Rate

System LS Performance

Fig. 4.21 Part of parametric diagram output.

j?{?ﬂF:
Svatem LSI,Svstem LSI Power Consumption,float,0,300,FALSE,W, 15, min,obejective function
|

system LSI,5vstem LSI Cost,float,0,300,FALSE, none, 15, min,obeject ive function

E) &Z7(0)

=
RS

objectiveSheet - XEik

LTI
AR

System LSI,3ystem LSI Performance, float,0,300,FALSE,GIPS, 15, max, cbeject ive function

Fig. 4.22 Objective function output.
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4| DesigneParameters - XEHE = | @

Tr4L(F) #wSE(E) SIU(0) FTR(V) ~ILI(H)
System Specification,Number of Memory Chips,, ,TRUE,0,1,2,4,8,16,3%
System Specification,Number of Signal 10 Pins,,,TRUE,0,64,128,7566,517, 1024, 7066

Manufacturing, Technology Node, ., , TRUE,O,45,65,90,,,

Fig. 4.23 Design variable output

Table 4.4 Extracted design tasks and constructed design variable tasks.

designTask No.

Design task detail

designTaskl System specification input
designTask?2 Manufacturing design
designTask3 Memory chip parameter design dependent on technology node
designTask4 Memory chip CoO design
designTask5 Logic chip CoO design

designT ask6 Memory 10 MPU gate design
designTask7 Memory 10 driver design
designTask8 Main memory cell design
designTask9 Memory TSV design
designTask1l0  Cashe memory parameter design dependent on technology node
designTask1ll  Logic out IO driver design
designTask12 Logic out 10 MPU gate design
designTask13  Logic 10 driver design
designTask14  Logic 10 MPU gate design
designTask1l5  Cashe memory cell design
designTask16  Logic bump design
designTaskl7  Memory bump design
designTask18 Internal bump design
designTask19 Intermediate interconnect design
designTask20  Main memory circuit design
designTask21 Memory global interconnect design
designTask22  Board design

designTask23  Jisso design

designTask24 Logic MPU gate design
designTask25  Logic block design
designTask26  General processing circuit design
designTask27 Semi global interconnect design
designTask28 Logic 10 design

designTask29  Cashe memory design
designTask30 Logic global interconnect design
designTask31  Logic chip design

designTask32  System LSI design
designTask33 Memory 10 design
designTask34  Memory chip design
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A7 B S, DWW, TdesignTask3), [designTask4], [designTask5], [designTask10]
DADDH AT PERFHIICEVIIH ENTHEZ A7 THY, ZNLSNIT AT LT
R7 7 ANVCERBINIEEET NIV I TAZ ) VT EINTEHFFF AT THD, OF
D REHZ A7 O8I, T ry 7 ERKTER SNIHIEE T VOB 30 i & ER T
THiH SN 4 HOEEHEFE L, Fig. 424 [ZHH SNRKEFHZ A7 7 7 A L O— il % 7=
R

ORI I ENTZR/E AT ADOET VAL LT, REFZ A IR T LT ) X AaE

DICHBIMICATON D 2 & DR TE 7,

pu B
1
2 |oonstraints
3 |ADO3S
4 | ADO2
5 1ADDM
6
7
8 |inputittnbutes
9 |enttyMName attnbuteMName
10 |Memory Chip bemory Chip Power Consumption
11 |Jisso Jisso Delay Time
12 |Memory Chip Mermory Chip Delay Time(Circuit)
13 |System Specfication  MNumber of Memory Chips
14 |Memory Chip bemory Chip Cost
15 |Jisso Jisso Cost
16 |Logic Chip Logic Chip Frequency
17 |Memory Chip bWemory Chip Delay Timel Jisso)
18 |Logic Chip Logic Chip Power Consumption
19 |Logic Chip Logic Chip Cost
20 |System Specification  Cashe Memory Hit Rats
21 |Logic Chip Mumber of Ihstructions of Logic Chip
22
23
24 |outputittnbutes
25 entityMame attnbuteMName
26 |Systemn LS1 System LS] Power Consumption
27 | Systemn LS1 System L] Cost
28 | System LSI System LS Performance
29

designTask32

N
.\-.!.ju 4

Fig. 4.24 Design task extraction output.
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424 % IEEHMEFIEOEE) D EITHR

F2WCHA LRI AN v BT NVERGFF AT DM 77 ANV E S LI, KTV
=Y XA XV FHEFEOME A AEAICEIT L, FMITFEOHEE TIL, 5 3 Tk
TR OICEKFREY 7 FEAWD, £, KA Y 7 NSOV 7 by =T LiE#ET L2 L
HEE L AT 7 A NVOIER BITDIL D, Fig. 4.25 [ITAERL SN FH FIEEEDO AT 7 7
AND—Hl% | Fig. 4.26 IT/FRSNT=EKFHHE Y 7 b~OFEEFERO—Bl2~"d, /-, =
DY AT I LSl DY AT LTFHA Tl a2 A FOFHEO—ICHEH O Y 7 ~(TWO
COOL)ZHWT VBT, HHUDIEKR LSBT OT — 2 X—27 7 A VE HEL
7oo FEAMIE 3.25 Hio@Y TH Y| Fig. 321 WHEB LT — 4 RXR—RAT7 74 LVDO—ETH

2

£ NewDesignTask32 - XEtE EIERES
JrILF) #mE(E) EX(0) F+R(V) AILI(H)

Number of Memory Chips|8 ~

Memory Chip Power Consumptiondo|15
Jizso Delay Time|15

Memory Chip Delay Time(Circuit)dp|10
Memory Chip Costdp|15

Jisso Cost |16

Logic Chip Frequency|15

Memory Chip Delay Time(Jisso)dp|1h
Logic Chip Power Consumption|16
Logic Chip Cost |15

Cashe Memory Hit Rate|0.8

Number of Instructions of Logic Chip|15

[output ]

System LS1 Power Consumption|={Mumber of Memory Chipst#{Memory Chip Power Consumption}+{Logic Chip Power Consumption}

System L31 Cost|={Logic Chip Costl+{Memory Chip Costi*{Number of Memory Chipsi+{Jisso Cost}

System LS Performance|={Logic Chip Frequency}*{Number of Instructions of Logic Chipl#{Cashe Memory Hit Rate}+

[{Logic Chip Freguency}*{Number of Instructions of Logic Chip}*(1-{Cashe Memory Hit Ratel}))/({{Memory Chip Delay Time(Circuit)}+
[{Memory Chip Delay Time(Jisso)}+{Jisso Cost}x2)%{Logic Chip Frequency}/1000+1)

< >

Fig. 4.25 Input file for evaluation method.

A B C D E F G a
1
2 |Input Qutput
4 Mumber of Memory Chins & System LSl Power Consumption =CAFCIHC12
5 MWemory Chip Power Consumptiondp 15 System L2[ Cost =C13+CE+C4+C0
6 Jisso Dely Time 15 System LS| Performance SCA0RC 154G 14+ 1 0+C 151 -C1AICTHO 11408 H2C1 0/1000+1)
7 Memory Chip Delay Timel Circuitldp 15
g hWiemory Chip Costdp 13
9 Jisso Cost 13
10 Logic Chip Freguency 13
11 Memory Chip Delay Timel{Jisso)dp 13
12 Logic Chip Power Consumption 12
13 Logic Chip Cost 13
14 Cashe Memory Hit Rate 08
15 Mumber of Instructions of Logic Chip 19
16 -
Co0Q | Database | calcSheet32 @ P »

Fig. 4.26 Evaluation method.
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ZOEDITFHEFEDOHEL T LAY X L0EY) . BEIRIZITOILD Z & D3RS TE 7,

425 HAEEBRHY—7 70— BE)OETHER

ZOmEmTIE, F2mTHHINERFAAZOM N7 s ANV EL LI, AT VTY XA
IZED ) BREERZ AT L DSM OEFRINIZATI 7 7 A VOIERE, TLbE b LI
DSM 3TV 7 b =TI LD/ "—TFT 4 v a=v 7 E2HMFET LI, ZTORBR, &5ty —7
Ta—DT7 7 ANV EEEDT 7 ANV BRETERE LT RTA—=F L 1S5 /T A—
EAN—E L TWDDPDFERZATO Z AT DT 7 AV Sivie, Fig. 4.27 IZfER Sz
REEH S A7 D—Hl% ., Fig.4.28 12 DSM DEFZEEINT- AT 7 7 A V% Fig. 4.29 |[Z/3—
TAYva=r T ORITRERE T, 72, Fig. 430 I ENTikit v —2r 7 e—n7 7
A V%, Fig. 431 \ZEE{bD 7 7 A V% Fig. 432 ICRRFHESE Lo T A= L W)
ENDHNRTRA—=EPN =L TWDINDOMEREITI XA AT DT 7 A NV ERT,

Fig. 429 O/NX—FT 4 2 a Y 7RERTIZ, AR THEE LT ALITY XLED
[designTask00(7 7 / & ¥— / — Ka%#h) . TdesignTask0L(A &V F v 7' F v THEERFH) .
[designTask02(f§ & & 8k Ft) ] DOREFIE L A7 BNBEIMI, Y AT L7077 A )ViE

HCEEINTZHMBEEOE TN T D [designTask32( A7 A LSIa%5t)) 7 HARIERIF%R
MBMENTWDONRbMND, Fio, Fig. 429 ONX—F7 4 v a =V 7R LD
[ designTaskl6( = > » 7 /N 73 5F) 1. [designTaskl7( A & U /N > 7k ) ] .

A B C D -
1
2 |constraints
3
4
5 inputdttnbutes
6 |lentityames attnbuteMName
7
8
9 outputfttnbutes
10 |lentityMame attnbuteMName
11 |Manufactunng Techrology Mode
]_2 | -
designTask00 @ 4 >

Fig. 4.27 Design variable task file.
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designTask00
designTask01
designTask02
design lTaskl
designTask
designTask
designTask
designTask
designTask
designTask
designTask
designTask
designTask
designTask2 o
designTask20 o
designTask21 =
designTask22
designTask23 —
designTask2d <
designTask25 |«
designTask26
designTask27
designTask28 <
designTask29
designTask3 &
designTask30
designTask31
designTask32
designTask33
designTask34
designTaskd
designTaskS
designTaské 2
designTask? |

designTask
designTask8
designTask9

designTask00
designTask01
designTask02
designTask1

designTask10 | 1
designTask11

i 1 Dependencies from design tasks including
designTask12 1
designTask13

desisriTesk13 ' objective function to design variable tasks

designTask15 1 1
designTask16
designTask17
designTask18 1
designTask19
designTask2 1
designTask20 1
designTask21 11
designTask22
designTask23
designTask24
designTask25
designTask26
designTask27 1 1
designTask28 111 1 1 11
designTask29 1 1 1 1
designTask3 1 1
designTask30 1 1
designTask31 | 1 1
designTask32 1 1 1 1 1
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designTask33 1
designTask34 | 1

designTaskd
designTask5
designTaské 1
designTask7 1
designTask8

esionT o . Dependencies from design variablé tasks
DSM [ @ ‘ »

Fig. 4.28 DSM input.

[y [y ey py Y
u—y

[designTask22(Feti % 7)1, ldesignTask9( A £ Y TSV i%it)) 23, fcwfb & BfRAe <. »
D, WATLTEITTEDLRGZ AT THLZ b0, TN ORETZ A7 IZE L

i LN E TR Z LN D, TON—T 4 v a = TRERICH LT, B3 ETH
HLE=TNAIY RANOERL—LVEFHND Z EI2X Y, Fig 4.30 (R ek Y —7
Tu—tHhT7 AN, O T 7 AN, BREERE LT A2 L &R
HINTA=FN—=H L TNDLDDOHERBEATO Z AT D7 7 A NDBR/LND, Fiz,
Fig. 431 LV, VAT L7077 A )V TERINTKELET VO BRIBEE, %FHE
Fofulz, BEfELT VT Y ALK FBUCRFER L 2o Te /T A—2 ) 14
FELTWDZ ENbND, ZHHITFiQ 432 IRTHRHIRE Y 7 MORESHEZREE
BEHNNRTGA=F DXL EDHEZ AT 2 HNT, ROBRBILFEITOBIC, HIFIEMEE L
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AAAAAA A A A A AN A A A AR AR AR A
.8p |.5p .8 |50 8P .50 .5p .8p .5p 8D 8P |.5p 8D 5P 5P 8D .00 8D B 5P 8D .0 5P 8D 5D 5D 0P 0P .8p .8 5P .80 5D .5p 8P 8D
8885 8 8888888858588 88883838 38888888888587%5

1 T v Y TV TV TVTVTOVTVTVTOVTVTVTOVTVTVTTVTTVTTOVTTLVTTVTTVTLVTTTVTLVTTVTTTTVTTTTTTT

2 |designTaskl

3 |designTaskl6

4 | designTask17

5 | designTask22

6 | designTask®

7 | designTask00

8 | designTask01

9 | designTask02

10 |designTask10
11 |designTaskl1
12 |designTask12
13 |designTaskl3
14 |designTaskl4
15 |designTaskl5
16 |designTaskl$
17 |designTaskl19
18 |designTask2
19 |designTask20
20 | designTask21
21 |designTask23
22 |designTask24
23 |designTask25
24 |designTask26
25 |designTask27
26 |designTask28
27 |designTask29
28 |designTask3

29 |designTask30
30 |designTask31
31 |designTask32
32 |designTask33
33 |designTask34
34 |designTaskd

35 |designTask5

36 |designTask6

37 |designTask7

38 |designTask8

> DSM | Manual Sequence Banded DSM Partitioned DSM ... @ : D

Fig. 4.29 DSM partitioning result.

TENsh5,
ZOEOIT, BEFV—7 7 —EETH, MELLEAERELLT LT XA, #]
ELIEATIZ 7 AN N7 7 A VPN BEBIRNZARSID Z & N RS-,

426 %5 ERBE{LFEIT)DFEITHR R

FAEDOHRF T —7 7 —WEOM )7 7 AV L 3 EDOTHMFIEDHED I 17 7 A
A E, KT NVTY ZRZEY . ZOR THEFEINEELFETY —7 7 v —O&i#E{kic
LT, miE{EMEERE L7 7 ANVEANN T 740 LTHER L, I-sight HHO o 2 %
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| Workflow - XEk | = | B | &8
T74IL(F) WE(E) ST(0) F=R(V)
designTask] ~
designTask16

designTask17

designTask??

designTaskd

Optimization]

-designTask00

-designTask01

-designTask0Z

-designTask?

-designTask3

-designTask4

-designTaskb

-designTaskb

~-designTask?

-designTask8

-designTask10

-designTaskl]

-designTask]
-designTask]
-designTask]l
-designTask]
-designTask]
-designTask19
-designTaskZ0
-designTaskZ1
-designTaskZ3
-designTaskZ4
-designTaskZb
-designTaskZ6
-designTaskZ?
-designTaskZ8
-designTaskZ9
-designTask30
-designTask31
-designTask3?Z
-designTask33
-designTask34
-Feedback 1

?
3
4
a)
3

Fig. 4.30 Design workflow output.

VA RAT VT NEITT 7 A NVEERT D 2 LT HEIIC A L & 5317 L 7=, Fig. 4.33
WER SN AT 7 7 A4 V%, Fig. 434 |2 I-sight BICHESE SN - EITY—2 7
n—%& R,

Fig. 433 [Z T K912, ARIOFr—AZRZT ¢ TiE, Ffbo BB EETH -
Toio, HENWIZZ B BREIE O T2 D O EELFIETH D INSGA2) NIEIRINTND
ZEMBND AEDOY AT L LSI DY AT LT VA TR GRHEROE N L N,
b FIEOFEME A7 > a VIC K VAR L, EREE R A2 S, Kb Ok E
R IETWS,
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[N

| Optimization1 - XEME

= =[]

Jr1IL(F) #WE(E) 27(0) FR(V) ~JLF(H)
Optimization Task:
Optimizat iond

Optimizat ion Method:

bhjective Function:

System L3I Power Consumption
System L3I Cost

System L3I Performance

Uesign Yariable:

Murmber of Memory Chips

Mumber of Signal 10 Pins

Technology Mode

Memory Chip Die Size

Logic Chip Die Size

Logic Out [0 MPU Gate Area

Logic Out [0 MPU Gate Dynamic Power Consumption
Logic Out [0 MPU Gate Static Power Consumption
Logic [0 MPU Gate Static Power Consumption
Logic 10 MPU Gate Area

Logic [0 MPU Gate Dynamic Power Consumption
General Processing Circuit Freguency

Semi Global Interconnect Delay Time

Memory Chip Power Consumption

Memory Chip Delay Timei(Circuit)

Memory Chip Cost

Memory Chip Delay TimelJisso)

—_

Fig. 4.31 Optimization task output.

Memory Chip Die Sizedp
Logic Chip Die Sizedp
Logic Out D MPU Gate Areadp

4 Logic Out 1D MPU Gate Dynamic Power Consumptiondp
5 Logic Out 10 MPU Gate Static Powar Consumptiondp

oo o~ o

1
12
13

Logic 10 MPU Gate Static Power Consumptiondp
Logic I0 MPU Gate Areadp

Logic 10 MPU Gate Dyramic Power Corsumptiondp
General Processing Circuit Frequencydp

Semi Global Intsrconnect Delay Timedp

Memory Chip Power Consumptiondp

Memory Chip Delay Time(Circuitldp

Memary Chip Costdp

4 Memory Chip Delay Time(Jissoldp

Feedback1 n

Memory Chip Die Size

Logic Chip Die Size

Logic Out ID MPU Gate Area

Logic Out 10 MPU Gate Dynamic Power Consumption
Logic Out 10 MPU Gats Static Power Corsumption
Logic 10 MPU Gate Static Power Consumption
Logic 10 MPU Gate Area

Logic 10 MPU Gate Dynamic Power Corsumption
General Processing Circuit Fraquency

Semi Global Interconnect Delay Tims

Memory Chip Power Consumption

Memory Chip Delay Time(Circuit)

Memary Chip Cost

Memory Chip Delay Time(Jisso)

Memary Chip Die Sizedf

Logic Chip Die Sizedf

Logic Out [0 MPU Gate Areadf

Logic Out 10 MPU Gate Dynamic Power Consumptiondf
Logic Out 10 MPU Gats Static Power Consumptiondf
Logic 10 MPU Gate Static Power Consumptiondf
Logic 10 MPU Gate Areadf

Logic 10 MPU Gate Dyramic Power Consumptiondf
General Processing Circuit Frecuencydf

Semi Glokal Intsrconnect Delay Timedf

Memory Chip Power Corsumptiondf

Memory Chip Delay Time(Circuitldf

Memary Chip Costdf

Mermory Chip Delay Time{Jisso)df

]

Fig. 4.32 Feedback task output.
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£ Optimization1 - XEHE = [ @
JPAIL(F) #RE(E) SR.(0) F|R(V) ~NLI(H)

Optimizat ion Task:

Optimizat iond

Optimizat ion Method:
“technique’: "NSGAZ',
“optsT: [
("Population Size (ewven wvalue)’, 1207,
{( "Mumber of Generations’, 2007,

bhjective Function:

System L3] Power Consumption,O,300,min
System L3I Cost,0,300,min

System L3I Performance,U, 300, max

Uesign Yariable:

Murmber of Memory Chips,,,TRUE,0,1,%,4,8,16,37

Number of Signal 10 Pins,,,TRUE,Q,684,128,756,612, 1024, 2056
Technology Mode, ,, TRUE,O, 4b5,65,90,,,

Memory Chip Die Size, 14,7.00E+03,FALSE

Logic Chip Die Size,b0,200,FALSE

Logic Uut [0 MPU Gate Area,0,71,FALSE

Logic Out [0 MPU Gate Dynamic Power Consumption,O,1,FALSE
Logic Out [0 MPU Gate Static Power Consumption,O,7,FALSE
Logic 10 MPU Gate Static Power Consumption,O,1,FALSE
Logic [0 MPU Gate Area,0,1,FALSE

Logic [0 MPU Gate Dynamic Power Consumption,O,1,FALSE
General Processing Circuit Frequency,U,300,FALSE

Semi Global Interconnect Delay Time,Z00, 700, FALSE

Memory Chip Power Consumption,0.001,0.2,FALSE

Memory Chip Delay Timei(Circuit),1.20E+04,1.60E+04,FALSE
Memory Chip Cost,0.1,40,FALSE

Memory Chip Delay Time(Jisso),0.5,0.6,FALSE

Fig. 4.33 Optimization definition input.
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OB EIT T, ZORER, AU CTHELE L BEhgamE{b 7 v 3 Y X A% HuvCHEIHY
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CORRIVBERRIT, 77/ aY—/—FK45mm, A€V F v T oEES FEE Y
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FAEa R FOWREF v AT ED L FEMBEOFGNRE L > Ta X FOERBEHINT
W5 EZEZBND, 72, 2D-SoC 2D X ITm < AfES 2Bl X, 2D-SoC 1%, ¥
AT LLSI & LTRERAE VHEEARE S, B2EOF vy THEPRELSRDLT2D, T
TR E D BB T AT TH D, Tkt LT, 3D-SiP 1%, TSV Eirse

/
—] \ SDSI-C
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o oss >< 0 65nm N 0.5
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Fig. 4.35 Relation among SDSI-C, Power Dissipation, Performance and Cost of each technology

node.
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Fig. 5.1 The schematic diagram of constructing hierarchical optimization problem

from system profile definition.
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Fig. 5.3 Current architecture design model and future model.
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bdd [Package] Physical Model [Physical Model] /

<<block>> <<block>>
System LS| Manufacturing

T

Specific

<<block>>
System

ation

Jisso

<<block>>

T

<<block>>
Memory Chip

T

[

<<block>> <<block>> <<block>> <<block>> <<block>>
Board Internal Bump Main Memory Memory 10 Memory Global
Circuit t Interconnect
<<block>> | |
<<block>> <<block>> Main Memory <<b|ock>>. <<block>>
Logic Bump Memory Bump Cell Memory 10 Driver Memory TSV
<<b!°Ck>_> <<block>>
LogiclChs Memory 10 MPU
f Gate

[ [

<<block>> <<block>>
Logic Global Cash Memory
Interconnect ?
<<block>> <<block>> <<block>>
General Processing Cash Memory Logic 10
Circuit Cell T
T [ ]

I | <<hlock>> <<block>>
<<block>> <<block>> Logic 10 Driver Logic Out 10
Logic Block Semi Global Driver

Interconnect ’
T <<hlock>> <<hlock>>
Logic 10 MPU Logic Out 10 MPU
<<block>> <<blockg Gate Gate

Logic MPU Gate

Intermediate
Interconnect

Fig. A.1 System LSI block definition diagram.

| ibd [Block] System LSI [System LSI]

ibd [Block] System LSI [System LSI] /

<<property>> <<property>>
:System LS| :System LS| Cost
Performance

<<property>>
:System LS| Power
Consumption

Fig. A.2 System LSl internal block diagram.
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par [Block] System LSI [Power Consumption] _/l

par [Block] System LSI [Power Consumption]) o

:Logic Chip Power
Consumption

<<propefEg : System LSI <<property>>
System LS| P_ower Power Memory Chip Power
Consumption Consumption Consumption
<<property>>
:Number of Logic
Chips
(@) Power consumption.
par [Block] System LS| [Performance] /J
par [Block] System LSI [Performance])
<<property>> <<property>>
:Memory Chip Delay :Memory Chip Delay
Time(Circuit) Time(Jisso)
[ |
<<propert...
:Jisso Delay
<<property>> .
Propels : System LSI Time
:System LSI
Performance
Performance <<property>>
:Cashe Memory
Hit Rate
I |
<<propert... <<property>>
:Logic Chip :Number of
Frequency Instructions of
Logic Chip

(b) Performance.

Fig. A.3 System LSI parametric diagram.
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par [Block] System LSI [Cost]

par [Block] System LSI [Cost]/

<<property>>
:Logic Chip Cost
<<property>>
:Jisso Cost
<<property>>
: System LS|
:System LSI Cost Cost
<<property>>
:Number of Logic
Chips

<<property>>
:Memory Chip Co

(c) Cost.
Fig. A.3 Continued.

bdd [Package] Constraint [System LSI] )

<<constraintBlock>>
<<constraintBlock>> System LSI Performance
System LSI Cost

:System LSI Performance

:Logic Chip Frequency

:Number of Instructions of Logic Chip
:Memory Chip Delay Time(Circuit)
:Memory Chip Delay Time(Jisso)
Jisso Delay Time

constraints :Cashe Memory Hit Rate

b=y

:System LSI Cost -
:Logic Chip Cost -
:Memory Chip Cost -
:Jisso Cost -
:Number of Logic Chips -

o0 o w

-+ D o0 T O >

{Al={a}+{b}*{dH{c}} constraints
{{A}={a}*{b}*{fH({a}*{b}*(1-{f}))/(({cH({d}+{e}) *2)*{a}/1000+1)}

<<constraintBlock=>>
System LS| Power Consumption

A :System LS| Power Consumption

- a :Number of Logic Chips

- b :Logic Chip Power Consumption

- ¢ :Memory Chip Power Consumption

constraints

{A}={a}* {c}+{b}}

Fig. A.4 Detail of System LSI constraint block.
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ibd [Block] Logic Chip [Logic Chip] )

ibd [Block] Logic Chip [Logic Chip])
<<property>> <properi <<property>> <<property>> <<property>>
:Logic Chip Power -Logic Chio Cost :Logic Chip Die :Logic Chip Mask :Logic Chip
Consumption 08 P Size Cost Design Cost
<<property>> <<property>>
:Logic Chip Number of Instructions
Frequency of Logic Chip
<<property>> <<property>> <<property>> <<property>>
:Logic Chip :Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip
CoO(45nm) CoOL(45nm) CoOL(45nm)A CoOL(45nm)B
<<property>> <<property>> <<property>> <<property>>
:Logic Chip :Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip
CoO(65nm) CoOL(65nm) CoOL(65nm)A CoOL(65nm)B
<<property>> <<property>> <<property>> <<property>>
:Logic Chip :Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip
Co0(90nm) CoOL(90nm) CoOL(90nm)A CoOL(90nm)B
<<property>> S<PrOpeiSiEy <<property>> <<property>>
:Logic Chip CoO :Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip
Co05(45nm) CoOS(45nm)A Co0S(45nm)B
<<property>> <<property>> <<property>> <<property>>
:Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip
CoOA Co0S5(65nm) CoOS(65nm)A Co0OS(65nm)B
<<property>> <<property>> <<property>> <<property>>
:Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip :Dummy Logic Chip
CoOB Co0S(90nm) Co0OS(90nm)A Co0OS(90nm)B

Fig. A.5 Logic chip internal block diagram.
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par [Block] Logic Chip [Power Consumption] /

par [Block] Logic Chip [Power Consumption]/

<<property>>
:General Processing Circuit
Power Consumtion

<<property>>
W :Cashe Memory Power
<<property>> ) ] [
Logic Chib P : Logic Chip Power Consumption
oglc thip _c)wer Consumption
Consumption <<property>>

:Logic 10 Power
Consumption

<<property>>
Logic Global Interconnect
Power Consumption

(@) Power consumption.

par [Block] Logic Chip [Performance] /

par [Block] Logic Chip [Performance])
<<property>>
:General Processing
Circuit Frequenc
<<properv... . Logic Gl q \i
:Logic Chip Frequency
Frequency <<property>>
Logic Global Interconnect
Delay Time
<<property>>
:Number of Instructions of
popa . Number of General Processing Circuit
iNumber of Instructiong Instructions of
of Logic Chip Logic Chip <<property>>
:Instruction Level
Parallelism

(b) Performance.

Fig. A.6 Logic chip parametric diagram.
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bdd [Package] Constraint [Logic Chip] /

<<constraintBlock>>
Logic Chip Cost

:Logic Chip Cost

:Logic Chip CoO

:Number of Logic Chip Masks
:Logic Chip Mask Cost

:Logic Chip Design Cost

Qo oo D>

constraints

{{A}={a}*{b}+{c}+{d}}

<<constraintBlock>>
Logic Chip Design Cost

<<constraintBlock>>
Logic Chip Mask Cost

A :Logic Chip Design Cost -
a :Logic Chip Total Design Cost -
b :Production Volume -

A :Logic Chip Mask Cost
a :Logic Chip Total Mask Cost
b :Production Volume

{{A}={a}/{b}}

constraints

constraints

{A}={al/{b}}

<<constraintBlock>>
Logic Chip CoO

<<constraintBlock>>
Logic Chip Die Size

- a :Technology Node

- A :Logic Chip CoO

- b :Logic Chip CoO(90nm)
¢ :Logic Chip CoO(65nm)

- d :Logic Chip CoO(45nm)

A :Logic Chip Die Size
a :General Processing Circuit Area
- b :Cashe Memory Area
c :Logic IO Area

d :Logic Chip Spare Area

constraints

{{A}=IF({a}=90,{b},IF({a}=65,{c}IF({a}=45,{d},0)))}

constraints

{A}=(SQRT ({a}+{b}+{c})+{d}*2)"2}

<<constraintBlock>>
<<constraintBlock>> Logic Chip Power Consumption
Logic/chip|Frequency - A :Logic Chip Power Consumption
- A :Logic Chip Frequency - a :General Processing Circuit Power Consumtion
- a :General Processing Circuit Frequency - b :Cashe Memory Power Consumption
- b :Logic Global Interconnect Delay Time - ¢ :Logic IO Power Consumption
n - d :Logic Global Interconnect Power Consumption
constraints
{{A}=MIN({a},1073/{b})} constraints
{{A}={a}+{b}+{c}+{d}} P

<<constraintBlock>>

Number of Instructions of Logic Chip

- A :Number of Instructions of Logic Chip
- a :Number of Instructions of General Processing Circuit
- b :Instruction Level Parallelism

constraints

{Al={at*({b}(1-{b})}

<<constraintBlock>>
Dummy Logic Chip CoOA

- a :Logic Chip Defect Density
- x :Dummy Logic Chip CoDA

constraints

{{x}={INDEX(Co0!B3:B51, MATCH(VLOOKUP({a}, Co0!B3:851,1), CoO!B3:B51)+1,)-INDEX(CoO!B3:B51, MATCH(VLOOKUP({a}, Co0183:B51,1), Co0!B3:851),))}

<<constraintBlock>>
Dummy Logic Chip CoOB

- a :Logic Chip Defect Density
- X :Dummy Logic Chip CoOB

constraints

{{x}=({a}-INDEX(C00O!B3:B51,MATCH(VLOOKUP({a}, CoO!B3:B51,1), CoO!B3:B51),))}

Fig. A.7 Detail of logic chip constraint block.
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ibd [Block] General Processing Circuit [General Processing Circuit]

ibd [Block] General Processing Circuit [General Processing Circuit])

<<property>>

Circuit Power

:General Processing

<<property>>

of General Processing

INumber of Instructions

Consumtion Circuit
<<property>> <<property>>
:General Processing :General Processing

Circuit Frequency Circuit Area

Fig. A.8 General processing circuit internal block diagram.

par [Block] General Processing Circuit [Power Consumption]

par [Block] General Processing Circuit [Power Consumption])

<<property>> )
! : General Processing <<property>>
:General Processing N .
X Circuit Power :Logic Block Power
Circuit Power Consumtion p t
Consumtion onsump o

(a) Power consumption.

par [Block] General Processing Circuit [Performance] /

par [Block] General Processing Circuit [Performance]/

<<property>>
. : General Processing
:General Processing Circuit F
Circuit Frequency reunt Frequegy

<<property>>

tLogic Block Frequency

<<property>>
Semi Global Interconnect
Delay Time

<<property>>

<<property>> ]
Number of Instructions ’
of General Processing
Circuit

:Number of Gates

<<property>>

of General Processing

Number of Instructions 1
Circuit J

:Basic Number of
Instruction

<<property>>

:Basic Number of Gate

(b) Performance.

Fig. A.9 General processing parametric diagram.
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par [Block] General Processing Circuit [Cost] )

par [Block] General Processing Circuit [Cost])

<<proper‘ty>>. : General <<property>>
:General Processing Processing :Logic Block Area
Circuit Area Circuit Area .

(c) Cost.
Fig. A.9 Continued.

bdd [Package] Constraint [General Processing Circuit] /

<<constraintBlock>>

Number of Instructions of General Processing Circuit <<constraintBlock>>

General Processing Circuit Area

- a :Basic Number of Instruction

- A :Number of Instructions of General Processing Circuit - @ :Logic Block Area‘ N
- b :Number of Gates - A :General Processing Circuit Area

- ¢ :Basic Number of Gate constraints

constraints {A}={a}}
{A}=INT({a}*({b}/{ch)~(1/3))}

<<constraintBlock>>
General Processing Circuit Frequency

<<constraintBlock>>
General Processing Circuit Power Consumtion

- A :General Processing Circuit Frequency
- a :Logic Block Frequency
- b :Semi Global Interconnect Delay Time

- a :Logic Block Power Consumption
- A :General Processing Circuit Power Consumtion

constraints .
constraints
{{al={ah

{{A;=MIN({a},10"3/({b}*4))}

Fig. A.10 Detail of general processing circuit constraint block.

Fig. AllIZrYy 77y 7 ONEH7 vy 7, Fig AR2@IZRY v 771y 7 OIEE
TS 537 2 U w7 K, Fig. A 12(b)IZHEREICBI T 587 2 v U » 7 [X, Fig. A.12(c)
23 A MIBET 237 A MY v 7 KZERT, £72.Fig. A 13 ICHIKROFEM L R L7 1 v
7 KT,

Fig. A.14Zn Yy 7 MPU 77— FOWNE 7 v v 7 4, Fig. A15(@)lc w2 ¥ > 7 MPU 7 — |
DOWHEFEINCET 237 2 MY v 7K, Fig. A15bIZ 2 A MIBET 537 2 F) v 7 X%
Y, F2, Fig A16 IZHFIROFEMEZ R L7 v v 7 XERT,
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ibd [Block] Logic Block [Logic Block]

ibd [Block] Logic Block [Logic Block]/

<<property>> <<property>> <<property>>
:Logic Block :Logic Block Power :Logic Block Area
Frequency Consumption
<<property>> <<property>>
:Average Total Delay IMaximum Instruction Execution
Time per Logic Step Time in Logic Block

Fig. A.11 Logic block circuit internal block diagram.

par [Block] Logic Block [Power Consumption] /

par [Block] Logic Block [Power Consumption])

<<property>>
tNumber of Transistors
per Logic MPU Gate

<<property>>
:Number of Gates

<<property>>
:Logic Gate Running Rate

<<property>> : Logic Block
:Logic Block Power Power
Consumption Consumption

<<property>>
:Logic MPU Gate Static
Power Consumption

<<property>> <<property>>
Logic MPU Gate Dynamic :General Processing
Power Consumption Circuit Frequency

(a) Power consumption.

Fig. A.12 Logic block parametric diagram.
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par [Block] Logic Block [Performance] )

par [Block] Logic Block [Performance]/

<<property>> . Losic Bl <<property>>
:Logic Block FHoe :Maximum Instruction
& Frequency
Frequency Execution Time in Logic Block
s
<<property>> : Maximum <<property>>
Average Number of Logi In.struc‘t|on E?(ecutlon Skew Time
Step Time in Logic Block
- J
<<property>>
Average Total Delay
Time per Logic Step

<<property>>
Intermediate Interconnect - Average ToEEE <<property>>.
" Time per Logic Step :NMOS Delay Time
Delay Time

(b) Performance.

par [Block] Logic Block [Cost] ‘

/

par [Block] Logic Block [Cost])

<<property>>
:Number of Gates

<<propefiye : Logic Block " j“:nrsze:\w})U
:Logic Block Area Area : oglcEfficien::t:a se
<<property>>

| :Logic MPU Gate Area

(c) Cost.

Fig. A.12 Continued.
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bdd [Package] Constraint [Logic Block] )

<<constraintBlock>>
Logic Block Frequency

<<constraintBlock>>

Maximum Instruction Execution Time in Logic Block

- x :lLogic Block Frequency

- a :Maximum Instruction Execution Time in Logic Block

:Skew Time

constraints

{{x}=10"3/{a}}

a

- b :Average Number of Logic Step
®
X

:Average Total Delay Time per Logic Step

:Maximum Instruction Execution Time in Logic Block

constraints

<<constraintBlock>>
Logic Block Power Consumption

{xj=la{bi+{c}

:Number of Gates

:Number of Transistors per Logic MPU Gate
:Logic MPU Gate Static Power Consumption
:Logic MPU Gate Dynamic Power Consumption
:General Processing Circuit Frequency

:Logic Gate Running Rate

:Logic Block Power Consumption

'
X hd oo oo

<<constraintBlock>>
Average Total Delay Time per Logic Step

- a :NMOS Delay Time
- b :Intermediate Interconnect Delay Time
- x :Average Total Delay Time per Logic Step

constraints

{ix}=({a}*{o}*({c}+{d}*{e} *{f}))}

constraints

{bd={ah+{b}}

<<constraintBlock>>
Logic Block Area

:Number of Gates

:Logic MPU Gate Area

:Logic MPU Area Use Efficiency
:Logic Block Area

constraints

{ix}=(tay*{b}) /ich

Fig. A.13 Detail of logic block constraint block.

ibd [Block] Logic MPU Gate [Logic MPU Gate] _/l

ibd [Block] Logic MPU Gate [Logic MPU Gate])

<<property>>
:Logic MPU Gate Static
Power Consumption

<<property>>
:Logic MPU Gate Dynamic
Power Consumption

:Logic MPU Gate Leakege

<<property>>

Current

<<property>>
:Logic MPU Gate Parasitic
Capacitance

<<property>>
:‘Logic MPU Gate Area

Fig. A.14 Logic MPU Gate internal block diagram.

par [Block] Logic MPU Gate [Power Consumption] /

par [Block] Logic MPU Gate [Power Consumption] )

<<property>>
—iLogic MPU Gate Subthreshould
Leakage Current

<<property>>

:Logic MPU Gate Static LB MR |

: Logic MPU Gate

e Power Consumption
Power Consumption P I

Leakege Current

<<property>>
:Logic MPU Gate Leakege
Current

<<property>>

:Power Supply
Voltage

<<property>>
Logic MPU Gate Aspect
Ratio

<<property>>

tLogic MPU Gate Length

<<property>> : Logic MPU Gate |

: Logic MPU Gate

:Logic MPU Gate Dy
Power Consumption

Dynamic Power
Consumption I

<<property>>
:Logic MPU Gate Parasitic
Capacitance

Parasitic Capacitance

<<property>>
:Logic MPU Gate
Capacitance

(a) Power consumption.
Fig. A.15 Logic MPU Gate parametric diagram.
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par [Block] Logic MPU Gate [Cost] . ‘

par [Block] Logic MPU Gate [Cost])

>>
<<propeli : Logic MPU <<propertiSy
‘Logic :"PU Gate Gate Area :Logic Gate Size
rea

(b) Cost.
Fig. A.15 Continued.

bdd [Package] Constraint [Logic MPU Gate] /

<<constraintBlock>> <<constraintBlock>>
Logic MPU Gate Static Power Consumption Logic MPU Gate Dynamic Power Consumption
- a :logic MPU Gate Leakege Current - a :lLogic MPU Gate Parasitic Capacitance
- b :Power Supply Voltage - b :Power Supply Voltage
- x :Logic MPU Gate Static Power Consumption - X :Logic MPU Gate Dynamic Power Consumption
constraints constraints
{ix}={a}*{b}} {{x}=({a}*{b}*2*10"9)/2}
<<constraintBlock>> <<constraintBlock>>
Logic MPU Gate Leakege Current Logic MPU Gate Parasitic Capacitance
- a :Logic MPU Gate Subthreshould Leakage Current - a :Logic MPU Gate Length
- b :Logic MPU Gate Length - b :Logic MPU Gate Capacitance
- ¢ :Logic MPU Gate Aspect Ratio - ¢ :Logic MPU Gate Aspect Ratio
- x :Logic MPU Gate Leakege Current - x :Logic MPU Gate Parasitic Capacitance
constraints constraints

{()=({fa}*{b}*{c}*107(-6))/1000} {{x}=({a}*{b}*{c})/1000}

<<constraintBlock>>
Logic MPU Gate Area

- a :lLogic Gate Size
- x :Logic MPU Gate Area

constraints

{{x}={a}*10"(-6)}

Fig. A.16 Detail of logic MPU Gate constraint block.

Fig A1712A »#—37 4 =4 MEBROWE 7 1 v 7 X, Fig. A18(ZA v H—T 4=
A FELAROMERRIZBET 237 A MU v 7 K& "3, £72. Fig. A19 ([ZHIFKIROFEM AR L
=7y 7 X ERT,

Fig. A20 12 X 7 — SVERONE 7 = v 7 X, Fig. A21 12k X 7o — LR OM
BEICBET 28T 2 MY w7 X %&R"9, F7=. Fig A2 IZHXOFEMEZ R L7 0 v/
R,
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ibd [Block] Intermediate Interconnect [Intermediate Interconnect]

ibd [Block] Intermediate Interconnect [Intermediate Interconnect])

<<property>> <<property>>
Intermediate Interconnect] :Average Interconnect
Delay Time Length per Logic Step

Fig. A.17 Intermediate interconnect internal block diagram.

par [Block] Intermediate Interconnect [Performance] )

par [Block] Intermediate Interconnect [Performance]/

<<property>>

di <<property>>
Intermediate Interconnect * Intermedighy i iDelay Time per Intermediate
o Interconnect Delay Time
Delay Time

Interconnect Length

<<property>>
<<property>> : Average :Metal 1 Wiring Pitch

:Average Interconnect Interconnect Length

Length per Logic Step per Logic Step <<property>>

JAverage M1 Interconnect
Length per Logic Step

Fig. A.18 Intermediate interconnect performance parametric diagram.

bdd [Package] Constraint [Intermediate Interconnect]

<<constraintBlock>>
Intermediate Interconnect Delay Time

- a :Average Interconnect Length per Logic Step
- b :Delay Time per Intermediate Interconnect Length
- x :Intermediate Interconnect Delay Time

constraints

{{ixi={a}*{b}}

<<constraintBlock>>
Average Interconnect Length per Logic Step

- a :Metal 1 Wiring Pitch
- b :Average M1 Interconnect Length per Logic Step
x :Average Interconnect Length per Logic Step

constraints

{{x}={a}*{b}*10"(-6)}

Fig. A.19 Detail of intermediate interconnect constraint block.
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ibd [Block] Semi Global Interconnect [Semi Global Interconnect]

ibd [Block] Semi Global Interconnect [Semi Global Interconnect])

<<property>> <<property>>
Semi Global Interconnect| |Logic Total Inteconnect
Delay Time Length

Fig. A.20 Semi global interconnect internal block diagram.

par [Block] Semi Global Interconnect [Performance] /

par [Block] Semi Global Interconnect [Performance])

<<property>>
— :Delay Time per Semi Global

<<property>> - Semi Global Interconnect Length
Semi Global Interconnect Interconnect Delay
Delay Time Time

<<property>>
Skew Time
<<property>> <<property>>
. : Logic Total .
Logic Total Inteconnect Inteconnect Langth :General Processing
Length g Circuit Area

Fig. A.21 Semi global interconnect performance parametric diagram.

bdd [Package] Constraint [Semi Global Interconnect]

<<constraintBlock>>
Semi Global Interconnect Delay Time

- a :Delay Time per Semi Global Interconnect Length
- b :Logic Total Inteconnect Length

- ¢ :Skew Time

- x :Semi Global Interconnect Delay Time

constraints

{{x}={a}*{b}+{c}}

<<constraintBlock>>
Logic Total Inteconnect Length

- a :General Processing Circuit Area
- X :lLogic Total Inteconnect Length

constraints

{{x}=SQRT({a})/2}

Fig. A.22 Detail of semi global interconnect constraint block.
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Fig. A23 2% v v 2 AEUDONE 7 1 v 7K, Fig A24@IZF v v 2 XAF Y OHE
BIZHT 237 A 1Y » 74, Fig. A240)ICF ¥ v 2 AT Y D22 MIET 5757 A
N w7 ZRT, ££72. Fig A25 IZHKIROFEMZ R L7 v v 7 KERT,

ibd [Block] Cash Memory [Cash Memory]

ibd [Block] Cash Memory [Cash Memory])

h<<pr0perty>> <<property>> <<property>>
Cashe Memor\: Powe -Cashe Memory Area :Cashe: Memor.v
Consumption Capacitance(bit)

Fig. A.23 Cash memory internal block diagram.

par [Block] Cash Memory [Power Consumption] )

par [Block] Cash Memory [Power Cnnsumptiun]/

<<property>> h <<property>>
:Cashe Memory tCas ,i Men;g_rt\; :Basic Cashe Memory
Capacitance(bit) Apacitanceigy Capacitance(MB)

<<property>>
:Cashe Memory Cell Static
Power Consumption

<<proj > <<property>>
i - : Cashe Memory Power | PP

:Cashe Memory Power h :Cashe Memory Cell Dynamic
. Consumption 5
Consumption Power Consumption

<<property>>
:Active Cashe
Memory Rate

<<property>>
:General Processing
Circuit Frequency

(a) Power consumption.

par [Block] Cash Memory [Cost] /
par [Block] Cash Memory [Cost])
<<property>>
:Cashe RAM Area Use
Efficiency
<<property>> << >>
< E Enrtv : Cashe ) propefs
:Cashe Memory Memory Area :Cashe Memory Cell
Area Area
<<property>> <<property>>
: Cashe Memory .
:Cashe Memory Capacitance(lif] :Basic Cashe Memory
Capacitance(bit) p Capacitance(MB)

(b) Cost.
Fig. A.24 Cash memory parametric diagram.
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bdd [Package] Constraint [Cash Memory]

e

<<constraintBlock>>
<<constraintBlock>> Cashe Memory Area
Cashe Memory Capacitance(bit)

a :Cashe Memory Capacitance(bit)

a :Basic Cashe Memory Capacitance(MB) - A :Cashe Memory Area
A :Cashe Memory Capacitance(bit) - b :Cashe Memory Cell Area
N ¢ :Cashe RAM Area Use Efficiency
constraints
{{A)={a}*(102412)*8} constraints

{{A}={a}*{bl/{ch}

<<constraintBlock>>
Cashe Memory Power Consumption

:Cashe Memory Capacitance(bit)

:Cashe Memory Power Consumption

:Active Cashe Memory Rate

:General Processing Circuit Frequency

:Cashe Memory Cell Static Power Consumption
:Cashe Memory Cell Dynamic Power Consumption

m o0 o >

constraints

{{A}={a}*{d}+{b}*{c}*{e}}

Fig. A.25 Detail of cash memory constraint block.

Fig. A26 122> 7 10 DNE~7 1 v 7 X, Fig. A27()Zr ¥ v 7 10 OIEEE T
HNZ7 A RY 7K, Fig. A2710)Ica Yy 7 10 D3 A MNIETHNNT A N v 7 KER
4, F7o. Fig A28 IZHIFIADOFEM A R L7 1y 7 &2 R"d,

Fig. A29 122> 27 10 R4 NOWNE7 v v 74, Fig. A30@)IZuey v 7 10 K7 A /N
DHEFEINCET 237 2 MY v 7K, Fig. A30b)cry v 7 10 R7 A0 & MMIH
T 587 A N w7 ERT, £72 Fig. A3 IZHIFIRNOFEMEZ R L= 7 0 v 7 KERT,

Fig. A32 IZr ¥ > 7 IOMPU 77— FOWNE~7 v v 7%, Fig. A.33(a)l2z ¥~ 27 IOMPU
77— NOWHEEINET D37 A R v 7 [X, Fig. A33(0b)icr Y v 7 IOMPU 7 — h®D 3 A k
B9 2% 2 Y v 7 KERT, 72, Fig A4 ICHIFIROFEMEZ R L7 0 v 7 X%
N

Fig. A3512mr Yy ZHAERI0 R4 NOWNE 7 v v 7 [, Fig. A36(a)lr 2> 7 4 10
KT A NOEEENCET DT A MU v 7K, Fig. A36b)Za Y v 74T 10 KT AR
DA NMIETLHNRNTZA RN v 7 KERT, £, Fig A37 ICHIROFEME R L7 2 v
7 K& m,
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Fig. A38 1212 ¥ v 74K 10 MPU 77— O 7 1 > 7 X, Fig. A39(a)ll 1 > v 7 458
IOMPU 77— s DWEEENCEET 5357 2 R U v 7 X, Fig. A39(b)lz 1 ¥ 7 445 10 MPU
F—=brDaAMIBETLHRTZA N v 7 KERT, £7o. Fig. A40 IZHIFXOFEMEZ R L
e vay 7 XErRT,

ibd [Block] Logic 10 [Logic 10]

ibd [Block] Logic 10 [Logic 10] )

<<property>> <<property>> <<property>>
:Logic 10 Power :Logic 10 Driver Total Logic Out 10 Driver Total
Consumption Power Consumption Power Consumption
<<pr0pert.y>> <<pr0pert‘y>> <<property>>
:Number of‘Drwers per :Number ‘of Drivers per Logic 10 Frequency
Logic 10 Logic Out 10
.<<property>> <<property>>
:Loglc-Mfemory Band ‘Logic 10 Area
Width(L)

Fig. A.26 Logic 10 internal block diagram.

par [Block] Logic I0 [Power Consumption] /

par [Block] Logic 10 [Power Consumptl’on]/

<<property>> : Number of
:Number of Drivers per [< | Drivers per Logic
Logic 10 10
s N
<<property>> <<property>> <<property>>
., P p' ¥ : Logic 10 Driver Total . propelt | : Logic 10 . propetty
:Logic 10 Driver Total q Logic 10 Freq| ¥ Logic-Memory Band
L Power Consumption | Frequency )
Power Cc ption Width(L)
<<property>> i <<property>> .
. p P : Logic 10 Power ber of Signal I0 : Logic-Memory
“Logic 10 Power Consumption i o £ Band Width(L)
Consumptiiy <<property>> <<property>> ns
:Logic 10 Driver Static | (Logic IO Driver Dynamic
Power Consumption Power Consumption
<<property>> <<property>> ‘ ‘
<<property>>
Logic Out 10 Driver Static| |:Logic Out 10 Driver Dynamic Numb p”p :(y T § “<propertyg |
Power Consumption Power Consumption snumber a3 Ing r'uc |o'ns:3 Cashe Memory Hit
‘ [ General Processing Circuit Rate
<<property>> <<property>> <<property>>
:External 10 :Logic Block :Bit Length per
<<property>> Frequenc Frequenc Instruction
. L V :Logic Out 10 Driver Total g i d i
:Logic Out IO Driver Total |
N Power Consumption
Power G ion
- <<property>>
er of External 10}
Pins
<<property>>
prop r'ty- : Number of Drivers per
Number of Drivers .
. Logic Out 10
per Logic Out 10

(a) Power consumption.
Fig. A.27 Logic 10 parametric diagram.

152



par [Block] Logic 10 [Cost] /
par [Block] Logic 10 [Cost]/
<<property>> <<property>> <<property>>
n : Number of Drivers
Number of Externall |:Number of Drivers er Logic Out 10 :External 10
10 Pins per Logic Out 10 b 3 Frequency
<<property>> 1 <<property>>
A : Number of Drivers .
—:Number of Drivers per Logic 10 :Logic 10 Frequency|
er Logic 10
<<propertyeg : Logic 10 Area B 2
:Logic 10 Area
<<property>>
- : Logic 10
—:Number of Signal 10 Frequo s
Pins d 2/
<<property>> <<property>>
:Logic 10 Driver :Logic Out 10 .<<pruperty>>
Area Driver Area Logic-Memory Band
Width(L)
: Logic-Memory
Band Width(L)
<<property>> <<property>>
:Bit Length per :Logic Block
Instruction Frequency
<<property>> <<property>>
:Cashe Memory Hit| |:Number of Instructions of
Rate General Pr Circuit

(b) Cost.
Fig. A.27 Continued.

bdd [Package] Constraint [Logic 10] )

<<constraintBlock>>
Logic 10 Area

:Logic 10 Area

:Number of Signal 10 Pins
:Number of Extemal 10 Pins
:Number of Drivers per Logic IO
:Number of Drivers per Logic Out 10
:Logic 10 Driver Area

:Logic Out 10 Driver Area

0o a0 oo >

constraints

{al=fal{c{erbI{dP{fh

<<constraintBlock>>
Logic 10 Power Consumption

A :Logic 10 Power Consumption
a :Logic 10 Driver Total Power Consumption
b :Logic Out |0 Driver Total Power Consumption

{{A}={a}+{bl}

constraints

<<constraintBlock>>

<<constraintBlock>>
Logic-Memory Band Width(L)

Logic 10 Frequency

A
:Logic 10 Frequency - a
:Logic-Memory Band Width(L) - b

c
d

'
o n >

:Number of Signal 10 Pins -

constraints

:Logic-Memory Band Width(L)

:Number of Instructions of General Processing Circuit
:Logic Block Frequency

:Bit Length per Instruction

:Cashe Memory Hit Rate

{{al={a}/{b}}

{Al={aP{b}*{c}*(1-{dh}

constraints

<<constraintBlock>>
Logic 10 Driver Total Power Consumption

<<constraintBlock>>
Logic Out 10 Driver Total Power Consumption

:Number of Drivers per Logic |10

:Logic 10 Driver Total Power Consumption
:Logic 10 Frequency

:Number of Signal 10 Pins

:Logic 10 Driver Static Power Consumption
:Logic 10 Driver Dynamic Power Consumption

o o0 o pw

:Number of Drivers per Logic Out 10

:Logic Out 10 Driver Total Power Consumption
:External 10 Frequency

:Number of Extemal 10 Pins

:Logic Out 10 Driver Static Power Consumption
:Logic Out |0 Driver Dynamic Power Consumption

'
a0 TP

constraints

{{af={ay*{c}*{dH+{al* b}*{cF{el

constraints

{Al=fal{c}* {di+al{b}*{c}{el}

<<constraintBlock>>
Number of Drivers per Logic 10

<<constraintBlock>>
Number of Drivers per Logic Out |10

- a :Logic IO Frequency
- A :Number of Drivers per Logic IO

- a :Extemnal IO Frequency
- A :Number of Drivers per Logic Out IO

constraints
{{A}=ROUNDUP((Log({a}*1000) *1024)/(Log(0.3%1000)*10),0)}

constraints
{{A}=ROUNDUP((Log({a}*1000) *1024)/(Log(0.3*1000)*10),0)}

Fig. A.28 Detail of logic 10 constraint block.
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ibd [Block] Logic 10 Driver [Logic 10 Driver] )

ibd [Block] Logic 10 Driver [Logic 10 Driver])

<< rty>> << >>
. prop? y 3 . pro'p i . <<property>>
:Logic 10 Driver Static Logic 10 Driver Dynamic . "
i . :Logic 10 Driver Are
Power Consumption Power Consumption

Fig. A.29 Logic 10 driver internal block diagram.

par [Block] Logic 10 Driver [Power Consumption] /

par [Block] Logic 10 Driver [Power Consumption]/

<<property>>
:Logic 10 MPU Gate Static
Power Consumption

<<property>>
Logic 10 Driver Static Power|
Consumption

: Logic |0 Driver Static 1
Power Consumption

<<Lproperty>>
—tNumber of Transistors per
Logic 10 MPU Gate

<<property>>
:Logic 10 Driver Dynamic
Power Consumption

<<property>>
Logic |10 MPU Gate Dynamic
Power Consumption

: Logic IO Driver Dynamic]
Power Consumption

(a) Power consumption.

par [Block] Logic 10 Driver [Cost] /

par [Block] Logic 10 Driver [Cost])

<<property>>
[ |:Logic 10 MPU Gate
Area
<<property>> : Logic 10
:Logic 10 Driver Area Driver Area
<<property>>

| :Logic 10 MPU Area
Use Efficiency

(b) Cost.
Fig. A.30 Logic IO driver parametric diagram.
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bdd [Package] Constraint [Logic 10 Driver] /J

<<constraintBlock>> <<constraintBlock>>
Logic 10 Driver Dynamic Power Consumption Logic 10 Driver Area
- a :Number of Transistors per Logic I0 MPU Gate - a :Logic 10 MPU Gate Area
- b :Logic 10 MPU Gate Dynamic Power Consumption - b :Logic IO MPU Area Use Efficiency
- X :Logic 10 Driver Dynamic Power Consumption - x :Logic IO Driver Area
constraints constraints
{{x}={a}*{b}} {{x}={al/{b}}

<<constraintBlock>>
Logic 10 Driver Static Power Consumption

- a :Number of Transistors per Logic I0 MPU Gate
- b :lLogic I0 MPU Gate Static Power Consumption
- x :lLogic 10 Driver Static Power Consumption

constraints

{{x}={a}*{b}}

Fig. A.31 Detail of logic 10 driver constraint block.

ibd [Block] Logic 10 MPU Gate [Logic |0 MPU Gate] /l

ibd [Block] Logic IO MPU Gate [Logic |0 MPU Gate])

<<property>> <<property>> <<property>>
:Logic 10 MPU Gate Dynamic | iLogic |0 MPU Gate Static Power| | :Logic 10 MPU Gate Leakege
Power Consumption Consumption Current

<<property>>
:Logic 10 MPU Gate Parasitic
Capacitance

<<property>>
:Logic 10 MPU Gate Area

Fig. A.32 Logic 10 MPU gate internal block diagram.

par [Block] Logic 10 MPU Gate [Power Consumption] /

par [Block] Logic 10 MPU Gate [Power Consumpt'lnn]) <<property>>
:Logic 10 MPU Gate
: Logic 10 MPU Gate Capacitance
Parasitic Capacitance
<<property>>
; / Logic 10 MPU Gate Length
<<property>>
:Logic 10 MPU Gate
o <<property>> ) : Logic 10 MPU Gate Parasitic Capacitance
lLogic 10 MPU Gate D_ynamlc Dynamic Power Consumption
Power Consumption <<property>>
:Power Supply Voltage
<<property>> . L
Loic 10| MPU coe : Logic 10 MPU Gate Static
-Logic e Power Consumption
Power Consumption P <<property>>
Logic 10 MPU Gate Leakege
Current
<<property>>
Logic |0 MPU Gate Aspect]
: Logic 10 MPU Gate Batic
Leakege Current
<<property>>
" iLogic 10 MPU Gate Subthreshould
Leakage Current

(@) Power consumption.
Fig. A.33 Logic 10 MPU gate parametric diagram.
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par [Block] Logic 10 MPU Gate [Cost] ) I

par [Block] Logic 10 MPU Gate [Cost])

<<property>> _

: : Logic 10 MPU <<property>>

Logic 10 MPU Gate ) I
Area Gate Area :Logic 10 Gate Size

(b) Cost.
Fig. A.33 Continued.

bdd [Package] Constraint [Logic IO MPU Gate] /

<<constraintBlock>> <<constraintBlock>>
Logic 10 MPU Gate Leakege Current Logic 10 MPU Gate Parasitic Capacitance
- a :Logic IO MPU Gate Subthreshould Leakage Current - a :Logic IO MPU Gate Length
- b :lLogic 10 MPU Gate Length - b :Logic 10 MPU Gate Capacitance
- ¢ :Logic 10 MPU Gate Aspect Ratio - ¢ :Logic 10 MPU Gate Aspect Ratio
- x :Logic I0 MPU Gate Leakege Current - x :Logic I0 MPU Gate Parasitic Capacitance
constraints constraints
{x}=({a¥*{b}*{c}*10"(-6))/1000} {x}=({a}*{b}*{c})/1000}
<<constraintBlock>> <<constraintBlock>>
Logic 10 MPU Gate Static Power Consumption Logic 10 MPU Gate Dynamic Power Consumption
- a :Power Supply Voltage - a :Logic 0 MPU Gate Parasitic Capacitance
- b :Logic IO MPU Gate Leakege Current - b :Power Supply Voltage
- x :Logic IO MPU Gate Static Power Consumption - x :Logic IO MPU Gate Dynamic Power Consumption
constraints constraints
{{x}={a}*{b}} {{x}=({a}*{b}~2*10"9)/2}

<<constraintBlock>>
Logic 10 MPU Gate Area

- a :logic 10 Gate Size
- x :Logic IO MPU Gate Area

constraints

{{x}={a}*107(-6)}

Fig. A.34 Detail of logic IO MPU gate constraint block.

ibd [Block] Logic Out 10 Driver [Logic Out 10 Driver]

ibd [Block] Logic Out 10 Driver [Logic Out 10 Driver])

<<property>> <<property>>
:Logic Out 10 Driver Static :Logic Out 10 Driver Dynamic
Power Consumption Power Consumption
<<property>>
:Logic Out |0 Driver Area

Fig. A.35 Logic out 10 driver internal block diagram.
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par [Block] Logic Out I0 Driver [Power Consumption] /

par [Block] Logic Out 10 Driver [Power Consumption])

Logic Out 10 Driver Static Power

<<property>>

Consumption

:Logic Out 10 Driver Dynamic

<<property>>

Power Consumption

<<property>>
Logic Out 10 MPU Gate Static
(" h Power Consumption
: Logic Out IO Driver Static
Power Consumption
N ) <<property>>
Number of Transistors per Logid
™ Out 10 MPU Gate
: Logic Out IO Driver Dynamic
Power Consumption
\ J <<property>>

:Logic Out 10 MPU Gate
Dynamic Power Consumption|

(@) Power consumption.

par [Block] Logic Out 10 Driver [Cost]

par [Block] Logic Out 10 Driver [Cost])

<<property>>
:Logic Out |0 Driver
Area

<<property>>
(Logic Out 10 MPU Gate
Area

: Logic Out IO

Driver Area

<<property>>
Logic Out IO MPU Area
Use Efficiency

(b) Cost.

Fig. A.36 Logic out 10O driver parametric diagram.

bdd [Package] Constraint [Logic Out 10 Driver] /

Logic Out 10 Driver Dynamic Power Consumption Logic Out 10 Driver Static Power Consumption
- a :Number of Transistors per Logic Out IO MPU Gate - a :Number of Transistors per Logic Out I0 MPU Gate
- b :Logic Out |0 MPU Gate Dynamic Power Consumption - b :Logic Out |0 MPU Gate Static Power Consumption
- X :lLogic Out 10 Driver Dynamic Power Consumption - X :Logic Out 10 Driver Static Power Consumption
constraints constraints
{{x}={a}*{b}} {{x}={a}*{b}}

Logic Out 10 Driver Area

a :Logic Out IO MPU Gate Area

b :Logic Out 10 MPU Area Use Efficiency

X :Logic Out IO Driver Area

constraints

{{x}={a}/{b}}

Fig. A.37 Detail of logic out IO driver constraint block.
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ibd [Block] Logic Out I0 MPU Gate [Logic Out 10 MPU Gate] )

ibd [Block] Logic Out 10 MPU Gate [Logic Out |10 MPU Gate]/

Pynamic Power Consumptior

<<property>>
:Logic Out 10 MPU Gate

jLogic Out 10 MPU Gate Statig

<<property>>

Power Consumption

<<property>>
:Logic Out 10 MPU Gate
Leakege Current

<<property>>
:Logic Out 10 MPU Gate
Parasitic Capacitance

<<property>>
:Logic Out 10 MPU Gate Area

Fig. A.38 Logic out 10 MPU gate internal block diagram.

par [Block] Logic Out 10 MPU Gate [Power Consumption] /

par [Block] Logic Qut 10 MPU Gate [Power Consumption] /

.

: Logic Out 10 MPU Gate

Parasitic Capacitance
A

~

<<property>>
:Logic Out 10 MPU Gate
Capacitance

y

{

<<property>>

:Logic Out 10 MPU Gate
Dynamic Power Consumptior

Consumption

Dynamic Power

: Logic Out IO MPU Gate

<<property>>
:Logic Out 10 MPU Gate
Parasitic Capacitance

<<property>>
:External Interconnect
Parasitic Capacitance

<<property>>

:Logic Out 10 MPU Gate
btatic Power Consumption

: Logic Out IO MPU Gate

Static Power Consumption

<<property>>
:Power Supply Voltage

:Logic Out 10 MPU Gate

<<property>>

<<property>>
:Logic Out 10 MPU Gate
Length

Leakege Current

]

: Logic Out 10 MPU Gate

Leakege Current

<<property>>
:Logic Out I0 MPU Gate
Aspect Ratio

<<property>>
:Logic Out 10 MPU Gate
Subthreshould Leakage Current

par [Block] Logic Out 10 MPU Gate [Cost]

(a) Power consumption.

/

par [Block] Logic Out 10 MPU Gate [Ccust])

:Logic Out 10 MPU

<<property>>

Gate Area

: Logic Out IO

MPU Gate Area

<<property>>
:Logic Out |0 Gate Siz

Fig. A.39 Logic out IO MPU gate parametric diagram.

(b) Cost.
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bdd [Package] Constraint [Logic Out I0 MPU Gate] /

<<constraintBlock>>
Logic Out 10 MPU Gate Area

a :Logic Out IO Gate Size
x :Logic Out |0 MPU Gate Area

constraints

{ix}={a}*107(-6)}

<<constraintBlock>>

<<constraintBlock>>
Logic Out I0 MPU Gate Parasitic Capacitance

Logic Out 10 MPU Gate Static Power Consumption

a :Logic Out 10 MPU Gate Length

b :Logic Out 10 MPU Gate Capacitance

c :Logic Out 10 MPU Gate Aspect Ratio

x :Logic Out I0 MPU Gate Parasitic Capacitance

a :Power Supply Voltage
b :Logic Out IO MPU Gate Leakege Current
x :Logic Out 10 MPU Gate Static Power Consumption

constraints N
constraints

{{x}={a}*{b}}
{{x}=({a}*{b}*{c})/1000}
<<constraintBlock>> <<constraintBlock>>

Logic Out 10 MPU Gate Dynamic Power Consumption Logic Out 10 MPU Gate Leakege Current

a :Logic Out I0 MPU Gate Parasitic Capacitance a :Logic Out 10 MPU Gate Subthreshould Leakage Current

b :External Interconnect Parasitic Capacitance b :Logic Out 10 MPU Gate Length

c :Power Supply Voltage c :Logic Out IO MPU Gate Aspect Ratio

x :Logic Out 10 MPU Gate Dynamic Power Consumption X :Logic Out I0 MPU Gate Leakege Current

constraints constraints

{ix}=(({a}+{b})*{c}*2*1019)/2} {{x}=({a}*{b}*{c}*10%(-6))/1000}

Fig. A.40 Detail of logic out IO MPU gate constraint block.

Fig. A41 120 ¥y 7 70— S VERONET 1 719, Fig. Ad2@)lcn Py 7 7 —s
NEROWBRENIHT 5757 2 1 U v 7, Fig AL » 7 70— SURROMEE
BT 5757 A 1Y o 7 BERT . i, Fig A3 SRRSO R LI o 7 B
7,

Fig. Ad4 |2 AEY F v 7ONET 1 v 7K, Fig. A45@ICAETY F v 7OHEEINH
F587 A b U v ZI, Fig A4SOIZAE Y F v 7 OMEEIT 5737 2 b U » 714, Fig
AASIZAEY F v FDaA MBIT 535 A kYU v 2 [E7d, £7-. Fig A. 46 [CHH9
ROFEME R L7 0 v 7 RERT,

Fig. A47 \ZERLIBRIES OWNE 7 v v 7 X, Fig. A48(a)ll LB OEEEICHET 5
XT A MY w7 M Fig. AA48(b)C FERLIBIFIE OMEREIZB T 537 A U » 7 [ Fig. A.48(c)
(C MO 2 2 MCBET 585 2 M) v 27 RERT, £7-, Fig A49 ([ZHIKIZOZEM
AR LioTwy 7 MERT,

Fig. AS0 12 A 1 ¥ A U R LOWET B v 2 [, Fig ASI@ICAA ¥ AT Y LD
EINCBIT B8 A B Y v 7, Fig ASIOICAA > AE Y LA OHEREICET 557 A b
U v 74, Fig. ASIICAA L AEY EALDA R MIETHF X M) w7 KE2RT, %
7=, Fig. AS2 IZHIKROFEME R LT-7 0 v 7 [XERT,

159



ibd [Block] Logic Global Interconnect [Logic Global Interconnect]

ibd [Block] Logic Global Interconnect [Logic Global Interconnect])

<<property>> <<property>>
:Logic Chip Total Interconnect Power|
Interconnect Length Index

<<property>>
:‘Logic Chip Area(Except
Logic Chip 10)

Fig. A.41 Logic global interconnect internal block diagram.

par [Block] Logic Global Interconnect [Power Consumption] /

ar [Block] Logic Global Interconnect [Power Consumption
p g p
<<propeityee <<property>>
:General Processing :Cashe Memory Area
Circuit Area
\ |
<< >>
. ) property } : Logic Chip Area(Except
r—tLogic Chip Area(Except Logic Logic Chip I0)
Chip 10)
<<property>> - <<property>>
:Logic Global Interconnect H LOE;;(;Logj:‘;:ﬁm?::eﬂ :General Processing
Power Consumption Pt Circuit Frequency
<<property>>
L — rtyP : Interconnect <<property>>
Interconnect Power| Power (o Power INdoN
Index

(a) Power consumption.

par [Block] Logic Global Interconnect [Performance] /

par [Block] Logic Global Interconnect [Performance])

<<property>> e chi | <<property>>
:Logic Chip Total | 'tLOg'C € 'f :’otath :Logic Chip Area(Except
Interconnect Length nierconnect e Logic Chip 10)

b !

<<property>> . ) .
. : Logic Global : Logic Chip Area(Except
Logic Global Interconnect| ! . .
" Interconnect Delay Time| Logic Chip 10)
Delay Time
<<property>>
:Delay Time per Logic Global
Interconnect Length <<pf0PeftV>>_ <<property>>
:General Processing Cashe Mema oy
Circuit Area . Vi

(b) Performance.
Fig. A.42 Logic global interconnect parametric diagram.
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bdd [Package] Constraint [Logic Global Interconnect] )

<<constraintBlock>>

Logic Global Interconnect Power Consumption

a :Interconnect Power Index

A :Logic Global Interconnect Power Consumption
b :Logic Chip Area(Except Logic Chip 10)

¢ :General Processing Circuit Frequency

<<constraintBlock>>
Logic Global Interconnect Delay Time

- A logic Global Interconnect Delay Time
- a :Logic Chip Total Interconnect Length
- b :Delay Time per Logic Global Interconnect Length

constraints

{{Al={a}* {c}* {b}}

{{a}={a}*{bl}

constraints

<<constraintBlock>>
Logic Chip Area(Except Logic Chip 10)

A :Logic Chip Area(Except Logic Chip 10)

a :General Processing Circuit Area
b :Cashe Memory Area

<<constraintBlock>>
Logic Chip Total Interconnect Length

<<constraintBlock>>
Interconnect Power Index

- a :Logic Chip Area(Except Logic Chip IO) -
- A :Logic Chip Total Interconnect Length -

a :Power Index
A :Interconnect Power Index

constraints

{{A}={al+{bl}

constraints

{{A}=sQRT({a})/2}

constraints

{{A}={a}/100}

Fig. A.43 Detail of logic global interconnect constraint block.

ibd [Block] Memory Chip [Memory Chip] J

ibd [Block] Memory Chip [Memory Chip])
<<property>> <<property>> <<property>> <<property>>
:Memory Chip Power :Memory Chip Cost :Memory Chip Die Size :Memory Chip Delay
Consumption Time(Circuit)
<<property>> <<property>>
:Memory Chip Delay :Memory Chip Signal
Time(lJisso) Speed
<<property>> <<property>> <<property>> <<property>>
:Memory Chip :Dummy Memory Chip :Dummy Memory Chip :Dummy Memory Chip
CoO(45nm) CoOL(45nm) CoOL(45nm)A CoOL(45nm)B
<<property>> <<property>> <<property>> <<property>>
:Memory Chip :Dummy Memory Chip :Dummy Memory Chip :Dummy Memory Chip
Co0(65nm) CoOL(65nm) CoOL(65nm)A CoOL(65nm)B
<<property>> <<property>> <<property>> <<property>>
:Memory Chip :Dummy Memory Chip :Dummy Memory Chip :Dummy Memory Chip
Co0(90nm) CoOL(90nm) CoOL(90nm)A CoOL(90nm)B
<<property>> <<property>> <<property>> <<property>>
:Memory Chip CoO :Dummy Memory Chip :Dummy Memory Chip :Dummy Memory Chip
Co0S(45nm) CoOS(45nm)A Co05(45nm)B
<<property>> <<property>> <<property>> <<property>>
Dummy Memory Chip :Dummy Memory Chip :Dummy Memory Chip :Dummy Memory Chip
CoOA Co0S(65nm) Co05(65nm)A Co0S(65nm)B
<<property>> <<property>> <<property>> <<property>>
Dummy Memory Chip :Dummy Memory Chip :Dummy Memory Chip :Dummy Memory Chip
CoOB Co05(90nm) Co0S5(90nm)A Co05(90nm)B

Fig. A.44 Memory chip internal block diagram.
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par [Block] Memory Chip [Power Consumption] /

par [Block] Memory Chip [Power Consumption])

<<property>>
:Memory Chip Power
Consumption

: Memory Chip Power
Consumption

<<property>>
:Memory 10 Power
Consumption

<<property>>

tMain Memory Circuit

Power Consumption

(@) Power consumption.

par [Block] Memory Chip [Performance] /

par [Block] Memory Chip [Performance])

<<property>>
Memory Chip Delay
Time(Circuit)

: Memory Chip
Delay Time(Circuit)

<<property>> I
! : Memory Chip
Memory ChipiEegy Delay Time(Jisso)
Time(Jisso) Y

<<property>>
:Memory Global
Interconnect Delay Time

<<property>>
Dummy Main Memory
Cell Delay Time
<<property>>
:Memory Chip
Thickness
<<property>>
e I y>. : Memory Chip
Memory Chip Signa Sienal Spoil
Speed g P
<<property>> <<property>>
:Memory Chip :Light Speed
Relative Permittivity
<<property>>
:Memory Chip
Relative Permeability

(b) Performance.

Fig. A.45 Memory chip parametric diagram.
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bdd [Package] Constraint [Memory Chip] )

< . <<constraintBlock>>
<<constraintBlock>> cons ralv ?C N Memory Chip CoO
. Memory Chip Die Size
Memory Chip Cost .
. - A :Memory Chip CoO
. - A :Memory Chip Die Size
- a :Memory Chip CoO . . L - a :Technology Node
i - a :Main Memory Circuit Area .
- A :Memory Chip Cost - b :Memory Chip CoO(90nm)
. - b :Memory 10 Area \
- b :Number of Memory Chip Masks h - ¢ :Memory Chip CoO(65nm)
¢ :Memory Chip Spare Area )
. - d :Memory Chip CoO(45nm)
constringy constraints
{{A}={a}*{b}} constraints
Al=(SQRT({a}+{b})+{c}*2)"2
(A oRT(EH ({A)=IF({a}=00, {0} F({a}=65,{c} IF({2}-45, c} )}
<<constraintBlock>> <<constraintBlock>>
Memory Chip Delay Time(Circuit) Memory Chip Delay Time(Jisso)
a :Dummy Main Memory Cell Delay Time - A :Memory Chip Delay Time(Jisso)
A :Memory Chip Delay Time(Circuit) - a :Memory Chip Thickness
b :Memory Global Interconnect Delay Time - b :Memory Chip Signal Speed
constraints constraints
{{a}={a}+{b}*2} {{a}={al/{b}}

<<constraintBlock>>
Memory Chip Signal Speed

<<constraintBlock>>
Memory Chip Power Consumption

- a :light Speed

- b :Memory Chip Relative Permittivity
- ¢ :Memory Chip Relative Permeability
- x :Memory Chip Signal Speed

- a :Main Memory Circuit Power Consumption
- A :Memory Chip Power Consumption
- b :Memory IO Power Consumption

5 constraints
constraints

{={a)/(SQRT((BY/ ]} HA=ta) bl

<<constraintBlock>>
Dummy Memory Chip CoOA

- a :Memory Chip Defect Density
- X :Dummy Memory Chip CoOA

constraints
{{x}=(INDEX(Co0Q!B3:B51, MATCH(VLOOKUP({a}, CoO!B3:B51,1), Co0!B3:B51)+1,)-INDEX(CoQ!B3:B51,MATCH(VLOOKUP({a}, Co0'B3:B51,1), CoO!B3:B51),))}

<<constraintBlock>>
Dummy Memory Chip CoOB

- a :Memory Chip Defect Density
- X :Dummy Memory Chip CoOB

constraints
{{x}=({a}-INDEX(CoO!B3:B51, MATCH(VLOOKUP({a}, Co0!B3:B51,1), Co0!B3:851),))}

Fig. A.46 Detail of memory chip constraint block.
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ibd [Block] Main Memory Circuit [Main Memory Circuit]

/

ibd [Block] Main Memory Circuit [Main Memory Circuit])

<<property>> <<property>> <<property>>
:Main Memory Circuit :Number of Memory :Memory
Power Consumption Active Bits Capacitance(bit)
<<property>> <<property>>
:Main Memory Circuit PPDummy Main Memory
Area Cell Delay Time

Fig. A.47 Main memory circuit internal block diagram.

ibd [Block] Main Memory Circuit [Power Consumption] /

ibd [Block] Main Memory Circuit [Power Consumption]/

<<property>>
‘Memory Frequency

<<property>>
:Number of Logic Chips

<<property>>

<<property>>
:Basic Memory
Capacitance(GB)

S
: Memory

Capacitance(bit)
Ne————

Main Memory Circuit Power|
Consumption

: Main Memory Circuit POWEI:]

Consumption J

<<property>>

:Main Memory Cell Static

Power Consumption

<<property>>
:Main Memory Cell Dynamic
Power Consumption

<<property>>
:Memory
Capacitance(bit)
<<property>> : Number of Memory
:Number of Memory Active Bits
Active Bits
<<property>>

‘Active Memory Rate

(a) Power consumption.

Fig. A.48 Main memory circuit parametric diagram.
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ibd [Block] Main Memory Circuit [Performance] /

ibd [Block] Main Memory Circuit [Performance])

<<property>> ! <<property>>
. : Dummy Main Memory . Prope
Dummy Main Memory| Cell Delay IS :Main Memory Cell
Cell Delay Time Delay Time
(b) Performance.
ibd [Block] Main Memory Circuit [Cost] /
ibd [Block] Main Memory Circuit [Cost]/
r ™\
<<property>> : Memory <<property>>
:Memory Capacitance(bit) :Basic Memory
Capacitance(bit) L J Capacitance(GB)
<<property>>
:Number of Logic
. <<property>? i : Main Memory | s
Main MeAmory Circuit Gircuitaren J =propen
rea
:Main Memory Cell
Area <<property>>
- Ny :Memory RAM Typ
<<propertis : Memory RAM
fMemory MM Area Area Use Efficiency
Use Efficiency L J <<property>>
:Technology Node

(c) Cost.

Fig. A.48 Continued.
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ibd [Block] Main Memory Cell [Main Memory Cell]

ibd [Block] Main Memory Cell [Main Memory Cell])

<<property>>
:Main Memory Cell Dynamic
Power Consumption

<<property>>
iMain Memory Cell Static Power
Consumption

<<property>>
:Main Memory Cell
Delay Time

<<property>>
:Main Memory Cell

Area

Fig. A.50 Main memory cell internal block diagram.

par [Block] Main Memory Cell [Power Consumption] /

par [Block] Main Memory Cell [Power Consumption])

<<property>>
{Main Memory Cell Dynami
Power Consumption

-

: Main Memory Cell Dynamic
Power Consumption

_/

) <<property>>

Memory RAM Dynamic
Power Consumption

<<property>>

{Main Memory Cell Stati
Power Consumption

: Main Memory Cell Static
Power Consumption

~

<<property>>
Memory RAM Static
Power Consumption

(@) Power consumption.

par [Block] Main Memory Cell [Performance] /

par [Block] Main Memory Cell [Performance]/

<<property>>

Delay Time

:Main Memory Cell

Main Memory Cell
Delay Time

<<property>>
Memory RAM Delay
Time

(b) Performance.

Fig. A.51 Main memory circuit parametric diagram.
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par [Block] Main Memory Cell [Cost] | ‘

par [Block] Main Memory Cell [Cost])

<<property>> ) <<property>>
:Main Memory Cell - Main My :Memory RAM Cell
Cell Area .
Area Size

(c) Cost.
Fig. A.51 Continued.

bdd [Package] Constraint [Main Memory Cell] /
<<constraintBlock>> <<constraintBlock>>
Main Memory Cell Delay Time Main Memory Cell Area
a :Memory RAM Delay Time - a :Memory RAM Cell Size
x :Main Memory Cell Delay Time - x :Main Memory Cell Area
constraints constraints
{{x}={a}*1073} {{x}={a}*10"(-6)}
<<constraintBlock>> <<constraintBlock>>
Main Memory Cell Dynamic Power Consumption Main Memory Cell Static Power Consumption
a :Memory RAM Dynamic Power Consumption - a :Memory RAM Static Power Consumption
x :Main Memory Cell Dynamic Power Consumption - x :Main Memory Cell Static Power Consumption
constraints constraints
{{x}={al} {ix}={a}*107(-3)}

Fig. A.52 Detail of main memory circuit constraint block.

Fig. AS3 12 AE Y 10 DNE 7 1 v 7 X, Fig. A.54@)Z A E Y 10 ODIEEEINCET 58
ZF A MU w7, Fig. AS4OICAEY 10 DA MIEHTH/T A MY w7 XERdT, F
7o, Fig. AS5 IZHIKROFEMZ R L7 v v 7 KMERT,

Fig. AS6 IZAEY I0 RTANONEHT 1= > 7K, Fig. AST@IZAEY 10 K74 /30D
BENETEH7 A RY v 7K, Fig. ASTONZATEY 10 RTA "D a A MIEET 58
T AR v 7 ®ERT, 72, Fig. ASSICHINROFEMZ R LI-7 1 v 7 MERT,

Fig. A.59 IZ A€ U IOMPU 7' — F ®O#E 7 @ v 7 [, Fig. A.60(a)lZ A & Y IOMPU #— h
DWHEEBEINCET 237 2 MY v 7K, Fig. A.60(b)IZAE Y IOMPU 7 — D=2 & NI
T 587 A MY w7 &R, F72 Fig. A.61 IZHIFIRNOFEMEZ R LIz 7 v v 7 KERT,
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ibd [Block] Memory IO [Memory I0]

ibd [Block] Memory 10 [Memory IO])

<<property>>
:Memory |0 Power
Consumption

<<property>>
:Logic-Memory Band
Width(M)

<<property>> <<property>>
Number of Drivers pery [Memory IO Frequency
Memory 10
<<property>> <<property>>
:Memory 10 Area :Total Number of Pins

Fig. A.53 Memory IO internal block diagram.

par [Block] Memory 10 [Power Consumption] )

par [Block] Memory 10 [Power Consumption])

<<property>> <<property>>
:Logic Block :Bit Length per
Frequency Instruction
<<property>> <<property>>

Number of Instructions of Genera
Processing Circuit

Rate

'S
: Logic-Memory
Band Width(M)

—_—

<<property>> - Number of ) <<property>>
tNumber of Drivers Drivers per :Logic-Memory
per Memory IO L Memory IO Band Width(M)
<<property>> 6 - i B
— :Memoryl0 <+ ° emon
Frequency
<<property>> : Memory 10 Frequency L i
tMemory 10 Power| Power /b
Consumption Consumption
<<property>>
Number of Signa
10 Pins
[ ]
<<property>> <<property>>
Memory IO Driver Static Memory IO Driver Dynamig
Power Consumption Power Consumption

(a) Power consumption.

Fig. A.54 Memory IO parametric diagram.
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par [Block] Memory 10 [Cost] /

par [Block] Memory 10 [Cost]/

<<property>> <<property>>
:Memory 10 :Memory TSV
Driver Area Area

]

<<property>>
Total Number of

Pins

<<property>> : Memory 10
:Memory 10 Area Area

: Total Number
of Pins

<<property>>

<<property>>
Number of Drivers pen
Memory 10

: Number of Drivers
per Memory 10

Number of Signal

10 Pins

<<property>>
:Memory 10

: Memory 10
Frequency

Frequency
<<property>>
:Logic-Memory
Band Width(M)
: Logic-Memory
Band Width(M)
. I
<<property>> <<property>>
:Bit Length per ‘Logic Block
Instruction Frequency
<<property>> <<property>>
:Cashe Memory | [Number of Instructions of
Hit Rate General Processing Circuit

(b) Cost.
Fig. A.54 Continued.
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bdd [Package] Constraint [Memory 10] /

<<constraintBlock>>
Memory 10 Area

<<constraintBlock>>

- a :Number of Signal 10 Pins

- A :Memory 10 Area Total Number of Pins

- b :Total Number of Pins - a :Number of Signal 10 Pins
- ¢ :Number of Drivers per Memory |0 - A -Total Number of Pins

- d :Memory IO Driver Area ;

- e :Memory TSV Area constigiey

{{Al={a}*3}

constraints

{{A)={a}*{c}*{dH+{b}* {e}}

<<constraintBlock>>

<<constraintBlock>> Memory IO Frequency

Number of Drivers per Memory 10

- A :Memory |0 Frequency

| R dameny L SElEns, - a :Logic-Memory Band Width(M)

- A :Number of Drivers per Memory 10 - b :Number of Signal 10 Pins
{A}=ROUNDU P((Log({a}*igggt)r"‘alfgtzsﬂf)/(Log(O 3*1000)*10),0)} constroiesy
) ’ {{Al={al/{b}}

<<constraintBlock>>
Memory 10 Power Consumption

<<constraintBlock>>
Logic-Memory Band Width(M)

:Number of Drivers per Memory 10

:Memory |0 Power Consumption

:Memory |0 Frequency

:Number of Signal 10 Pins

:Memory 10 Driver Static Power Consumption
:Memory 10 Driver Dynamic Power Consumption

:Logic-Memory Band Width(M)

:Number of Instructions of General Processing Circuit
:Logic Block Frequency

:Bit Length per Instruction

:Cashe Memory Hit Rate

|

DT oo o>
|

o0 oo B

constraints

{{A}={a}*{b}*{c}*(1-{d})}

constraints

{Al={ay*{c}*{d}+{a}* {b}*{c}*{e}}

Fig. A.55 Detail of memory 10 constraint block.

. ibd [Block] Memory 10 Driver [Memory 10 Driver]

ibd [Block] Memory 10 Driver [Memory I0 Driver])
<<property>> <<property>>
:Memory |10 Driver Static Memory 10 Driver Dynamic
Power Consumption Power Consumption
<<property>>
Memory 10 Driver,
Area

Fig. A.56 Memory IO driver internal block diagram.
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par [Block] Memory IO Driver [Power Consumption]

/

par [Block] Memory 10 Driver [Power Consumption]/

<<property>>
Memory MPU Gate Dynamig

<<property>>
:Memory 10 Driver Dynamic
Power Consumption

: Memory |10 Driver Dynamic
Power Consumption

<<property>>
:Memory IO Driver Static Powe
Consumption

: Memory 10 Driver Static
Power Consumption

) Power Consumption
J <<property>>
| :Number of Transistors per
) Memory |0 MPU Gate
/ <<property>>
— {Memory |0 MPU Gate Statig
Power Consumption

(a) Power consumption.

par [Block] Memory IO Driver [Cost]

]

par [Block] Memory IO Driver [Cost])

<<property>>
:Memory 10 MPU
Gate Area
<<property>>
M = plort:') I : Memory 10
Fviemory ey Driver Area
Area
<<property>>

:Memory 10 MPU
Area Use Efficiency

(b) Cost.
Fig. A.57 Memory IO driver parametric diagram.

bdd [Package] Constraint [Memory 10 Driver] )

<<constraintBlock>>
Memory 10 Driver Area

- a :Memory IO MPU Gate Area
- b :Memory IO MPU Area Use Efficiency
- X :Memory 10 Driver Area

constraints

{{x}={al/{b}}

<<constraintBlock>>
Memory 10 Driver Dynamic Power Consumption

<<constraintBlock>>
Memory IO Driver Static Power Consumption

- a :Number of Transistors per Memory IO MPU Gate
- b :Memory MPU Gate Dynamic Power Consumption
- X :Memory IO Driver Dynamic Power Consumption

- a :Number of Transistors per Memory IO MPU Gate
- b :Memory IO MPU Gate Static Power Consumption
- X :Memory IO Driver Static Power Consumption

constraints

{i={a}*{b}}

constraints

{x}={a}*{b}}

Fig. A.58 Detail of memory 10 driver constraint block.
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ibd [Block] Memory 10 MPU Gate [Memory I0 MPU Gate] p

J

ibd [Block] Memory I0 MPU Gate [Memory 10 MPU Gate])

<<property>>
Memory MPU Gate Dynamic
Power Consumption

<<property>>
Memory 10 MPU Gate Statig
Power Consumption

<<property>>
Memory 10 MPU Gat
Leakege Current

<<property>>
tMemory 10 MPU Gate!
Parasitic Capacitance

<<property>>
tMemory 10 MPU Gate
Area

Fig. A.59 Memory 10 MPU gate internal block diagram.

par [Block] Memory 10 MPU Gate [Power Consumption] /

par [Block] Memory 10 MPU Gate [Power Consumption]/

R

Nmae

: Memory IO MPU Gate

<<property>>

Parasitic Capacitance

<<propery>>
Memory MPU Gate Dynamig

=

Power Consumption

: Memory MPU Gate W

Dynamic Power Consumptiorj

<<property>>
:Memory 10 MPU Gate
Parasitic Capacitance

<<property>>
:Power Supply Voltage

<<property>>
Memory 10 MPU Gate Static
Power Consumption

: Memory |0 MPU Gate ]

Static Power Consumption

<<property>>
:Memory 10 MPU Gate
Leakege Current

]

:Memory 10 MPU Gate
Capacitance

<<property>>

:Memory 10 MPU Gate
Length

<<property>>

: Memory |0 MPU Gate
Leakege Current

:Memory 10 MPU Gate
Aspect Ratio

<<property>>

m :Memory 10 MPU Gate

Subthreshould Leakage Current

(a) Power consumption.
Fig. A.60 Memory 10 MPU gate parametric diagram.
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par [Block] Memory 10 MPU Gate [Cost]

par [Block] Memory 10 MPU Gate [Cost])

<<property>> <<property>>
™ o yIVIPU : Memoryi :Memory 10 Gate
‘Memory 10 MPU Gate Area ' y

Gate Area Size

(b) Cost.
Fig. A.60 Memory 10 MPU gate parametric diagram.

bdd [Package] Constraint [Memory 10 MPU Gate] /

<<constraintBlock>>
Memory 10 MPU Gate Area

- a :Memory IO Gate Size
- x :Memory IO MPU Gate Area

constraints

{{x}={a}*107(-6)}

<<constraintBlock>>
Memory MPU Gate Dynamic Power Consumption

<<constraintBlock>>
Memory 10 MPU Gate Static Power Consumption

- a :Memory IO MPU Gate Parasitic Capacitance
- b :Power Supply Voltage
- X :Memory MPU Gate Dynamic Power Consumption

- a :Memory IO MPU Gate Leakege Current
- b :Power Supply Voltage
- X :Memory IO MPU Gate Static Power Consumption

constraints
{ix}=({a}*{b}r2*1019)/2}

constraints

{bd={a}*{bl}

<<constraintBlock>>
Memory 10 MPU Gate Leakege Current

<<constraintBlock>>
Memory 10 MPU Gate Parasitic Capacitance

:Memory |O MPU Gate Subthreshould Leakage Current
:Memory IO MPU Gate Length

:Memory |10 MPU Gate Aspect Ratio

:Memory |0 MPU Gate Leakege Current

x O T W

:Memory |0 MPU Gate Length

:Memory |0 MPU Gate Capacitance
:Memory 10 MPU Gate Aspect Ratio
:Memory |0 MPU Gate Parasitic Capacitance

'
x O T w

constraints

{{x}=({a}*{b}*{c}*107(-6))/1000}

constraints

{{x}=({a}*{b}*{c})/1000}

Fig. A.61 Detail of memory 10 MPU gate constraint block.
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ibd [Block] Memory TSV [Memory TSV]

ibd [Block] Memory TSV [Memory TSV]/

<<property>>
:Memory TSV Area

Fig. A.62 Memory TSV internal block diagram.

par [Block] Memory TSV [Cost] p

par [Block] Memory TSV [Cost]/

<<property>> <<property>>
:Memory TSV Area : Memory TSV Area TSV Pitch

Fig. A.63 Memory TSV cost parametric diagram.
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bdd [Package] Constraint...

<<constraintBlock>>
Memory TSV Area

- a :TSV Pitch
- X :Memory TSV Area

constraints

{ixj={ai"2}

Fig. A.64 Detail of memory TSV constraint block.

ibd [Block] Memory Global Interconnect [Memory Global Interconnect] /|

ibd [Block] Memory Global Interconnect [Memory Global Interconnect]

<<property>> <<property>>
:Memory Global :Memory Chip Total
Interconnect Delay Time Interconnect Length

Fig. A.65 Memory global interconnect internal block diagram.

par [Block] Memory Global Interconnect [Performance] /

par [Block] Memory Global Interconnect [Performance])

<<property>>
:Memory Chip Total
Interconnect Length

: Memory Chip Total
Interconnect Length

<<property>>
Main Memory Circuit
Area

<<property>>
:Memory Global
Interconnect Delay Time

: Memory Global
Interconnect Delay Time

<<property>>
:Delay Time per Memory
Global Interconnect Length

Fig. A.66 Memory global interconnect performance parametric diagram.
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bdd [Package] Constraint [Memory Global Interconnect]

<<constraintBlock>>
Memory Global Interconnect Delay Time

- A :Memory Global Interconnect Delay Time
- a :Memory Chip Total Interconnect Length
- b :Delay Time per Memory Global Interconnect Length

constraints

{{A}={a}*{b}}

<<constraintBlock>>
Memory Chip Total Interconnect Length

- a :Main Memory Circuit Area
- A :Memory Chip Total Interconnect Length

constraints
{{A}=SQRT({a})/2}

Fig. A.67 Detail of memory global interconnect constraint block.

ibd [Block] lJisso [Jisso] ‘

ibd [Block] Jisso [Jisso])

<<property>> <<property>>
Jisso Cost :Jisso Delay Time

Fig. A.68 Jisso internal block diagram.

par [Block] Jisso [Performance]

par [Block] Jisso [Performance])

<<property>>
tinternal Bump Delay
Time
<<property>> : Jisso Delay
:Jisso Delay Time Time
<<property>>

:Board Delay Time

(a) Performance.
Fig. A.69 Jisso parametric diagram.
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par [Block] Jisso [Cost] /J

par [Block] Jisso [Cost])

<<property>>
:Board Cost

<<property>> <<property>>
:Jisso Cost : Jisso Cost sInternal Bump Cost

<<property>>
:External Bump Cost

(b) Cost.
Fig. A.69 Continued.

bdd [Package] Constraint [Jisso] ,J

<<constraintBlock>>

<<constraintBlock>> .
Jisso Cost

Jisso Delay Time

:Board Cost

) a
- :Board Delay T
a ‘board Leldy iy - A :Jisso Cost
b
C

- b :Internal Bump Delay Time

_ x isso Delay Ting :Internal Bump Cost

:External Bump Cost

constraints

constraints
{{x}={a}+{b}} {{A}={a}+{b}+{c}}

Fig. A.70 Detail of jisso constraint block.

ibd [Block] Board [Board]

ibd [Block] Board [Board] /

<<property>> <<property>>
:Board Delay Time :Board Signal Speed

Fig. A.71 Board internal block diagram.
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par [Block] Board [Performance] /

par [Block] Board [Perfurmance]/

<<property>>

Board Delay Time

: Board Delay
Time

<<property>>
:Board Thicknessl

<<property>>
:Board Signal
Speed

T
: Board Signal
Speed
N ————

<<property>>
:Board Relative
Permeability

<<property>>
:Light Speed

<<p ro pe r'ty>>
:Board Relative
Permittivity

Fig. A.72 Board performance parametric diagram.

bdd [Package] Constraint [Board]

<<constraintBlock>>
Board Signal Speed

1
x 0O o ©

:Light Speed

:Board Relative Permittivity
:Board Relative Permeability
:Board Signal Speed

<<constraintBlock>>
Board Delay Time

a :Board Thickness
b :Board Signal Speed
x :Board Delay Time

constraints

{{x}={a}/(SQRT({b}/{c})}

constraints

{{x}={a}/{b}}

Fig. A.73 Detail of board constraint block.
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ibd [Block] Internal Bump [Internal Bump]

ibd [Block] Internal Bump [Internal Bump]

<<property>> <<property>>
:Internal Bump :Internal Bump
Cost Delay Time

Fig. A.74 Internal bump internal block diagram.

par [Block] Internal Bump [Performance] /

par [Block] Internal Bump [Performance])

<<property>>

:Number of Logic
Chips

<<property>>
: Internal Bump
Internal Bump Delay Delay Time J

Time

<<property>>
Memory Bump Delay
Time

<<property>>

:Logic Bump Delay
Time

(a) Performance.

par [Block] Internal Bump [Cost] //|

par [Block] Internal Bump [Cost])

:Memory Bump Cost

<<property>>

<<property>> : Internal Bumpw

:Internal Bump Cost Cost J :Logic Bump Cost

<<property>>

—:Number of Logic

<<property>>

Chips

(b) Cost.

Fig. A.75 Internal bump performance parametric diagram.
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bdd [Package] Constraint [Internal Bump] /J

<<constraintBlock>> <<constraintBlock>>
Internal Bump Cost Internal Bump Delay Time

a :Memory Bump Cost - a :logic Bump Delay Time
- b :Number of Logic Chips - b :Memory Bump Delay Time
¢ :Logic Bump Cost - ¢ :Number of Logic Chips

x :Internal Bump Cost - X :Internal Bump Delay Time

constraints constraints

{{x}={a}*{b}+{c}} {{x}={a}+{b}*{c}}

Fig. A.76 Detail of internal bump constraint block.

ibd [Block] Logic Bump [Logic Bump]

ibd [Block] Logic Bump [Logic Bu mp])

<<property>> <<property>>
:Logic Bump Delay Logic Bump Signal
Time Speed

Fig. A.77 Logic bump internal block diagram.

par [Block] Logic Bump [Performance] /

par [Block] Logic Bump [Performance])
<<property>>
—:Logic Bump Relative
Permittivity
<<property>> . ] <<property>>
. ] : Logic Bump Signal o .
:Logic Bump Signal Speed :Logic Bump Relative
Speed P Permeability
<<property>>
<<property>> :Light Speed
. : Logic Bump Delay
:Logic Bump Delay Time
Time
<<property>>
:Logic Bump Height

Fig. A.78 Logic bump performance parametric diagram.
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bdd [Package] Constraint [Logic Bump] J

rd

Logic Bump Signal Speed Logic Bump DelayiRit
- a :Light Speed . i
- 4 I B H
- b :Logic Bump Relative Permittivity @ og!c ume .EIght
, , o - b :Logic Bump Signal Speed
- ¢ :Logic Bump Relative Permeability ~ x :Logic Bump Delav Time
- X :Logic Bump Signal Speed %8 P y
constraints constroifiS
{{x}={a}/{b}}
{{x}={a}/(SQRT({b}/{c})}

Fig. A.79 Detail of logic bump constraint block.

ibd [Block] Memory Bump [Memory Bump]

ibd [Block] Memory Bump [Memory Bump]/

<<property>> <<property>>
:Memory Bump :Memory Bump
Delay Time Signal Speed

Fig. A.80 Memory bump internal block diagram.

par [Block] Memory Bump [Performance] /

par [Block] Memory Bump [Performance])
<<propert...
:Light Speed
<<property>> <<property>>
M . Bp i signal + Memory B ) M po yR lati
emory Bump Signa Signal Speed Memory ump“eatlv
Speed Permeability
<<property>>
<<property>>
Prop e - Memory Bump —| :Memory Bump
Memory Bump Delay Delay Time Relative Permittivity
Time
<<property>>
:Memory Bump Height

Fig. A.81 Memory bump performance parametric diagram.
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bdd [Package] Constraint [Memory Bump] /

<<constraintBlock>>

<< traintBlock>>
Memory Bump Signal Speed Cconstralm

Memory Bump Delay Time

- a :Light Speed

- b :Memory Bump Relative Permittivity
- ¢ :MemoryBump Relative Permeability
- x :Memory Bump Signal Speed

- a :Memory Bump Height
- b :Memory Bump Signal Speed
- X :Memory Bump Delay Time

constraints

{{x}={al/{b}}

constraints

{{x}={a}/(SQRT({b}/{c})}

Fig. A.82 Detail of memory bump constraint block.
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