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TYFaTG—T7 =74 NOERICERDRMEM L LT, BESR TIEEIC Tiok!
B2 R AR OAEY, EHEEGERT (Heat Affected Zone: HAZ) Tl Tiz0s!M:
(1. P> MnSBARZ < A SN TV A. ZHUTK LT, Si-Mn ROIESE R LRl
X ALOSPNIEHEA R L N HAZ IZBW T, 2L DBPAET v FaTF7—7 =274 bOF
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EMHMBILTND. BNBREIE, 7271 F& BLEDOERMEZ S ONMTEM E D
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BRTHD. 7274 b ZORHREFEENCL - TT v Fa2T7 =774 MIx
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HAZ IZBWTIET %27 —7 =74 FOERSEEE LT Ti0:° MnS O L 5127
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D2 IR, yoa BREBREISHINL, 73 F 2T —7 =T 4 hOBAERNEE L
ENDHEBZOLNTND., BEEOHHABRRICIBWT Ti0s DA X722 5LIZ Mn Ji
THMREATDHZEIZE ST, MnS DAL MnS BERKT 5 Z &1 Ko TH{EWE
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NED & A — AT F A b L DORIZEWF =RV F =B L, BICREEAERD
PR L LT & T A8 RSN B2 LR ) T X 2T —T 2 T4 MERRIC
T2 MEOEENZ DN TITWE I — L7 RIS E - TV,

Table 1-1 Misfit values between different substrates and ferritel23,

Misfit
Substrate Tily y-alumina  Galaxita TiN EMN Cus Mns
(&, nm} (0-418)  (0-785) (0827} (0-424y  (0-362) (0-B57) (0-B23)
Planar parallelism {ferrite}||(substraie) {100} 100] 30 32 18 46 10-7 3r4 290
[1eo]f11o]
LTI 220 167 205 239 129 527 627
[100]ii[110]
1100}HI{110} 244 190 228 26-3 14-9 659 557
[1001(1[110]
Miogial ar-a 33-3 356 39-5 33-3 832 720
[100])1[110]
1110k 14-6 9-8 132 16-4 65 52-8 43-5
[T1a][100]
pognnl 345 285 g 365 237 793 683
[10031[110]
(110111} 159 110 144 176 75 54-5 450
(100710110
{11} 272 35 280 260 369 28 88
[11ay)110]
(1100 208 23-6 09 20-6 29:6 16:5 176

(meqn e
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TZhole. TvFaTd =774 MERD AN =X LZHGENZT 57201213,
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1.3 FHFFEDOBHY

RIRFBMEESBICBNTT ¥ 27 —7 =74 MIBITLEMITRIAI AT
WA, ERRTIRATE K5IV EIEZ OMRBRIER A 1 = X LM AE OEE], ST 1EY)
DIEEIII SIS TRV, 2D X572 A I = X LORHIRBRIL, 7
F2T7 =7 =74 Ml e LIRS RE SR O S b o mt b 2D 5
ETEELRD. SLIC, TVFa2aT7—7=274 O X IICIHEBNEDZFRH LIz
AR BN I L EAE « BUAER 72 E O TREZ LI E LW TN TIETHY, 2
D &9 ZRARRR BT L B & P B B O R RN B £ B3, b o R Be
ICHIEHATE ARSI LTS, LEER-> T, ZO A I =X L0y 72 PifiE
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AWFFECIX, fRRIREE), 7o % 27 —7 = 74 N OBERK, MED O AT,
INENOERMEICRIT 28R 2HE, 72524 T, 7vF27—7=7 1 MK
DIERR A 1 = A L H AR5 2 L2 A& L.



*
T
ﬁ
1

1.4 BRSCORERR

R LI 8 ETHRL SN TS, TOMRZ Fig. 1-1 1R L, ZHUTEDESKHE
DOBRE 2 AT 5.
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Fig. 1-1  Structure of this research issue.
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HEDEDLZETTHaFd—TxT74 MIBROA D= LEZHLNITHZ
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F2 B Tz T—Tx T NGER NF DI E)

> T, 3L ka8l OB fE 2 R A 7=,

2.2 EBRGIE
221 T¥FxaF—7xT4 MEABROKRFEHRK

MM EHIY 7~ =T — 7 BRI L VIR L2 a e B TH Y, Ti-B ROEH
TAvaERHW RO LR E Table 2-1 12777, Al DALY, i
FITIZIER M E Lz,

AUBHISR IR L7214, 2% )4 Z — /L TR L, 7 oot Bmsiz v
B L=, £, BETHRESEGELEYT (Electron Backscatter Diffraction: EBSD) 412 &
DGR AL T — X & AT » 7 A X 0.3um THUE L7-. EBSD {EIZ AW =3 0EHT 92%
FERE 8% RIEIRIR 2 I\ C 25V OELEZH L, B2 e L7z,

Table 2-1 Chemical compositions of weld metals used. (mass%o)

C Mn Si P S Al Ti B N 0]
BiH | 0.061 | 151 0.28 | 0.010 | 0.003 | 0.039 | 0.017 | 0.0026 | 0.0036 | 0.024
B1X | 0.060 | 1.50 0.25 | 0.010 | 0.004 | 0.015 | 0.015 | 0.0029 | 0.0036 | 0.019

2.22 AR DZ DB

WM EHI= L7 b e AT VBB XV ER L -EESE TH Y, gl ofb
*HAK A Table 2-2 (27~ . BUBHIBImANIEE L 7=, @R L —FBIEEZ ) CAREZEE)
D DOLEIE % I LT, SN G L7-BVBIEEIE, 1400°C & C 10°C/s THMEAL,
10 s REFL72141C, 10°Cls T=IRE THHILT-. ZREORB ORI T — 413
EBSD {E%# HHWTAT v 744 X 0.2 um THE L 7=,

Table 2-2 Chemical compositions of weld metals used. (mass%)

Si

Mn

P

S

Ti

B

N

0.08

0.28

1.53

0.009

0.003

0.013

0.0035

0.0045

0.0236
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2.2.3 3 RITHENT

EAMEHIY 7~ — VT — VBB Lo TERIL Ti-B ROBRESETHS.
Table 2-3 |Zia #2448 O LR 2 7~ d

FNEI KRB L TT— 2 U & T — ZEHTIZ 0 B, Fig. 2-1 ([ZEBRFIHDO 7 1 —
Fyr—bard. T-HZNETE, BEMEZRET DD, ERA A E—L4
(Focused lon Beam: FIB) IL[EIZ X » TBIRALEDOMMIC~—F 2 7 &l L7z, Bl
fLEOIMNIE y I — 2R AT, 1EMS720 OFBEORSIIE v 1 — 2ROV A X
Ko THRI Lz, BREEIE T VX TS L721212, MHEIC K 24 A —V@arEd 2 H
P CanAg XNy BIZKDMEEIT o=, WER ORE %2 AT E 7 B
(Scanning Electron Microscopy: SEM) (2 X A8 51T\, NMTED OB HEIREER O E ¥
H—ARDOH A R&FHU LTz, 7 =74 NOREREFAILEBSDIEIC L VRAEL, AT
v YA X2 03um & L7e. B LaEHIRE 7 L I B R Y, ZOFNAE
VIR L.

T —H AT TIZ OIM V7 & WT, s (Inverse Pole Figure: IPF) ~ v 7%
TR L7-. EBSDEQHET D NV 7 b ZMIET 572012, SEM B AZFIH L T L
1Tofz. E£72, ZOBRIZ IPF < v 712 SEM (2 K Y BUfG L 7= TEm Gl & B L7z

COEDICHELIZIPE~y 7% Z B SHE, 3D A A—T 24 L7z, 3D A
A — Y OREFIZIE IMODM A vz

Table 2-3  Chemical compositions of weld metals used. (mass%)

C Si Mn P S Al Ti B O N

0.06 0.26 1.47 0.01 0.004 0.005 0.014 0.003 0.02 0.004
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/— Data collection ﬂ /— Data analysis ﬁ

Making -
observation position IPF map SEM image
A 4 t
Making indentation — "t'
: xtraction
Drift offset of inclusions
Alumina polishing |
Colloidal silica polishing Z-direction
alignment
A 4
SEM observation 1
Reconstruction
EBSD observation of 3D image

- O\ J

Fig. 2-1 The flow chart of 3D construction.

2.3 FEBRHER

231 TvHa2T7—7=T74 MIBRORBFHIRE

Fig. 2-2 12 B1H, BIX Z1Zhd I 7 ufifiiz 7. # 3\ TENETNORE DR
MzERT2, @ICRT BIHIET VX2 T —7 =274 bOERPIENGE, (b)IZRT
BIX 37 v F 2T —7 =74 MABEKRORETHD. @QIErT o777
—7 =74 FOERDPRNGE, I 7 aflfkIXIBA—AT A PRI SAER LT
=74 MA R7v— NEKROMBRE 2D, $72, 7=7A4 M A 7L —KMNIT R
T DORi-> T4k TH D Z E BRI NS, (b)IZ/RT BIX O 7 afifik iz, 7
X277 =774 MEBEZEINDGD, 7274 A F7L— MR E i3 5
EHEFIHMMTHY, £, TADPRLZRFMICHKE LTS Z & ERIND.
EBSD JEIZ L W Bifs L7=En 20kl IPF ~ » 7 % Fig. 2-3(a), (b)IZ, kifit~
v 7% (), (A)WIRT. Kift~ w7 T, 15°LL Lo @ E AR R & IRER T, 5-15° DK AH
ARIREHFR TR LT, 7274 YA R L— MM TIX Fig. 2-3@)D IPF ~ v 7
CRT L ST, BT 5 7 A0 FR RIS RO A RIS K E <, £7(0)0
Bt~ > 72BN TS BB OB EN D72 ERbnd. Tk LT, 7

15



E2E TrFa T—Tx T R NF DI E)

FaT =774 M TIZO)D IPF v > FIRT KO IC, Hix pfltainBlesnsd
TEMNEEADT VX 2T —T T4 MRUTEEX T LA FEo TV D 2 & D3RR &S
W, (ORISR~ v TINEZDT7 =74 MIROZ ITEBARRTHD Z L0 b.
DI, T Z OB OBEEIME T 2 BRI R E S Be D Z L
HOENTHY, BEPHEIIREERLIbDEEZEZOND. ZOTvF2T7—T =7
A MNMEEOERMEARROL S DBROEREZIHL, BN Z RTb0EEXD
ns.

Fig. 2-2 Microstructures of weld metals: (a) B1H; (b) B1X.
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Fig. 2-3 IPF maps and grain boundary maps: (a) IPF map of B1H; (b) IPF map of B1X; (c)

grain boundary map of B1H; (d) grain boundary map of B1X.

232 KRR DZ DG

Fig. 2-4 IRV —VHMELZ AW TT v F 27— 7 =74 MO EXE 48]
LI REZRT. (@)D 597°C DD, A—AT T A FRER M ONMIEMNBIE SN
5. RETCRTHLORNTEN TH L0, ZbET TR, BORIRO S OBRNTEY
THY, BHHEHETDIZENDND. y—a ZRROBIIEIZ(D)D 591°C (2B W THER S
W, MTEN G SN DRI BIE I, ©ICBW\WT, —A 71 MRINTE
RENT2 T AND T AL o TRlREMEILL SN AR FRBIER Iz, (d)—(g)lakBwv
T, WAITHINING 7 ANFAE - JEL, o7 R 2#ERT 52 L TlENMEIET 5
BT DB I, REEH 2D 5 L9 ICERENEITL Thoz. (h)?d 530°C (25
L7z &g, Ef EToBMBERINR< /Y, BRETARER SN
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Fig. 2-4  In-situ observation of transformation behavior.
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Fig. 2-5 (2 EBSD I 7€ D H 2773, Fig. 2-4(h) D BEeDNLE THIE L7=. Fig. 2-5(a)
X IPF~ > 7, 0)iEA A— 274U 7 ¢ (Image Quality: 1Q) ~ v, (c)iZ IPF~ v
f&mvyf%imébﬁt%®f%bmemﬁﬁﬂQ7y7&%ﬁV~fﬁw
BEOBIZLHEE LGRS, @, EBSD OHfIE ClEakl#Rim 2 Vi
THET D, ZuE, EBSD JIERD 70-80° DEAHT X 5 Fa THIE TE Wiy 2 1E
LIRWEDTHLMN, LT FaTF7—T 274 N7 ADEKIC L D2RmERIRDH 5
RIECTEBSD {IEAZT 52 & T, BIRICED IQEOZELEZFHMEES. 2D IQ ED
EAIZ K o C, ZOGBIE T HER S 727 A & EBSD 12 K 0 lE S L7 fbdh )7
T —Z R LS ED T ENAREE R D.

Fig. 2-5 The results of EBSD measurement: (a) IPF map; (b) 1Q map; (c) IPF+IQ map.

589.0-587.2°C IZH W T T AN ET D81 % Fig. 2-6 (2”7, @i b — PRSI
BWTHEFTRICKRET D2 FABIRI . ZUCHHE L7z 1Q ~ v 7K IPF+1Q
~ v 7% Fig. 2-T IR0, (0)D IPF < > 70 b, 7 A0 LTIV TRl &AL
RSl T7 24 MRLTHDLZ ENbND. ZJAOLOT7 =74 21, FTO7 =
TA M2 L L, ZOMEIFMOMSIX%E Fig. 2-8 (239, 7 =T A4 b 1 OfESHAL
T4 A T —I2BVT[219.0,66.4,316.5], 7 =T A b 215[113.0,97.9,336.8] T£ & h,
ZD2ODT T4 ME[-0.566,—0.566,0.599] % #ilC 59.4°mlis S E R LS. T
= 74 FORSEREROEERE, BRI XE L [-0.577, —0.577, 0.577], 60.0°TdH %

TFHEBRE M2 L TR SN TWA Z EnbhoTe. ZiUE, K-S 7>

19



FE TrF¥zT—Tx 71 FRK D DR

FTIEVINZ L LTHLNLBBRTHS.

Fig. 2-6  In-situ observation of growing lath.

Fig. 2-7 The EBSD measurement corresponding to Fig. 2-6: (a) 1Q map; (b) IPF+1Q map.

001

—— T

Fig. 2-8 Pole figure of ferrite-1 and 2.
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582.0-578.1°C IZB W\ T T ANET 541 % Fig. 2-9 =~ 7. ZAUIHIS L2 1Q +
v 7R OVIPF+HIQ ~ v 7% Fig. 2-10 (12787, @il L —VEEE O = O I8\ T
LARDZ AREELTWD LI ITBESINDD, IPFHQ ~ v FIRT L 5 1T N5
BOFNERE->T27 2 T4 NRUCEL LTS Z ENbnD. ZADOEME 7 =T A
3, FMZ7=TA4 N4 L35 LMERTIEFig21l DX ITREND. 7=2T4
;3 OFEE NI A A T — AT T[348.4,155.7,229.3], 7 = 7 A b 41%[343.3,48.6,
4761 E£END. T2, THDFNIX[-0.560,-0.560,0.611]% #iHiZ 60.0°[F]Hiz X+ 7=
IR CTH Y, b bRRICREBR AR L TER SN TV Z bl

Fig. 2-9 In-situ observation of growing lath.

Fig. 2-10 The EBSD measurement corresponding to Fig. 2-9: (a) 1Q map; (b) IPF+1Q map.
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RD

Fig. 2-11 Pole Figure of ferrite-3 and 4.

578.1-571.9°C IZB W\ T T ANAE Lok F & Fig. 2-12 12779, ZAUSHkhe L7z 1Q
~ v I ROV IPF+HIQ ~ v 7 % Fig. 2-13 |[Z/R T, @iE L — W EEE DO Z OB L -
T, ZFABDMEERE LIRS, TR 6DRET HHRFPBIZE S, Fig.2-12 OEiE L
—PEAMEI IV TE R D AN E T 2Bk F2MBLEE S L7223, Fig. 2-13(0)IC7" 9
LI IPF = 7 CIXIFIEFRBROE A THE SN D, Fig.2-14 127 A 5 L TN 6 DOfii s
X% 7R7°. Fig.2-14 IZ/RT XL 912, ZHHDOHMEITD TR L2 & DR
N5, 7 A5 ORESITALIL[39.4, 113.1, 224.7], T A 6 OfEsLEHAL1X[218.7, 62.6, 311.5]
TEIN, 25O HNEIFRIZ[0.172,-0.860,0.481] 2 82 7.1°MA#: S B 72 TH 5.
L SBEAA o NZIIT D VIVA OBMR ORI, [ % 2 2 §1[0.00,-0.91,
-0.42], 6.6°LHELTEBY, Zd VIIVA OBRICITWZ ERbnd. £72, Fig. 2-
13(b) D RHIF BN s ST AL DAL 2 HIE L= fE S & Fig. 2-15 (- 943, fEfm AL
BeBERIICEILE L CTWA Z EnNbnd. £z, Fig. 2-16(@)IC7 =74 MDA — AT F
A FENTFNDORET TH 5H{011}, & {111}, OITTNTNDRETH TH H<111>,
& <011>, DR RIX Z 7R3, Fig. 2-16(@Q)ICR"T L HICT A5 K6 & A—ATFA FD
THE T A B HITIEBE L TV D28, OISR T L) ICREFRNER->TEBY, 74
56T INDDRIFET DHEESTANICHKE L TWDHZ ERDLND. ZOX51Zh
Tl i T - Th, R 2RE NN RRD 2L TTADOKET 5 M
RESERDZEPHBLNE ST,
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In-situ observation of growing laths

Fig. 2-12

Fig, 2-14 Pole figure of ferrite-5 and 6.
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Fig. 2-15 Misorientation toward the arrow direction in Fig. 2-13(b).
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Fig. 2-16 Pole figure of prior austenite, ferrite-5 and 6:

packed directions.
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2.3.3 3T

Fig. 2-17()\Z DD NIEMD S EHRICAER LT=2T v %2 F7—7 =274 D IPF <~
v T aRd. REITRTEAIADINE TH LS. (b), OIFZNENAEELZ3D A A —
CEENLBELIELD, TOHLBELIELDOTHS. THHDA A—Uhb, T
XaTd—T7xzT74 FOBIRIZTV—MRTHL Z BRSNS, £, )05, 7
=74 FPLEO2IFTAVIZHDIAENTZ L DICA v Z—a vy 7 LIZBRICR > TS
DROND . FES TN OFERND, TV FaT7—7 = T4 ME<110>, ([ZfHEL,
<UI> TR E ST D Z ERbholz. 7TvFaF7—7 =74 MIMET L HIITE
HWICHERL, TORBZIKT 5 ENRRESNTWD. LER-T, 7¥FaT—7
=74 MIMHAEIZRZRZ LIRS, WEIRT5Z8I2koT, £ & —u vy 7 Lok
MR INTNDHDEEZEZ LD,

Fig. 2-17 3D construction of acicular ferrite: (a) IPF map; (b) top-down view of 3D image;
(c) bottom-up view of 3D image; (d) inter-locked acicular ferrite.
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Fig. 2-18(@)IZBW\ T, TV FaTF7—7 =74 b T ADFNBEERY THA & Z(L
SETWDOERFRBIE SN, OIX@DKRAID NI ZZRE LT D TH Y,
HHRMICBNTERIMNEENSELDO TR, B EZbSETnD
ZEBLNDL. OIET7 =T FEKRBF—RAT A FOENENDRE T O
<111>, K T<011>, OfRS %, (dIZIEZEIE D EHE I D<011>, & TR<111>, DA
KZRT. O rRT LI, HEF—RATFHA e DRI T DREHMIEZT7 =71 b
LAV ATIHIHLTWADN, AT LI ICHEERNS—HL TEoT, RR5H<111>,
EWHALE R TWHZENDNS. ZD7x2TA b3 KN4 D 3 IRTAERDRE
ZE)MLOMITAT. ZORRNG, BT HEEFAITHE L, <011>, &<111>, 235
BT DU TV Fa T —T 274 MIBEIST WD Z Enbhotz. £z,
D7 xT4 b3 K4 OfEEFTAIZENZEI[333.0, 74.2,45.3], [333.8,69.1,44.7] &
F I, [0.59, —0.80, 0.07) & #filC 5.2°MIA S H7-BIfR & 72 5. 2 O FINLBEIFRIZ L)
B TR SN A T A MTBWTELBIEIND VIV DEIRTH L Z L b
oz,
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Fig. 2-18 Crystallographic analysis: (a) IPF map; (b) misorientation toward the arrow
direction in (a); (c) close-packed directions; (d) close-packed planes; (e) top-down view of 3D

image; (f) view from [110], of 3D image.
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24 EBE

TXaT—7 T4 MARGEEOZOHEIEL, KO3 RotBlEZ Lo T, VIV,
VINV4, VIS DB E o TT v FaTF7—7 274 T ABRRET D732 < #l
LINTz. VIN2IZT ADMERI5A - iE 510 & HIZF— T 5058 TR K E < &
720, VINVA TIET ADOREHMNPRE SRR, £z, VUVB ORERTIET ADIE
FHBRERRD, TNETICHESNTWD U R T ¢ v VAR TIIES B2 D
FHZ T ABME L TND L OICBESNTEY, ERoFTZo LS RERR AL
LD VIIVA OBRTH Y, Zhny o v T 4 v I ERE L TBESND DT
T2V EZ NS, £, ERRTBEINTZ I OOERILT =7 4 MR OVER
RN THE L TWD. VUV IZREBIER, VIIVA KO VUV IR AKIR TH D,
INBDOT7 =T A MRFITENZENZ3 KDL W0 ) SRR & 72> TR Y, Kijt
DO T RN X —[THBAENTZ R LT — LR o TNLZ EREXLND. LIzh-5
T, 7vF%aF7—7x74 T ARKREL, FITEAERT BT, bR
Al TRV — L 72 HfEaa T IR H 2 & T, B DRGd N 2 NS, o7
AR L TnDAHDEEXLND.

s L S BT mIR TR S LD A T MRV T, VIIV2, VIVA4,
VI8 DEIRNZ K BESND T L 2RE L THRY, HERKROMERZ/R L TN 5.
Lo, &4 D7 AIERERELMNFEETH L EEHASA T4 » L EERO R 2
ZRTHDTHLEBZLNS. LNLARNDL, RERICIEE S DkITRE <A
5. UL, BAERRFEOMS GO LD THDLHEELHILS. BIHD X
T =T A4 YA R L— MDA S, VIV2, VIIV4, VIVE 72 & DO BfRIZ
FHAE R CRIZE SN DY, BofERIIZTER S 2 /AR I ZIE AR OFE db A2 b o 7ok ik
ELTHIZEEINS. WEROME, A—ATF A PRI TEMRIND EFSA A M
RITOA—=AT T A M LT K-S BfRZmZL, bR TOF—AT T A MMxt
LTHIFIEK-SBEREM T ZE2HMELTWD. LEN- T, bR akbrd—2 7
FA N OFERGTNBRIC L o> TR TR SN D 7 = T 4 hOFMITHRS 1, FiE
DRI Z & D7 =T A4 SPMERE L TEART S Z LRI nD. DL RN
5, A—=ATFA PRI BIER S DR FRR D T2 & OEH IR D X 9 1ITTB
EINATOThHEEZOND. £, T—ATFA MR TIIH T DOA—ATF
A N OFERFONAR S, FEDOHME S o727 =T A4 MOSRIR ECRAERMT 5.
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INHRIR TSN T = 74 MIFRBROFERITALZ &> TV D7, [T
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TAYIITEAERLIZELTY, BCHRELTELL 7274 M A R7L—RZLo
T, MEPHEREINDTZD, TAPELRGRAICHE LRWbDEEZXBNRD. L
LBNRD, TovFaT7—7=74 FOGE T, Fig. 2-17@)D IPF <~ > 7 bbb
EOCOEDDNTEMINORIND KA DT ATEL R DHMTER I T
5. LIERoT, ZNHOTANEETHHAIERZY, RETHEICHRE L TR
FICRET 27 =74 MIFELRY. Db, VX T 0 v 7 BERIZED,
R HRERITAL - BT ME 27 = 74 MBBRINELREZIESIT,
Br e iR~EREL, 7V %a7—7x74 MEEOA ¥ —r v 7 U7tk
DI ENDEEDEBEZLND.
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HWIE TIHaTF—T7=T4 MABRFERIZKIEFT Al/O oS

31 &S

TIXaT =T =74 FOBBITHDNRIEDIZONT, ZRETIZHE L O
Rl S TE M 2o, EHESBMRD AI0 HIZk>TTrvFaF—7 =
T4 NORRBITIRL WBEZIT D Z EBRHE ST LB K AVO L TIET V¥
2T =7 =74 MIHE VKIS, A0 OHNE & HIcE OFRITE L &
DM, TN LIBISETHET X aT7—7 =74 MOERIZEMIMH SnD. %
DIFRHEIEL A0 I K o TIMEMMRNEL T 5720 ThH EEZ b TWD. K
AlIO LhD & ZITIINTEMNT ¥ F 27 —7 = 7 A MERBEDIK Si-Mn 2O IEE
AL TH DD, AIO LEAEEINT DL 7 =T 4 R EKTREEMED LW 2 BRI LELO
AL D TR S I, Z DA XN BDBAL OB LV 7% 2T =7 =54 FD
e BSEMH L END EBEZ BN TWS. SHIZ A0 EAKREL Y, 113 L EIZ7Z
DENEMNT ¥ F 2T =T =T 4 MEKBEDRW ALOIZZEL, 7¥FaTF—7
=T PR ENRL D EEZLNTNA. LnLAanb, LM IEYE
PHIZ TIO 2R SN THRY, T TiO BpET 27 =7 A h & B-N BRI 72 L T
WHZEEREL TS, 207D, 7TvFa2a7—7=274 MIZOTIOIZL > THE
RENTZEZBEINTNS., ZO—FHT, AERATROBICYOIERITHER =73,
TxTA4 NEDOREITT =T A MEERICHEATH HEAEMEOE W E TIEe <,
TIXa2T7—T T4 NOBEAERYTA FTE ol @HEL TS, 2070,
Al/O thDEEINE & HIZA RV OTERUTHIINT 2 & 9 EEREFEILH D
bOD, TvFaTF—=7=T7A FRPEFTLHFRCOWTIETIED & ZAHRHARET
HY, HEOKRMBESNLTND.

TYF 2T =TT, MABOFEKICE LT, MEMMREHRBE LT VX 2T —7
=74 NORATEM LT 52 LIIRVEETHLEEXLNDLN, T bict
— AT FA MR TR S DRk omfil b EE L 2 @00 7ok o 5 —7
T4 FDEINTA—ATFA MNP LRI N DT, R 7274 F 7 =
TAMA RTL—=FDEIIZH—AT A MR GEA S DAk E OBEE T
HY, ToXa2T7—T7xT74 NREORP LEOZDIZITA—AT A MRIFINBER I
DA IEIT D NERH D, F O N TERANREESRICIE B MRS pke-
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B BiIA—AT F A MR LR =R L F— 2K F S22 & T, ZREn
IR 2 RFHAOICRIE S, £, ZEHMEEGETIELZ 086N TEY, KL
o OERRAFEOMBENC I RANAEN T 5. L LRd 5, BOFENIH NS
NTWRWES B2V, ZOJRKIE, BIFEILE TH V@ LRI bohn s =
FIL X —y R X # o #ri%  (Energy Dispersive X-ray Spectrometry: EDS) TldkH T &
RN THD.

ZIT, KETIT A LLET X 2T —T7 =74 MEREBOBMRZI & T
572, AlIO LD 572 2508 2 ¥efil L, STEWMAL & X 7 w0 BIfRIZ W Tl A
Lic. 7o, S70ffcE R Br 525352005 B OFEAZIfET 57
b, BT VX —HS 1 (Electron Energy-Loss Spectroscopy: EELS) % W% =
& T B OIFEALE 2R A L=

32 ERFIE

R DL AL A Table 3-1 [OR" . WHEGRIEIV 7 ~—2 7 — BBk -
TR LB #EeR THDH. TiB ROV YEMEHNL, Al EOARZE{LSHET-. AlO
i B1L, B1X, B1H TIJIHIZ 0.28, 0.79, 1.63 TH 5.

AUBHIBEEATEE L, 2% T 1 X =V TRELT, TNTho I 7 nillfkzBig L.
TvXxa2T—T7 =T OB A ERNICEHET 5720, 1mm® OFEFAICIIT 5T v
F2T7—7xTA MNREWGELTZ. 7 =7 A FOREEAHAL, KL ORI EBSD EIC
K OHE LT T — 2 W TIHAE L. 20 L ED AT v 7% X% 300 nm
THIE L7z, EBSD HIEIZ W 725N 92%FERR 8% IR 2 VY, 25V O
JEZFIIN L CEMIEZ i L=, MEWEORE XS EE L7232 SEM 128V
Wi A S L, Image J &2 WV CHIE L7=. 1 um LA F O /N & 2o M FEMIS 5 L C
I% 240x180 pm? OFAPH T, 1um LA ED R X 22 M 7EMIZ % L Tl 360x270 pm? O
HPHCRE L7z, EREZFEOFEITIE, @ik v —PEMEEE A T2 05815 % i
L7=. #BHZ 1400°C £ T 10°C/s THEA L 72D %, 10°C/s T=HIRFE TWMHEIL7=. IT7E
W OBEITE BT E TS  (Transmission Electron Microscopy: TEM) 12K D 4T\,
I TEM ORI FRALEF (214775 (Selected Area Diffraction Pattern: SADP) (2 X ¥ [AlE L
7. TEM (W2 T FIB (& W R L 7=, S EM O ek i3 A% it & -
PEM% %% (Scanning Transmission Electron Microscope: STEM) (2Bt EDS % V>, 8%
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JLFED B X EELS Z W CHIE LT-.

Table 3-1 Chemical compositions of weld metals used. (mass%)

C Si Mn P S Al Ti B O N

BiL | 0.062 | 0.26 | 1.47 | 0.012 | 0.004 | 0.005 | 0.014 | 0.0028 | 0.018 | 0.0044
B1X | 0.060 | 0.25 | 1.51 | 0.010 | 0.004 | 0.015 | 0.015 | 0.0029 | 0.019 | 0.0036
Bi1H | 0.061 | 0.28 | 1.51 | 0.010 | 0.003 | 0.039 | 0.017 | 0.0026 | 0.024 | 0.0036

33 EBRFER

Fig. 3-1 izt oilkto X 7 nfflfgz =4, @QOBIL TET7¥Fa27—7=7
A NOEEPHER I DN, IHA—AT A MRFITITRIR 7 = 74 OBl I T,
(b)? BIX TIFHIA 7 = T4 FNOEHIZS EVBEINT, FEAEIT vFaT—
T T4 MBI, D BIH TEIXT7T v F=27—7=74 MIBEINT, IH
F—=ATF A MRIRD BB SN KR T =74 b YA K7L — MBI S
Nz, 7v%a7—7x74 MRITZTNZN 81.5%, 97.1%, 0% CTH - 7-.

Fig. 3-2 I EBSD IEIC L WHIE L72 IPF v v PR ORI R~ v P& 53T, kit~ >y~
Tl 15°LL b @ fE AR R % SRR C 5-15° D/ MEARIA 2 HR TR L. @KLTC)D
IPF ~ v 7 TSNS BILSBIX OT7 ¥ F 27 —7 =74 MARKITEE~ 72555
MTHR SN TEY, (D)LRTA)DRSAR~ > 7062 O ULE AR 2 TR L T
WHZ Embnd., FO—FHT, QD BILDKR 7 =71 hL@)PDBIHDO 7 =7 A
R 7 L— MERIXFEREORER T TH O, )LL) TREND K O ICEBE AR
FELL DNz ERbnd. OB TOYELERE SRR ENZE 118, 4.15, 31.3
um THY, I 7 vBEROMMLIET v F 2T —7 2T 4 FRICKRELKGFTDHZ &
BNHOND.
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/m‘@’c “
U *’gjg

f / ") —5-15°
& rfl %ﬁ:{}\jf /f’& 10 um
w w7 u
Fig. 3-2 EBSD measurements: (a) IPF map of B1L; (b) grain boundary map of B1L; (c) IPF

map of B1X; (d) grain boundary map of B1X; (e) IPF map of B1H; (f) grain boundary map of
B1H.
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Fig. 3-3 (2 B1L TR SN EM O TR ST ORERZ T, ZNENDOILHRITE
FHRMTABEIND ZEND, MEMITEROHTHERL SN TND ZERbnD.

F72, EWEFRICIE T ORALEDEKR STV DR FAEIE I 5. Fig. 3-3 12k
WT 1-3 DREIT/REN DD SADP % Z 1 E 4 Fig. 3-4(a)-(C)IZ/~"T. T OFHIE
Al-Si-Mn 2 DIEGLEH, Ti-Al ZDO A E R VB OELY), a-MnS L[RIE Sz, 20
FERND, AERNVEOBIEMIIIER L TODEN T =T 4 FEBEL TN &0
bind. £z, AIO OF /NS BIL TIEIEREHOEIE RN RZR L LN RN Dh
-7z,

Fig. 3-5 IZ B1X TR SALIZ M TEM D ILHE T OFER Z RS . ITEM O L C@ls
S5 Si DRUEZ, FIB M LOBCIAEM A F oy F o 7inbli#ET 5 T
WS W OEN SI &L THRIBEENZHEDTHS. W D Ma #RO T RLF—N
1.774 eV, Si D KafrOTF/F—73 1739 eV LIEFITIHVMEE L 570, bl

SEEEATICHRE SN D, BIX TREINDIMIEM S BIL & RARICEE O TR
SNTHEY, MEMEEO Ti B bE b BE IS, Fig 3-5 128\ T 1-3 DREIT/R
EN DD SADP % Z L1 Fig. 3-6(@)—(C)I2. ZDFERG, 26O IE Ti-
Al 2D AR NVTIOER Y, Al-Mn 52 D A B LTI OER LY, a-MnS & [FE Sh7-.
HEEANIAAE L TIWZ2S, BIL &l 2 &% L <EIG 2D LTz, A0tk
0.28 ™ BIL & Al/O k. 0.79 @ B1X % tbi 9% &, BIX TIFIEMEM OFIG 23 A L,
BIL TIIER SN TV >72 Al-Mn 2D R BRI D AV 3BT T2 B S 1T
WD EMbholz. LInLRRG, AUV OBRCITIEIN L TiEwnw5723, BIL
& FERICIER R BICIT Ti RALEDTER STV D2, 72T 4 b EBEL T
WRho T

Fig. 3-7 IZ B1H T S NI TEM D ILHE DT OFER Z R T, ZOREERNGH B
725912, BIH TERSNAOINTEDIT Al & O DATERENTNDLZ ERDND.
ZOE VST SADP % Fig. 3-8 IZ/RT. ZORERMND, ZOFEIE y-Al03 & [A]
E STz,
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STEM image

0.5 pm SK 0.5 pm TiK 0.5 pm

Fig. 3-3 Elemental distributions of inclusion in B1L.

Amorphous

Fig. 3-4 SADPs obtained from arrowed phases in Fig. 3-3: (a) phase arrowed 1; (b) phase

arrowed 2; (c) phase arrowed 3.
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0.5 pm SK c——=05pm TiK 0,5 pm

Fig. 3-5 Elemental distributions of inclusion in B1X.

Fig. 3-6 SADPs obtained from arrowed phases in Fig. 3-5: (a) phase arrowed 1; (b) phase

arrowed 2; (c) phase arrowed 3.
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STEM image

c— 0.5 pm ]

Fig. 3-7 Elemental distributions of inclusion in B1H.

Fig. 3-8 SADP of the inclusion in B1H.

Fig. 3-9 IZ BIL IZBUI 2N EME 7 =7 A4 FORiEE TEM IZ X V& Lok R %
AT @IENENE 7 =T A4 FOFHEOYIHEHE TH 5. @ICHA TR LIERES
354072 SADP % (b)IZ/R"9". 2@ SADP 2> LA EM B FIZIZ R STV 5 Ti b E
L TIO L[RIE S, ZOREAZTI0ONmMBETH-72. F7o, ZOTIO LEET L7 =
FA4 MEB-NBRAZ L TWD Z AR Iz, TiO &7 =71 75 B-N Btk
T2 LTV D E X0 misfit 1L 3.0% TH 5 Z ERMEINTE VI, ZOFENS
TYHaT—=T=TA MIMEMBEBIOEHRSND TO & O FEAMEIZ LY PR
En-EB2zoN5. ZOEE, WHLMOHE L KL T
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Fig.3-9 The interface between inclusion and ferrite: (a) bright field image; (b) SADP obtained

from the circle in (a); (c) dark field image of TiO.

Fig. 3-10 I TEMI DY A XA &9, BIL & BIX Z#d 5 L, 1um DK
EWNH A XD T BIX BNOTNICE NI LRBDNLD, NSV A X TIHIEIEF
O LT TNWDZ ENbnd. LLaens, BIH TlERE < B2V, 1um R
i D/NSWITE NI SN 72 <, 1um U EORZXWINTEY O A XHRZNT &
WD,

ZORERIL, MED LRI E OFNVEICERT 20 THD EBE2 B D, Si-Mn
FR OB & Lol U T ALOs 1TV & OTRAVER N2 & TS i 5 p3Re-ie]
TRAVED WG A TS L B O R = 2L X —FRELS 2D, 20X ) fiiE=
RNF—(IA A MU RREOEREN ) & 720, TTEM O KILEZHE L. Zhvk L big,
FREH TP CIXELIEIC £ 0 M TEWIR L OB ZEDHAET 503, RAVEREWIGAITEE L
TV ERPEIN TR = s FEIz LY, NEWN AlLO; THh 5 BLH
TIEBILR°BIH & L CTE L MEMPHKRIL LT ZE 2 b D.
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%
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— 250 — 80
2  (a) ——siL | 3 —e—BI1L
§ 200 -O-B1X g 60 -O-B1X
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IS o | 5 20 ‘k,’
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Fig. 3-10 Inclusion distributions: (a) small inclusions; (b) large inclusions.

Fig. 3-11 |2 BIL OZEREZEH DO Z OLBE DL R 2~ ZRERHIAIL 657°C ITB W
THER S 4L, RN B AERED B S L DBk Blgt s iz (Fig. 3-11(b)) . 623°C 725
RINIZ 31T 2 A REA R S (Fig. 3-11(d)) , 1R DR FIZEWRLR L DRI B 7 A
DI S CTEENEIT LTV o 72 (Fig. 3-11(e) & (f)) . BIX OEREEHDZ DGHE]
ELDRE R % Fig. 3-12 12759, BIL Tid 657°C ICB W TEREBIIA N HER SN2 A%, BIX
TIE 640°C IZB W T HAEREITBM SN o7 (Fig. 3-12(b)) . ZREBHAA D HERE S 4L
7= DX, 627°C TH D RINN L DERETH > 7= (Fig. 3-12(c)) . {BE DL FIZFE, 2
REITHETT L T (Fig. 3-12(d) & (e)), 1ZIFHINZAREIZ L v #fk2 R L Ty o 72 (Fig.
3-12(f)).
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(a) 673°C SRR e R e () 637°C

Fig. 3-11 In-situ observation of y—a transformation in B1L: (a) 673°C; (b) 657°C; (c) 637°C;
(d) 623°C; (e) 604°C; (f) 574°C.

AR

(d) 615°C

Fig. 3-12 In-situ observation of y—a transformation in B1X: (a) 670°C; (b) 638°C; (c) 627°C;
(d) 615°C; (e) 596°C; (f) 579°C.
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ITER D EELS 20 #HT DfE R % Fig. 3-13 (27”87, /o #T#GPHIX Fig. 3-13(2) D HIEN TH

ZOFERND, BIZAERAAER TIO 72 EDOFERBIEM KR O T = F A MEIZITAF
TEET, SMEWTF OIMEFICDOBFIET D Z Lo o7z, BIFR L LT Vo
ThHV, BtE LTI B03 & LTLERMWETHD. Fiz, BOsiLfban{bns Al
R L L TCTHLNTERY, WEWITIESREREE LTRIEINS.

(a) Dark field image

Spectrum imageli

Spinel

Amorphous

Fig. 3-13 EELS analysis: (a) dark field image; (b) B; (c) O; (d) Ti; (e) Fe.
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34 EBR

BIL & BIX TiX Al EOAFE TR D OH T O cHEEITITIERETH D, £z,
MEMEFRCT % 2T =7 =274 FOBREREL T B2 NS TO B
L TWZEW) RTHRI%ETH D, I HIT, MEBEBELIZONTH KX /2R
XA NP oTe. ZDT, ToXaT7—7 274 MOBARRIZIZIEEDL W
borEZOLND. Fiz, AERAROBIYIT BIL IZHER LT BLIX THIIL T
D, ZOMIET7 =74 FEBEL TR STZOT, ZOMET7 =74 FOKTHE
AMEICXO T XR 2T =T 274 FOBREKEN EH LIZEIFB bRV, Z0FE
AEE LT, ZOEBEORRIZIB W T HRINZEREDBAAIRE L BIL T 623°C, BIX T
627°C TH Y, [ ZFEFRROBZAERBE TH o722 LRI, L L7225, BIL
TITRA 7 = T4 PR SN, BIX T EACBESI N2 -T2, T OFERIEEK
ZEHOERITZDOLGBIEIZ L > THER S TE Y, BIL TIX 657°C (23 THIA )
SASRENBIRA S 7= DITHT LT, BIX Tl 640°C % Flal»> T H R EBIT D2 REME
smINehots. EERO XS ITHTEMOBAERRENRFRE TH D LB 2 -6, 20kt
ST DMMIE R D ZERIT B ORF~DRITFEIIC LD 6D THD LHEES
no.
FhEnoREHZBIT 5 B OZF#ENT Fig. 3-13 IR THEAKD L 52> T &
Ez bbb, Fig.3-12 @ EELS T ORI G, BIIMED T OIFSEEFIZ B20s & L
THREND Z RO E o7z, BIL O X D IS EMD EICHENEH TR S
TWASGE, BHESRICIRINS Iz B ORI IEZ OFEMBEFH AT 5 OIClE S
N L0 EBEZOND. LIzRno> T, —AT7FA MRIFITRENT 5 B O &miFEd 7
HHDEZZ LD, L LN D, AlIO LK E ) BLX TiX Al/O LA/ E 0 BIL
& L TR RO L, IEEAREA LT, JESEHE ORI
(ZPE, NTEMERERT 2 B DRLIBD T2 LB LN, EHEERICIRINE
TR DA —AT T A MRFIRT T 2D LEZBND. ZOX SR B DA —R
TFA MRERA~ORFEOFENC LY, BIL & BIX ORIR T =T A MEKROZERN
ELTEEEZILNS.
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(a) B1L

(b) B1X

\

Inclusion

/y—grain boun\dary

V. /

il

/V—grain boun\dary

Fig. 3-13 Schematic illustrations of B behavior: (a) B1L; (b) B1X.
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ARETIZ AI/O 23 0.28 (B1L), 0.79 (B1X), 1.63 (B1H) & 72 HiKRFZBHY 7~
— T — VRS RAERLL, TN I 7 afiik, NIEY, LrexEhciT 5%
TR HEZEm L7-. LFICARETHEONTMEZRT.

1) 7vFa7—7=7A4 MIBIL, BIX TOAEE SN, BIH TIHELE SN0 -
72. B1L, B1X TIINEWEFIZ TIO MK INTEBY, ZOTO 7274 k
2 B-N BR AT/~ LT\, LLZaens, BIH TIXZ 0 Xk 5 7 TiO 13 @i S

T, HAHD y-AlbOs TH o 7-.

2) BIL, BIX TIZE biZT v FaT7—7 =274 PRSI TWZA, BIL Tihk:
R7 2T FPERENTHEDIZH LT, BIX TR 7 =T 4 FABHE 0 #E
BEINT, BERRTTYXa7—7x274 MBMELNT. BEEEOZOHHE
2T &k T, BIL TIE 657°C (TN TR & OB HER ST DI L T,
B1X T 640°C % F[El> THRF TOERRIIMER S N> T,
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3) I EMID EELS pHT OFERN D, B IINMEMOIELEMICOARGFIEL, ARV
ROWBALYS TIO, 7 =74 MATIIRH IR o7, ZOIMEMRIAET
% BIIFEME B.Os THDH EEZLNT=. £, ZOFERND, BIL & BIX Ok
K7 = T4 NOEBITRFERIMEIEROH L B OA—ATF A ML ~DIR
MEOERIZEDHDOLEZ D Z ENTE. MEMT CIEMEMNRE S
5 BIL CTIHEESRETICIRINES NI B 0% < BATEY OIS E AR & 1k
TLHOIHE SN, A—AT A MIRA~ENT T2 BIdEA D Tob0EE2 N
5. EO—JT, BIX TIXAIO LI XV, ARV OEBRLmBAEML,
ZOMMBNED T TREREEZED TR0, EWEMITED LTz, =
D=, EMEREEKT 7200 BB L, A—AT A MR~  fRiT
L, R COLEREEAME LI Z 2 b,
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41 FES

TyHXaT—7 =74 MEERIZET 23S <ATb TR Y, ZARIZBT
DNEMOEEDEiR S, WS OMD AN =X EARNEZ LN TNDN, WEEHK—
L2 RRIZIEE > T WL BRI TNDEOE DDA D =AALE LT, T¥Fa
T—=T =74 MINEME DBRIFREFEEMHICEI > TERT L EEZ LN TN
RHA B 7o k& A2 R EM & LT TIO, TiN, A R AAIDOER{LY), v-Al.03
RERHLNTHWDLEL 2o ONEWMTIE, 7274 h& B-NBEREM-T & X
b misfit fEAV/ NS <725, FEERIZ, 53 FO TEM BB W T ES O JE I 10
nm 2D TiIO AEK L THEY, ZOTIO ERHET 27 =7 4 M5 B-NBfRZ72 L
TNDZ ENERINT.. LOL2RA D, 53 %D BIH TR I LTV y-Al0s &
7 =74 O misfit fEIE 3.2%TH Y, TiO D 3.0% & ik L TR E 2R TR0 e,
TIXaT—7 T4 MBI S TWihote, ZOZEE2BETDHE, KT
BAEWZ T CEINEDDOT v F 2T —7 =74 MEERBEZHMECE 2V EB 25
no.

ZDEOIRT VX aT—T 2T FENEMITE T DRERGNRERE &b, TV
X2 T7—T7 =274 MIIBA—ATF A MK LT K-S BfREZi7-3Z EnmEsh
TnaBEL 7o %o g =725 40 MIKRINTEAERT D2V A RY U Ay T T 07
T4 FOB B0 ERA o NOHUTH L EEZ BN TEY, XA T4 Mo~ LT
VYA N ERIBRIC K-S BIfR &2 9. 2 b 2 SO TR E LD D L, Fig.
4-1 OWRRHD X HIZ72b. TF¥aTF7—7 T4 MIBERDOERIZ, NMTEMICKHL
TB-NRfE, A—AFF A MIxh LT K-S Bk & 2 FlE O S50 BR & [RIRH I 7= L
TV EHEXOND. ZN6 2 OOHGMNEREFRIFICER LSS, 7vF%F=27—7
=74 N, A—=ATFA N, NEHO 3HIIES 5O G BRI FET D Z &R
B INDH0, 2 b 3F DN ERITIHE S NI LN T H2MERDH H.

FITARETHE, 7¥Fa27—7=T4 8, NEW, A—AT7F 4 b 3ZEROH
FNBfRZ T U, A — AT A R TONMEMRRT S F 27 =T =274 FO
7= R EER TN DN THRET LT,
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~ B-NOR ———
The Baker—Nutting (B—N) orientation relationship I:> (001), // (001 )0
. [100], // [110]4i0 )

TiO
N Acicular ferrite ~ K-SOR ———
/ (1), 1 (011),
[TO'I]V /! [ﬁ'l]a
Austenite \
| =

The Kurdjumov—Sachs (K-S) orientation relationship

Fig. 4-1 Schematic illustration of the B—N orientation relationship and the K-S orientation

relationship.

42 ZFERFE

RMEHIY T~ — U7 — 7 BRI Lo TER LR EMEES R TH Y, Ti-B K
DT A Y & o, AR ORI A Table4-1 12R3. Z ORBHIE 3 &
BOWTHEHLZ BIL TH Y, MEWEMICIE TIO BELSNATEY, Z0 Tio LB
457 =74 MEB-NBBRIBIEINIZHETH 5.
ToFaTd—T=74 FeBA—ATFA FOHMEROFIEICIT EBSD 45 H
WTCHRHT L7=. EBSD IO EHIZ v A7 v a v R v o vy ZAWTER L. &
b LT — ZIE AT v 7 A X100 nm TRIE L7z, [BA—RATFA NOFLT —#
[IA =27 A FOFMEEMNC L - CRHE L, v v BV ZIC kW iR S HiL &
DINZEDEFH DRGNS L e D HNNIEA—AT T A MNeRETDHME L.

Table 4-1 Chemical compositions of weld metals used. (mass%)

C Si Mn P S Al Ti B O N

0.062 | 0.26 1.47 | 0.012 | 0.004 | 0.005 | 0.014 | 0.0028 | 0.018 | 0.0044

51



FAFE TF2TF—Tx T4, XTI, Y3 BT S AR

43 EBAER

Fig. 4-2 127 =7 A F D IPF = v 7 & <001>, Wit 47X % 719", Fig. 4-2(a) D FH 90D B
VNI TH Y, MM OHRE LTEEEOT V¥ aT7—7 274 MBI
% . (IR THRA DS, K-S BAFR & fii 72 3Rk EFA OS] & 70> T\ D 2 L3k
WwTED.

BA—AT A FORER TN EARLOFERNC L VA L2 IPF < v 7 & i
X% Fig. 4-3(a), (b)IZ/~"3. Fig.4-3(a), (b)ITr"T LI, HEICLVROI-FhTh
DA—=ATFA SOFEEITOLRZER — DL E2 R LTS Z ERNERIND. Lo
LANE, 25 OREGMITHREREDIESSOENFETHDT, TNE O
W& DFNEDEF PR B/NE L RDL I ZRDT-. ZOFER%E Fig. 4-3(C)ZR7T.
Z DOREE AT A A T —AIZBVT[277.85, 27.97, 282.97] TR EN, ZDHNT —H
HIAA—ATFA ORI 2 RET 2 E L TARETIEIR 72, £72, ZDH
F—ATF A b & K-S BRAETT-9 24 ® K-S /XY 7 k% Fig. 4-3(d)(Z7~9". Fig.
4-3(d)2" 924 D K-S XU T b & Fig. 42007 v F2aT7—7 T4 hDOWA
AT HELSEATETNDZ 0D, FEFICIWHEETHAETE WA L
NHERTE 5.

(a)

Fig. 4-2 The EBSD measurement of acicular ferrite orientation: (a) IPF map; (b) pole figure.
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001
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Fig. 4-3 The reconstruction of prior austenite orientation: (a) IPF map; (b) pole figure of (a);

(c) pole figure of represented prior austenite; (d) 24 K-S variants.
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Fig. 4-2@) DRI TRIALEIIAEDIEST HALETH Y, 5 3 H TR LIoRERD
O, MEMERICER IS TIO & B-N BRZH-ZL TS, 207 =714 hDF
NI A A T —HAIZEBWT[177.6, 143.9, 316.9] TR 4, Fig. 4-4 OIS KIZFH A TR S
b, 207274 FERBIEWVK-S N T MIFig 4-4 OFRETRIN, 47
~%u£wfpwiﬂnA3wﬂ?§éM6.Hg¢4m%¢iim,:m%ﬁ#ﬁm

W% > TEY, HETDTN38 LoknI Enbhroi. TiO & B-N B
FREWMEZLTCNDTvFaTF7—T=74 hTHoThH, A —ATFA MIxt LT
IEIE K-S BAfRZTE7- LT\ 5D 2 & A fEsB S iz,

'y
-
O

~ e Nucleated ferrite orientation
+ 24 K-S variants
RD ¢ The nearest variant

Fig. 4-4 Pole figure of nucleated ferrite and the nearest K-S variant.
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44 HBE

# 3 BROAREOERMERNS, TV FaT7—7 274 MINEBDITH LT B-N
Bk, RARA— AT I A MIK L TK-SBfRZmIZ L TW\WD Z ENMgEdsni. 22
T, 7v%aT7—7=74 MRWEDOHMBIRERIZTIRDUICHONTERET . iz
(X, SIEEISZA L TV Tio it TRk S, A —AT T4 ML
T U LB ThoT2%E, 2k B-N B2z b TEKLET O F 2T —7
T4 MO TUELRFMERD., ZOT =T A FHIMBEIR K-S BfR &= AL T
bholebBZEZ LB TE, ZOGA, TEOHME D7 =74 FMBER K-S Bk
EOUNDIINIZEL T2 DR, PIXULTOXR TR T 50,

27(cos0—cos0) 6x 20

P< X
27(cosO—cosz)  7/2

24 (4-1)

BIZIX, 0=5°L LI¥h, ZOMEHE P IX 3.04% KL /725, ZOEIET V%o T—
774 FMEIR K-S BIRERIZ LI EBZ DTN ESTELZD, Zo X5k
DL STT o FaT7—T =274 B2 OO FMEFREMT- Lz L1338 21z v,
WRIZBEZBNDHDIE, TiIO BIHA—ATF A MIX L TREDO FMERE D, 72
B0, ZHICKHLTBNBERZL DT =T A FRKIRIIC K-S BfRZ b5 E T
HbH.EZ T, TIO LIHA—AT A FOFBMRERE L7-FER % Fig. 4-5 1277,
B-N Baf% & 13(001)o//(001)ti0, 7>, <100>4//<110>1i0 Z{ifi 7= 3 BIR TH S DT, TiO D
fEEn FALIE{001} Z T 45°FlHR S 7= it 70 b, LI -> T, HFDOREITRE
L5 {001}, Z HhZ iR S H 72454, TiO OfE A AL Fig. 4-5 OFR, #, D 35D
FALRTE SN D . Z Olalfisdh & 72 > 7-{001}rio 12{001}, E BT 2 H 2B L CTFh
D, bbb, TvFaT7—TxT7A4 FBEET DRENIA—AT A M &L TW
Tl Thd. 2 32D TiO DR AN E A—ATF A ~ & DOHAERER~D 7
W, A—ATFA OIS TH 5{001},, {011},, {111},, {112}, % Fig. 4-5 (TR
L7z, ZORERNG, A—A7F A FERFEL TWe &2 b 3 - DD{001} o 1
FT—=ATFTA FOWTHOBIEREIZS — B L TWRWZ Labnd. £z, ThE
D TiO D{001}rio & A —A T F A ~ DIRFEHE & ORICHEED HN KR BB S
. LRS- T, TIONA—AT A MR L ThDRED TN ERET- L TOF
B L7z &3 2T <.

ERRIZERWT TiIO BEHP TR ENTHE R NA—AT A4 N CEKR I
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BEIZOWTBE LR, ZALIEREMEE LTRWZ LR SNz, &#EICE X
SNDAHEEMEE LT, TiIO BT v F 2T —7 =274 MIx LT B-N BfR&~- LT
T 55 HB20ND. LNPLARBRDL, 2O TIETIOR T vFa7—7=7
A MEAERBITERSND Z L2 BHRT 5.

;W ‘
_ @
. 112 ./
® 112 B '
111 e e 011 \
. 001
® |
| - ] 1%1I I|-rD
R |
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Fig. 4-5 Pole figure of {001}vio and low-index planes of prior austenite.

NEME 7 = T4 NOBIFRETEAEIIINETT VX277 —7=27 414 b4k
FRERET DEBERAN=ZALEBZZ LT, MEME 7 = T4 PO F L
F—FTEEREPRINT L SITITNARNTIR T T2 THAD. LLarns, Z
DEZFTTEINENE 7 =74 NHORE RN F—DOHNEFE SN TND. 7%
27 =7 =74 NPIBAERT AT, 2EEORBABAIND. — DX ONTE
M7 =74 MEAORETHDLIN, b9 —D2F 7 =74 MERFHAS—ZAT T A MEHD
R ThHD. DD, ToFaTFZ—T7xT7A NOBKEREE 2 HBZIL, M EM &
7T MNEORB T RN —LFERICT = T4 b ERFEA—AT A MO R E
TRAF—HEBEL, F—FIVORETRVF—ZEZIDLNENDD.

B3 EICHB VT BIH TR STV 2 y-AlOs 13 TiO & [ E O A2 A4
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LHZNT v FXaT =TT, SRS ->T-D1%, v-AlLOs BEHHF TR S
Tl ThoHEEZOND. ZOHE, y-ALOs IIA—AT A MIX LTI U H A7
L7y, ZHICESE L TERSND 72T P A —ATF A MIXLTT ¥
DR TR E T2 D728, T2TA MNA—ATFA FORB RV X—TREL< DL
DEBZZBND. £, A—ATFA M L THRED GALEFRZ & D TiN 72 Elxt
LTH, 7274 MA—=AT T A FORBET VX =L TUIFEERD Z LA E R
. TINS 774 MIxLTTIO & RO AL H 2%, TIN B TIET &
XaTd =774 NOBAERBERTZZWI ERRESN TS, TINIZA—RTF
A MR TSI FERDOIIR TR S, A —ATF A Ik LT cube-cube oI5z R
((001)o//(00L)1in, 732, <100>4//<100>7in) % H-213 B4 = ¢ TiN (2%} LT B-N [
FREH>TT7 =274 PR INTSGE, 207 =74 MORfETALITVW P 5 Bain
DHNLRALR & 722 2B = o> Bain DAk & K-S Btk & 1X 111D FH 2R BV,
Bain O HBMRICEVER SN 7 =T A M A —ATF A bORE=FR LT —(X
PREEFREPERLEIND K-S BAROLDLD b REL D EEBLZLND. Lo
T, TINET7=2T4 FPOBEREICEY, ZORBEZRLF=DNNELRLG5EICE
WTh, 7274 e F—RAT7F A4 FOFEHTRNF—NRELRDLIGEITITT =T
A MIBEK LWL DEEZLND.

001
* L BN ] *
L ,. o B
T * 9
L ] L ]
L ] :l
¢ e . .o ¢
‘ L X ] : = : [ X ] -TD
e LALd o0
[ ] L]
b H4
. . [
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RD P

Fig. 4-6 The Bain orientation relationship and the K-S orientation relationship.
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TXxaT—T7x=T4 FOBAERIIER bANBREMEL, TEY R OREA—2T7 T
A MEMIZK LT, FRERE L5727 =74 NOKEFTNBRFETHZ L TH
D0, THPFELRWIEEITE, ROXIBRFMERT F2T7—T7 =T FOAE
RICIFAFITHD EHEI SN D, T72bb, 7=F4 b EMEWITKFEAMENTAE
LRWEE THEFHIRA = RATX—IC LY 7= F 4 MITEM O S = L —3
INEL Y, BRBNOT 2T A —ATFTFA M K-S BRAET-T L TT =
TANMNE—ATFA FORBZRNAT—=D/NSLKBRDHENIFHETHS.

PLEDELZNG, ToF2T7—7 2T 4 MO TIO OIEIL Fig. 4-7 DNEIZTERL &
NebDOTHDLEHETE D, A—RAT A MEEETIE, £7EMTEWEFEO Tio 1%
RS TR IREMET L, yoo BRI N 5REFE TRE hofe b &
27 =74 MATEM ORI RNV X =D/ NS BRITEM DDA — AT F A MR L T
K-S Bt &7 LI T v % aT7—T7 =74 MBEAERTD. £0%, TIONT ¥
F2T7 =774 MIHLTBNBEREZMZTEOITERENLbDLEEZEZLND.
ZDORIEY DI EINC OV TIIRE TRE LS ET 5.

Austenite temperature Acicular ferrite nucleation TiO formation
K-S OR
Spinel
~
Ferrite
nucleus
Austenite

Fig. 4-7 Schematic illustration of acicular ferrite nucleation and TiO formation.
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A5 HEE
RETIITFaT7—Tx2I4 N, F—ATFA b, N{EW 3 FITBIT D iy
ZEREL, ULFIORT a7,

1) TiO & B-N BRAZN/- L CWAT v F 2T —7 =T A MIEAREEIZBNT
t K-S Bf% & DT 38° Lo, 1FIEA—ATF A b & K-S Bk
- LTI LTS EE X T,

2) TiO WNEMFH TRA S, A—ATFA M LTI U X LRFER G TH D L
e L725A, TS B-NBRERMZ L CORRENZT v F 2T —7 274 bR
5° LA DAL AE T K-S BIFR 2 1t 72 3R =R 13 3.04% A0 & & L </hNS W 2 D72,
TiIO BEMF TR SN L IFE 2 b, £, TIO L A=A T A FOfER
FiNEFENT OFERL,  Z OWFE IR E O F M RARNIEE L TV D LIEE 2 biv/eh

7.

3) TiO BT K NA—AT A FHTERSN TV RN E, BEXAbN5HD
X7 F 27 —7 =274 MK LTHMNEREZ b > TWLIHETHY, T7bbH,
TIO 1I7vF2T7—7 =T hOBAERKIIERTSEEALHT LT, ERRER
X JEIR RIRT & 72,
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AEM EAERLT D TiO, AERAVEOEER Y, MnS, FEEEHZR EOMITEE 7 1
EAOHFEFBRRICB W TR SN DO EHESIND. L LR s, ZomihEt:
IZBNWTED LD ITHEFE LIZIER DT S LTV, ZhE TR ST
hole. TvFaF7—7 =74 NOBARA I =X LORBAOTZDI1E, £F130
TED O % BRfR T 5 LERH 5.

2T, RETIERSRIIICESE Y a2 ARIZB T 2N EYM OIS &2 0295
728, AR Sn mTERH A D CIEEET OB EBREIZ I T 2 I EWRLR L & U
L, B#7 m e 2AOMEABRERIZBS T 5N EMORREBOREEIT-7-. £z, BJ)
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TWB Z ERHALNE 257275, AlOs, MnO, SiO; Dl o 2072°C, 1650°C, 1600°C
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5.2.1 &k Sn 2B ER

AR Sn A ik OREX % Fig. 5-1 12783, SMA490 #11C 45° DB 2 /ERL L, BHJEHN
(2 Ti-B ROEEENE (AWS : AS5E7016-G (27%Y) Zf%E L7z, WS LT TIG iaH:
WZRoTT =7 2RASYE, BERLZEMIE. BWHEERIL 150 A, BEEEHEIT 2
mm/s T3HE L 7-. &S T 300°C (2B L 72 R 1K Sn Z 3t L AL, HEER = 2m L
o, R ORESAITEMRERRIC I 0 BE L.
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TIG \

A coated elec\trod7 lnl :(
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Fig. 5-1 Schematic illustration of liquid-tin quenching.

5.2.2 JMEMHE O EEIREHE

NAEW DI R ZE 8 2 A9 5 72, FactSage (= L 2B 23 E 2 =, PRk g
FHELIT 300°C 725 2200°C OFEPFHIZI T 10°C A7 » 7 CHEMi L7z, FHRICHE L
ToARELAIEES 3 RO 4 ECHIWZ BIL #X—RIZP & N 2R T RTCOTHEE
b, T—H_X—2 L LTI FToxide & FSstel & A 7=, FHEICERE LML, TiO,
Ti,Os, B20s, Titania_Spinel, Liquid, FCC, BCC, Cementite, MnS, Slag T&h 5.
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5.2.3 JMEMMRRICE 25 B DRE

B MM TEMIRARRIC 5 2 DB EZHET 5720, B BRI TW W Ti ROEHE4E
BEY T~ =TT — VB Lo TER Lo, B O A Table 5-1 127
T, F 3, F4FETHWE Ti-B RIE#EAE O BIL OfLFFAE fFi
T5., RESERDLZDIFIBEOATHY, MOMEITIFIEF—& L7z,

BILNB TR SN DM TEM A FIBIC L W #IEILL, TEMIZ K HBIEEZTo72. T
FOOHTIE TEM IZFHE D EDS % v 7. fHO[EE X SADP 12 L 0 S L 7=.

Table 5-1 Chemical compositions of weld metals used. (mass%)

C Si Mn P S Ti B Al @) N

B1LNB| 0.063 | 0.27 | 1.48 | 0.010 | 0.005 | 0.014 |0.0001 | 0.003 | 0.029 |0.0048

BiL | 0.062 | 0.26 | 1.47 | 0.012 | 0.004 | 0.014 | 0.0028 | 0.005 | 0.018 | 0.0044

53 EBER
5.3.1 & Sn B ERR

Fig.5-2 IZ&am LT laHE4 8 O Wik 2 7~ 7. Fig. 5-2 DL FRNEE R TH D,
VAR CH > T2ALE 1L Sn EHNR SV H o7 dRRE L 72 > T2, Fig.5-2 F oD 1-3 ®
B TRINLED X 7 v fllifkZ2 2 Fig. 5-3 1277, 1 ONLE TIEEED B AW
SN LTk, w7 oA Mk, 2 DNETIEZ AROT7 S F2T7—7=7T
A AR, 3OMETIIMMZRT X 2T —7 =74 MiRkE 72> Tz,

Fig. 5-4 I[CIEHEEAMRE Y I 2 L—1 g VOREREZRT. a2 b—ra URERITIE
800°C } 1} 600°C Dtz R LT 5. Z OFE R & Fig. 5-2 OWrif Mk & e+ 5 &,
SN INDHHTORIEIX 1 OALE TITEH, 2 O ETIEA—AT T A, 3 OMET
X7 274 hCTholLHEHIINS.

Fig. 5-5 |Z Fig. 5-2 @ 1-3 OALE ) LI L 72 EM D TEM 4 K O Ti e R 08T OfE
BT, Fig. 5-5(0) K AR T L OIS, 1 K2 DEIRTH =@ S L7
NEBT D Ti JEFIIMEDTICHBLTWD Z ENbnD. 20X RAEMDE
REII=RBE CHEEOEE T o v AL > THEISNIENEM S ITRES RS, 5§ 3
BETRLELDICEF OBEET 1 A 2R TR SN IEMIT A AT O
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W Ti SEEE L TR Y, E72, SMEWEIC TiIO 2L T\ e, L LARDBD,
BN D EE LIZHER T Ti AT HE L T D Z b 2 b O
TR SN TR oz bD EEZ NS, ZUucxt LT, Fig.5-5(f)IZR3 L 5 I
EPMETL, 7=74 MRESRIZZ > 72L& S L7 Ewh o Ti JR1307E
WHFIZTERL STz A B R VRIOEIIEEE L TR Y, £z, MEMEREORIED
wesns.

UL EDOFERIL, @E OFEE7T 1 A 2R TEIRE THERISN M EMIZB W THEIEE
S5 TIO RA R NVEI OB IEEH T O X 5 2@k TR S b DO TiEZR<,
WS HRIRIC AR o - BEBE TR SN D Z L 2R T DR TH D L B2 LD,

Welding direction
Weld pool < '

Fig. 5-2 Cross section image of quenched weld metals.
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Fig. 5-3 Microstructures of quenched weld metals: (a) obtained from position 1 in Fig. 5-2;

(b) obtained from position 2 in Fig. 5-2; (c) obtained from position 3 in Fig. 5-2.

2000
1500

1000

Temperature (°C)

500

Fig. 5-4 The result of welding heat transfer simulation.
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JG0 LIS

Fig. 5-5 STEM observation of inclusions: (a), (c), and (e) STEM images; (b), (d), and (f) Ti
distributions; (a) and (b) extracted from position 1 in Fig. 5-2; (c) and (d) extracted from

position 2 in Fig. 5-2; (e) and (f) extracted from position 3 in Fig. 5-2.
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532 NTEWHEOFAERIEEH A

Fig. 5-6 (Z B/ M EL 0K B4~k 9. (Q)ITIZiEAH, FCC, BCC, & A %A R D
fERZ, OIIINED E LR SDHOFEMERZ R Lz, (QO/MRE» D REIE T
[FIEFHOATH Y, BEHTVE 7 =T 4 ME1530°C OHTH LG D Z Linbinbd.
I, F—=AT T A FiE 1480°C ST &40, 1460°C (ZF W THRABIZIHIR T 5.
T, A—AT T A BT 2T 4 MIEETDHDIL840°C D THD. (b)DITEWY
FHOFERN B, EEOMENBRIZB N TR S NDDIIAT 7HTH Y,
1830°C MBI SR 5 Z L RbnDd. 20 & ZORRIXIRMOH TH 5. IRED
BT & & BITHARPD L, AT ZHBAEMT 223, ZOEMEPHERT 2 & EI2AT
JHONHPREE T T D5 B30 5. RIZEKESNDDIE MnS THY, F—A
T A MEEEO 1360°C IZBW BRSNS, Ll s, ZORETERS
TWOBAEIIA T THOHTH Y, A F Y & OFRERRBIEITTER S
TW2RWZ &R S ND. BRI TERR S LG D 5 DId 1250°C 726 TH D,

ZOWRENS Ti HO AR VEER{EY), 1200°C T Ti:0s DIEIZEKR SN D. £, R
7 JHIE MnS K ONEFEB LD O E & I T 50, 7274 MREKTH D
450°C £ THEHELTWADH. ZDORAT ZFHIL 450°C IZBWCTEFMD B0s B X5
ZETAT THPHET 5.
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Fig. 5-6 The result of thermodynamic calculation: (a) steel phases; (b) inclusion phases.
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533 MNEWMRRICE 2% B DEE

Fig. 5-7 IZ B s 720 BILNB TR S TEM D ILHE T OFfEREZ RS, =
DFERING, ZOMAERIT Ti LT Mn 285346 L72A (BAEHG O 1) & Al, Si, Mn
PR SN S (AREBRD 2) O2HTEHRINTWD ZERHERIND. b
DFH?D SADP % Fig. 5-8 IZ/R 7. 2 SADP 726 T B IL A B /UHH & IESE A & A
E STz 2D OFIE B BRI S LT 5 BIL & [RERICHERE STV 5723, BILNB
£ BIL TIIRE S B 3 Blggansg. BBABMEN TS BIL TIIM7EYEH
(210 nm FRE D TiO SR STV, B EMO 220 BILNB TiXZ 0 X 5 241X
BlEZsnlehotz.

Fig. 5-7 Elemental distributions of inclusion in BLLNB.
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Amorphous

Fig. 5-8 SADPs of inclusion phases: (a) obtained from 1 in Fig. 5-7; (b) obtained from 2 in
Fig. 5-7.

5.4 E£

ZIVETORMETIE, BEIIET )TN ZE Th DT, TiO < Ti0s, A RV
OB 72 £ OFEIRBAC IR T OEIR TR IND LB b TV, Lol
BN D, B OMITIKRIK Sn AWM FEBRKL OB FHEICLY, A—AT )4 MRE
LT TEMREND ZENRHALMNE ST, ZNETICHETIFHEICK 2B HTD
NTWED, B ORI TH D AT THOFENRBE I TWiehole, AT 7
L EDIABEOBIFEHFEICE > T, ®ETIEZINLOBEERBIEM LY AT ZHO
FINEETHDZENRALNERD, ZHICAERVEORIEYSC Ti0s 72 & OFEK
BAb XA — AT T A MREUTCTERIND Z Ebnole. 2TO—FT, §3
TO TEM BEICB W CIEIMEDE I TIO BN IR, KEOBSIFHEICE
WL TIO OFEBUIMER S ieiroTo. L -> T, BJFrZiL Tio L 0 & Ti0s
RACERXNBI DB D F N EERBICIN THDHEEZD. ZOX D72 TIO B S
NWAHRRIZZ =74 DT EAMEICHDL EEZEZOND. 7274 & B-N Bk
T U, BUFRTFEEMNEZ O LIZL T, THBEEINICR Y, B Fei)%

EMETIZE D TIO THT 5 Z ENAMRRICR ST B2 b, TiO I 7EY)E
D7 T4 MEBEHELTWDEHOTLOAERINL T RWEE S, B EAMEIZL -
TERSNTNDTeDThH D EMHTE S.

LrL, 7vF=2T7—7=74 FOARMM 600-700°C FLETH Y, TiO 237 2%
27 =774 NOBEAERRBRIZERINTZEE XD L, 20 600-700°C &9 KIRIC
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BWTHIEDHTO Ti OILEB B L 705, 20O X5 e fiiu I by & LTl 450°C
EE LW S 2§D Bo0s IZ X » THERATREIC e o T2 b D & 2 B s . Fig.5-9 1
B203 IZ LD AT VHDKIRE ENZ R FHEIREX 2R3, KoLk 50
mMass%SiO2—50 mass%MnO DFLEK TdH VD, AHHNZAT < IEE B0z DEIG ML 72 H D
o TWnA., ZORIZRT X 912, 50 mass%SiO—50 mass¥%MnO (2351 2 iR AHBR I
1500°C TH 273, Al 450°C D B:0s MW EAH S4LH 2 & C, A7 ZHAEHRRREIC
BWTHZOREETLREE D, FEBEZ, 5 3 FED EELS 4128\ C Ti-B 2D
B B O TEY CIEIEREMIC B 3B SN TR Y, 27 7HIC B0s NER I
TWDLZEPHERINTWND. ZO XD RIREOAT ZTHMEEE TEET L2 LT,
Ti-B 3R DIEHEEE O 1EW T3 600-700°C ORIV T H Ti OIEHLS ATREIZ 72 0
TIOZFEMKLI-bDOEEZLND. ZHUTK LT, Figh-7IZ/RL7=X 912, BOEM
TV BILNB TIEATEM AR TiO MR SN TV o T, EE4ARIC B
DI EATWRWIGEE, IEW DO A Z ZFHIEEIC Al03X° MnO, SiOz &\ o 72
bz K> TRERR S AL, 2B ORRIZZ 24 2072°C, 1650°C, 1600°C T 5.
Lo T, 2D THRESNEAT ZHIZERCEMR L, EREMCRD EEZ
HND. EURTH 2 IFAEF TITIEBDELS 72 5720, BEIMNO 720y BILNB TiX TiO
W SN Rl LA TE 5.
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2100 1
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ASlag-lig
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o
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Temperature (°C)

300 19 + MnSiO,(s) + Mn.Si ASlag-lig + Mn_SiO (s)

700 ASlag-lig + MnSiO,(s)

500 [ASlag-lig + SiO,(s) + r-.-ms;‘W\_

B.O.(s) + SiO.(s) + MnSiO,(s)

300 ) L — s — ] . 1 ,
0 02 0.4 0.6 0.8 1
SiO, + MnO B,O3
Fig. 5-9 Phase diagram of SiO>~-MnO-Bz0s.
55 #EE

REETIL, RIR Sn 2aiEE W8 7 a v 2B 2 AT ONEY ORRRE
DB, kOB ) FEHRIC & DI AEMMRL O P ERRBER I 2 i L, MEMDOTEAL
FEAERAE L2, £, BARMSNL T RWEESBAERL, B BN EMFRZE
G2 B ERE L. UTICAETELNERETRT.

1) IR Sn TURIEIC K D EBRAERN S, BHCA— AT A hoERE ) HhiH L
ATEMTIE, Ti BAATERFIC/HBL T, 2R LT, IREMNMETL, 7
= T4 MERER LB Z DN LMEN O LI MTEW TIE, BE 0% a kX

(X o TR S NI TEY & FERIZITE I Ti 23(E L7 A B xR ofgeql,
W OIS EBE IR &5 Tio £ B2 b d Ti{LENER ST e,
L7 o T, AR VBRI TIO ITEHO L 95 iR T3S Tl bH
T, HOREIRENMET LRER TR SN D 2 LR ENT.
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2) EBNFHEOEREND, B E L TRMNICERSNDDIZATZ THTHY,
1830°C MBI &N AD Z EnbiroTe. 70, Ti 2 G 0ERIBE N B S LD
DI 1250°C 26 TH Y, A—ATFA MREBL T CRAINDS. 61T, K
IR Tl B20s ZEisr & Lz AT ZHHIL 450°C & THER L, 450°C IZBW\CREAR
B2Os MBS ILD Z & TAT ZTHNHERT 2 Z LRGN LR o7

3) 4 FEDOFES SN OFER DD, Ti-B RIEHEARONEYAPFHICEK S D Tio
X7 F 2T =7 =T A FOBAERBRITIERSILD Z & HIREE S 1L, 600-700°C D
RIETTi DT DI EDRMETHL EEZ DN, 2O LX) 2KIE TOILHIX
KESER L TH D Bo0sIZ Lo THIERIZ/AR D LB 2 bz, T72bL, EHEeR
2B BRI ND Z & T, MEMEMKT 2 AT ZHHPMEIR E THEB O RV RE
WHEZMERF L, Ti 2MEBCATREIC /2D, TIO Z2IBAT 5. F72, B OIS LTV
W Ti ROBEHEERBR TIETIO PR SNTW o7 Z b b, BOsIZ LD AT
ORI TIO OFRIZH G L TNDHEWVWI AN =ALEXFHTHHDOTH
HEEZLNT.
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FTOE TIFai—7=T74 MIBRERIZKIZET Ti DR
6.1 HE

WEOIEIZL Y, RSB R OHAZ IZBWT Ti 2848 LEERILWRNEDN T
VX aT—T =274 NOBERERET S Z ERHE SN THAEDL b o@E
DOHRT, ZO Ti 2&GH LIEBIEMRITERRT v F2T7—7 =T 4 FOAEREAR
T 200X, EHEAETIE TIOB B2 v x Aokl 7 =7 4~ L o3&
BHIZE 5T, HAZ T Ti0PNZ LD Mn RZBEOFRIZE D DO THDH EBZD
NTWD., ZNHOWEICBWT, HEBLTWDZ EIE Ti 284 LBLWRNTE
MINRT v F2T7—7 2T NOBAERERET DLW FEREETHLN, HESN
TWANED R ORB I TNDE A=A LEFEL Bgo72bDTHD. b0
HEND, Ti #GH LEBIHENTEWBIRIZT %27 —7 =74 b OARMEED
FET D0 THY, MEMP TR S LD TiO R Ti0s 78 EWT O TH -
THET v Fad =774 MIBEKTLEVWIZEHEXOND. Lo T, Z

IAEW TR S 0 D M AL RIS AR B 22 5 % - 2 TR0 & 5 AT REE
LD, 22T, AETEHT 222 REBEZ/ERL, 2o Ti & & NTEWFAKR
DBGR K OFERL S DRI DV Tl 21T - 7.

6.2 FERRFHE

WeB T — 7 i T, ABVE 1kIimm TLBaE4 )R 2 B L 7=, Table6-11C
WA B DAL & 2R3, Ti &% 1-550 ppm O#iPH CEfL S8/, £/, AETIE
BT IREE BRI Ti ROREHEEER L, EHEARIC BIXRINS Tz, @i
NI K D DB Z 21 TR W B BIRBE D A& S A DNLE & LTz,
ABHISE MBS L721212, 2% A X — Wik »> THEAE L, e 2 v s
Liz. 72, ThTNORBHIBIT DT V% 2T —7 =274 bOARKZ ERIICEHE
THD, 3mmMPIZBITAT VX aT—T7 2T FREFHB L. MEMOBIEIT
TEM Z H\WTITW, SMEW O IR HTIE TEM IZKE O EDS % 7=, TEM o
EHI FIBIZ X » CTIERLL 72

7



F6 B ToFa T—Tx T NI R IET T DB

Table 6-1 Chemical compositions of weld metals used. (mass%)

C Mn Si S P Ti Al N O

1-Ti | 0.074 | 1.40 0.25 | 0.006 | 0.007 | 0.0001 | 0.0005 | 0.0079 | 0.0475

28-Ti | 0.077 | 1.46 0.27 | 0.008 | 0.007 | 0.0028 | 0.0005 | 0.0081 | 0.0459

200-Ti | 0.072 | 1.44 0.35 | 0.006 | 0.012 | 0.0200 | 0.0005 | 0.0071 | 0.0312

410-Ti | 0.069 | 1.47 0.45 | 0.005 | 0.006 | 0.0410 | 0.0005 | 0.0077 | 0.0282

550-Ti | 0.070 | 1.50 0.45 | 0.005 | 0.006 | 0.0550 | 0.0005 | 0.0075 | 0.0294

6.3 EBRAER

ENENOEBEAE O X 7 a k% Fig. 6-1 (23, Ti AU EI TV 1-Ti ©
REIOBT X 27 —7 274 bOBEBHER SR o72. L LRRG, ZOf
OFRETIEB BTN N TV WD, FiR 7 =T A4 v 7 =T 4 A R L— ]
R EDHA—AT F A MR TR SN AR S e, A—ATFTF A NN T
WA T > F 2T —7 = T4 NORKDBHER SN, £, TNETNDOEESRIC
BIATV¥2T7—7 =274 ME% Fig.6-2 1259, 1-Ti, 28-Ti, 200-Ti, 410-Ti, 550-
TiZNZNDOT v F2T7—7 2T A MEIT2.18%, 74.3%, 64.5%, 77.7%, 75.9%TH
b, Ti WO 1-Ti DAMIEWERTT VX2 T7—7 =274 MA#OAEL LT
7.
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Fig. 6-1 Microstructures: (a) 1-Ti; (b) 28-Ti; (c) 200-Ti; (d) 410-Ti; (e) 550-Ti.
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Fig. 6-2 The relationship between Ti content in weld metals and volume fraction of acicular

ferrite.

Fig. 6-3 ICNMTEMD NN DY A RIZB T DIEE i &~ 7. 28-Ti O AEHI72 I
TEMNL N Z E DR IND D, ZRLAORE TIXZNIZ ERE BTN &N
bbb, 201D, NMEMSHOREIZL>TT X a7 —7 274 OB
SINTIENWR2NHDEEZ HND.
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Fig. 6-3 Inclusion distributions.
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ENENOREHZIB T 2D TEM 4, SADP K UL OfE R % Fig. 6-4—
Fig.6-8 |Z/~ 7. & 3 W TaBl L7272y, BRI O Si Oy bEIE FIB I LK W D HE
FERCTH 5. Fig. 6-4 IR L 91, Ti OIS TWHZRW 1-Ti TIEMEM D B 1 Fig.
6-4(O) R N = DBRPFEND Z E D, Si-Mn R OISR AR T
ENTWDZ ENbod. £72, Fig.6-512/~77 28-Ti OAEY TIE, FESEA I
WED Ti SR En7esy, 1-Ti O IEY & RRRICIFSEF O A TR STz,
Fig. 6-6 (27"~ 200-Ti TI&, MMIESHIC Ti AL LSRR STz, 2o
fE A SADP % Fig. 6-6(c)IZ/< 378, Z @ SADP [& TiO, Ti2Os, TisOs, A ER/LD
WTNOHDOE O LT RR2 > TEY, FEIXTER oA, O & FEEEM
D2MICE VRSN TNWD Z &Moo 7-. Fig. 6-7 12787 410-Ti Tk, FESLEHE
NS BT L, SERDOKRER D3GR & 7e > Tuvie. 2 OfEERFEIE Fig. 6-7(b)IC
5% SADP 735 Tip0sz & Al &7z, Fig. 6-8 (2759 550-Ti (2B T, 410-Ti & [AlkE
IZ Ti20s & [AlE STz,

VL EDORERD D, Ti BRKE < RDIEENTED T OIEMEITRA L, #2380
THRRFABEI N, Fio, Ti-B RiEHESRE CHEINT-MTEMEBE O Tio 13
THOREHZ BN THEIZE I T, BILNB & [[AERIZ B IRIMD 22 W EEHZ B W TIX Tio
TR S22 & DR S 7.
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e

Amorphous

- ‘_-awx.,..\,.m ._.,m..m;mw,‘

Fig.6-4 Inclusion in 1-Ti: (a) bright field image; (b) SADP obtained from position 1 in (a); (c)
elemental distributions.

Amorphous

Fig. 6-5 Inclusion in 28-Ti: (a) bright field image; (b) SADP obtained from position 1 in (a);
(c)elemental distributions.
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Amorphous

(@

Fig. 6-6 Inclusion in 200-Ti: (a) bright field image; (b) SADP obtained from position 1 in (a);

(c) SADP obtained from positon 2 in (a); (d) elemental distributions.
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Fig. 6-7 Inclusion in 410-Ti: (a) bright field image; (b) SADP obtained from position 1 in(a);

(c) elemental distributions.

Fig. 6-8 Inclusion in 550-Ti: (a) bright field image; (b) SADP obtained from position 1 in (a);

(c) elemental distributions.
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Fig. 6-9 [CM{EMEPHICB T D TTESHTOFE R 2T, ZOREINTT X 51T, 28-

Ti J2OY 550-Ti TIIMTEMEHO Ti BlbE bR INTELT, £/2, Mn RZED

FERK S AU TUNR D,
(a) 28-Ti
>
‘»
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E |
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< A Rﬂ\f‘ A \ | )
- NMJ W RLTR NV
0 100 200 300
1 200 nm BF

Distance (nm)

Fig. 6-9 The measurements of elemental distribution at inclusion interface: (a) 28-Ti; (b) 550-

Ti.
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6.4 BE

Ti BIRMENTWR2WN 1-Ti OREOBRT % 2T —7 =74 OB HER SN
TR o e, FRUAORENTIEE 2 28ppm DX D IHMED TIHRINTH-TH T
VHaT—T =T MIBRENDZERHALNERoT. ZRETDOT T FaTF—
T =T A MEAERITHT D RMERE SRR Z LI, 28-Ti O X ITFHHEEHD A
THER SNTENTEIZ BN TE T VX a7 —7 =74 FOBRBRD LN LT
b5, ZHETORMTIE, TiO X Ti20: 2 EOFERIBIZT ¥ F 27 —T7 2T A4 FD
AERRBENTFET D E B2 BTV, TiO Tk AMIC X > T, Ti:03 T Mn
RZIBERET D LIS TT vV FaTd7—T T4 MEERERET D EEZD
T\, Los LRy n, 28-Ti KO 550-Ti OB IT DOMNEMITENT, K THEAMER
O'Mn RZBIXBESNR)hoT. LERST, TvFaTF7—7 274 NOBKAERIT
INHEDAN=Z AN TR ERDATN =N TREEN TS Z ERE X
LD, ZNDICEEMWDLFIZR A =ALE LT, MEMZEREND Ti i1

WX DN EM DO T = RN X —DECNDT > F 27 —7 =74 FNOAERKIC
REENZRIZ L TNDEBZ TS, THIMEIZRINESND 2 & TF L IREE R
ESHLZZERHESNTEY, XX, AHIMIC T Z2RINLTESHEA7 SICBHEIC
ZOHFIFENLZEN. L5 R TiOoBEITL-T, A—ATFHA MITEME T
=74 MIMTEYORE TR NF =B’ AL, BAERDBEOIE L= L ¥ —%
KFSHELBERDHLDOTIERVNEEZZTND. 2O X IZHET LTI
WAELCTEGARIZONT, REIZBW TN FHRBIEANLT v F 27 —T72T (4 FO
BAEREBE LT,
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6.5 FEE

KETIE, 7vFaT7—7=T4 MERIZKIET Ti OREBELRHEST D720, B

EEF O Ti &mAS 1-550 ppm LR OHBAAFRL, MEMET O F 2 T7—T7 2T A b
FRIE R OBREZME L. TNICARETHLNERE T,

1)

2)

3)

Ti WM ENTWZ2WVERENTIE, 7V F 27 —7 =274 bOEENIE E A EHERR
S o 7Ny, TiDd 28 ppm UL BTN S 73RN CIZE T 60% L EDOT % =
T—7 74 MHEEDIE LT,

Ti £7° 28 ppm LLF OFRE CII M EMIT 2 CIEMEM TH - 7208, Ti 208N
HIZo0T, MEMTITRE SN S, 410 ppm & TN 550 ppm @ Ti ZEN L
7B CIE, ZOFEEEFHIX Ti0s TH - 7=,

NMEME 7 =74 FPOBREREOEEINT, NMEWHEEO Mn RZjE bElE S

N olzZ Enh, ZTNHEITERERAA N =L L-oTTvFHFaTd7—"T7=7
A POBARIFMEESINT-bDEEZ BT,
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BIE TF%aT7—7x271 MEAERICET RS IZMELR

71 FEE

HIENLHEOEETOMBICLY, 7ToFaTF7—7 254 NOBAEREIRET S
DIX, NEMIA—2ATFA NRONEDIT7 =74 NOREZF AL —IZLDHHDT
bH LML, 22T, AETIEIO L ) =R ¥ — DB LB EAERIZ G 2
5B R B RR R BRI OB 2T o2, £z, Mn RZENMER SHZEAICS
WTHBLEL, 7vFa7—7 =74 MEARICKITTRETRLF—DEEL Mn
RZIEDF & LT,

SO, MEDTAZANRKREVNERT X2 T7—T7 274 NOBERENENZ &
WA STV DB, 56 3o 28-Ti TIE, MEWHT A XB/NSWIZHE b b7,
BT U FaT7 =TT MEMFLN TN, 2T, T¥FaT7—7x274 M&
AR ETIED Y A ROEBICHONT S BB B EE L.

7.2 BAERCET 3B FHER
7.21 BAEROEE P

Bl 2 1E, Fe-C2 JTRICEBWT, &4 Sz y Ml S a FEEA R T 2 BREL /)12 B L
T, Fig. 71 WO RTHHT RNV —F AT T I LE5H/NTEZD. yEHMHD CFHTO
EAGRE XS, FRUCHIET S Fe, CIRTFOMERT v vE 18, w T 5.
B ORI P REAR & D)L 7 SEHERK xG 12 L &9 5. BEOTEARICIE
A-x2) END Fe JiF & xEENAD CRENMBETH LG, 7L 7 PHITHIET 5
Fe, CIRTDILFERT oY V& ut (=ul), pwé=ul)l35E, ZNHDORFDOH
H = kL ¥ —I(3,

Gj = (1= X&) e + XE e (7-1)
THV, ZIUIFiQ7-1 DSABOHMITRAFX—IZHYT L. 2D afHi
2Ll OBEHRTRLEF—(T,

G = (A= XE)pfe + XS ué (7-2)
Thod (Fig.7-1 D C). Lo T, BOEBKICEIVEATLIHEHRT L —, 720
LA R O BRE) ) X AL AR 72 0,
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A8, = - XY — ) + 56 (i) 7-3)

EEXEREIND. L, yHE AHOEAMKETIFIEELNEL, Vn& LT,
2R THLIBEAELREOE 2 FITEA T, #lxiE, Fe-C-Si-Mn @ 4 tRIZE
i DR DOBREN ) IF R T REND.

1 a a a a o o o a a a
AGV = V_ {(1_ Xe = Xgi — XMn)(/uFe - :ul(:)e) + Xc (IUC - ,ng) + Xsi (zuSi - ILlSOI) + XMn(luMn - zul?/m)}

m

(7-4)

Fe-C binary system

0
Fe
>
o
S
]
c
O]
o
Q0
2
O
a _ .,
-uFe - -uFe
«
a 0 N rrd
0 X Xo X 1

C content

Fig. 7-1 Driving force for nucleation.
722 WHEEARE
TvXaTd =TT, MINEDIA—ATFA SHEIZBWTEART 2 R 8

BARTH 20, ETIIEBAERIZONWTE X . @mtE y FIZEIRD o MR
LG ao 1l&H7v o A= XF—2dRkAATRIND.

Ag:AGV~gzzr3+ay,a-47zr2 (7-5)
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ZZTCow X yla OFRETZRNAF—TH 5. Fig. 7-2 18T X 91 - TiRAME
Ao * E720, TNFRRATRIND.

s (7-6)

AG

v

167 o°

macid 7-7
3 4G/ (77

Ag homo* =

FED U T TIHEHRZ LT —Z{UITA LY THLOT, ki 134K L TH
HET 2. Lo, —BErz@Bids, mxAX—2IATHY &L 50T, B
RIAIE— RN T . 20 rz i, AQ g * Z A O AT rL X — L

AR

[
»

ius

Free energy

Fig. 7-2 The change of free energy at homogeneous nucleation.

7.2.3 AREEBAERKE
W SN y B ENEM EDOFIEIZ, o FANREEKRT D56 O % Fig. 7-3 ©
KOV XETATHET S &, ZNENORMET RV F—DORICREDRALT S,

O-Inc/y = Glnc/a +Gy/a COSG (7-8)
O — O

COSQ — Inc/;/ Inc/ a (7_9)
O-;//a

T 2T QXA L MREIL, AT D o M ENMTER & OIFEIES JWVIEE 0 DOl
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LD,
OV AEDERICHE S BB RV T — 2 AG, o (TR THBL SN S

s (1—cos8)*(2+cos0)

3 +O-7/0! '27Zr2(1—C059)+(GmC,a _O_Inc/y)'ﬂ-(rSinH)2

Ag hetero — AGV -
(7-10)
L7eRo T, Ly RO, BREOERT RN T — A, 0 * TR TES

n5s.
20
yla
=——r2 7-11
16, (7-11)
g, %167 9,0 (1-cosd) (2+coso)
ghetero - 4 (7_12)

3 4G/
=Aghomo*'f(9)

ZIT, LRSI DESCERITEB AR OKRRED S O L FH—Th 5 DI
LT, VYyAEICBT DA AERT X —I3EREDO b DIz 1(0) 28T - E
ThDH. f(0)IFHSM 012X > Th Fig. 7-4@ITFTEE LV, B, 0=7/4T
X f(7/4)=0.06 & 720, F—DBBEAT THBT 5 &, NEMORmICBIT 51
RREESFHE D LR TR F—1FERRO AR OAR AL F—L Y bFE LI
(Fig. 7-4(b)) .

Y
) o
¥ o
0
< >
Oinciy  Olncla Inclusion

Fig. 7-3  Schematic illustration of lenticular model nucleation.
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(b)

Homogeneous (6 = 180°)

08 r

06 |

f(6)

04

02

The change of free energy

0 30 60 90 120 150 180
8(°)

Nucleus radius

Fig. 7-4 The change of free energy at heterogeneous nucleation.

724 BEAERRER

BEARITER 2SR TH Y, BALRRH], AR N 72 W ORA AR 2 5 M9 5 &4
N 5. ZHAERAEMBEE &0, BAERBE, IR D X 5 IZHAOBE &,
T 7 ) AN ER T HHE, v DI TERIND.

I =(N,/V)xv, (7-13)
ZZ TN T 1 mol FOEEREOMEETHY, RATHEEEND.
Ag*
N =N - -
. exp( T J (7-14)

TZTNIETAT FeE, kslZALY~< U EBRTHA. £, veDEIFERAD XS
RIh5.

4rr? D ar*?
V.= c_. = D 7-15
ny Gny (719

Z 2T raldf 8, DITIEHURETH D, Lehi» T, BARBEIIRATEZ D
nos.

N, Ag* | ar*?
|=7exp[—%]- 4D (7-16)
B a
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7.3 FEMAER
731 T7VX%a2T9—7x5 A MEAERDRET

£, EPTE DAL T O KRR ZHER (Al ) &R D78, Fe-0.083
mass%C-0.25 mass%Si—1.6 mass%Mn @ 4 Jt.5% T Thermo-Calc % IV TEHAE L7z, Fig.
7-5 (R SN TOPERIR B 27”97, Z ORI T D Ael 4L 831°C TH D Z &3
bd. WIZ, 74—~ A X RS O C, IEE 2 L= BVERE 2 1 5- L, 10°C/s
DOERHHANCB T A2 HEEZEZR L2, Fig. 7-6 (27 4+ —~ AXREBROME R 2/~
660°C % FE DIREMND vy OBFZREER AN T, BEEZRL TN ENHID
WENST X 2T =774 FOERBIESNTWD Z RS, LTeh>T,
ToXaT—T T4 MBPERT L0 171°C OIRBERLETH o7z L
25. TvxaTd—7=TA MEAENKIEE TH S 660°C (ZH51F 2EREN /1% Thermo-
Calc Z HH\C Fe, C, Si, Mn ® y fHHH & o fHHF TOALFERT v v v Z KD, 7-4 K
ICRALTEE L7z, ZOf5E, 660°C (231257 =7 4 MEARKOEBES) J713-440
Jmol TH Y, BRENNTEMEIZHGIT 2 EIET H L, FREICKITL7 274 F
BARBEE /NITRATEZ BN D.

AG,, = 2.57T —2837.28 (7-17)

[FEEIZ LT Mn RZEMNEEK SN TWEA OBRE) /) % Fe-0.083 mass%C—0.25
mass%Si—0.6 mass%Mn & LC, Mn 2% 1 mass%fk F L7 & RE L CatRaiT - 7.
Fig.7-7 12 Z OHLARIC BT 2 FHRIRREK 2779, Mn 2% 1.6 mass DA & 42 &
AL EH L TEY, Ael KIL865°C Tholz. ZOREND, Mn A 1 massYolsib
5 & 34°C EREBAAIRIES EH L, ZhIC o TRMEN LA-L, BRE) A8
%. 660°C 1T 27 =T A MEAKDEEE)J113-519 Jmol LEHREIND. AR L
T, FIREICBIT L7 =74 MEAERBE N ITRATHE 2 65,

AG,, = 2.53T —2879.14 (7-18)
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THERMO-CALC 12014_04_14:18_0?) :
DATABASE:SSOL4
B=1, P=1.01325E5, W(SI1)=2.5E-3, W(MN)=1.6E-2;

900 1 1 1 1

1:*FCC_A1
2:*CEMENTITE
3°BC

750

TEMPERATURE_CELSIUS

9] (=] » =~
b o [0 o
o o o o
] ] ] ]
T

500 +——— : | :
A\ 0 02 04 06 08 10

— MASS_PERCENT C

Fig. 7-5 Phase diagram of Fe—0.083 mass%C—0.25 mass%Si—1.6 mass%Mn.

Dilatation

200 400 600 800 1000
Temperature (°C)

Fig. 7-6  The result of formaster test.
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BI;\I%EMO CALC 2014 04.14:18.09) :
B=1, P=1 01325E5 W(SI)=2.5E-3, W(MN)=6E-3;

900 3 1 | ! L

1*ECC_A1
2"*CEMENTITE
3“BCC_A2

750 L

7004 -

TEMPERATURE_CELSIUS

(8 [8)] (o)]
()} o )
o o o
| | |
T

500 +——— . | |
0.2 0.4 0.6 0.8 1.0

MASS_PERCENT C

T,
—
o

Fig. 7-7 Phase diagram of Fe—0.083 mass%C—0.25 mass%Si—0.6 mass%Mn.

732 BERBEHETRELEZNATA—F

ARBEEOFRZ T DB, NEW, v, o® 3 HHORET R F—R30E &7
%. yla FE T R VX —OEHEIE 0.52-0.63 J/Im? & W O ERRE S TRV M, K-S
BIRE WO PEEAIRIETH D Z L A BJE L T 0.2)m? LUE Lz, NTEMl, NMEDa
DR TRV —ICEH L TUTHEDRRETH Y, £/o, LEEHHL Z LB TE en
STlz®, @=20°-50°DHFFHNTEHHR L7z, Zhido,,,, — o, =0.188-0.128 J/m? (T
KIGLTEY, +2I2E V2 ETHLEEILND.

7.3.3 Mn RZEBER N TWIEE OBEREEDEL

Fig. 7-8(a), (b)IZ 1.6 mass%Mn DA & Mn R ZJEMN AL X4 0.6 mass%Mn & 72>
TG A ORE E A RHEE OB Z 2~ 7. 1.6 mass%Mn D55 (@)1T & — 7 (L&)
440°C TH D DIZxF LT, 0.6 mass%Mn OEE LI E— 7 (L&D 474°C TH Y, 13X
Ael HO EFRGTETRAERBEDO Y — 7 &S SR~ ITL TND Z bbb,
70, BERSEE O RMEE 1.6 mass%Mn D51 6.2x10% m 3L, 0.6 mass%Mn O
B2 3.9x102 m3st LK 6.3 [EDMEIC/R D L E X D.
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(a) 1.6 mass%Mn, 6 = 30° (b) 0.6 mass%Mn, 6 = 30°

w TE24 I(_n -

¢ i ? 40E+25 [

E 6E+24 E_ é L

§ SE+24 §3_05+25 X

C 4E+24 | g _

O L o L

2 3E+24 | L 20E+25 |

c [ c L

O 2E+24 | 9 I

© i ® 1.0E+25 |

O 1E+24 [ £

O F : g -

= r L

=z 0 L— AR R SRR L . Z 0.0E+00 L AR .

200 300 400 500 600 700 800 200 300 400 500 600 700 800

Temperature (°C) Temperature (°C)

Fig. 7-8 Calculated nucleation frequencies: (a) 1.6 mass%Mn; (b) 0.6 mass%Mn.

734 RETRAX—IT L HZAERBEEOEL

Fig. 7-9(a)-(d)IZ 0D fE % 20°-50°F CTEAL S W76 O ABME DB & 7T
InBPING X HICE— 2 OfEIL0=20°, 30°, 40°, 50°TIEIZ 580°C, 440°C, 360°C,
320°C & K& KIRMANZY 7 P LTWL ZERb2d. S 6IT, e KEITIEIZ 9.1x10%,
6.2x10%4, 7.0x10%, 1.7x10°m 3t Th v, 9=30°% KL Lo i KIZ AR EIL 0 =
20°, 40°, 50°CJEIZ 1.5x10%, 1.1x107%, 2.7x107% L7e 2. L7z~ T, AN KX
RDITHE, BAMBEEITE LD T 52 Lavbnol.

Mn K Z g D5 J O = 1 /L — DRI K DI AE U D2 & el 5 7z
D, WO AERBE ZXx e L, 77 7L b D% Fig. 7-10 12T, ZORMN G
DHD K I Mn RZEATERR ST E AR O BREN /) 2SN L, B% A Rl
N EFRTDZLIIHERTED. LLARRD, ZTORELILZ LMD, Bl o

DB, T0b, MEMNy & N TEWo O =R X —OZEITER T 580 E L
SREWVWEFHET S Z LN TE 5.

BARBIZET 2BV CO R L L0 ICRHEN D FHEBEAERT 256,
ERAE T 5 ERIIRE T RN X —DFEETH Y, MEMENTH I LTI ORE
BINSLKTHZ EPERREICADN R FRETHLEZEX DD,

Pc
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Temperature (°C)

(c) 8 = 40°
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Fig. 7-9 Calculated nucleation frequencies: (a) 8= 20°; (b) 8=30°; (c) 8= 40°; (d) &=50°.
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1.E+34

1.E+30 |
1.E+26 |
1.E+22
1.E+18 |
1E+14 |

— 1.6 mass%Mn

1E+10 N 0.6 mass%Mn

1.E+06 |

Nucleation frequency (m3-s 1)

1.E+02 }
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1.E-06 }

1.E-10

200 300 400 500 600 700 800 900
Temperature (°C)

Fig. 7-10 The effects for nucleation frequency by contact angle and Mn depleted zone.

74 TTEMIYA X DRED

IAE YA ZADPIRERIT G- 2 DB LB )FHIICE 2 H &, Fig.7-11 IR T X9
IEMP R EWIGEE, MEMEREFEITES < DX LT, MEBR A S WIGE
TR REOHFEN/NEL 225 Z LICERT S, MEMEROIFEN /NS 2513
ENTEMNITRNCH L SN AIIC2 Y, B & L TRER YA R/ 2 KNI 5.
7m¥, HMAIINTED, v, o D 3FEORETRNAVF —IUKFET D720, MEMH A X
X DB, 2, BAA 3 7-6 AR 7-11 TR L &9 IS ERA KT
o> THORERAERTH > THRKRIZT=-20,,, /4G, TRENS.
Fig. 7-12 |ZR I ERA A OFRFE, VITRAUZE VRO BN S.

V= %M‘3(2—3COSI// +c0s° y) —%nﬁ(z —3c0s¢ + cos° ¢) (7-19)

Z 2T, cosp=(R-rcosd)/d, cosy =(r—Rcosd)/d, d=vR?+r’—2rRcosd Th 5.
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(a) large inclusion (b) small inclusion

Y Y

Inclusion Inclusion

Fig. 7-11 Schematic illustration of nucleation at inclusion interface: (a) large inclusion; (b)

small inclusion.

Fig. 7-12 Geometric illustration of inclusion and nucleus.
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Eo, UHEWY A X) | (EREEY A X) Z2x &T58, x LHEAA 6 1TKAF LToiENE
b F—TRATREND.

167 o’

At =g 1@ 7-20
Y73 AG,? (0:%) (7-20)
3 3
f(6’,x)=E 1+(1_COS@(] +x° 2—3(X_C050J+(X_C039J +3003@(2[X_C039— j
2 g g g g

(7-21)
g =1+ Xx* —2cos &k (7-22)

721 UL D, f(O.x) & 0 KO x OEMRIZFig. 7-13 DX 51275, RIS bhnbd L
21T 0=180°, DFE VY, S{EM LN ETRIVRWIGEITITIIED Y A X3
L2, &2 AN, A ENTEMPNRNLDSE, Thebb, #itfa0<180°TlL, /v
TEIHA X x BRELLDITE, EHR b= AT =TS RD. ZORETIXx=1
1, 72205, AL MEMY A XBERRO Y A XL R DB TROEEN RS D
EERD. T, HEMANNIWGEIZEZORBENRRESIERT L EBDNS.
L L2235, x>10 DFPHTIE F(0,x) IZZEERE MEE LS TRV E D,
NTEMBEFED 10 5LL EOY A K272 5 L AERICIT R E R BE 527202 b
BRSNS,

10 ¢
6 = 180°
1
~~ 0.1
}{ F
S3’001_
I 20°
0.001
I 10°
0.0001 AP Y I
0.1 1 10 100

X
Fig. 7-13  The relationship between f(8,x), 6 and x.
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7-8 XL 7-17 KAEHWT T = 74 N O ERZER LR % Fig. 7-14 127R
T. 22T, 0,=023m* & L. WBENKRELRDITE, BEHMRELRD,
ER SR /NS D T E D ERTE .

i
o

w
o
T

—_—
o
T

Critical nucleus diameter (nm)
N
o

0 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
400 500 600 700 800

Temperature (°C)

Fig. 7-14 Calculated critical nucleus diameter for each temperature.

T AARBRICE DT VX 2T —T7 =T A FOERERMMIRE T 660°C TH Y,
Z OIREE T OREFEZ 213 6.45 nm & G MET A XMl L TEHEL /M S
V. 2T, B E 6.450m, 0=20° L E LTHEAICOWTEHEAET D &, MTE
)73 200 nm T f(0,x) = 0.00285, MFEMS 1.2 um T £(0,x) =0.00270 £ 720, 1F & A
EFOX)DEITED LW L5, AR TR I ABIE RN TEWIX
0.2 um BETHDHDT, ZONEYY A XTIET vFaT7—7=274 MIxtT 5
WETIZLEAERNEEZOND. LTen-> T, # 6 B THRE LN T 250
TEMNET 2 F 2T =7 =T 4 MUREDTER L TWZEZBRER & P E L.
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75 KEE

AETIE, BIIPNRBLENET F 2T —T7 =T 4 FORAEREZELEL, AR

(ZHE D R TR X —D B R Mn RZE O EZ i LTz, £72, MTHEWI A X
DIZAERICKITT B ZELE LT, UTICAETHELNIERE T

1)

2)

3)

T ALRBRIE DT VX 2T —7 =T A NERBIRIEE ORIERRE, KO,
Thermo-Calc 1T X 2 PHRIRREFHR OFER G, 73 F 2T —7 =74 N OEARK
121X 161°C OB ENRKLETH Y, £z, ZO & X OBRE)/J1T-440 Jmol & F%
H b7,
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